
HOL-TestGen 1.9.1
User Guide

http://www.brucker.ch/projects/hol-testgen/

Achim D. Brucker Lukas Brügger Abderrahmane Feliachi
Chantal Keller Matthias P. Krieger Delphine Longuet
Yakoub Nemouchi Frederic Tuong Burkhart Wolff

August 31, 2017

Department of Computer Science
The University of Sheffield
S14DP Sheffield
UK

Laboratoire en Recherche en Informatique (LRI)
Université Paris-Sud 11
91405 Orsay Cedex
France

http://www.brucker.ch/projects/hol-testgen/
http://www.brucker.ch/
https://www.lri.fr/~wolff/

Copyright c© 2003–2012 ETH Zurich, Switzerland
Copyright c© 2007–2015 Achim D. Brucker, Germany
Copyright c© 2008–2016 University Paris-Sud, France
Copyright c© 2016 The University of Sheffield, UK

All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the name of the copyright holders nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIEDWARRANTIES OFMERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Note:
This manual describes HOL-TestGen version 1.9.1 (r13171). The manual of version 1.8.0
is also available as technical report number 1586 from the Laboratoire en Recherche en
Informatique (LRI), Université Paris-Sud 11, France.

Contents

1. Introduction 5

2. Preliminary Notes on Isabelle/HOL 7
2.1. Higher-order logic — HOL . 7
2.2. Isabelle . 7

3. Installation 9
3.1. Prerequisites . 9
3.2. Installing HOL-TestGen . 9
3.3. Starting HOL-TestGen . 9

4. Using HOL-TestGen 11
4.1. HOL-TestGen: An Overview . 11
4.2. Test Case and Test Data Generation . 11
4.3. Test Execution and Result Verification . 17

4.3.1. Testing an SML-Implementation . 17
4.3.2. Testing Non-SML Implementations . 19

4.4. Profiling Test Generation . 19

5. Examples 21
5.1. List . 21

6. Testing List Properties 29
6.1. Bank . 41

7. A Simple Deterministic Bank Model 51

8. A Simple Non-Deterministic Bank Model 61
8.1. MyKeOS . 64

9. The MyKeOS Case Study 65

10.The MyKeOS “Traditional” Data-sequence enumeration approach 71

A. Glossary 87

3

1. Introduction

Today, essentially two validation techniques for software are used: software verification and
software testing . Whereas verification is rarely used in “real” software development, testing
is widely-used, but normally in an ad-hoc manner. Therefore, the attitude towards testing
has been predominantly negative in the formal methods community, following what we call
Dijkstra’s verdict [13, p.6]:

“Program testing can be used to show the presence of bugs, but never to show
their absence!”

More recently, three research areas, albeit driven by different motivations, converge and
result in a renewed interest in testing techniques:

Abstraction Techniques: model-checking raised interest in techniques to abstract infinite
to finite models. Provided that the abstraction has been proven sound, testing may
be sufficient for establishing correctness [3, 12].

Systematic Testing: the discussion over test adequacy criteria [26], i. e. criteria solving
the question “when did we test enough to meet a given test hypothesis,” led to more
systematic approaches for partitioning the space of possible test data and the choice
of representatives. New systematic testing methods and abstraction techniques can be
found in [16, 14].

Specification Animation: constructing counter-examples has raised interest also in the
theorem proving community, since combined with animations of evaluations, they may
help to find modelling errors early and to increase the overall productivity [2, 17, 11].

The first two areas are motivated by the question “are we building the program right?” the
latter is focused on the question “are we specifying the right program?” While the first
area shows that Dijkstra’s Verdict is no longer true under all circumstances, the latter area
shows, that it simply does not apply in practically important situations. In particular,
if a formal model of the environment of a software system (e. g. based among others on
the operation system, middleware or external libraries) must be reverse-engineered, testing
(“experimenting”) is without alternative (see [7]).
Following standard terminology [26], our approach is a specification-based unit test . In

general, a test procedure for such an approach can be divided into:

Test Case Generation: for each operation the pre/postcondition relation is divided into
sub-relations. It assumes that all members of a sub-relation lead to a similar behavior
of the implementation.

Test Data Generation: (also: Test Data Selection) for each test case (at least) one rep-
resentative is chosen so that coverage of all test cases is achieved. From the resulting
test data, test input data processable by the implementation is extracted.

5

Test Execution: the implementation is run with the selected test input data in order to
determine the test output data.

Test Result Verification: the pair of input/output data is checked against the specifica-
tion of the test case.

The development of HOL-TestGen [8] has been inspired by [15], which follows the line of
specification animation works. In contrast, we see our contribution in the development of
techniques mostly on the first and to a minor extent on the second phase.
Building on QuickCheck [11], the work presented in [15] performs essentially random test,

potentially improved by hand-programmed external test data generators. Nevertheless, this
work also inspired the development of a random testing tool for Isabelle [2]. It is well-known
that random test can be ineffective in many cases; in particular, if preconditions of a program
based on recursive predicates like “input tree must be balanced” or “input must be a typable
abstract syntax tree” rule out most of randomly generated data. HOL-TestGen exploits
these predicates and other specification data in order to produce adequate data, combining
automatic data splitting, automatic constraint solving, and manual deduction.
As a particular feature, the automated deduction-based process can log the underlying

test hypothesis made during the test; provided that the test hypothesis is valid for the
program and provided the program passes the test successfully, the program must guarantee
correctness with respect to the test specification, see [6, 9] for details.

6

2. Preliminary Notes on Isabelle/HOL

2.1. Higher-order logic — HOL

Higher-order logic(HOL) [10, 1] is a classical logic with equality enriched by total polymor-
phic1 higher-order functions. It is more expressive than first-order logic, since e. g. induction
schemes can be expressed inside the logic. Pragmatically, HOL can be viewed as a com-
bination of a typed functional programming language like Standard ML (SML) or Haskell
extended by logical quantifiers. Thus, it often allows a very natural way of specification.

2.2. Isabelle

Isabelle [21, 18] is a generic theorem prover. New object logics can be introduced by speci-
fying their syntax and inference rules. Among other logics, Isabelle supports first order logic
(constructive and classical), Zermelo-Fränkel set theory and HOL, which we chose as the
basis for the development of HOL-TestGen.
Isabelle consists of a logical engine encapsulated in an abstract data type thm in Standard

ML; any thm object has been constructed by trusted elementary rules in the kernel. Thus
Isabelle supports user-programmable extensions in a logically safe way. A number of generic
proof procedures (tactics) have been developed; namely a simplifier based on higher-order
rewriting and proof-search procedures based on higher-order resolution.
We use the possibility to build on top of the logical core engine own programs performing

symbolic computations over formulae in a logically safe (conservative) way: this is what
HOL-TestGen technically is.

1to be more specific: parametric polymorphism

7

3. Installation

3.1. Prerequisites

HOL-TestGen is built on top of Isabelle/HOL, version 2016-1, thus you need a working
installation of Isabelle 2016-1. To install Isabelle, follow the instructions on the Isabelle
web-site:

http://isabelle.in.tum.de/website-Isabelle2016-1/index.html

3.2. Installing HOL-TestGen

In the following we assume that you have a running Isabelle 2016-1 environment. The
installation of HOL-TestGen requires the following steps:

1. Unpack the HOL-TestGen distribution, e. g.:

tar zxvf hol-testgen-1.9.1.tar.gz

This will create a directory hol-testgen-1.9.1 containing the HOL-TestGen distri-
bution.

cd hol-testgen-1.9.1

and build the HOL-TestGen heap image for Isabelle by calling

isabelle build -d . -b HOL-TestGen

3.3. Starting HOL-TestGen

HOL-TestGen can now be started using the isabelle command:1

isabelle jedit -d . -l HOL-TestGen "examples/unit/List/List_test.thy"

After a few seconds you should see an jEdit window similar to the one shown in Figure 3.1.
Alternatively, the example can be run in batch mode, e. g.,

isabelle build -d . HOL-TestGen-List

1Note that the isabelle command must be provided by Isabelle 2016-1.

9

http://isabelle.in.tum.de/website-Isabelle2016-1/index.html

Figure 3.1.: A HOL-TestGen session Using the jEdit Interface of Isabelle

10

4. Using HOL-TestGen

4.1. HOL-TestGen: An Overview

HOL-TestGen allows one to automate the interactive development of test cases, refine them
to concrete test data, and generate a test script that can be used for test execution and test
result verification. The test case generation and test data generation (selection) is done in
an Isar-based [25] environment (see Figure 4.1 for details). The test executable (and the
generated test script) can be built with any SML-system.

4.2. Test Case and Test Data Generation

In this section we give a brief overview of HOL-TestGen related extension of the Isar [25]
proof language. We use a presentation similar to the one in the Isar Reference Manual [25],
e. g. “missing” non-terminals of our syntax diagrams are defined in [25]. We introduce the
HOL-TestGen syntax by a (very small) running example: assume we want to test a function
that computes the maximum of two integers.

Starting your own theory for testing: For using HOL-TestGen you have to build your
Isabelle theories (i. e. test specifications) on top of the theory Testing instead of Main.
A sample theory is shown in Table 4.1.

Defining a test specification: Test specifications are defined similar to theorems in Is-
abelle, e. g.,

test_spec "prog a b = max a b"

would be the test specification for testing a simple program computing the maximum
value of two integers. The syntax of the keyword test_spec : theory → proof (prove)
is given by:
-- test_spec �� 〈locale〉 ��� 〈goal〉� 〈longgoal〉 ��� have� show �� hence �� thus �

� 〈goal〉 -�

〈goal〉 ::=-- �〈props〉� and �� -�

〈longgoal〉 ::=-- �� 〈thmdecl〉 ���� 〈contextelem〉 �� shows 〈goal〉 -�

Please look into the Isar Reference Manual [25] for the remaining details, e. g. a
description of 〈contextelem〉.

11

test data

test cases

program under test

test harness

test script

test specification

(Test Result)
Test Trace

HOL-TestGen

Isabelle/HOL

SML-systemtest executable

Figure 4.1.: Overview of the system architecture of HOL-TestGen

theory max_test
imports Testing
begin

test_spec "prog a b = max a b"
apply(gen_test_cases "prog" simp: max_def)
mk_test_suite "max_test"

gen_test_data "max_test"

print_conc_tests max_test

generate_test_script "max_test"
thm max_test.test_script

text {∗ Testing an SML implementation: ∗}
export_code max_test.test_script in SML module_name TestScript file "impl/sml/max_test_script.sml"

text {∗ Finally , we export the raw test data in an XML−like format: ∗}
export_test_data "impl/data/max_data.dat" max_test

end

Table 4.1.: A simple Testing Theory

12

Generating symbolic test cases: Now, abstract test cases for our test specification can
(automatically) be generated, e. g. by issuing

apply(gen_test_cases "prog" simp: max_def)

The gen_test_cases : method tactic allows to control the test case generation in a
fine-granular manner:
-- gen_test_cases �� 〈depth〉 〈breadth〉 �� 〈progname〉 �� 〈clamsimpmod〉 �� -�

where 〈depth〉 is a natural number describing the depth of the generated test cases and
〈breadth〉 is a natural number describing their breadth. Roughly speaking, the 〈depth〉
controls the term size in data separation lemmas in order to establish a regularity
hypothesis (see [6] for details), while the 〈breadth〉 controls the number of variables
occurring in the test specification for which regularity hypotheses are generated. The
default for 〈depth〉 and 〈breadth〉 is 3 resp. 1. 〈progname〉 denotes the name of the
program under test. Further, one can control the classifier and simplifier sets used
internally in the gen_test_cases tactic using the optional 〈clasimpmod〉 option:
〈clamsimpmod〉 ::=-- � simp � add� del �� only �

�
� � cong� split ���� add �� del �

� �
� iff ��� add ���� ? ��� del �

� �
� �� intro� elim �� dest �

�� !� �� ? �
�

� del �
� �

� : 〈thmrefs〉 -�

The generated test cases can be further processed, e. g., simplified using the usual
Isabelle/HOL tactics.

Creating a test suite: HOL-TestGen provides a kind of container, called test-suites, which
store all relevant logical and configuration information related to a particular test-
scenario. Test-suites were initially created after generating the test cases (and test
hypotheses); you should store your result of the derivation, usually the test-theorem
which is the output of the test-generation phase, in a test suite by:

mk_test_suite "max_test"

for further processing. This is done using the mk_test_suite : proof (prove) →
proof (prove) | theory command which also closes the actual “proof state” (or test
state. Its syntax is given by:
-- mk_test_suite 〈name〉 -�

where 〈name〉 is a fresh identifier which is later used to refer to this test state. This
name is even used at the very end of the test driver generation phase, when test-
executions are performed (externally to HOL-TestGen in a shell). Isabelle/HOL can
access the corresponding test theorem using the identifier 〈name〉.test_thm, e. g.:

13

thm max_test.test_thm

Generating test data: In a next step, the test cases can be refined to concrete test data:

gen_test_data "max_test"

The gen_test_data : theory |proof → theory |proof command takes only one parame-
ter, the name of the test suite for which the test data should be generated:
-- gen_test_data 〈name〉 -�

After the successful execution of this command Isabelle can access the test hypothe-
ses using the command print_thyps 〈name〉 and the test data using the command
print_conc_tests 〈name〉
print_thyps max_test
print_conc_tests max_test

In our concrete example, we get the output:

THYP ((∃ x xa. x ≤xa ∧prog x xa = xa) −→ (∀ x xa. x ≤xa −→ prog x xa = xa))
THYP ((∃ x xa. ¬x ≤xa ∧ prog x xa = x) −→ (∀ x xa. ¬ x ≤xa −→ prog x xa = x))

as well as :

prog −9 −3 = −3
prog −5 −8 = −5

By default, generating test data is done by calling the random solver. This is fine for
such a simple example, but as explained in the introduction, this is far incomplete when
the involved data-structures become more complex. To handle them, HOL-TestGen
also comes with a more advanced data generator based on SMT solvers (using their
integration in Isabelle, see e. g. [4]).

To turn on SMT-based data generation, use the following option:

declare [[testgen_SMT]]

(which is thus set to false by default). It is also recommended to turn off the random
solver:

declare [[testgen_iterations =0]]

In order for the SMT solver to know about constant definitions and properties, one
needs to feed it with these definitions and lemmas. For instance, if the test case involves
some inductive function foo, you can provide its definition to the solver using:

declare foo.simps [testgen_smt_facts]

as well as related properties (if needed).

A complete description of the configuration options can be found below.

Note that the SMT solver which is used is Z3, which is restricted to non-commercial use
in Isabelle. Hence you can use the SMT backend only for academic purposes. To make
this clear, you need to define (in your operating system) the following environment
variable:

14

OLD_Z3_NON_COMMERCIAL=yes

Exporting test data: After the test data generation, HOL-TestGen is able to export the
test data into an external file, e. g.:

export_test_data "test_max.dat" "max_test"

exports the generated test data into a file text_max.dat. The generation of a test
data file is done using the export_test_data : theory |proof → theory |proof command:
-- export_test_data 〈filename〉 〈name〉 �� 〈smlprogname〉 �� -�

where 〈filename〉 is the name of the file in which the test data is stored and 〈name〉 is
the name of a collection of test data in the test environment.

Generating test scripts: After the test data generation, HOL-TestGen is able to generate
a test script, e. g.:

gen_test_script "test_max.sml" "max_test" "prog"
"myMax.max"

produces the test script shown in Table 4.2 that (together with the provided test
harness) can be used to test real implementations. The generation of test scripts is
done using the generate_test_script : theory |proof → theory |proof command:
-- gen_test_script 〈filename〉 〈name〉 〈progname〉 �� 〈smlprogname〉 �� -�

where 〈filename〉 is the name of the file in which the test script is stored, and 〈name〉
is the name of a collection of test data in the test environment, and 〈progname〉 the
name of the program under test. The optional parameter 〈smlprogname〉 allows for
the configuration of different names of the program under test that is used within the
test script for calling the implementation.

Alternatively, the code-generator can be configured to generate test-driver code in
other progamming languages, see below.

Configure HOL-TestGen: The overall behavior of test data and test script generation
can be configured, e. g.

declare [[testgen_iterations =15]]

The parameters (all prefixed with testgen_) have the following meaning:

depth: Test-case generation depth. Default: 3.

breadth: Test-case generation breadth. Default: 1.

bound: Global bound for data statements. Default: 200.

case_breadth: Number of test data per case, weakening uniformity. Default: 1.

iterations: Number of attempts during random solving phase. Default: 25.
Set to 0 to turn off the random solver.

gen_prelude: Generate datatype specific prelude. Default: true.

15

structure TestDriver : sig end = struct
val return = ref ~63;

3 fun eval x2 x1 = let
val ret = myMax.max x2 x1

in
((return := ret);ret)

end
8 fun retval () = SOME(!return);

fun toString a = Int.toString a;
val testres = [];

val pre_0 = [];
13 val post_0 = fn () => ((eval ~23 69 = 69));

val res_0 = TestHarness.check retval pre_0 post_0;
val testres = testres@[res_0];

val pre_1 = [];
18 val post_1 = fn () => ((eval ~11 ~15 = ~11));

val res_1 = TestHarness.check retval pre_1 post_1;
val testres = testres@[res_1];

val _ = TestHarness.printList toString testres;
23 end

Table 4.2.: Test Script

gen_wrapper: Generate wrapper/logging-facility (increases verbosity of the gen-
erated test script). Default: true.

SMT: If set to “true” external SMT solvers (e.g., Z3) are used during
test-case generation. Default: false.

smt_facts: Add a theorem to the SMT-based data generator basis.

toString: Type-specific SML-function for converting literals into strings
(e.g., Int.toString), used for generating verbose output while
executing the generated test script. Default: "".

setup_code: Customized setup/initialization code (copied verbatim to gener-
ated test script). Default: "".

dataconv_code: Customized code for converting datatypes (copied verbatim to
generated test script). Default: "".

type_range_bound: Bound for choosing type instantiation (effectively used elements
type grounding list). Default: 1.

type_candidates: List of types that are used, during test script generation, for in-
stantiating type variables (e.g., α list). The ordering of the types
determines their likelihood of being used for instantiating a poly-
morphic type. Default: [int, unit, bool, int set, int list]

16

structure myMax = struct
fun max x y = if (x < y) then y else x

end

Table 4.3.: Implementation in SML of max

Configuring the test data generation: Further, an attribute test : attribute is provided,
i. e.:

lemma max_abscase [test "maxtest"]:"max 4 7 = 7"

or

declare max_abscase [test "maxtest"]

that can be used for hierarchical test case generation:
-- test 〈name〉 -�

4.3. Test Execution and Result Verification

In principle, any SML-system, e. g. [24, 22, 23, 19, 20], should be able to run the provided
test-harness and generated test-script. Using their specific facilities for calling foreign code,
testing of non-SML programs is possible. For example, one could test

• implementations using the .Net platform (more specific: CLR IL), e. g. written in C#
using sml.net [23],

• implementations written in C using, e. g. the foreign language interface of sml/NJ [24]
or MLton [20],

• implementations written in Java using mlj [19].

Also, depending on the SML-system, the test execution can be done within an interpreter
(it is even possible to execute the test script within HOL-TestGen) or using a compiled test
executable. In this section, we will demonstrate the test of SML programs (using SML/NJ
or MLton) and ANSI C programs.

4.3.1. Testing an SML-Implementation

Assume we have written a max-function in SML (see Table 4.3) stored in the file max.sml
and we want to test it using the test script generated by HOL-TestGen. Following Figure 4.1
we have to build a test executable based on our implementation, the generic test harness
(harness.sml) provided by HOL-TestGen, and the generated test script (test_max.sml),
shown in Table 4.2.
If we want to run our test interactively in the shell provided by sml/NJ, we just have to

issue the following commands:

17

Test Results:
=============
Test 0 - SUCCESS, result: 69
Test 1 - SUCCESS, result: ~11

Summary:

Number successful tests cases: 2 of 2 (ca. 100%)
Number of warnings: 0 of 2 (ca. 0%)
Number of errors: 0 of 2 (ca. 0%)
Number of failures: 0 of 2 (ca. 0%)
Number of fatal errors: 0 of 2 (ca. 0%)

Overall result: success
===============

Table 4.4.: Test Trace

use "harness.sml";
use "max.sml";
use "test_max.sml";

After the last command, sml/NJ will automatically execute our test and you will see a
output similar to the one shown in Table 4.4.
If we prefer to use the compilation manager of sml/NJ, or compile our test to a single test

executable using MLton, we just write a (simple) file for the compilation manager of sml/NJ
(which is understood both, by MLton and sml/NJ) with the following content:

Group is
harness.sml
max.sml
test_max.sml

#if(defined(SMLNJ_VERSION))
$/basis.cm
$smlnj/compiler/compiler.cm

#else
#endif

and store it as test.cm. We have two options, we can

• use sml/NJ: we can start the sml/NJ interpreter and just enter

CM.make("test.cm")

which will build a test setup and run our test.

• use MLton to compile a single test executable by executing

18

int max (int x, int y) {
2 if (x < y) {

return y;
}else{

return x;
}

7 }

Table 4.5.: Implementation in ANSI C of max

mlton test.cm

on the system shell. This will result in a test executable called test which can be
directly executed.

In both cases, we will get a test output (test trace) similar to the one presented in Table 4.4.

4.3.2. Testing Non-SML Implementations

Suppose we have an ANSI C implementation of max (see Table 4.5) that we want to test
using the foreign language interface provided by MLton. First we have to import the max
method written in C using the _import keyword of MLton. Further, we provide a “wrapper”
function doing the pairing of the curried arguments:

structure myMax = struct
val cmax = _import "max": int * int -> int ;
fun max a b = cmax(a,b);

end

We store this file as max.sml and write a small configuration file for the compilation manager:

Group is
harness.sml
max.sml
test_max.sml

We can compile a test executable by the command

mlton -default-ann ’allowFFI true’ test.cm max.c

on the system shell. Again, we end up with an test executable test which can be called
directly. Running our test executable will result in trace similar to the one presented in
Table 4.4.

4.4. Profiling Test Generation

HOL-TestGen includes support for profiling the test procedure. By default, profiling is
turned off. Profiling can be turned on by issuing the command
-- profiling_on -�

19

Profiling can be turned off again with the command
-- profiling_off -�

When profiling is turned on, the time consumed by gen_test_cases and gen_test_data is
recorded and associated with the test theorem. The profiling results can be printed by
-- print_clocks -�

A LaTeX version of the profiling results can be written to a file with the command
-- write_clocks 〈filename〉 -�

Users can also record the runtime of their own code. A time measurement can be started
by issuing
-- start_clock 〈name〉 -�

where 〈name〉 is a name for identifying the time measured. The time measurement is com-
pleted by
-- stop_clock 〈name〉 -�

where 〈name〉 has to be the name used for the preceding start_clock. If the names do not
match, the profiling results are marked as erroneous. If several measurements are performed
using the same name, the times measured are added. The command
-- next_clock -�

proceeds to a new time measurement using a variant of the last name used.
These profiling instructions can be nested, which causes the names used to be com-

bined to a path. The Clocks structure provides the tactic analogues start_clock_tac,
stop_clock_tac and next_clock_tac to these commands. The profiling features available
to the user are independent of HOL-TestGen’s profiling flag controlled by profiling_on and
profiling_off.

20

5. Examples

5.1. List

Implementation of integer numbers by target-language integers

theory Code-Target-Int
imports ../GCD
begin

code-datatype int-of-integer

declare [[code drop: integer-of-int]]

context
includes integer .lifting
begin

lemma [code]:
integer-of-int (int-of-integer k) = k
by transfer rule

lemma [code]:
Int .Pos = int-of-integer ◦ integer-of-num
by transfer (simp add : fun-eq-iff)

lemma [code]:
Int .Neg = int-of-integer ◦ uminus ◦ integer-of-num
by transfer (simp add : fun-eq-iff)

lemma [code-abbrev]:
int-of-integer (numeral k) = Int .Pos k
by transfer simp

lemma [code-abbrev]:
int-of-integer (− numeral k) = Int .Neg k
by transfer simp

lemma [code, symmetric, code-post]:
0 = int-of-integer 0
by transfer simp

lemma [code, symmetric, code-post]:
1 = int-of-integer 1
by transfer simp

21

lemma [code-post]:
int-of-integer (− 1) = − 1
by simp

lemma [code]:
k + l = int-of-integer (of-int k + of-int l)
by transfer simp

lemma [code]:
− k = int-of-integer (− of-int k)
by transfer simp

lemma [code]:
k − l = int-of-integer (of-int k − of-int l)
by transfer simp

lemma [code]:
Int .dup k = int-of-integer (Code-Numeral .dup (of-int k))
by transfer simp

declare [[code drop: Int .sub]]

lemma [code]:
k ∗ l = int-of-integer (of-int k ∗ of-int l)
by simp

lemma [code]:
k div l = int-of-integer (of-int k div of-int l)
by simp

lemma [code]:
k mod l = int-of-integer (of-int k mod of-int l)
by simp

lemma [code]:
divmod m n = map-prod int-of-integer int-of-integer (divmod m n)
unfolding prod-eq-iff divmod-def map-prod-def case-prod-beta fst-conv snd-conv
by transfer simp

lemma [code]:
HOL.equal k l = HOL.equal (of-int k :: integer) (of-int l)
by transfer (simp add : equal)

lemma [code]:
k ≤ l ←→ (of-int k :: integer) ≤ of-int l
by transfer rule

lemma [code]:
k < l ←→ (of-int k :: integer) < of-int l
by transfer rule

declare [[code drop: gcd :: int ⇒ - lcm :: int ⇒ -]]

22

lemma gcd-int-of-integer [code]:
gcd (int-of-integer x) (int-of-integer y) = int-of-integer (gcd x y)

by transfer rule

lemma lcm-int-of-integer [code]:
lcm (int-of-integer x) (int-of-integer y) = int-of-integer (lcm x y)

by transfer rule

end

lemma (in ring-1) of-int-code-if :
of-int k = (if k = 0 then 0

else if k < 0 then − of-int (− k)
else let
l = 2 ∗ of-int (k div 2);
j = k mod 2

in if j = 0 then l else l + 1)
proof −
from div-mult-mod-eq have ∗: of-int k = of-int (k div 2 ∗ 2 + k mod 2) by simp
show ?thesis
by (simp add : Let-def of-int-add [symmetric]) (simp add : ∗ mult .commute)

qed

declare of-int-code-if [code]

lemma [code]:
nat = nat-of-integer ◦ of-int
including integer .lifting by transfer (simp add : fun-eq-iff)

code-identifier
code-module Code-Target-Int ⇀
(SML) Arith and (OCaml) Arith and (Haskell) Arith

end

Avoidance of pattern matching on natural numbers

theory Code-Abstract-Nat
imports Main
begin

When natural numbers are implemented in another than the conventional inductive 0/Suc
representation, it is necessary to avoid all pattern matching on natural numbers altogether.
This is accomplished by this theory (up to a certain extent).

Case analysis Case analysis on natural numbers is rephrased using a conditional expres-
sion:

lemma [code, code-unfold]:
case-nat = (λf g n. if n = 0 then f else g (n − 1))
by (auto simp add : fun-eq-iff dest !: gr0-implies-Suc)

23

Preprocessors The term Suc n is no longer a valid pattern. Therefore, all occurrences
of this term in a position where a pattern is expected (i.e. on the left-hand side of a code
equation) must be eliminated. This can be accomplished – as far as possible – by applying
the following transformation rule:

lemma Suc-if-eq :
assumes

∧
n. f (Suc n) ≡ h n

assumes f 0 ≡ g
shows f n ≡ if n = 0 then g else h (n − 1)
by (rule eq-reflection) (cases n, insert assms, simp-all)

The rule above is built into a preprocessor that is plugged into the code generator.

setup 〈

let

val Suc-if-eq = Thm.incr-indexes 1 @{thm Suc-if-eq};

fun remove-suc ctxt thms =
let
val vname = singleton (Name.variant-list (map fst
(fold (Term.add-var-names o Thm.full-prop-of) thms []))) n;

val cv = Thm.cterm-of ctxt (Var ((vname, 0), HOLogic.natT));
val lhs-of = snd o Thm.dest-comb o fst o Thm.dest-comb o Thm.cprop-of ;
val rhs-of = snd o Thm.dest-comb o Thm.cprop-of ;
fun find-vars ct = (case Thm.term-of ct of

(Const (@{const-name Suc}, -) $ Var -) => [(cv , snd (Thm.dest-comb ct))]
| - $ - =>
let val (ct1 , ct2) = Thm.dest-comb ct
in
map (apfst (fn ct => Thm.apply ct ct2)) (find-vars ct1) @
map (apfst (Thm.apply ct1)) (find-vars ct2)

end
| - => []);

val eqs = maps
(fn thm => map (pair thm) (find-vars (lhs-of thm))) thms;

fun mk-thms (thm, (ct , cv ′)) =
let
val thm ′ =
Thm.implies-elim
(Conv .fconv-rule (Thm.beta-conversion true)
(Thm.instantiate ′
[SOME (Thm.ctyp-of-cterm ct)] [SOME (Thm.lambda cv ct),
SOME (Thm.lambda cv ′ (rhs-of thm)), NONE , SOME cv ′]

Suc-if-eq)) (Thm.forall-intr cv ′ thm)
in
case map-filter (fn thm ′′ =>

SOME (thm ′′, singleton
(Variable.trade (K (fn [thm ′′′] => [thm ′′′ RS thm ′]))
(Variable.declare-thm thm ′′ ctxt)) thm ′′)

handle THM - => NONE) thms of
[] => NONE
| thmps =>

24

let val (thms1 , thms2) = split-list thmps
in SOME (subtract Thm.eq-thm (thm :: thms1) thms @ thms2) end

end
in get-first mk-thms eqs end ;

fun eqn-suc-base-preproc ctxt thms =
let
val dest = fst o Logic.dest-equals o Thm.prop-of ;
val contains-suc = exists-Const (fn (c, -) => c = @{const-name Suc});

in
if forall (can dest) thms andalso exists (contains-suc o dest) thms
then thms |> perhaps-loop (remove-suc ctxt) |> (Option.map o map) Drule.zero-var-indexes
else NONE

end ;

val eqn-suc-preproc = Code-Preproc.simple-functrans eqn-suc-base-preproc;

in

Code-Preproc.add-functrans (eqn-Suc, eqn-suc-preproc)

end ;
〉

end

Implementation of natural numbers by target-language integers

theory Code-Target-Nat
imports Code-Abstract-Nat
begin

Implementation for nat context
includes natural .lifting integer .lifting
begin

lift-definition Nat :: integer ⇒ nat
is nat
.

lemma [code-post]:
Nat 0 = 0
Nat 1 = 1
Nat (numeral k) = numeral k
by (transfer , simp)+

lemma [code-abbrev]:
integer-of-nat = of-nat
by transfer rule

lemma [code-unfold]:
Int .nat (int-of-integer k) = nat-of-integer k

25

by transfer rule

lemma [code abstype]:
Code-Target-Nat .Nat (integer-of-nat n) = n
by transfer simp

lemma [code abstract]:
integer-of-nat (nat-of-integer k) = max 0 k
by transfer auto

lemma [code-abbrev]:
nat-of-integer (numeral k) = nat-of-num k
by transfer (simp add : nat-of-num-numeral)

lemma [code abstract]:
integer-of-nat (nat-of-num n) = integer-of-num n
by transfer (simp add : nat-of-num-numeral)

lemma [code abstract]:
integer-of-nat 0 = 0
by transfer simp

lemma [code abstract]:
integer-of-nat 1 = 1
by transfer simp

lemma [code]:
Suc n = n + 1
by simp

lemma [code abstract]:
integer-of-nat (m + n) = of-nat m + of-nat n
by transfer simp

lemma [code abstract]:
integer-of-nat (m − n) = max 0 (of-nat m − of-nat n)
by transfer simp

lemma [code abstract]:
integer-of-nat (m ∗ n) = of-nat m ∗ of-nat n
by transfer (simp add : of-nat-mult)

lemma [code abstract]:
integer-of-nat (m div n) = of-nat m div of-nat n
by transfer (simp add : zdiv-int)

lemma [code abstract]:
integer-of-nat (m mod n) = of-nat m mod of-nat n
by transfer (simp add : zmod-int)

lemma [code]:
Divides.divmod-nat m n = (m div n, m mod n)

26

by (fact divmod-nat-div-mod)

lemma [code]:
divmod m n = map-prod nat-of-integer nat-of-integer (divmod m n)
by (simp only : prod-eq-iff divmod-def map-prod-def case-prod-beta fst-conv snd-conv)
(transfer , simp-all only : nat-div-distrib nat-mod-distrib

zero-le-numeral nat-numeral)

lemma [code]:
HOL.equal m n = HOL.equal (of-nat m :: integer) (of-nat n)
by transfer (simp add : equal)

lemma [code]:
m ≤ n ←→ (of-nat m :: integer) ≤ of-nat n
by simp

lemma [code]:
m < n ←→ (of-nat m :: integer) < of-nat n
by simp

lemma num-of-nat-code [code]:
num-of-nat = num-of-integer ◦ of-nat
by transfer (simp add : fun-eq-iff)

end

lemma (in semiring-1) of-nat-code-if :
of-nat n = (if n = 0 then 0

else let
(m, q) = Divides.divmod-nat n 2 ;
m ′ = 2 ∗ of-nat m

in if q = 0 then m ′ else m ′ + 1)
proof −
from div-mult-mod-eq have ∗: of-nat n = of-nat (n div 2 ∗ 2 + n mod 2) by simp
show ?thesis
by (simp add : Let-def divmod-nat-div-mod of-nat-add [symmetric])
(simp add : ∗ mult .commute of-nat-mult add .commute)

qed

declare of-nat-code-if [code]

definition int-of-nat :: nat ⇒ int where
[code-abbrev]: int-of-nat = of-nat

lemma [code]:
int-of-nat n = int-of-integer (of-nat n)
by (simp add : int-of-nat-def)

lemma [code abstract]:
integer-of-nat (nat k) = max 0 (integer-of-int k)
including integer .lifting by transfer auto

27

lemma term-of-nat-code [code]:
— Use nat-of-integer in term reconstruction instead of Code-Target-Nat .Nat such that recon-

structed terms can be fed back to the code generator
term-of-class.term-of n =
Code-Evaluation.App
(Code-Evaluation.Const (STR ′′Code-Numeral .nat-of-integer ′′)

(typerep.Typerep (STR ′′fun ′′)
[typerep.Typerep (STR ′′Code-Numeral .integer ′′) [],

typerep.Typerep (STR ′′Nat .nat ′′) []]))
(term-of-class.term-of (integer-of-nat n))

by (simp add : term-of-anything)

lemma nat-of-integer-code-post [code-post]:
nat-of-integer 0 = 0
nat-of-integer 1 = 1
nat-of-integer (numeral k) = numeral k
including integer .lifting by (transfer , simp)+

code-identifier
code-module Code-Target-Nat ⇀
(SML) Arith and (OCaml) Arith and (Haskell) Arith

end

Implementation of natural and integer numbers by target-language integers

theory Code-Target-Numeral
imports Code-Target-Int Code-Target-Nat
begin

end

28

6. Testing List Properties
This is a reference show-case for HOL-TestGen providing three test-scenarios that were
treated from A to Z. This includes:

1. The modeling phase ("building the test-theory") comprising definitions and theorems
representing the "background theory" of a particular model to test.

2. The test-specification, the formal statement from which the tests were derived.

3. The abstract test generation phase which basically cuts the input-output relation of
the program under test into partitions represented by constraint systems. (since the
constraint systems can be unsatisfiable, abstract test cases can be vacuous).

4. The test selection phase that attempts to find concrete test-cases, i. e. ground instances
of abstract test cases.

5. The test driver generation phase converts the concrete test-cases into a program that
executes these tests; it is linked to a test-harness allowing to track the test evaluation
and the program or system under test.

6. The test execution phase (which is currently done outside HOL-TestGen via makefiles.

In this example we present the current main application of HOL-TestGen: generating test
data for black box testing of functional programs within a specification based unit test.
We use a simple scenario, developing the test theory for testing sorting algorithms over
lists, develop test specifications (elsewhere called test targets or test goals), and explore the
different possibilities.
theory List-test
imports
List
∼∼/src/HOL/Library/Code-Target-Numeral
Code-Integer-Fsharp
Testing

begin

A Test-theory as a whole starts with the import of its main components, among
them the HOL-TestGen environment grouped together in the Testing. The theories
Code-Target-Numeral and Code-Integer-Fsharp are required to support the test driver gen-
eration process.

A First Model and a Quick Walk Through

In the following we give a first impression of how the testing process using HOL-TestGen
looks like. For brevity we stick to default parameters and explain possible decision points
and parameters where the testing can be improved in the next section.

29

Modeling: Writing the Test Specification We start by specifying a primitive recursive
predicate describing sorted lists:

primrec is-sorted :: int list ⇒ bool
where is-sorted [] = True |

is-sorted (x#xs) = (case xs of
[] ⇒ True
| y#ys ⇒ x ≤ y ∧ is-sorted xs)

We will use this HOL predicate for describing our test specification, i.e. the properties
our implementation should fulfill and which we ultimately will test.

test-spec is-sorted(PUT l)
oops

where PUT is a “placeholder” for our program under test. For the sake of the presentation,
we drop the test attempt here.

However, for the code-generation necessary to generate a test-driver and actually run the
test of an external program, the program under test or PUT for short, it is sensible to represent
the latter as an uninterpreted constant; the code-generation will later on configured such
that the place-holder in the test-driver code is actually linked to the real, external program
which is a black box from the point of view of this model (the testing procedure needs
actually only executable code).

consts PUT :: ′a list ⇒ ′a list

Note that the choice of the name is arbitrary.

Generating Abstract Test-cases Now we can automatically generate test cases. Using
the default setup, we just apply our gen-test-cases:

test-spec is-sorted(PUT (l))
apply(gen-test-cases 3 1 PUT)

which leads to the test partitioning one would expect:

1 . is-sorted (PUT [])
2 . THYP (is-sorted (PUT []) −→ is-sorted (PUT []))
3 . is-sorted (PUT [??X8X44])
4 . THYP ((∃ x . is-sorted (PUT [x])) −→ (∀ x . is-sorted (PUT [x])))
5 . is-sorted (PUT [??X6X38 , ??X5X37])
6 . THYP

((∃ x xa. is-sorted (PUT [xa, x])) −→ (∀ x xa. is-sorted (PUT [xa, x])))
7 . is-sorted (PUT [??X3X30 , ??X2X29 , ??X1X28])
8 . THYP

((∃ x xa xb. is-sorted (PUT [xb, xa, x])) −→
(∀ x xa xb. is-sorted (PUT [xb, xa, x])))

9 . THYP (3 < length l −→ is-sorted (PUT l))

. Now we bind the test theorem to a particular named test suite, a kind of container into which all
relevant data is stored and under which a group of tests can be referred to during test execution.

mk-test-suite is-sorted-result

30

The current test theorem contains holes, that correspond to the concrete data of the test
that have not been generated yet

thm is-sorted-result .test-thm

Generating Concrete Test-cases Now we want to generate concrete test data, i.e. all
variables in the test cases must be instantiated with concrete values. This involves a random
solver which tries to solve the constraints by randomly choosing values.

thm is-sorted-result .test-thm
gen-test-data is-sorted-result
thm is-sorted-result .test-thm-inst

Which leads to the following test data: \\ is-sorted (PUT []) is-sorted (PUT [10])
is-sorted (PUT [3 , 10]) is-sorted (PUT [− 8 , − 3 , − 3])

Note that the underlying test hypothesis remain: \\ THYP (is-sorted (PUT []) −→
is-sorted (PUT [])) THYP ((∃ x . is-sorted (PUT [x])) −→ (∀ x . is-sorted (PUT [x])))
THYP ((∃ x xa. is-sorted (PUT [xa, x])) −→ (∀ x xa. is-sorted (PUT [xa, x]))) THYP ((∃ x
xa xb. is-sorted (PUT [xb, xa, x])) −→ (∀ x xa xb. is-sorted (PUT [xb, xa, x]))) THYP (3
< length l −→ is-sorted (PUT l))

Note that by the following statements, the test data, the test hypotheses and the test
theorem can be inspected interactively.

print-conc-tests is-sorted-result
print-abs-tests is-sorted-result
print-thyps is-sorted-result
print-upos is-sorted-result

The generated test data can be exported to an external file:

export-test-data impl/data/test-data.data is-sorted-result

Test Execution and Result Verification In principle, any SML-system should be able
to run the provided test-harness and generated test-script. Using their specific facilities for
calling foreign code, testing of non-SML programs is possible. For example, one could test
implementations written:

• for the.Net platform, e.g., written in C# using sml.net [23],

• in C using, e.g. the foreign language interface of sml/NJ [24] or MLton [20],

• in Java using MLj [19].

Depending on the SML-system, the test execution can be done within an interpreter or
using a compiled test executable. Testing implementations written in SML is straight-
forward, based on automatically generated test scripts. This generation is based on
the internal code generator of Isabelle and must be set up accordingly.

The the following, we show the general generation of test-scripts (part of the finally
generated test-driver) in different languages; finally, we will concentrate on the test-
generation scenario for C.

31

code-printing
constant PUT => (Fsharp) ((List .map (fun x −> Int ′-of ′-integer x)) (myList .sort (List .map

(fun x −> integer ′-of ′-int x) ((-)))))
and (SML) ((map (fn x => Int ′-of ′-integer x)) o myList .sort o (map (fn x =>

integer ′-of ′-int x)))
and (Scala) ((myList .sort ((-).map {x => integer ′-of ′-int(x)})).map {x =>

int ′-of ′-integer(x)})

generate-test-script is-sorted-result
thm is-sorted-result .test-script

Testing an SML implementation:

export-code is-sorted-result .test-script in SML
module-name TestScript file impl/sml/is-sorted-test-script .sml

We use the SML test script also for testing an implementation written in C:

export-code is-sorted-result .test-script in SML
module-name TestScript file impl/c/is-sorted-test-script .sml

Testing an F# implementation:

export-code is-sorted-result .test-script in Fsharp
module-name TestScript file impl/fsharp/is-sorted-test-script .fs

We use the F# test script also for testing an implementation written in C#:

export-code is-sorted-result .test-script in Fsharp
module-name TestScript file impl/csharp/is-sorted-test-script .fs

Testing a Scala implementation:

export-code is-sorted-result .test-script in Scala
module-name TestScript file impl/scala/is-sorted-test-script .scala

We use the Scala script also for testing an implementation written in Java:

export-code is-sorted-result .test-script in Scala
module-name TestScript file impl/java/is-sorted-test-script .scala

Finally, we export the raw test data in an XML-like format:

export-test-data impl/data/is-sorted-test-data.dat is-sorted-result

which generates the following test harness:

In the following, we assume an ANSI C implementation of our sorting method for sorting
C arrays that we want to test. (In our example setup, it is contained in the file impl/c/
sort.c.) Using the foreign language interface provided by the SML compiler MLton we
first have to import the sort method written in C using the _import keyword of MLton and
further, we provide a “wrapper” doing some data-type conversion, e.g. converting lists to
arrays and vice versa:

structure myList = struct

val csort = _import "sort": int array * int -> int array;
fun ArrayToList a = Array.foldl (op ::) [] a;

32

>make
mlton -default-ann ’allowFFI true’ is_sorted_test.mlb sort.c
./is_sorted_test

Test Results:
=============
Test 0 - SUCCESS
Test 1 - SUCCESS
Test 2 - SUCCESS
Test 3 - SUCCESS
Test 4 - SUCCESS
Test 5 - SUCCESS
Test 6 - SUCCESS

Summary:

Number successful tests cases: 7 of 7 (ca. 100%)
Number of warnings: 0 of 7 (ca. 0%)
Number of errors: 0 of 7 (ca. 0%)
Number of failures: 0 of 7 (ca. 0%)
Number of fatal errors: 0 of 7 (ca. 0%)

Overall result: success
===============

Table 6.1.: A Sample Test Trace: The ascending property tested.

fun sort_list list = ArrayToList (csort(Array.fromList(list),(length list)));

fun sort list = map IntInf.fromInt (sort_list (map IntInf.toInt list))

end

That’s all, now we can build the test executable using MLton and end up with a test
executable which can be called directly. In impl/c, the process of:

1. compiling the generated impl/c/is_sorted_test_script.sml, the test harness
(harness.sml), a main routine impl/c/List.sml) and containing a wrapper into an
SML structure myList as well as the SML-to-C code-stub sort,

2. compiling the C test-driver and linking it to the program under test impl/c/sort.c,
and

3. executing the test is captured in a impl/c/Makefile. So: executes the test and displays
a test-statistic as shown in Table 6.1.

33

A Refined Model and Improved Test-Results

Obviously, in reality one would not be satisfied with the test cases generated in the pre-
vious section: for testing sorting algorithms one would expect that the test data somehow
represents the set of permutations of the list elements. We have already seen that the test
specification used in the last section “only” enumerates lists up to a specific length without
any ordering constraints on their elements. What is missing, is a test that input and output
sequence are in fact permutations of each other. We could state for example :
fun del-member :: ′a ⇒ ′a list ⇒ ′a list option
where del-member x [] = None
|del-member x (y # S) = (if x = y then Some S

else case del-member x S of
None ⇒ None
| Some S ′⇒ Some(y # S ′))

fun is-permutation :: ′a list ⇒ ′a list ⇒ bool
where is-permutation [] [] = True
|is-permutation (a#S)(a ′#S ′) =(if a = a ′ then is-permutation S S ′

else case del-member a S ′ of
None ⇒ False
| Some S ′′⇒ is-permutation S (a ′#S ′′))

|is-permutation - - = False

fun is-perm :: ′a list ⇒ ′a list ⇒ bool
where is-perm [] [] = True
|is-perm [] T = False
|is-perm (a#S) T = (if length T = length S + 1

then is-perm S (remove1 a T)
else False)

value is-perm [1 ,2 ,3 ::int] [3 ,1 ,2]

A test for permutation, that not is hopelessly non-constructive like "the existence of a
bijection on the indexes [0 .. n-1], that is pairwise mapped to the list" or the like, is
obviously quite complex; the apparent "mathematical specification" is not always the easiest.
We convince ourselves that the predicate is-permutation indeed captures our intuition by
animations of the definition:
value is-permutation [1 ,2 ,3] [3 ,2 ,1 ::nat]
value ¬ is-permutation [1 ,2 ,3] [3 ,1 ::nat]
value ¬ is-permutation [2 ,3] [3 ,2 ,1 ::nat]
value ¬ is-permutation [1 ,2 ,1 ,3] [3 ,2 ,1 ::nat]
value is-permutation [2 ,1 ,3] [1 ::nat ,3 ,2]

value is-perm [1 ,2 ,3] [3 ,2 ,1 ::nat]
value ¬ is-perm [1 ,2 ,3] [3 ,1 ::nat]
value ¬ is-perm [2 ,3] [3 ,2 ,1 ::nat]
value ¬ is-perm [1 ,2 ,1 ,3] [3 ,2 ,1 ::nat]
value is-perm [2 ,1 ,3] [1 ::nat ,3 ,2]

... which are all executable and thus were compiled and all evaluated to true.

Based on these concepts, a test-specification is straight-forward and easy:

34

declare [[goals-limit=5]]
apply(gen-test-cases 5 1 PUT)
mk-test-suite ascending-permutation-test

A quick inspection of the test theorem reveals that there are in fact no relevant constraints
to solve, so test-data selection is easy:

declare [[testgen-iterations=100]]
gen-test-data ascending-permutation-test

print-conc-tests ascending-permutation-test
print-conc-tests (6)ascending-permutation-test
print-thyps ascending-permutation-test
print-thyps (0)ascending-permutation-test

Again, we convert this into test-scripts that can be compiled to a test-driver.

generate-test-script ascending-permutation-test
thm ascending-permutation-test .test-script

We use the SML implementation also for testing an implementation written in C:

export-code ascending-permutation-test .test-script in SML
module-name TestScript file impl/c/ascending-permutation-test-script .sml

Try make run_ascending_permutation in directory impl/c to compile and execute the
generated test-driver.

A Test-Specification based on a Comparison with a Reference Implementation

We might opt for an alternative modeling approach: Thus we decide to try a more ‘’descrip-
tive” test specification that is based on the behavior of an insertion sort algorithm:

fun ins :: (′a::linorder) ⇒ ′a list ⇒ ′a list
where ins x [] = [x]
|ins x (y#ys) = (if (x < y) then x#y#ys else (y#(ins x ys)))

fun sort :: (′a::linorder) list ⇒ ′a list
where sort [] = []
|sort (x#xs) = ins x (sort xs)

Now we state our test specification by requiring that the behavior of the program under
test PUT is identical to the behavior of our specified sorting algorithm sort :

Based on this specification gen-test-cases produces test cases representing all permutations
of lists up to a fixed length n. Normally, we also want to configure up to which length lists
should be generated (we call this the depth of the test case), e.g. we decide to generate lists
up to length (1 :: ′a) + (1 :: ′a) + (1 :: ′a). Our standard setup:

declare [[goals-limit=100]]
test-spec sort l = PUT l
apply(gen-test-cases PUT)

mk-test-suite is-sorting-algorithm0

generates (1 :: ′a) + (1 :: ′a) + ((1 :: ′a) + (1 :: ′a)) + ((1 :: ′a) + (1 :: ′a) + ((1 :: ′a) + (1 :: ′a)))
+ (1 :: ′a) test cases describing all permutations of lists of length 1 :: ′a,(1 :: ′a) + (1 :: ′a) and

35

(1 :: ′a) + (1 :: ′a) + (1 :: ′a). "Permutation" means here that not only test cases (i.e. I/O-
partitions) are generated for lists of length 0 :: ′a, 1 :: ′a,(1 :: ′a) + (1 :: ′a) and (1 :: ′a) + (1 :: ′a)
+ (1 :: ′a); the partitioning is actually finer: for two-elementary lists, for example, the case of
a list with the first element larger or equal and the dual case are distinguished. The entire
test-theorem looks as follows:
[[[] = PUT []; THYP ([] = PUT [] −→ [] = PUT []); [??X31X190] = PUT [??X31X190];

THYP ((∃ x . [x] = PUT [x]) −→ (∀ x . [x] = PUT [x])); PO (??X29X182 < ??X28X181);
[??X29X182 , ??X28X181] = PUT [??X29X182 , ??X28X181]; THYP ((∃ x xa. xa < x ∧
[xa, x] = PUT [xa, x]) −→ (∀ x xa. xa < x −→ [xa, x] = PUT [xa, x])); PO (¬ ??X26X171
< ??X25X170); [??X25X170 , ??X26X171] = PUT [??X26X171 , ??X25X170]; THYP ((∃ x
xa. ¬ xa < x ∧ [x , xa] = PUT [xa, x]) −→ (∀ x xa. ¬ xa < x −→ [x , xa] = PUT [xa, x])); PO
((??X22X157 < ??X21X156 ∧ ??X23X158 < ??X21X156) ∧ ??X23X158 < ??X22X157);
[??X23X158 , ??X22X157 , ??X21X156] = PUT [??X23X158 , ??X22X157 , ??X21X156];
THYP ((∃ x xa xb. xa < x ∧ xb < x ∧ xb < xa ∧ [xb, xa, x] = PUT [xb, xa, x]) −→ (∀ x xa
xb. xa < x −→ xb < x −→ xb < xa −→ [xb, xa, x] = PUT [xb, xa, x])); PO ((¬ ??X18X140
< ??X17X139 ∧ ??X19X141 < ??X17X139) ∧ ??X19X141 < ??X18X140); [??X19X141 ,
??X17X139 , ??X18X140] = PUT [??X19X141 , ??X18X140 , ??X17X139]; THYP ((∃ x xa
xb. ¬ xa < x ∧ xb < x ∧ xb < xa ∧ [xb, x , xa] = PUT [xb, xa, x]) −→ (∀ x xa xb. ¬ xa
< x −→ xb < x −→ xb < xa −→ [xb, x , xa] = PUT [xb, xa, x])); PO ((¬ ??X14X123 <
??X13X122 ∧ ¬ ??X15X124 < ??X13X122) ∧ ??X15X124 < ??X14X123); [??X13X122 ,
??X15X124 , ??X14X123] = PUT [??X15X124 , ??X14X123 , ??X13X122]; THYP ((∃ x xa
xb. ¬ xa < x ∧ ¬ xb < x ∧ xb < xa ∧ [x , xb, xa] = PUT [xb, xa, x]) −→ (∀ x xa xb. ¬
xa < x −→ ¬ xb < x −→ xb < xa −→ [x , xb, xa] = PUT [xb, xa, x])); PO ((??X10X106
< ??X9X105 ∧ ??X11X107 < ??X9X105) ∧ ¬ ??X11X107 < ??X10X106); [??X10X106 ,
??X11X107 , ??X9X105] = PUT [??X11X107 , ??X10X106 , ??X9X105]; THYP ((∃ x xa
xb. xa < x ∧ xb < x ∧ ¬ xb < xa ∧ [xa, xb, x] = PUT [xb, xa, x]) −→ (∀ x xa xb. xa
< x −→ xb < x −→ ¬ xb < xa −→ [xa, xb, x] = PUT [xb, xa, x])); PO ((??X6X89 <
??X5X88 ∧ ¬ ??X7X90 < ??X5X88) ∧ ¬ ??X7X90 < ??X6X89); [??X6X89 , ??X5X88 ,
??X7X90] = PUT [??X7X90 , ??X6X89 , ??X5X88]; THYP ((∃ x xa xb. xa < x ∧ ¬ xb
< x ∧ ¬ xb < xa ∧ [xa, x , xb] = PUT [xb, xa, x]) −→ (∀ x xa xb. xa < x −→ ¬ xb <
x −→ ¬ xb < xa −→ [xa, x , xb] = PUT [xb, xa, x])); PO ((¬ ??X2X72 < ??X1X71 ∧
¬ ??X3X73 < ??X1X71) ∧ ¬ ??X3X73 < ??X2X72); [??X1X71 , ??X2X72 , ??X3X73] =
PUT [??X3X73 , ??X2X72 , ??X1X71]; THYP ((∃ x xa xb. ¬ xa < x ∧ ¬ xb < x ∧ ¬ xb <
xa ∧ [x , xa, xb] = PUT [xb, xa, x]) −→ (∀ x xa xb. ¬ xa < x −→ ¬ xb < x −→ ¬ xb < xa
−→ [x , xa, xb] = PUT [xb, xa, x])); THYP (3 < length l −→ List-test .sort l = PUT l)]]
=⇒ (List-test .sort l = PUT l)

A more ambitious setting is:

test-spec sort l = PUT l

apply(gen-test-cases 5 1 PUT)

which leads after 2 seconds to the following test partitioning (excerpt):

1 . [] = PUT []
2 . THYP ([] = PUT [] −→ [] = PUT [])
3 . [??X871X8318] = PUT [??X871X8318]
4 . THYP ((∃ x . [x] = PUT [x]) −→ (∀ x . [x] = PUT [x]))

36

5 . PO (??X869X8310 < ??X868X8309)
6 . [??X869X8310 , ??X868X8309] = PUT [??X869X8310 , ??X868X8309]
7 . THYP

((∃ x xa. xa < x ∧ [xa, x] = PUT [xa, x]) −→
(∀ x xa. xa < x −→ [xa, x] = PUT [xa, x]))

8 . PO (¬ ??X866X8299 < ??X865X8298)
9 . [??X865X8298 , ??X866X8299] = PUT [??X866X8299 , ??X865X8298]
10 . THYP

((∃ x xa. ¬ xa < x ∧ [x , xa] = PUT [xa, x]) −→
(∀ x xa. ¬ xa < x −→ [x , xa] = PUT [xa, x]))

A total of 461 subgoals...

mk-test-suite permutation-test

thm permutation-test .test-thm

In this scenario, 39 test cases are generated describing all permutations of lists of length
1, 2, 3 and 4. "Permutation" means here that not only test cases (i.e. I/O-partitions) are
generated for lists of length 0, 1, 2, 3, 4; the partitioning is actually finer: for two-elementary
lists, take one case for the lists with the first element larger or equal.

The case for all lists of depth 5 is feasible, however, it will already take 8 minutes. The
resulting constraints for the test cases are complex and require more intensive effort in
resolving.

There are several options for the test-data selection. On can either use the (very old)
random solver or the more modern smt interface. (One day, we would also have a nitpick-
interface to constsraint solving via bitblasting sub-models of the constraints to SAT.) The
random solver, however, finds only 67 instances out of 150 abstract test cases, while smt
instantiates all of them:

Test theorem (gen_test_data) ’permutation_test’: 67 test cases in 2.951 seconds

declare [[testgen-iterations=0]]
declare [[testgen-SMT]]
gen-test-data permutation-test

print-conc-tests permutation-test
print-thyps permutation-test

generate-test-script permutation-test
thm permutation-test .test-script

We use the SML implementation also for testing an implementation written in C:

export-code permutation-test .test-script in SML
module-name TestScript file impl/c/permutation-test-script .sml

We obtain test cases like: \\ [] = PUT [] [− 3] = PUT [− 3] [− 1 , 0] = PUT [− 1 , 0]
[0 , 0] = PUT [0 , 0] [− 2 , − 1 , 0] = PUT [− 2 , − 1 , 0] [0 , 1 , 1] = PUT [0 , 1 , 1] [0 , 0 ,
1] = PUT [0 , 1 , 0] [− 1 , − 1 , 0] = PUT [− 1 , − 1 , 0] [− 1 , 0 , 0] = PUT [0 , − 1 , 0]

37

[0 , 0 , 0] = PUT [0 , 0 , 0] [− 3 , − 2 , − 1 , 0] = PUT [− 3 , − 2 , − 1 , 0] [− 1 , 0 , 1 , 1]
= PUT [− 1 , 0 , 1 , 1] [0 , 1 , 1 , 2] = PUT [0 , 1 , 2 , 1] [0 , 0 , 1 , 2] = PUT [0 , 1 , 2 , 0] [−
2 , − 2 , − 1 , 0] = PUT [− 2 , − 2 , − 1 , 0] [0 , 0 , 1 , 1] = PUT [0 , 0 , 1 , 1] [0 , 1 , 1 , 2]
= PUT [1 , 0 , 2 , 1] [0 , 0 , 0 , 1] = PUT [0 , 0 , 1 , 0] [− 2 , − 1 , − 1 , 0] = PUT [− 2 , −
1 , − 1 , 0] [− 2 , − 1 , 0 , 0] = PUT [− 2 , 0 , − 1 , 0] [0 , 1 , 1 , 1] = PUT [0 , 1 , 1 , 1] [0 ,
0 , 1 , 1] = PUT [0 , 1 , 1 , 0] [− 2 , − 1 , − 1 , 0] = PUT [− 1 , − 2 , − 1 , 0] [− 2 , − 1 , 0 ,
0] = PUT [0 , − 2 , − 1 , 0] [0 , 1 , 1 , 1] = PUT [1 , 0 , 1 , 1] [0 , 0 , 1 , 1] = PUT [1 , 0 , 1 ,
0] [− 2 , − 2 , − 1 , 0] = PUT [− 2 , − 1 , − 2 , 0] [− 1 , − 1 , 0 , 0] = PUT [− 1 , 0 , − 1 ,
0] [− 1 , 0 , 0 , 1] = PUT [0 , 1 , − 1 , 0] [0 , 0 , 0 , 1] = PUT [0 , 1 , 0 , 0] [− 1 , − 1 , − 1 ,
0] = PUT [− 1 , − 1 , − 1 , 0] [− 1 , − 1 , 0 , 0] = PUT [0 , − 1 , − 1 , 0] [− 1 , 0 , 0 , 0] =
PUT [0 , 0 , − 1 , 0] [0 , 0 , 0 , 0] = PUT [0 , 0 , 0 , 0] [− 4 , − 3 , − 2 , − 1 , 0] = PUT [−
4 , − 3 , − 2 , − 1 , 0] [− 2 , − 1 , 0 , 1 , 1] = PUT [− 2 , − 1 , 0 , 1 , 1] [− 1 , 0 , 1 , 1 , 2] =
PUT [− 1 , 0 , 1 , 2 , 1] [0 , 1 , 1 , 2 , 3] = PUT [0 , 1 , 2 , 3 , 1] [0 , 0 , 1 , 2 , 3] = PUT [0 ,
1 , 2 , 3 , 0] [− 3 , − 3 , − 2 , − 1 , 0] = PUT [− 3 , − 3 , − 2 , − 1 , 0] [− 1 , − 1 , 0 , 1 , 1]
= PUT [− 1 , − 1 , 0 , 1 , 1] [0 , 0 , 1 , 1 , 2] = PUT [0 , 0 , 1 , 2 , 1] [0 , 1 , 1 , 2 , 3] = PUT
[1 , 0 , 2 , 3 , 1] [0 , 0 , 0 , 1 , 2] = PUT [0 , 0 , 1 , 2 , 0] [− 3 , − 2 , − 2 , − 1 , 0] = PUT [−
3 , − 2 , − 2 , − 1 , 0] [− 1 , 0 , 0 , 1 , 1] = PUT [− 1 , 0 , 0 , 1 , 1] [− 1 , 0 , 1 , 1 , 2] = PUT
[− 1 , 1 , 0 , 2 , 1] [0 , 1 , 1 , 1 , 2] = PUT [0 , 1 , 1 , 2 , 1] [0 , 0 , 1 , 1 , 2] = PUT [0 , 1 , 1 ,
2 , 0] [− 3 , − 2 , − 2 , − 1 , 0] = PUT [− 2 , − 3 , − 2 , − 1 , 0] [− 1 , 0 , 0 , 1 , 1] = PUT
[0 , − 1 , 0 , 1 , 1] [− 1 , 0 , 1 , 1 , 2] = PUT [1 , − 1 , 0 , 2 , 1] [0 , 1 , 1 , 1 , 2] = PUT [1 , 0 ,
1 , 2 , 1] [0 , 0 , 1 , 1 , 2] = PUT [1 , 0 , 1 , 2 , 0] [− 3 , − 3 , − 2 , − 1 , 0] = PUT [− 3 , −
2 , − 3 , − 1 , 0] [0 , 0 , 1 , 2 , 2] = PUT [0 , 1 , 0 , 2 , 2] [0 , 0 , 1 , 1 , 2] = PUT [0 , 1 , 0 , 2 ,
1] [0 , 1 , 1 , 2 , 3] = PUT [1 , 2 , 0 , 3 , 1] [0 , 0 , 0 , 1 , 2] = PUT [0 , 1 , 0 , 2 , 0] [− 2 , − 2 ,
− 2 , − 1 , 0] = PUT [− 2 , − 2 , − 2 , − 1 , 0] [0 , 0 , 0 , 1 , 1] = PUT [0 , 0 , 0 , 1 , 1] [0 ,
0 , 1 , 1 , 2] = PUT [1 , 0 , 0 , 2 , 1] [0 , 1 , 1 , 1 , 2] = PUT [1 , 1 , 0 , 2 , 1] [0 , 0 , 0 , 0 , 1] =
PUT [0 , 0 , 0 , 1 , 0] [− 3 , − 2 , − 1 , − 1 , 0] = PUT [− 3 , − 2 , − 1 , − 1 , 0] [− 3 , − 2 ,
− 1 , 0 , 0] = PUT [− 3 , − 2 , 0 , − 1 , 0] [− 1 , 0 , 1 , 1 , 1] = PUT [− 1 , 0 , 1 , 1 , 1] [0 ,
1 , 1 , 2 , 2] = PUT [0 , 1 , 2 , 2 , 1] [0 , 0 , 1 , 2 , 2] = PUT [0 , 1 , 2 , 2 , 0] [− 2 , − 2 , − 1 ,
− 1 , 0] = PUT [− 2 , − 2 , − 1 , − 1 , 0] [− 2 , − 2 , − 1 , 0 , 0] = PUT [− 2 , − 2 , 0 , −
1 , 0] [0 , 0 , 1 , 1 , 1] = PUT [0 , 0 , 1 , 1 , 1] [0 , 1 , 1 , 2 , 2] = PUT [1 , 0 , 2 , 2 , 1] [0 , 0 ,
0 , 1 , 1] = PUT [0 , 0 , 1 , 1 , 0] [− 3 , − 2 , − 1 , − 1 , 0] = PUT [− 3 , − 1 , − 2 , − 1 , 0]
[− 3 , − 2 , − 1 , 0 , 0] = PUT [− 3 , 0 , − 2 , − 1 , 0] [− 1 , 0 , 1 , 1 , 1] = PUT [− 1 , 1 ,
0 , 1 , 1] [0 , 1 , 1 , 2 , 2] = PUT [0 , 2 , 1 , 2 , 1] [0 , 0 , 1 , 2 , 2] = PUT [0 , 2 , 1 , 2 , 0] [−
2 , − 2 , − 1 , − 1 , 0] = PUT [− 2 , − 1 , − 2 , − 1 , 0] [− 2 , − 2 , − 1 , 0 , 0] = PUT [−
2 , 0 , − 2 , − 1 , 0] [0 , 0 , 1 , 1 , 1] = PUT [0 , 1 , 0 , 1 , 1] [0 , 1 , 1 , 2 , 2] = PUT [1 , 2 , 0 ,
2 , 1] [0 , 0 , 0 , 1 , 1] = PUT [0 , 1 , 0 , 1 , 0] [− 3 , − 2 , − 2 , − 1 , 0] = PUT [− 3 , − 2 ,
− 1 , − 2 , 0] [− 2 , − 1 , − 1 , 0 , 0] = PUT [− 2 , − 1 , 0 , − 1 , 0] [− 2 , − 1 , 0 , 0 , 1] =
PUT [− 2 , 0 , 1 , − 1 , 0] [0 , 1 , 1 , 1 , 2] = PUT [0 , 1 , 2 , 1 , 1] [0 , 0 , 1 , 1 , 2] = PUT [0 ,
1 , 2 , 1 , 0] [− 2 , − 1 , − 1 , − 1 , 0] = PUT [− 2 , − 1 , − 1 , − 1 , 0] [− 2 , − 1 , − 1 , 0 ,
0] = PUT [− 2 , 0 , − 1 , − 1 , 0] [− 2 , − 1 , 0 , 0 , 0] = PUT [− 2 , 0 , 0 , − 1 , 0] [0 , 1 ,
1 , 1 , 1] = PUT [0 , 1 , 1 , 1 , 1] [0 , 0 , 1 , 1 , 1] = PUT [0 , 1 , 1 , 1 , 0] [− 3 , − 2 , − 1 , −
1 , 0] = PUT [− 1 , − 3 , − 2 , − 1 , 0] [− 3 , − 2 , − 1 , 0 , 0] = PUT [0 , − 3 , − 2 , − 1 ,
0] [− 1 , 0 , 1 , 1 , 1] = PUT [1 , − 1 , 0 , 1 , 1] [0 , 1 , 1 , 2 , 2] = PUT [2 , 0 , 1 , 2 , 1] [0 , 0 ,
1 , 2 , 2] = PUT [2 , 0 , 1 , 2 , 0] [− 2 , − 2 , − 1 , − 1 , 0] = PUT [− 1 , − 2 , − 2 , − 1 , 0]
[− 2 , − 2 , − 1 , 0 , 0] = PUT [0 , − 2 , − 2 , − 1 , 0] [0 , 0 , 1 , 1 , 1] = PUT [1 , 0 , 0 , 1 ,
1] [0 , 1 , 1 , 2 , 2] = PUT [2 , 1 , 0 , 2 , 1] [0 , 0 , 0 , 1 , 1] = PUT [1 , 0 , 0 , 1 , 0] [− 3 , − 2 ,

38

− 2 , − 1 , 0] = PUT [− 2 , − 3 , − 1 , − 2 , 0] [− 2 , − 1 , − 1 , 0 , 0] = PUT [− 1 , − 2 ,
0 , − 1 , 0] [− 2 , − 1 , 0 , 0 , 1] = PUT [0 , − 2 , 1 , − 1 , 0] [0 , 1 , 1 , 1 , 2] = PUT [1 , 0 ,
2 , 1 , 1] [0 , 0 , 1 , 1 , 2] = PUT [1 , 0 , 2 , 1 , 0] [− 2 , − 1 , − 1 , − 1 , 0] = PUT [− 1 , −
2 , − 1 , − 1 , 0] [− 2 , − 1 , − 1 , 0 , 0] = PUT [0 , − 2 , − 1 , − 1 , 0] [− 2 , − 1 , 0 , 0 , 0]
= PUT [0 , − 2 , 0 , − 1 , 0] [0 , 1 , 1 , 1 , 1] = PUT [1 , 0 , 1 , 1 , 1] [0 , 0 , 1 , 1 , 1] = PUT
[1 , 0 , 1 , 1 , 0] [− 3 , − 2 , − 2 , − 1 , 0] = PUT [− 2 , − 1 , − 3 , − 2 , 0] [− 2 , − 1 , − 1 ,
0 , 0] = PUT [− 1 , 0 , − 2 , − 1 , 0] [− 2 , − 1 , 0 , 0 , 1] = PUT [0 , 1 , − 2 , − 1 , 0] [0 , 1 ,
1 , 1 , 2] = PUT [1 , 2 , 0 , 1 , 1] [− 1 , − 1 , 0 , 0 , 1] = PUT [0 , 1 , − 1 , 0 , − 1] [− 2 , −
1 , − 1 , − 1 , 0] = PUT [− 1 , − 1 , − 2 , − 1 , 0] [− 2 , − 1 , − 1 , 0 , 0] = PUT [0 , − 1 ,
− 2 , − 1 , 0] [− 2 , − 1 , 0 , 0 , 0] = PUT [0 , 0 , − 2 , − 1 , 0] [0 , 1 , 1 , 1 , 1] = PUT [1 ,
1 , 0 , 1 , 1] [0 , 0 , 1 , 1 , 1] = PUT [1 , 1 , 0 , 1 , 0] [− 3 , − 3 , − 2 , − 1 , 0] = PUT [− 3 ,
− 2 , − 1 , − 3 , 0] [− 2 , − 2 , − 1 , 0 , 0] = PUT [− 2 , − 1 , 0 , − 2 , 0] [− 1 , − 1 , 0 , 0 ,
1] = PUT [− 1 , 0 , 1 , − 1 , 0] [− 1 , 0 , 0 , 1 , 2] = PUT [0 , 1 , 2 , − 1 , 0] [0 , 0 , 0 , 1 , 2]
= PUT [0 , 1 , 2 , 0 , 0] [− 2 , − 2 , − 2 , − 1 , 0] = PUT [− 2 , − 2 , − 1 , − 2 , 0] [− 1 , −
1 , − 1 , 0 , 0] = PUT [− 1 , − 1 , 0 , − 1 , 0] [− 1 , − 1 , 0 , 0 , 1] = PUT [0 , − 1 , 1 , − 1 ,
0] [− 1 , 0 , 0 , 0 , 1] = PUT [0 , 0 , 1 , − 1 , 0] [0 , 0 , 0 , 0 , 1] = PUT [0 , 0 , 1 , 0 , 0] [− 2 ,
− 2 , − 1 , − 1 , 0] = PUT [− 2 , − 1 , − 1 , − 2 , 0] [− 2 , − 2 , − 1 , 0 , 0] = PUT [− 2 ,
0 , − 1 , − 2 , 0] [− 1 , − 1 , 0 , 0 , 0] = PUT [− 1 , 0 , 0 , − 1 , 0] [− 1 , 0 , 0 , 1 , 1] = PUT
[0 , 1 , 1 , − 1 , 0] [0 , 0 , 0 , 1 , 1] = PUT [0 , 1 , 1 , 0 , 0] [− 2 , − 2 , − 1 , − 1 , 0] = PUT
[− 1 , − 2 , − 1 , − 2 , 0] [− 2 , − 2 , − 1 , 0 , 0] = PUT [0 , − 2 , − 1 , − 2 , 0] [− 1 , − 1 ,
0 , 0 , 0] = PUT [0 , − 1 , 0 , − 1 , 0] [− 1 , 0 , 0 , 1 , 1] = PUT [1 , 0 , 1 , − 1 , 0] [0 , 0 , 0 ,
1 , 1] = PUT [1 , 0 , 1 , 0 , 0] [− 2 , − 2 , − 2 , − 1 , 0] = PUT [− 2 , − 1 , − 2 , − 2 , 0] [−
1 , − 1 , − 1 , 0 , 0] = PUT [− 1 , 0 , − 1 , − 1 , 0] [− 1 , − 1 , 0 , 0 , 1] = PUT [0 , 1 , − 1 ,
− 1 , 0] [− 1 , 0 , 0 , 0 , 1] = PUT [0 , 1 , 0 , − 1 , 0] [0 , 0 , 0 , 0 , 1] = PUT [0 , 1 , 0 , 0 , 0]
[− 1 , − 1 , − 1 , − 1 , 0] = PUT [− 1 , − 1 , − 1 , − 1 , 0] [− 1 , − 1 , − 1 , 0 , 0] = PUT
[0 , − 1 , − 1 , − 1 , 0] [− 1 , − 1 , 0 , 0 , 0] = PUT [0 , 0 , − 1 , − 1 , 0] [− 1 , 0 , 0 , 0 , 0] =
PUT [0 , 0 , 0 , − 1 , 0] [0 , 0 , 0 , 0 , 0] = PUT [0 , 0 , 0 , 0 , 0].

If we scale down to only 10 iterations, this is not sufficient to solve all conditions, i.e. we
obtain many test cases with unresolved constraints where RSF marks unsolved cases. In
these cases, it is unclear if the test partition is empty. Analyzing the generated test data
reveals that all cases for lists with length up to (and including) 3 could be solved. From the
24 cases for lists of length 4 only 9 could be solved by the random solver (thus, overall 19
of the 34 cases were solved). To achieve better results, we could interactively increase the
number of iterations which reveals that we need to set iterations to 100 to find all solutions
reliably.

iterations 5 10 20 25 30 40 50 75 100
solved goals (of 34) 13 19 23 24 25 29 33 33 34

Instead of increasing the number of iterations one could also add other techniques such as

1. deriving new rules that allow for the generation of a simplified test theorem,

2. introducing abstract test cases or

3. supporting the solving process by derived rules.

39

> make run_permutation_test
mlton -default-ann ’allowFFI true’ permutation_test.mlb sort.c
./permutation_test

Test Results:
=============
Test 0 - SUCCESS
Test 1 - SUCCESS
Test 2 - *** FAILURE: post-condition false
Test 3 - *** FAILURE: post-condition false
Test 4 - *** FAILURE: post-condition false
Test 5 - *** FAILURE: post-condition false
Test 6 - *** FAILURE: post-condition false
Test 7 - *** FAILURE: post-condition false
Test 8 - *** FAILURE: post-condition false
Test 9 - *** FAILURE: post-condition false
Test 10 - *** FAILURE: post-condition false
Test 11 - *** FAILURE: post-condition false
Test 12 - *** FAILURE: post-condition false
Test 13 - *** FAILURE: post-condition false
Test 14 - *** FAILURE: post-condition false
Test 15 - *** FAILURE: post-condition false
Test 16 - *** FAILURE: post-condition false
Test 17 - *** FAILURE: post-condition false
Test 18 - *** FAILURE: post-condition false
Test 19 - *** FAILURE: post-condition false
Test 20 - *** FAILURE: post-condition false
Test 21 - *** FAILURE: post-condition false
Test 22 - SUCCESS
Test 23 - SUCCESS
Test 24 - *** FAILURE: post-condition false
Test 25 - *** FAILURE: post-condition false
Test 26 - *** FAILURE: post-condition false
Test 27 - *** FAILURE: post-condition false
Test 28 - *** FAILURE: post-condition false
Test 29 - *** FAILURE: post-condition false
Test 30 - *** FAILURE: post-condition false
Test 31 - *** FAILURE: post-condition false
Test 32 - *** FAILURE: post-condition false

Summary:

Number successful tests cases: 4 of 33 (ca. 12%)
Number of warnings: 0 of 33 (ca. 0%)
Number of errors: 0 of 33 (ca. 0%)
Number of failures: 29 of 33 (ca. 87%)
Number of fatal errors: 0 of 33 (ca. 0%)

Overall result: failed
===============

Table 6.2.: A Sample Test Trace for the Permutation Test Scenario
40

Running the test (in the current setup: make run_permutation_test)against our sample
C-program under impl/c yields the following result:

Summary A comparison of the three scenarios reveals that albeit a reasonable degree of
automation in the test generation process, the essence of model-based test case generation
remains an interactive process that is worth to be documented in a formal test-plan with
respect to various aspects: the concrete modeling that is chosen, the precise formulation of
the test-specifications (or: test-goals), the configuration and instrumentation of the test-data
selection process, the test-driver synthesis and execution. This process can be complemented
by proofs establishing equivalences allowing to convert initial test-specifications into more
executable ones, or more ’symbolically evaluatable’ ones, or that help to reduce the com-
plexity of the constraint- resolution in the test-data selection process.

But the most important aspect remains: what is a good testing model ? Besides the
possibility that the test specification simply does not test what the tester had in mind, the
test theory and test-specification have a crucial importance on the quality of the generated
test data that seems to be impossible to capture automatically.

Non-Inherent Higher-order Testing

HOL-TestGen can use test specifications that contain higher-order operators — although
we would not claim that the test case generation is actually higher-order (there are no
enumeration schemes for the function space, so function variables are untreated by the test
case generation procedure so far).

Just for fun, we reformulate the problem of finding the maximal number in a list as a
higher-order problem:

test-spec foldr max l (0 ::int) = PUT2 l
apply(gen-test-cases PUT2 simp:max-def)
mk-test-suite maximal-number

declare [[testgen-iterations = 200]]
gen-test-data maximal-number

print-conc-tests (0) maximal-number

end

6.1. Bank

Implementation of integer numbers by target-language integers

theory Code-Target-Int
imports ../GCD
begin

41

code-datatype int-of-integer

declare [[code drop: integer-of-int]]

context
includes integer .lifting
begin

lemma [code]:
integer-of-int (int-of-integer k) = k
by transfer rule

lemma [code]:
Int .Pos = int-of-integer ◦ integer-of-num
by transfer (simp add : fun-eq-iff)

lemma [code]:
Int .Neg = int-of-integer ◦ uminus ◦ integer-of-num
by transfer (simp add : fun-eq-iff)

lemma [code-abbrev]:
int-of-integer (numeral k) = Int .Pos k
by transfer simp

lemma [code-abbrev]:
int-of-integer (− numeral k) = Int .Neg k
by transfer simp

lemma [code, symmetric, code-post]:
0 = int-of-integer 0
by transfer simp

lemma [code, symmetric, code-post]:
1 = int-of-integer 1
by transfer simp

lemma [code-post]:
int-of-integer (− 1) = − 1
by simp

lemma [code]:
k + l = int-of-integer (of-int k + of-int l)
by transfer simp

lemma [code]:
− k = int-of-integer (− of-int k)
by transfer simp

lemma [code]:
k − l = int-of-integer (of-int k − of-int l)
by transfer simp

42

lemma [code]:
Int .dup k = int-of-integer (Code-Numeral .dup (of-int k))
by transfer simp

declare [[code drop: Int .sub]]

lemma [code]:
k ∗ l = int-of-integer (of-int k ∗ of-int l)
by simp

lemma [code]:
k div l = int-of-integer (of-int k div of-int l)
by simp

lemma [code]:
k mod l = int-of-integer (of-int k mod of-int l)
by simp

lemma [code]:
divmod m n = map-prod int-of-integer int-of-integer (divmod m n)
unfolding prod-eq-iff divmod-def map-prod-def case-prod-beta fst-conv snd-conv
by transfer simp

lemma [code]:
HOL.equal k l = HOL.equal (of-int k :: integer) (of-int l)
by transfer (simp add : equal)

lemma [code]:
k ≤ l ←→ (of-int k :: integer) ≤ of-int l
by transfer rule

lemma [code]:
k < l ←→ (of-int k :: integer) < of-int l
by transfer rule

declare [[code drop: gcd :: int ⇒ - lcm :: int ⇒ -]]

lemma gcd-int-of-integer [code]:
gcd (int-of-integer x) (int-of-integer y) = int-of-integer (gcd x y)

by transfer rule

lemma lcm-int-of-integer [code]:
lcm (int-of-integer x) (int-of-integer y) = int-of-integer (lcm x y)

by transfer rule

end

lemma (in ring-1) of-int-code-if :
of-int k = (if k = 0 then 0

else if k < 0 then − of-int (− k)
else let
l = 2 ∗ of-int (k div 2);

43

j = k mod 2
in if j = 0 then l else l + 1)

proof −
from div-mult-mod-eq have ∗: of-int k = of-int (k div 2 ∗ 2 + k mod 2) by simp
show ?thesis
by (simp add : Let-def of-int-add [symmetric]) (simp add : ∗ mult .commute)

qed

declare of-int-code-if [code]

lemma [code]:
nat = nat-of-integer ◦ of-int
including integer .lifting by transfer (simp add : fun-eq-iff)

code-identifier
code-module Code-Target-Int ⇀
(SML) Arith and (OCaml) Arith and (Haskell) Arith

end

Avoidance of pattern matching on natural numbers

theory Code-Abstract-Nat
imports Main
begin

When natural numbers are implemented in another than the conventional inductive 0/Suc
representation, it is necessary to avoid all pattern matching on natural numbers altogether.
This is accomplished by this theory (up to a certain extent).

Case analysis Case analysis on natural numbers is rephrased using a conditional expres-
sion:

lemma [code, code-unfold]:
case-nat = (λf g n. if n = 0 then f else g (n − 1))
by (auto simp add : fun-eq-iff dest !: gr0-implies-Suc)

Preprocessors The term Suc n is no longer a valid pattern. Therefore, all occurrences
of this term in a position where a pattern is expected (i.e. on the left-hand side of a code
equation) must be eliminated. This can be accomplished – as far as possible – by applying
the following transformation rule:

lemma Suc-if-eq :
assumes

∧
n. f (Suc n) ≡ h n

assumes f 0 ≡ g
shows f n ≡ if n = 0 then g else h (n − 1)
by (rule eq-reflection) (cases n, insert assms, simp-all)

The rule above is built into a preprocessor that is plugged into the code generator.

setup 〈

let

44

val Suc-if-eq = Thm.incr-indexes 1 @{thm Suc-if-eq};

fun remove-suc ctxt thms =
let
val vname = singleton (Name.variant-list (map fst
(fold (Term.add-var-names o Thm.full-prop-of) thms []))) n;

val cv = Thm.cterm-of ctxt (Var ((vname, 0), HOLogic.natT));
val lhs-of = snd o Thm.dest-comb o fst o Thm.dest-comb o Thm.cprop-of ;
val rhs-of = snd o Thm.dest-comb o Thm.cprop-of ;
fun find-vars ct = (case Thm.term-of ct of

(Const (@{const-name Suc}, -) $ Var -) => [(cv , snd (Thm.dest-comb ct))]
| - $ - =>
let val (ct1 , ct2) = Thm.dest-comb ct
in
map (apfst (fn ct => Thm.apply ct ct2)) (find-vars ct1) @
map (apfst (Thm.apply ct1)) (find-vars ct2)

end
| - => []);

val eqs = maps
(fn thm => map (pair thm) (find-vars (lhs-of thm))) thms;

fun mk-thms (thm, (ct , cv ′)) =
let
val thm ′ =
Thm.implies-elim
(Conv .fconv-rule (Thm.beta-conversion true)
(Thm.instantiate ′
[SOME (Thm.ctyp-of-cterm ct)] [SOME (Thm.lambda cv ct),
SOME (Thm.lambda cv ′ (rhs-of thm)), NONE , SOME cv ′]

Suc-if-eq)) (Thm.forall-intr cv ′ thm)
in
case map-filter (fn thm ′′ =>

SOME (thm ′′, singleton
(Variable.trade (K (fn [thm ′′′] => [thm ′′′ RS thm ′]))
(Variable.declare-thm thm ′′ ctxt)) thm ′′)

handle THM - => NONE) thms of
[] => NONE
| thmps =>

let val (thms1 , thms2) = split-list thmps
in SOME (subtract Thm.eq-thm (thm :: thms1) thms @ thms2) end

end
in get-first mk-thms eqs end ;

fun eqn-suc-base-preproc ctxt thms =
let
val dest = fst o Logic.dest-equals o Thm.prop-of ;
val contains-suc = exists-Const (fn (c, -) => c = @{const-name Suc});

in
if forall (can dest) thms andalso exists (contains-suc o dest) thms
then thms |> perhaps-loop (remove-suc ctxt) |> (Option.map o map) Drule.zero-var-indexes
else NONE

end ;

45

val eqn-suc-preproc = Code-Preproc.simple-functrans eqn-suc-base-preproc;

in

Code-Preproc.add-functrans (eqn-Suc, eqn-suc-preproc)

end ;
〉

end

Implementation of natural numbers by target-language integers

theory Code-Target-Nat
imports Code-Abstract-Nat
begin

Implementation for nat context
includes natural .lifting integer .lifting
begin

lift-definition Nat :: integer ⇒ nat
is nat
.

lemma [code-post]:
Nat 0 = 0
Nat 1 = 1
Nat (numeral k) = numeral k
by (transfer , simp)+

lemma [code-abbrev]:
integer-of-nat = of-nat
by transfer rule

lemma [code-unfold]:
Int .nat (int-of-integer k) = nat-of-integer k
by transfer rule

lemma [code abstype]:
Code-Target-Nat .Nat (integer-of-nat n) = n
by transfer simp

lemma [code abstract]:
integer-of-nat (nat-of-integer k) = max 0 k
by transfer auto

lemma [code-abbrev]:
nat-of-integer (numeral k) = nat-of-num k
by transfer (simp add : nat-of-num-numeral)

46

lemma [code abstract]:
integer-of-nat (nat-of-num n) = integer-of-num n
by transfer (simp add : nat-of-num-numeral)

lemma [code abstract]:
integer-of-nat 0 = 0
by transfer simp

lemma [code abstract]:
integer-of-nat 1 = 1
by transfer simp

lemma [code]:
Suc n = n + 1
by simp

lemma [code abstract]:
integer-of-nat (m + n) = of-nat m + of-nat n
by transfer simp

lemma [code abstract]:
integer-of-nat (m − n) = max 0 (of-nat m − of-nat n)
by transfer simp

lemma [code abstract]:
integer-of-nat (m ∗ n) = of-nat m ∗ of-nat n
by transfer (simp add : of-nat-mult)

lemma [code abstract]:
integer-of-nat (m div n) = of-nat m div of-nat n
by transfer (simp add : zdiv-int)

lemma [code abstract]:
integer-of-nat (m mod n) = of-nat m mod of-nat n
by transfer (simp add : zmod-int)

lemma [code]:
Divides.divmod-nat m n = (m div n, m mod n)
by (fact divmod-nat-div-mod)

lemma [code]:
divmod m n = map-prod nat-of-integer nat-of-integer (divmod m n)
by (simp only : prod-eq-iff divmod-def map-prod-def case-prod-beta fst-conv snd-conv)
(transfer , simp-all only : nat-div-distrib nat-mod-distrib

zero-le-numeral nat-numeral)

lemma [code]:
HOL.equal m n = HOL.equal (of-nat m :: integer) (of-nat n)
by transfer (simp add : equal)

lemma [code]:
m ≤ n ←→ (of-nat m :: integer) ≤ of-nat n

47

by simp

lemma [code]:
m < n ←→ (of-nat m :: integer) < of-nat n
by simp

lemma num-of-nat-code [code]:
num-of-nat = num-of-integer ◦ of-nat
by transfer (simp add : fun-eq-iff)

end

lemma (in semiring-1) of-nat-code-if :
of-nat n = (if n = 0 then 0

else let
(m, q) = Divides.divmod-nat n 2 ;
m ′ = 2 ∗ of-nat m

in if q = 0 then m ′ else m ′ + 1)
proof −
from div-mult-mod-eq have ∗: of-nat n = of-nat (n div 2 ∗ 2 + n mod 2) by simp
show ?thesis
by (simp add : Let-def divmod-nat-div-mod of-nat-add [symmetric])
(simp add : ∗ mult .commute of-nat-mult add .commute)

qed

declare of-nat-code-if [code]

definition int-of-nat :: nat ⇒ int where
[code-abbrev]: int-of-nat = of-nat

lemma [code]:
int-of-nat n = int-of-integer (of-nat n)
by (simp add : int-of-nat-def)

lemma [code abstract]:
integer-of-nat (nat k) = max 0 (integer-of-int k)
including integer .lifting by transfer auto

lemma term-of-nat-code [code]:
— Use nat-of-integer in term reconstruction instead of Code-Target-Nat .Nat such that recon-

structed terms can be fed back to the code generator
term-of-class.term-of n =
Code-Evaluation.App
(Code-Evaluation.Const (STR ′′Code-Numeral .nat-of-integer ′′)

(typerep.Typerep (STR ′′fun ′′)
[typerep.Typerep (STR ′′Code-Numeral .integer ′′) [],

typerep.Typerep (STR ′′Nat .nat ′′) []]))
(term-of-class.term-of (integer-of-nat n))

by (simp add : term-of-anything)

lemma nat-of-integer-code-post [code-post]:
nat-of-integer 0 = 0

48

nat-of-integer 1 = 1
nat-of-integer (numeral k) = numeral k
including integer .lifting by (transfer , simp)+

code-identifier
code-module Code-Target-Nat ⇀
(SML) Arith and (OCaml) Arith and (Haskell) Arith

end

Implementation of natural and integer numbers by target-language integers

theory Code-Target-Numeral
imports Code-Target-Int Code-Target-Nat
begin

end

49

7. A Simple Deterministic Bank Model

theory
Bank

imports
∼∼/src/HOL/Library/Code-Target-Numeral
Testing

begin

The Bank Example: Test of a Distributed Transaction Machine

declare [[testgen-profiling]]

The intent of this little example is to model deposit, check and withdraw operations of
a little Bank model in pre-postcondition style, formalize them in a setup for HOL-TestGen
test sequence generation and to generate elementary test cases for it. The test scenarios
will be restricted to strict sequence checking; this excludes aspects of account creation which
will give the entire model a protocol character (a create-operation would create an account
number, and then all later operations are just refering to this number; thus there would be
a dependence between system output and input as in reactive sequence test scenarios.).
Moreover, in this scenario, we assume that the system under test is deterministic.
The theory of Proof-based Sequence Test Methodology can be found in [9].

The state of our bank is just modeled by a map from client/account information to the
balance.

type-synonym client = string

type-synonym account-no = int

type-synonym data-base = (client × account-no) ⇀ int

Operation definitions: Concept A standard, JML or OCL or VCC like interface spec-
ification might look like:

Init: forall (c,no) : dom(data_base). data_base(c,no)>=0

op deposit (c : client, no : account_no, amount:nat) : unit
pre (c,no) : dom(data_base)
post data_base’=data_base[(c,no) := data_base(c,no) + amount]

op balance (c : client, no : account_no) : int
pre (c,no) : dom(data_base)
post data_base’=data_base and result = data_base(c,no)

51

op withdraw(c : client, no : account_no, amount:nat) : unit
pre (c,no) : dom(data_base) and data_base(c,no) >= amount
post data_base’=data_base[(c,no) := data_base(c,no) - amount]

Operation definitions: The model as ESFM Interface normalization turns this inter-
face into the following input type:

datatype in-c = deposit client account-no nat
| withdraw client account-no nat
| balance client account-no

typ Bank .in-c

datatype out-c = depositO | balanceO nat | withdrawO

fun precond :: data-base ⇒ in-c ⇒ bool
where precond σ (deposit c no m) = ((c,no) ∈ dom σ)
| precond σ (balance c no) = ((c,no) ∈ dom σ)
| precond σ (withdraw c no m) = ((c,no) ∈ dom σ ∧ (int m) ≤ the(σ(c,no)))

fun postcond :: in-c ⇒ data-base ⇒ (out-c × data-base) set
where postcond (deposit c no m) σ =

{ (n,σ ′). (n = depositO ∧ σ ′=σ((c,no) 7→ the(σ(c,no)) + int m))}
| postcond (balance c no) σ =
{ (n,σ ′). (σ=σ ′ ∧ (∃ x . balanceO x = n ∧ x = nat(the(σ(c,no)))))}

| postcond (withdraw c no m) σ =
{ (n,σ ′). (n = withdrawO ∧ σ ′=σ((c,no)7→ the(σ(c,no)) − int m))}

definition init :: data-base ⇒ bool
where init σ ≡ ∀ x ∈ dom σ. the(σ x) ≥ 0

Constructing an Abstract Program Using the Operators impl and strong_impl, we
can synthesize an abstract program right away from the specification, i.e. the pair of pre-
and postcondition defined above. Since this program is even deterministic, we will derive a
set of symbolic execution rules used in the test case generation process which will produce
symbolic results against which the PUT can be compared in the test driver.

lemma precond-postcond-implementable:
implementable precond postcond

apply(auto simp: implementable-def)
apply(case-tac ι, simp-all)
done

Based on this input-output specification, we construct the system model as the canonical
completion of the (functional) specification consisting of pre- and post-conditions. Canonical
completion means that the step function explicitely fails (returns None) if the precondition
fails; this makes it possible to to treat sequential execution failures in a uniform way. The
system SYS can be seen as the step function in an input-output automata or, alternatively,
a kind of Mealy machine over symbolic states, or, as an extended finite state machine.

52

definition SYS :: in-c ⇒(out-c, data-base)MON SE

where SYS = (strong-impl precond postcond)

The combinator strong-impl turns the pre-post pair in a suitable step functions with the
aforementioned characteristics for failing pre-conditions.

Prerequisites

Proving Symbolic Execution Rules for the Abstractly Program The following
lemmas reveal that this "constructed" program is actually (due to determinism of the spec):

lemma Eps-split-eq ′ : (SOME (x ′, y ′). x ′= x ∧ y ′= y) = (SOME (x ′, y ′). x = x ′ ∧ y = y ′)
by(rule arg-cong [of - - Eps], auto)

deposit

interpretation deposit : efsm-det
precond postcond SYS (deposit c no m) λ-. depositO
λ σ. σ((c, no) 7→ (the(σ(c, no)) + int m)) λ σ. ((c, no) ∈ dom σ)

by unfold-locales (auto simp: SYS-def Eps-split-eq ′)

find-theorems name:deposit

withdraw

interpretation withdraw : efsm-det
precond postcond SYS (withdraw c no m) λ-. withdrawO

λ σ. σ((c, no) 7→ (the(σ(c, no))−int m)) λ σ.((c, no)∈dom σ) ∧ (int m)≤the(σ(c,no))
by unfold-locales (auto simp: SYS-def Eps-split-eq ′)

balance

interpretation balance : efsm-det
precond postcond SYS (balance c no) λσ. (balanceO (nat(the(σ(c, no)))))
λ σ. σ λ σ. ((c, no) ∈ dom σ)

by unfold-locales (auto simp: SYS-def Eps-split-eq ′)

Now we close the theory of symbolic execution by exluding elementary rewrite steps on
mbindF ailSave, i. e. the rules mbindF ailSave [] ?iostep ?σ = Some ([], ?σ) mbindF ailSave

(?a # ?S) ?iostep ?σ = (case ?iostep ?a ?σ of None ⇒ Some ([], ?σ) | Some (out , σ ′) ⇒
case mbindF ailSave ?S ?iostep σ ′ of None ⇒ Some ([out], σ ′) | Some (outs, σ ′′) ⇒ Some
(out # outs, σ ′′))

declare mbind .simps(1) [simp del]
mbind .simps(2) [simp del]

Here comes an interesting detail revealing the power of the approach: The generated
sequences still respect the preconditions imposed by the specification - in this case, where
we are talking about a client for which a defined account exists and for which we will never
produce traces in which we withdraw more money than available on it.

Restricting the Test-Space by Test Purposes We introduce a constraint on the in-
put sequence, in order to limit the test-space a little and eliminate logically possible, but

53

irrelevant test-sequences for a specific test-purpose. In this case, we narrow down on test-
sequences concerning a specific client c with a specific bank-account number no.
We make the (in this case implicit, but as constraint explicitly stated) test hypothesis,

that the SUT is correct if it behaves correct for a single client. This boils down to the
assumption that they are implemented as atomic transactions and interleaved processing
does not interfere with a single thread.

fun test-purpose :: [client , account-no, in-c list] ⇒ bool
where
test-purpose c no [balance c ′ no ′] = (c=c ′ ∧ no=no ′)
| test-purpose c no ((deposit c ′ no ′ m)#R) = (c=c ′ ∧ no=no ′ ∧ test-purpose c no R)
| test-purpose c no ((withdraw c ′ no ′ m)#R) = (c=c ′ ∧ no=no ′ ∧ test-purpose c no R)
| test-purpose c no - = False

lemma [simp] : test-purpose c no [a] = (a = balance c no)
by(cases a, auto)

lemma [simp] : R 6=[] =⇒ test-purpose c no (a#R) =
(((∃m. a = (deposit c no m)) ∨ (∃m. a = (withdraw c no m)))

∧ test-purpose c no R)
apply(simp add : List .neq-Nil-conv , elim exE ,simp)
by(cases a, auto)

The TestGen Setup The default configuration of gen_test_cases does not descend
into sub-type expressions of type constructors (since this is not always desirable, the choice
for the default had been for "non-descent"). This case is relevant here since in-c list has
just this structure but we need ways to explore the input sequence type further. Thus, we
need configure, for all test cases, and derivation descendants of the relusting clauses during
splitting, again splitting for all parameters of input type in-c:

Preparation: Miscellaneous We construct test-sequences for a concrete client (im-
plicitely assuming that interleaving actions with other clients will not influence the system
behaviour. In order to prevent HOL-TestGen to perform case-splits over names, i. e., list of
characters—we define it as constant.

definition c0 :: string where c0 = ′′meyer ′′

consts PUT :: (in-c ⇒(out-c, ′σ)MON SE)

lemma HH : (A ∧ (A −→ B)) = (A ∧ B) by auto

Small, rewriting based Scenarios including standard code-generation

Exists in two formats : General Fail-Safe Tests (which allows for scenarios with normal and
exceptional behaviour; and Fail-Stop Tests, which generates Tests only for normal behaviour
and correspond to inclusion test refinement.

In the following, we discuss a test-scenario with failsave error semantics; i. e. in each
test-case, a sequence may be chosen (by the test data selection) where the client has sev-

54

eral accounts. In other words, tests were generated for both standard and exceptional
behaviour. The splitting technique is general exploration of the type in-c list.
test-spec test-balance:
(c0,no) ∈ dom σ0 =⇒
init σ0 =⇒
test-purpose c0 no S =⇒
σ0 |= (s ← mbindF ailSave S SYS ; return (s = x)) =⇒

σ0 |= (s ← mbindF ailSave S PUT ; return (s = x))

Prelude: Massage of the test-theorem — representing the assumptions of the test explicitely in
HOL and blocking x from beeing case-splitted (which complicates the process).

apply(erule rev-mp)+
apply(rule-tac x=x in spec[OF allI])

Starting the test generation process.

apply(gen-test-cases 5 1 PUT)

apply(simp-all add : init-def HH split : HOL.if-split-asm)

mk-test-suite bank-simpleSNXB
thm bank-simpleSNXB .test-thm

And now the Fail-Stop scenario — this corresponds exactly to inclusion tests for normal-
behaviour tests: any transition in the model is only possible iff the pre-conditions of the
transitions in the model were respected.
declare Monads.mbind ′-bind [simp del]

test-spec test-balance2 :
(c0,no) ∈ dom σ0 =⇒
init σ0 =⇒
test-purpose c0 no S =⇒
σ0 |= (s ← mbindF ailStop S SYS ; return (s = x)) =⇒
σ0 |= (s ← mbindF ailStop S PUT ; return (s = x))

Prelude: Massage of the test-theorem — representing the assumptions of the test explicitely in
HOL and blocking x from beeing case-splitted (which complicates the process).

apply(erule rev-mp)+
apply(rule-tac x=x in spec[OF allI])

Starting the test generation process - variant without uniformity generation.

using[[no-uniformity]]
apply(gen-test-cases 4 1 PUT)

So lets go for a more non-destructive approach:

using[[goals-limit=20]]
apply(simp-all add : init-def HH split : HOL.if-split-asm)

using[[no-uniformity=false]]
apply(tactic TestGen.ALLCASES (TestGen.uniformityI-tac @{context} [PUT]))
mk-test-suite bank-simpleNB
thm bank-simpleNB .test-thm

55

Test-Data Generation

Configuration

declare [[testgen-iterations=0]]

declare [[testgen-SMT]]

declare c0-def [testgen-smt-facts]
declare mem-Collect-eq [testgen-smt-facts]
declare Collect-mem-eq [testgen-smt-facts]
declare dom-def [testgen-smt-facts]
declare Option.option.sel [testgen-smt-facts]

Test Data Selection for the Normal and Exceptional Behaviour Test Scenario

gen-test-data bank-simpleSNXB
thm bank-simpleSNXB .test-thm
thm bank-simpleSNXB .test-thm-inst
print-conc-tests bank-simpleSNXB

Test Data Selection for the Normal Behaviour Test Scenario

declare [[testgen-iterations=0]]
declare [[testgen-SMT]]
gen-test-data bank-simpleNB

print-conc-tests bank-simpleNB
thm bank-simpleNB .test-thm-inst

Generating the Test-Driver for an SML and C implementation

The generation of the test-driver is non-trivial in this exercise since it is essentially two-
staged: Firstly, we chose to generate an SML test-driver, which is then secondly, compiled
to a C program that is linked to the actual program under test. Recall that a test-driver
consists of four components:

• ../../../../../harness/sml/main.sml the global controller (a fixed element in the
library),

• ../../../../../harness/sml/main.sml a statistic evaluation library (a fixed ele-
ment in the library),

• bank_simple_test_script.sml the test-script that corresponds merely one-to-one to
the generated test-data (generated)

• bank_adapter.sml a hand-written program; in our scenario, it replaces the usual
(black-box) program under test by SML code, that calls the external C-functions via
a foreign-language interface.

On all three levels, the HOL-level, the SML-level, and the C-level, there are different repre-
sentations of basic data-types possible; the translation process of data to and from the C-code

56

under test has therefore to be carefully designed (and the sheer space of options is sometimes
a pain in the neck). Integers, for example, are represented in two ways inside Isabelle/HOL;
there is the mathematical quotient construction and a "numerals" representation providing
’bit-string-representation-behind- the-scene" enabling relatively efficient symbolic computa-
tion. Both representations can be compiled "natively" to data types in the SML level. By
an appropriate configuration, the code-generator can map "int" of HOL to three different
implementations: the SML standard library Int.int, the native-C interfaced by Int32.int,
and the IntInf.int from the multi-precision library gmp underneath the polyml-compiler.

We do a three-step compilation of data-reresentations model-to-model, model-to-SML,
SML-to-C.

A basic preparatory step for the initializing the test-environment to enable code-generation
is:

generate-test-script bank-simpleSNXB
thm bank-simpleSNXB .test-script

generate-test-script bank-simpleNB
thm bank-simpleNB .test-script

In the following, we describe the interface of the SML-program under test, which is in
our scenario an adapter to the C code under test. This is the heart of the model-to-SML
translation. The the SML-level stubs for the program under test are declared as follows:

consts balance-stub :: string ⇒ int ⇒ (int , ′σ)MON SE

code-printing
constant balance-stub => (SML) (fn n => fn i => fn s => (case (BankAdapter .balance n

(integer ′-of ′-int i) s) of (SOME (i ′,s ′)) => SOME (Int ′-of ′-integer i ′,s ′)))

consts deposit-stub :: string ⇒ int ⇒ int ⇒ (unit , ′σ)MON SE

code-printing
constant deposit-stub => (SML) (fn s => fn i => fn j => BankAdapter .deposit s

(integer ′-of ′-int i) (integer ′-of ′-int j))

consts withdraw-stub:: string ⇒ int ⇒ int ⇒ (unit , ′σ)MON SE

code-printing
constant withdraw-stub => (SML) (fn s => fn i => fn j => BankAdapter .withdraw s

(integer ′-of ′-int i) (integer ′-of ′-int j))

Note that this translation step prepares already the data-adaption; the type nat is seen as
an predicative constraint on integer (which is actually not tested). On the model-to-model
level, we provide a global step function that distributes to individual interface functions
via stubs (mapped via the code generation to SML ...). This translation also represents
uniformly nat by int’s.

fun stepAdapter :: (in-c ⇒(out-c, ′σ)MON SE)
where

stepAdapter(balance name no) =
(x ← balance-stub name no; return(balanceO (Int .nat x)))

| stepAdapter(deposit name no amount) =
(- ← deposit-stub name no (int amount); return(depositO))

| stepAdapter(withdraw name no amount)=

57

(- ← withdraw-stub name no (int amount); return(withdrawO))

The stepAdapter function links the HOL-world and establishes the logical link to HOL
stubs which were mapped by the code-generator to adapter functions in SML (which call
internally to C-code inside bank_adapter.sml via a foreign language interface)
... We configure the code-generator to identify the PUT with the generated SML code

implicitely defined by the above stepAdapter definition.

code-printing
constant PUT => (SML) stepAdapter

And there we go and generate the bank_simple_test_script.sml:

export-code stepAdapter bank-simpleSNXB .test-script in SML
module-name TestScript file impl/c/bank-simpleSNXB-test-script .sml

export-code stepAdapter bank-simpleNB .test-script in SML
module-name TestScript file impl/c/bank-simpleNB-test-script .sml

More advanced Test-Case Generation Scenarios

Exploring a bit the limits ...

Rewriting based approach of symbolic execution ... FailSave Scenario

test-spec test-balance:
assumes account-def : (c0,no) ∈ dom σ0

and accounts-pos : init σ0

and test-purpose : test-purpose c0 no S
and sym-exec-spec :

σ0 |= (s ← mbindF ailSave S SYS ; return (s = x))
shows σ0 |= (s ← mbindF ailSave S PUT ; return (s = x))

Prelude: Massage of the test-theorem — representing the assumptions of the test explicitely in
HOL and blocking x from beeing case-splitted (which complicates the process).

apply(insert account-def test-purpose sym-exec-spec)
apply(tactic TestGen.mp-fy @{context} 1 ,rule-tac x=x in spec[OF allI])

Starting the test generation process.

apply(gen-test-cases 5 1 PUT)

Symbolic Execution:

apply(simp-all add : HH split : HOL.if-split-asm)

mk-test-suite bank-large

gen-test-data bank-large
print-conc-tests bank-large

Rewriting based approach of symbolic execution ... FailSave Scenario

test-spec test-balance:
assumes account-def : (c0,no) ∈ dom σ0

and accounts-pos : init σ0

and test-purpose : test-purpose c0 no S

58

and sym-exec-spec :
σ0 |= (s ← mbindF ailStop S SYS ; return (s = x))

shows σ0 |= (s ← mbindF ailStop S PUT ; return (s = x))

Prelude: Massage of the test-theorem — representing the assumptions of the test explicitely in
HOL and blocking x from beeing case-splitted (which complicates the process).

apply(insert account-def test-purpose sym-exec-spec)
apply(tactic TestGen.mp-fy @{context} 1 ,rule-tac x=x in spec[OF allI])

Starting the test generation process.

apply(gen-test-cases 3 1 PUT)

Symbolic Execution:

apply(simp-all add : HH split : HOL.if-split-asm)

mk-test-suite bank-large ′

gen-test-data bank-large ′
print-conc-tests bank-large ′

And now, to compare, elimination based procedures ...

declare deposit .exec-mbindFSave-If [simp del]
declare balance.exec-mbindFSave-If [simp del]
declare withdraw .exec-mbindFSave-If [simp del]
declare deposit .exec-mbindFStop [simp del]
declare balance.exec-mbindFStop[simp del]
declare withdraw .exec-mbindFStop[simp del]

thm deposit .exec-mbindFSave-E withdraw .exec-mbindFSave-E balance.exec-mbindFSave-E

test-spec test-balance:
assumes account-defined : (c0,no) ∈ dom σ0

and accounts-pos : init σ0

and test-purpose : test-purpose c0 no S
and sym-exec-spec :

σ0 |= (s ← mbindF ailStop S SYS ; return (s = x))
shows σ0 |= (s ← mbindF ailStop S PUT ; return (s = x))
apply(insert account-defined test-purpose sym-exec-spec)
apply(tactic TestGen.mp-fy @{context} 1 ,rule-tac x=x in spec[OF allI])
using [[no-uniformity]]
apply(gen-test-cases
3 1 PUT)

apply(tactic ALLGOALS (TestGen.REPEAT ′(ematch-tac @{context} [@{thm bal-
ance.exec-mbindFStop-E},

@{thm withdraw .exec-mbindFStop-E},
@{thm deposit .exec-mbindFStop-E},
@{thm valid-mbind ′-mt}

])))
apply(simp-all)

59

using[[no-uniformity=false]]
apply(tactic TestGen.ALLCASES (TestGen.uniformityI-tac @{context} [PUT]))
mk-test-suite bank-large-very

Yet another technique: "deep" symbolic execution rules involving knowledge from the
model domain. Here: input alphabet must be case-split over deposit, withdraw and balance.
This avoids that gen_test_cases has to do deep splitting.

theorem hulk :
assumes redex : σ |= (s ← (mbindF ailStop (a # S) SYS); return (P s))
and case-deposit :

∧
c no m. a = deposit c no m =⇒ (c, no) ∈ dom σ =⇒

σ((c, no) 7→ the (σ (c, no)) + int m) |=
(s ← mbindF ailStop S SYS ; return P (depositO # s)) =⇒

Q
and case-withdraw :

∧
c no m. a = withdraw c no m =⇒ (c, no) ∈ dom σ =⇒
int m ≤ the (σ (c, no)) =⇒
σ((c,no) 7→ the(σ(c,no))− int m) |=

(s ← mbindF ailStop S SYS ; return P (withdrawO#s)) =⇒
Q

and case-balance :
∧
c no. (c, no) ∈ dom σ =⇒

σ |=(s ← mbindF ailStop S SYS ;
return P (balanceO (nat (the (σ (c, no)))) # s)) =⇒

Q
shows Q
proof(cases a) print-cases

case (deposit c no m) assume hyp : a = deposit c no m show Q
using hyp redex
apply(simp only : deposit .exec-mbindFStop)
apply(rule case-deposit , auto)
done

next
case (withdraw c no m) assume hyp : a = withdraw c no m show Q
using hyp redex
apply(simp only : withdraw .exec-mbindFStop)
apply(rule case-withdraw , auto)
done

next
case (balance c no) assume hyp : a = balance c no show Q
using hyp redex
apply(simp only : balance.exec-mbindFStop)
apply(rule case-balance, auto)
done

qed

Experimental Space

declare[[testgen-trace]]
ML〈〈 prune-params-tac; Drule.triv-forall-equality〉〉

end

60

8. A Simple Non-Deterministic Bank Model

theory
NonDetBank

imports
Testing

begin

declare [[testgen-profiling]]

This testing scenario is a modification of the Bank example. The purpose is to explore
specifications which are nondetermistic, but at least σ-deterministic, i.e. from the observable
output, the internal state can be constructed (which paves the way for symbolic executions
based on the specification).

The state of our bank is just modeled by a map from client/account information to the
balance.

type-synonym client = string

type-synonym account-no = int

type-synonym register = (client × account-no) ⇀ int

Operation definitions We use a similar setting as for the Bank example — with one
minor modification: the withdraw operation gets a non-deterministic behaviour: it may with-
draw any amount between 1 and the demanded amount.

op deposit (c : client, no : account_no, amount:nat) : unit
pre (c,no) : dom(register)
post register’=register[(c,no) := register(c,no) + amount]

op balance (c : client, no : account_no) : int
pre (c,no) : dom(register)
post register’=register and result = register(c,no)

op withdraw(c : client, no : account_no, amount:nat) : nat
pre (c,no) : dom(register) and register(c,no) >= amount
post result <= amount and

register’=register[(c,no) := register(c,no) - result]

Interface normalization turns this interface into the following input type:

datatype in-c = deposit client account-no nat
| withdraw client account-no nat

61

| balance client account-no

datatype out-c = depositO | balanceO nat | withdrawO nat

fun precond :: register ⇒ in-c ⇒ bool
where precond σ (deposit c no m) = ((c,no) ∈ dom σ)
| precond σ (balance c no) = ((c,no) ∈ dom σ)
| precond σ (withdraw c no m) = ((c,no) ∈ dom σ ∧ (int m) ≤ the(σ(c,no)))

fun postcond :: in-c ⇒ register ⇒ (out-c × register) set
where postcond (deposit c no m) σ =

({ (n,σ ′). (n = depositO ∧ σ ′=σ((c,no) 7→ the(σ(c,no)) + int m))})
| postcond (balance c no) σ =

({ (n,σ ′). (σ=σ ′ ∧ (∃ x . balanceO x = n ∧ x = nat(the(σ(c,no)))))})
| postcond (withdraw c no m) σ =

({ (n,σ ′). (∃ x≤m. n = withdrawO x ∧ σ ′=σ((c,no) 7→ the(σ(c,no)) − int x))})

Proving Symbolic Execution Rules for the Abstractly Constructed Program Us-
ing the Operators impl and strong_impl, we can synthesize an abstract program right away
from the specification, i.e. the pair of pre and postcondition defined above. Since this pro-
gram is even deterministic, we derive a set of symbolic execution rules used in the test
case generation process which will produce symbolic results against which the PUT can be
compared in the test driver.

definition implementable :: [′σ ⇒ ′ι ⇒ bool , ′ι ⇒ (′o, ′σ)MON SB] ⇒ bool
where implementable pre post =(∀ σ ι. pre σ ι −→(∃ out σ ′. (out ,σ ′) ∈ post ι σ))

lemma precond-postcond-implementable:
implementable precond postcond

apply(auto simp: implementable-def)
apply(case-tac ι, simp-all)
apply auto
done

The following lemmas reveal that this "constructed" program is actually (due to deter-
minism of the spec)

lemma impl-1 :
strong-impl precond postcond (deposit c no m) =
(λσ . if (c, no) ∈ dom σ

then Some(depositO ,σ((c, no) 7→ the (σ (c, no)) + int m))
else None)

by(rule ext , auto simp: strong-impl-def)

lemma valid-both-spec1 [simp]:
(σ |= (s ← mbind ((deposit c no m)#S) (strong-impl precond postcond);

return (P s))) =
(if (c, no) ∈ dom σ
then (σ((c, no) 7→ the (σ (c, no)) + int m))|= (s ← mbind S (strong-impl precond postcond);

62

return (P (depositO#s)))
else (σ |= (return (P []))))

by(auto simp: exec-mbindFSave impl-1)

lemma impl-2 :
strong-impl precond postcond (balance c no) =
(λσ. if (c, no) ∈ dom σ

then Some(balanceO(nat(the (σ (c, no)))),σ)
else None)

by(rule ext , auto simp: strong-impl-def)

lemma valid-both-spec2 [simp]:
(σ |= (s ← mbind ((balance c no)#S) (strong-impl precond postcond);

return (P s))) =
(if (c, no) ∈ dom σ
then (σ |= (s ← mbind S (strong-impl precond postcond);

return (P (balanceO(nat(the (σ (c, no))))#s))))
else (σ |= (return (P []))))

by(auto simp: exec-mbindFSave impl-2)

So far, no problem; however, so far, everything was deterministic. The following key-
theorem does not hold:

lemma impl-3 :
strong-impl precond postcond (withdraw c no m) =
(λσ. if (c, no) ∈ dom σ ∧ (int m) ≤ the(σ(c,no)) ∧ x ≤ m

then Some(withdrawO x ,σ((c, no) 7→ the (σ (c, no)) − int x))
else None)

oops

This also breaks our deterministic approach to compute the sequence aforehand and to
run the test of PUT against this sequence.
However, we can give an acceptance predicate (an automaton) for correct behaviour of

our PUT:

fun accept :: (in-c list × out-c list × int) ⇒ bool
where accept((deposit c no n)#S ,depositO#S ′, m) = accept (S ,S ′, m + (int n))
| accept((withdraw c no n)#S , (withdrawO k)#S ′,m) = (k ≤ n ∧ accept (S ,S ′, m − (int k)))
| accept([balance c no], [balanceO n], m) = (int n = m)
| accept(a,b,c) = False

This format has the advantage

TODO: Work out foundation. accept works on an abstract state (just one single balance
of a user), while PUT works on the (invisible) concrete state. A data-refinement is involved,
and it has to be established why it is correct.

Test Specifications fun test-purpose :: [client , account-no, in-c list] ⇒ bool
where
test-purpose c no [] = False
| test-purpose c no (a#R) = (case R of

[] ⇒ a = balance c no

63

| a ′#R ′⇒ (((∃ m. a = deposit c no m) ∨
(∃ m. a = withdraw c no m)) ∧
test-purpose c no R))

test-spec test-balance:
assumes account-defined : (c,no) ∈ dom σ0

and test-purpose : test-purpose c no ιs
shows σ0 |= (os ← mbind ιs PUT ; return (accept(ιs, os, the(σ0 (c,no)))))
apply(insert account-defined test-purpose)
apply(gen-test-cases PUT split : HOL.if-split-asm)

mk-test-suite nbank

declare [[testgen-iterations=0]]
gen-test-data nbank

end

8.1. MyKeOS

64

9. The MyKeOS Case Study

theory MyKeOS
imports

Testing
begin

This example is drawn from the operating system testing domain; it is a rough abstraction
of PiKeOS and explains the underlying techniques of this particular case study on a small
example. The full paper can be found under [5].

This is a fun-operating system — closely following the Bank example — intended to
explain the principles of symbolic execution used in our PikeOS study.
Moreover, in this scenario, we assume that the system under test is deterministic.

The state of a thread (belonging to a task, i. e. a Unix/PosiX like “process” just modeled
by a map from task-id/thread-id information to the number of a resource (a communication
channel descriptor, for example) that was allocated to a thread.

type-synonym task-id = int

type-synonym thread-id = int

type-synonym thread-local-var-tab = thread-id ⇀ int

Operation definitions A standard, JML or OCL or VCC like interface specification might
look like:

Init: forall (c,no) : dom(data_base::thread_local_var_tab). data_base(c,no)>=0

op alloc (c : task_id, no : thread_id, amount:nat) : unit
pre (c,no) : dom(data_base)
post data_base’=data_base[(c,no) := data_base(c,no) + amount]

op release(c : task_id, no : thread_id, amount:nat) : unit
pre (c,no) : dom(data_base) and data_base(c,no) >= amount
post data_base’=data_base[(c,no) := data_base(c,no) - amount]

op status (c : task_id, no : thread_id) : int
pre (c,no) : dom(data_base)
post data_base’=data_base and result = data_base(c,no)

65

Interface normalization turns this interface into the following input type:

datatype in-c = send thread-id thread-id nat
| rec thread-id thread-id nat
| status thread-id

datatype inf c = sendf c thread-id thread-id nat
| recf c thread-id thread-id nat
| allocf c thread-id nat
| releasef c thread-id nat
| statf c thread-id

typ MyKeOS .in-c

datatype out-c = send-ok | rec-ok | status-ok nat
datatype outf c = send-okf c | rec-okf c | alloc-okf c | release-okf c | stat-okf c nat

fun precond :: thread-local-var-tab ⇒ in-c ⇒ bool
where precond σ (send tid tid ′ m) = (tid ∈ dom σ ∧ tid ′ ∈ dom σ ∧ (int m) ≤ the(σ tid))
| precond σ (rec tid tid ′ m) = (tid ∈ dom σ ∧ tid ′ ∈ dom σ)
| precond σ (status tid) = (tid ∈ dom σ)

fun precondf c :: thread-local-var-tab ⇒ inf c ⇒ bool
where precondf c σ (sendf c tid tid ′ m) = (tid ∈ dom σ ∧ tid ′ ∈ dom σ ∧ (int m) ≤ the(σ tid))
| precondf c σ (recf c tid tid ′ m) = (tid ∈ dom σ ∧ tid ′ ∈ dom σ)
| precondf c σ (allocf c tid m) = (tid ∈ dom σ)
| precondf c σ (releasef c tid m) = (tid ∈ dom σ)
| precondf c σ (statf c tid) = (tid ∈ dom σ)

fun postcond :: in-c ⇒ thread-local-var-tab ⇒ (out-c × thread-local-var-tab) set
where postcond (send tid tid ′ m) σ =

{ (n,σ ′). n = send-ok ∧ σ ′=σ(tid 7→ the(σ tid) − int m)}
| postcond (rec tid tid ′ m) σ =
{ (n,σ ′). (n = rec-ok ∧ σ ′=σ(tid ′ 7→ the(σ tid ′) + int m))}

| postcond (status tid) σ =
{ (n,σ ′). (σ=σ ′ ∧ (∃ x . status-ok x = n ∧ x = nat(the(σ tid))))}

fun postcondf c :: inf c ⇒ thread-local-var-tab ⇒ (outf c × thread-local-var-tab) set
where postcondf c (sendf c tid tid ′ m) σ =

{ (n,σ ′). n = send-okf c ∧ σ ′=σ(tid 7→ the(σ tid) − int m)}
| postcondf c (recf c tid tid ′ m) σ =
{ (n,σ ′). (n = rec-okf c ∧ σ ′=σ(tid ′ 7→ the(σ tid ′) + int m))}

| postcondf c (statf c tid) σ =
{ (n,σ ′). (σ=σ ′ ∧ (∃ x . stat-okf c x = n ∧ x = nat(the(σ tid))))}

Constructing an Abstract Program Using the Operators impl and strong_impl, we
can synthesize an abstract program right away from the specification, i.e. the pair of pre-

66

and postcondition defined above. Since this program is even deterministic, we derive a set of
symbolic execution rules used in the test case generation process which will produce symbolic
results against which the PUT can be compared in the test driver.

lemma precond-postcond-implementable:
implementable precond postcond

apply(auto simp: implementable-def)
apply(case-tac ι, simp-all)
done

Based on this machinery, it is now possible to construct the system model as the canonical
completion of the (functional) specification consisting of pre- and post-conditions

definition SYS = (strong-impl precond postcond)

lemma SYS-is-strong-impl : is-strong-impl precond postcond SYS
by(simp add : SYS-def is-strong-impl)

thm SYS-is-strong-impl [simplified is-strong-impl-def ,THEN spec,of (send tid tid ′ m), simplified]

Proving Symbolic Execution Rules for the Abstractly Program The following
lemmas reveal that this "constructed" program is actually (due to determinism of the spec):

lemma Eps-split-eq ′ : (SOME (x ′, y ′). x ′= x ∧ y ′= y) = (SOME (x ′, y ′). x = x ′ ∧ y = y ′)
by(rule arg-cong [of - - Eps], auto)

interpretation send : efsm-det
precond postcond SYS (send tid tid ′ m) λ-. send-ok
λ σ. σ(tid 7→ (the(σ tid) − int m)) λ σ. (tid ∈ dom σ ∧ tid ′ ∈ dom σ ∧ (int

m) ≤ the(σ tid))
by unfold-locales (auto simp: SYS-def Eps-split-eq ′)

interpretation receive : efsm-det
precond postcond SYS (rec tid tid ′ m) λ-. rec-ok
λ σ. σ(tid ′ 7→ (the(σ tid ′)+int m))
λ σ.(tid∈dom σ ∧ tid ′ ∈ dom σ)

by unfold-locales (auto simp: SYS-def Eps-split-eq ′)

interpretation status : efsm-det
precond postcond SYS (status tid)
λσ. (status-ok (nat(the(σ tid))))
λ σ. σ λ σ. (tid ∈ dom σ)

by unfold-locales (auto simp: SYS-def Eps-split-eq ′)

Setup Now we close the theory of symbolic execution by exluding elementary rewrite steps
on mbindF ailSave, i. e. the rules mbindF ailSave [] ?iostep ?σ = Some ([], ?σ) mbindF ailSave

(?a # ?S) ?iostep ?σ = (case ?iostep ?a ?σ of None ⇒ Some ([], ?σ) | Some (out , σ ′) ⇒
case mbindF ailSave ?S ?iostep σ ′ of None ⇒ Some ([out], σ ′) | Some (outs, σ ′′) ⇒ Some
(out # outs, σ ′′))

declare mbind .simps(1) [simp del]
mbind .simps(2) [simp del]

67

Here comes an interesting detail revealing the power of the approach: The generated
sequences still respect the preconditions imposed by the specification - in this case, where
we are talking about a task_id for which a defined account exists and for which we will
never produce traces in which we release more money than available on it.

Restricting the Test-Space by Test Purposes We introduce a constraint on the in-
put sequence, in order to limit the test-space a little and eliminate logically possible, but
irrelevant test-sequences for a specific test-purpose. In this case, we narrow down on test-
sequences concerning a specific task_id c with a specific bank-account number no.
We make the (in this case implicit, but as constraint explicitly stated) test hypothesis,

that the SUT is correct if it behaves correct for a single task_id. This boils down to the
assumption that they are implemented as atomic transactions and interleaved processing
does not interfere with a single thread.

term List .member y x

fun test-purpose :: [task-id list , in-c list] ⇒ bool
where
test-purpose R [status tid] = (tid ∈ set R)
| test-purpose R ((send tid tid ′ m) # S) = (tid ∈ set R ∧ tid ′ ∈ set R ∧ test-purpose R S)
| test-purpose R ((rec tid tid ′ m) # S) = (tid ∈ set R ∧ tid ′ ∈ set R ∧ test-purpose R S)
| test-purpose - - = False

lemma [simp] : test-purpose [] a = False by(induct a, simp-all , case-tac a1 ,
simp-all , case-tac a2 , simp-all)

lemma [simp] : test-purpose r [] = False by simp

lemma [simp] : test-purpose (tid#R) [a] = ((a = status tid) ∨ test-purpose R [a])
proof (induct R)
case Nil show ?case by(cases a, simp-all)

next
case (Cons a ′ R ′) then show ?case by(cases a, simp-all)

qed

lemma [rule-format ,simp,dest] : test-purpose R (S@[a]) −→ (∃ tid ∈ set R. (a = status tid))
proof (induct S arbitrary : R)
case Nil then show ?case apply(auto)

by (metis in-c.exhaust test-purpose.simps(1) test-purpose.simps(2)
test-purpose.simps(3) test-purpose.simps(4))

next
case (Cons a list) show ?case apply(insert Cons.hyps)

by (metis append-Cons hd-Cons-tl in-c.exhaust snoc-eq-iff-butlast
test-purpose.simps(2) test-purpose.simps(3) test-purpose.simps(5))

qed

schematic-goal sdf :(∃ tid ∈ set [1 ,2 ,3]. (a = status tid)) = ?X
apply(rule trans)

68

apply simp
oops

lemma [simp] :
test-purpose H (a#R) = ((((∃m. ∃ tid∈set H . ∃ tid ′∈set H . a = send tid tid ′ m) ∨

(∃m. ∃ tid∈set H . ∃ tid ′∈set H . a = rec tid tid ′ m))
∧ test-purpose H R) ∨
(R=[] ∧ (∃ tid∈set H . a = status tid)))

proof(induct R arbitrary : a)
case Nil then show ?case by(simp,case-tac a, simp-all)

next
case (Cons a list aa) then show ?case by(simp,case-tac aa, simp-all)

qed

The following scenario checks send-operations to itself

lemma exhaust1 [simp] :
test-purpose [tid] (a#R) = ((((∃m. a = send tid tid m) ∨

(∃m. a = rec tid tid m))
∧ test-purpose [tid] R) ∨
(R=[] ∧ (a = status tid)))

by simp

lemma exhaust2 [simp] :
test-purpose [tid ,tid ′] (a#R) = ((((∃m. a = send tid tid m) ∨ (∃m. a = send tid ′ tid ′ m) ∨

(∃m. a = send tid tid ′ m) ∨ (∃m. a = send tid ′ tid m) ∨
(∃m. a = rec tid tid ′ m) ∨ (∃m. a = rec tid ′ tid m) ∨
(∃m. a = rec tid tid m) ∨ (∃m. a = rec tid ′ tid ′ m))
∧ test-purpose [tid ,tid ′] R) ∨

(R=[] ∧ ((a = status tid) ∨ (a = status tid ′))))
by auto

Well-formed traces

fun compair :: in-c ⇒ in-c ⇒ bool
where compair (send x y z) (rec x ′ y ′ z ′) = ((x=x ′) ∧ (y=y ′) ∧ (z = z ′))

| compair - - = False

definition wf-trace :: in-c list ⇒ bool
where wf-trace t = (∃ f . ∀ n∈{0 ..<length t}. f n ∈{0 ..<length t} ∧

f (f n) = n ∧ (∗ derivable ? ∗)
(case (t !n) of
(send - - -) ⇒

(compair (t !n) (t !(f n)) ∧ f n > n)
|(rec - - -) ⇒

(compair (t !n) (t !(f n)) ∧ f n < n)
|(status -) ⇒ (f n) = n)

)

69

Misc

consts PUT :: in-c ⇒ ′σ ⇒ (out-c × ′σ) option

end

70

10. The MyKeOS “Traditional”
Data-sequence enumeration approach

theory MyKeOS-test
imports MyKeOS

begin

The purpose of these test-scenarios is to apply the bute-force data-exploration approach to
a little operation system example. It is conceptually very close the the Bank-example, essen-
tially a renaming. However, the present "data-exploration" based approach is an interesting
intermediate step to the subsequently shown scenarios based on:

1. exploration if the interleaving space

2. optimized exploration if the interleaving space, including theory for partial-order re-
duction.

declare [[testgen-profiling]]

The TestGen Setup The default configuration of gen_test_cases does not descend
into sub-type expressions of type constructors (since this is not always desirable, the choice
for the default had been for "non-descent"). This case is relevant here since in-c list has
just this structure but we need ways to explore the input sequence type further. Thus, we
need configure, for all test cases, and derivation descendants of the relusting clauses during
splitting, again splitting for all parameters of input type in-c:

set-pre-safe-tac〈〈
(fn ctxt => TestGen.ALLCASES (

TestGen.CLOSURE (
TestGen.case-tac-typ ctxt [MyKeOS .in-c])))

〉〉

The Scenario We construct test-sequences for a concrete task_id (implicitely assuming
that interleaving actions with other task_id’s will not influence the system behaviour. In
order to prevent HOL-TestGen to perform case-splits over names — i.e. list of characters
— we define it as constant.

definition tid0 :: task-id where tid0 = 0
definition tid1 :: task-id where tid1 = 1

declare[[goals-limit = 500]]

71

Making my own test-data generation — temporarily lemma HH : (A ∧ (A −→ B))
= (A ∧ B) by auto

Some Experiments with nitpick as Testdata Selection Machine. Exists in two
formats : General Fail-Safe Tests (which allows for scenarios with normal and exceptional
behaviour; and Fail-Stop Tests, which generates Tests only for normal behaviour and corre-
spond to inclusion test refinement.

lemma H : ((((X586X11506 , X587X11507) ∈ dom X588X11508 −→
[status-ok (nat (the (X588X11508 (X586X11506 , X587X11507))))] = X590X11510 ∧
X588X11508 (X586X11506 , X587X11507) = Some X589X11509) ∧
((X586X11506 , X587X11507) /∈ dom X588X11508 −→
[] = X590X11510 ∧ X588X11508 (X586X11506 , X587X11507) = Some X589X11509)))

nitpick[satisfy ,debug]
oops

lemma H : (((X586X11506 , X587X11507) ∈ dom
([(X586X11506 , X587X11507) 7→ X589X11509]) −→
[status-ok (nat (the (

([(X586X11506 , X587X11507) 7→ X589X11509]) (X586X11506 , X587X11507))))] =
X590X11510 ∧

([(X586X11506 , X587X11507) 7→ X589X11509]) (X586X11506 , X587X11507) = Some
X589X11509) ∧

((X586X11506 , X587X11507) /∈ dom
([(X586X11506 , X587X11507) 7→ X589X11509]) −→

[] = X590X11510 ∧ ([(X586X11506 , X587X11507) 7→ X589X11509]) (X586X11506 ,
X587X11507) = Some X589X11509))
nitpick[satisfy ,debug ,timeout=500]
oops

In the following, we discuss a test-scenario with error-abort semantics; i. e. in each test-
case, a sequence may be chosen (by the test data selection) where the task_id has several
accounts. . .

test-spec test-status:
assumes account-def : no ∈ dom σ0 ∧ no ′ ∈ dom σ0

and test-purpose : test-purpose [no,no ′] S
and sym-exec-spec : σ0 |= (s ← mbindF ailSave S SYS ; return (s = x))
shows σ0 |= (s ← mbindF ailSave S PUT ; return (s = x))

Prelude: Massage of the test-theorem — representing the assumptions of the test explicitely in
HOL and blocking x from beeing case-splitted (which complicates the process).

apply(rule rev-mp[OF sym-exec-spec])
apply(rule rev-mp[OF account-def])
apply(rule rev-mp[OF test-purpose])
apply(rule-tac x=x in spec[OF allI])

Starting the test generation process.

apply(gen-test-cases 3 1 PUT)

apply(simp-all add : HH split : HOL.if-split-asm)

72

mk-test-suite mykeos-simpleSNXB

And now the Fail-Stop scenario — this corresponds exactly to inclusion test.

declare Monads.mbind ′-bind [simp del]
test-spec test-status2 :
assumes system-def : tid ∈ dom σ0 ∧ tid ′ ∈ dom σ0

and test-purpose : test-purpose [tid ,tid ′] S
and sym-exec-spec :

σ0 |= (s ← mbindF ailStop S SYS ; return (s = x))
shows σ0 |= (s ← mbindF ailStop S PUT ; return (s = x))

Prelude: Massage of the test-theorem — representing the assumptions of the test explicitely in
HOL and blocking x from beeing case-splitted (which complicates the process).

apply(rule rev-mp[OF sym-exec-spec])
apply(rule rev-mp[OF system-def])
apply(rule rev-mp[OF test-purpose])
apply(rule-tac x=x in spec[OF allI])

Starting the test generation process.

using[[no-uniformity]]
apply(gen-test-cases 3 1 PUT)

So lets go for a more non-destructive approach:

apply simp-all

using[[no-uniformity=false]]
apply(tactic TestGen.ALLCASES (TestGen.uniformityI-tac @{context} [PUT]))

mk-test-suite mykeos-simpleNB

ML〈〈 Isar-Cmd .done-proof ; Proof .global-done-proof 〉〉

Test-Data Generation ML〈〈 Thm.close-derivation
〉〉

declare [[testgen-iterations=0]]
declare [[testgen-SMT]]

declare tid0-def [testgen-smt-facts]
declare tid1-def [testgen-smt-facts]

declare mem-Collect-eq [testgen-smt-facts]
declare Collect-mem-eq [testgen-smt-facts]
declare dom-def [testgen-smt-facts]
declare Option.option.sel [testgen-smt-facts]

gen-test-data mykeos-simpleSNXB
print-conc-tests mykeos-simpleSNXB

73

gen-test-data mykeos-simpleNB
print-conc-tests mykeos-simpleNB

Generating the Test-Driver for an SML and C implementation The generation
of the test-driver is non-trivial in this exercise since it is essentially two-staged: Firstly, we
chose to generate an SML test-driver, which is then secondly, compiled to a C program
that is linked to the actual program under test. Recall that a test-driver consists of four
components:

• ../../../../../harness/sml/main.sml the global controller (a fixed element in the
library),

• ../../../../../harness/sml/main.sml a statistic evaluation library (a fixed ele-
ment in the library),

• bank_simple_test_script.sml the test-script that corresponds merely one-to-one to
the generated test-data (generated)

• bank_adapter.sml a hand-written program; in our scenario, it replaces the usual
(black-box) program under test by SML code, that calls the external C-functions via
a foreign-language interface.

On all three levels, the HOL-level, the SML-level, and the C-level, there are different repre-
sentations of basic data-types possible; the translation process of data to and from the C-code
under test has therefore to be carefully designed (and the sheer space of options is sometimes
a pain in the neck). Integers, for example, are represented in two ways inside Isabelle/HOL;
there is the mathematical quotient construction and a "numerals" representation providing
’bit-string-representation-behind- the-scene" enabling relatively efficient symbolic computa-
tion. Both representations can be compiled "natively" to data types in the SML level. By
an appropriate configuration, the code-generator can map "int" of HOL to three different
implementations: the SML standard library Int.int, the native-C interfaced by Int32.int,
and the IntInf.int from the multi-precision library gmp underneath the polyml-compiler.

We do a three-step compilation of data-reresentations model-to-model, model-to-SML,
SML-to-C.

A basic preparatory step for the initializing the test-environment to enable code-generation
is:

generate-test-script mykeos-simpleNB
thm mykeos-simpleNB .test-script
generate-test-script mykeos-simpleSNXB

More advanced Test-Case Generation Scenarios Exploring a bit the limits ...

Rewriting based approach of symbolic execution ... FailSave Scenario

test-spec test-status:

74

assumes account-def : (no) ∈ dom σ0 ∧ (no ′) ∈ dom σ0

and test-purpose : test-purpose [no,no ′] S
and sym-exec-spec :

σ0 |= (s ← mbindF ailSave S SYS ; return (s = x))
shows σ0 |= (s ← mbindF ailSave S PUT ; return (s = x))

Prelude: Massage of the test-theorem — representing the assumptions of the test explicitely in
HOL and blocking x from beeing case-splitted (which complicates the process).

apply(insert account-def test-purpose sym-exec-spec)
apply(tactic TestGen.mp-fy @{context} 1 ,rule-tac x=x in spec[OF allI])

Starting the test generation process.

apply(gen-test-cases 3 1 PUT)

Symbolic Execution:

apply(simp-all add : HH split : HOL.if-split-asm)
mk-test-suite mykeos-large

gen-test-data mykeos-large
print-conc-tests mykeos-large

Rewriting based approach of symbolic execution ... FailSave Scenario

test-spec test-status:
assumes account-def : (no) ∈ dom σ0 ∧ (no ′) ∈ dom σ0

and test-purpose : test-purpose [(no),(no ′)] S
and sym-exec-spec :

σ0 |= (s ← mbindF ailStop S SYS ; return (s = x))
shows σ0 |= (s ← mbindF ailStop S PUT ; return (s = x))

Prelude: Massage of the test-theorem — representing the assumptions of the test explicitely in
HOL and blocking x from beeing case-splitted (which complicates the process).

apply(insert account-def test-purpose sym-exec-spec)
apply(tactic TestGen.mp-fy @{context} 1 ,rule-tac x=x in spec[OF allI])

Starting the test generation process.

using [[no-uniformity]]
apply(gen-test-cases 3 1 PUT)

Symbolic Execution:

apply(simp-all add : HH split : HOL.if-split-asm)

apply(auto)
mk-test-suite mykeos-large2

gen-test-data mykeos-large2
print-conc-tests mykeos-large2

And now, to compare, elimination based procedures ...

declare
status.exec-mbindFSave-If [simp del]

status.exec-mbindFStop [simp del]

75

ML〈〈 open Tactical ; 〉〉
test-spec test-status:
assumes account-defined : (no) ∈ dom σ0 ∧ (no ′) ∈ dom σ0

and test-purpose : test-purpose [(no),(no ′)] S
and sym-exec-spec :

σ0 |= (s ← mbindF ailStop S SYS ; return (s = x))
shows σ0 |= (s ← mbindF ailStop S PUT ; return (s = x))
apply(insert account-defined test-purpose sym-exec-spec)
apply(tactic TestGen.mp-fy @{context} 1 ,rule-tac x=x in spec[OF allI])
apply(tactic asm-full-simp-tac @{context} 1)
using [[no-uniformity]]
apply(gen-test-cases 3 1 PUT)

oops
end

Implementation of integer numbers by target-language integers

theory Code-Target-Int
imports ../GCD
begin

code-datatype int-of-integer

declare [[code drop: integer-of-int]]

context
includes integer .lifting
begin

lemma [code]:
integer-of-int (int-of-integer k) = k
by transfer rule

lemma [code]:
Int .Pos = int-of-integer ◦ integer-of-num
by transfer (simp add : fun-eq-iff)

lemma [code]:
Int .Neg = int-of-integer ◦ uminus ◦ integer-of-num
by transfer (simp add : fun-eq-iff)

lemma [code-abbrev]:
int-of-integer (numeral k) = Int .Pos k
by transfer simp

lemma [code-abbrev]:

76

int-of-integer (− numeral k) = Int .Neg k
by transfer simp

lemma [code, symmetric, code-post]:
0 = int-of-integer 0
by transfer simp

lemma [code, symmetric, code-post]:
1 = int-of-integer 1
by transfer simp

lemma [code-post]:
int-of-integer (− 1) = − 1
by simp

lemma [code]:
k + l = int-of-integer (of-int k + of-int l)
by transfer simp

lemma [code]:
− k = int-of-integer (− of-int k)
by transfer simp

lemma [code]:
k − l = int-of-integer (of-int k − of-int l)
by transfer simp

lemma [code]:
Int .dup k = int-of-integer (Code-Numeral .dup (of-int k))
by transfer simp

declare [[code drop: Int .sub]]

lemma [code]:
k ∗ l = int-of-integer (of-int k ∗ of-int l)
by simp

lemma [code]:
k div l = int-of-integer (of-int k div of-int l)
by simp

lemma [code]:
k mod l = int-of-integer (of-int k mod of-int l)
by simp

lemma [code]:
divmod m n = map-prod int-of-integer int-of-integer (divmod m n)
unfolding prod-eq-iff divmod-def map-prod-def case-prod-beta fst-conv snd-conv
by transfer simp

lemma [code]:
HOL.equal k l = HOL.equal (of-int k :: integer) (of-int l)

77

by transfer (simp add : equal)

lemma [code]:
k ≤ l ←→ (of-int k :: integer) ≤ of-int l
by transfer rule

lemma [code]:
k < l ←→ (of-int k :: integer) < of-int l
by transfer rule

declare [[code drop: gcd :: int ⇒ - lcm :: int ⇒ -]]

lemma gcd-int-of-integer [code]:
gcd (int-of-integer x) (int-of-integer y) = int-of-integer (gcd x y)

by transfer rule

lemma lcm-int-of-integer [code]:
lcm (int-of-integer x) (int-of-integer y) = int-of-integer (lcm x y)

by transfer rule

end

lemma (in ring-1) of-int-code-if :
of-int k = (if k = 0 then 0

else if k < 0 then − of-int (− k)
else let
l = 2 ∗ of-int (k div 2);
j = k mod 2

in if j = 0 then l else l + 1)
proof −
from div-mult-mod-eq have ∗: of-int k = of-int (k div 2 ∗ 2 + k mod 2) by simp
show ?thesis
by (simp add : Let-def of-int-add [symmetric]) (simp add : ∗ mult .commute)

qed

declare of-int-code-if [code]

lemma [code]:
nat = nat-of-integer ◦ of-int
including integer .lifting by transfer (simp add : fun-eq-iff)

code-identifier
code-module Code-Target-Int ⇀
(SML) Arith and (OCaml) Arith and (Haskell) Arith

end

Avoidance of pattern matching on natural numbers

theory Code-Abstract-Nat
imports Main
begin

78

When natural numbers are implemented in another than the conventional inductive 0/Suc
representation, it is necessary to avoid all pattern matching on natural numbers altogether.
This is accomplished by this theory (up to a certain extent).

Case analysis Case analysis on natural numbers is rephrased using a conditional expres-
sion:

lemma [code, code-unfold]:
case-nat = (λf g n. if n = 0 then f else g (n − 1))
by (auto simp add : fun-eq-iff dest !: gr0-implies-Suc)

Preprocessors The term Suc n is no longer a valid pattern. Therefore, all occurrences
of this term in a position where a pattern is expected (i.e. on the left-hand side of a code
equation) must be eliminated. This can be accomplished – as far as possible – by applying
the following transformation rule:

lemma Suc-if-eq :
assumes

∧
n. f (Suc n) ≡ h n

assumes f 0 ≡ g
shows f n ≡ if n = 0 then g else h (n − 1)
by (rule eq-reflection) (cases n, insert assms, simp-all)

The rule above is built into a preprocessor that is plugged into the code generator.

setup 〈

let

val Suc-if-eq = Thm.incr-indexes 1 @{thm Suc-if-eq};

fun remove-suc ctxt thms =
let
val vname = singleton (Name.variant-list (map fst
(fold (Term.add-var-names o Thm.full-prop-of) thms []))) n;

val cv = Thm.cterm-of ctxt (Var ((vname, 0), HOLogic.natT));
val lhs-of = snd o Thm.dest-comb o fst o Thm.dest-comb o Thm.cprop-of ;
val rhs-of = snd o Thm.dest-comb o Thm.cprop-of ;
fun find-vars ct = (case Thm.term-of ct of

(Const (@{const-name Suc}, -) $ Var -) => [(cv , snd (Thm.dest-comb ct))]
| - $ - =>
let val (ct1 , ct2) = Thm.dest-comb ct
in
map (apfst (fn ct => Thm.apply ct ct2)) (find-vars ct1) @
map (apfst (Thm.apply ct1)) (find-vars ct2)

end
| - => []);

val eqs = maps
(fn thm => map (pair thm) (find-vars (lhs-of thm))) thms;

fun mk-thms (thm, (ct , cv ′)) =
let
val thm ′ =
Thm.implies-elim
(Conv .fconv-rule (Thm.beta-conversion true)

79

(Thm.instantiate ′
[SOME (Thm.ctyp-of-cterm ct)] [SOME (Thm.lambda cv ct),
SOME (Thm.lambda cv ′ (rhs-of thm)), NONE , SOME cv ′]

Suc-if-eq)) (Thm.forall-intr cv ′ thm)
in
case map-filter (fn thm ′′ =>

SOME (thm ′′, singleton
(Variable.trade (K (fn [thm ′′′] => [thm ′′′ RS thm ′]))
(Variable.declare-thm thm ′′ ctxt)) thm ′′)

handle THM - => NONE) thms of
[] => NONE
| thmps =>

let val (thms1 , thms2) = split-list thmps
in SOME (subtract Thm.eq-thm (thm :: thms1) thms @ thms2) end

end
in get-first mk-thms eqs end ;

fun eqn-suc-base-preproc ctxt thms =
let
val dest = fst o Logic.dest-equals o Thm.prop-of ;
val contains-suc = exists-Const (fn (c, -) => c = @{const-name Suc});

in
if forall (can dest) thms andalso exists (contains-suc o dest) thms
then thms |> perhaps-loop (remove-suc ctxt) |> (Option.map o map) Drule.zero-var-indexes
else NONE

end ;

val eqn-suc-preproc = Code-Preproc.simple-functrans eqn-suc-base-preproc;

in

Code-Preproc.add-functrans (eqn-Suc, eqn-suc-preproc)

end ;
〉

end

Implementation of natural numbers by target-language integers

theory Code-Target-Nat
imports Code-Abstract-Nat
begin

Implementation for nat context
includes natural .lifting integer .lifting
begin

lift-definition Nat :: integer ⇒ nat
is nat
.

80

lemma [code-post]:
Nat 0 = 0
Nat 1 = 1
Nat (numeral k) = numeral k
by (transfer , simp)+

lemma [code-abbrev]:
integer-of-nat = of-nat
by transfer rule

lemma [code-unfold]:
Int .nat (int-of-integer k) = nat-of-integer k
by transfer rule

lemma [code abstype]:
Code-Target-Nat .Nat (integer-of-nat n) = n
by transfer simp

lemma [code abstract]:
integer-of-nat (nat-of-integer k) = max 0 k
by transfer auto

lemma [code-abbrev]:
nat-of-integer (numeral k) = nat-of-num k
by transfer (simp add : nat-of-num-numeral)

lemma [code abstract]:
integer-of-nat (nat-of-num n) = integer-of-num n
by transfer (simp add : nat-of-num-numeral)

lemma [code abstract]:
integer-of-nat 0 = 0
by transfer simp

lemma [code abstract]:
integer-of-nat 1 = 1
by transfer simp

lemma [code]:
Suc n = n + 1
by simp

lemma [code abstract]:
integer-of-nat (m + n) = of-nat m + of-nat n
by transfer simp

lemma [code abstract]:
integer-of-nat (m − n) = max 0 (of-nat m − of-nat n)
by transfer simp

lemma [code abstract]:
integer-of-nat (m ∗ n) = of-nat m ∗ of-nat n

81

by transfer (simp add : of-nat-mult)

lemma [code abstract]:
integer-of-nat (m div n) = of-nat m div of-nat n
by transfer (simp add : zdiv-int)

lemma [code abstract]:
integer-of-nat (m mod n) = of-nat m mod of-nat n
by transfer (simp add : zmod-int)

lemma [code]:
Divides.divmod-nat m n = (m div n, m mod n)
by (fact divmod-nat-div-mod)

lemma [code]:
divmod m n = map-prod nat-of-integer nat-of-integer (divmod m n)
by (simp only : prod-eq-iff divmod-def map-prod-def case-prod-beta fst-conv snd-conv)
(transfer , simp-all only : nat-div-distrib nat-mod-distrib

zero-le-numeral nat-numeral)

lemma [code]:
HOL.equal m n = HOL.equal (of-nat m :: integer) (of-nat n)
by transfer (simp add : equal)

lemma [code]:
m ≤ n ←→ (of-nat m :: integer) ≤ of-nat n
by simp

lemma [code]:
m < n ←→ (of-nat m :: integer) < of-nat n
by simp

lemma num-of-nat-code [code]:
num-of-nat = num-of-integer ◦ of-nat
by transfer (simp add : fun-eq-iff)

end

lemma (in semiring-1) of-nat-code-if :
of-nat n = (if n = 0 then 0

else let
(m, q) = Divides.divmod-nat n 2 ;
m ′ = 2 ∗ of-nat m

in if q = 0 then m ′ else m ′ + 1)
proof −
from div-mult-mod-eq have ∗: of-nat n = of-nat (n div 2 ∗ 2 + n mod 2) by simp
show ?thesis
by (simp add : Let-def divmod-nat-div-mod of-nat-add [symmetric])
(simp add : ∗ mult .commute of-nat-mult add .commute)

qed

declare of-nat-code-if [code]

82

definition int-of-nat :: nat ⇒ int where
[code-abbrev]: int-of-nat = of-nat

lemma [code]:
int-of-nat n = int-of-integer (of-nat n)
by (simp add : int-of-nat-def)

lemma [code abstract]:
integer-of-nat (nat k) = max 0 (integer-of-int k)
including integer .lifting by transfer auto

lemma term-of-nat-code [code]:
— Use nat-of-integer in term reconstruction instead of Code-Target-Nat .Nat such that recon-

structed terms can be fed back to the code generator
term-of-class.term-of n =
Code-Evaluation.App
(Code-Evaluation.Const (STR ′′Code-Numeral .nat-of-integer ′′)

(typerep.Typerep (STR ′′fun ′′)
[typerep.Typerep (STR ′′Code-Numeral .integer ′′) [],

typerep.Typerep (STR ′′Nat .nat ′′) []]))
(term-of-class.term-of (integer-of-nat n))

by (simp add : term-of-anything)

lemma nat-of-integer-code-post [code-post]:
nat-of-integer 0 = 0
nat-of-integer 1 = 1
nat-of-integer (numeral k) = numeral k
including integer .lifting by (transfer , simp)+

code-identifier
code-module Code-Target-Nat ⇀
(SML) Arith and (OCaml) Arith and (Haskell) Arith

end

Implementation of natural and integer numbers by target-language integers

theory Code-Target-Numeral
imports Code-Target-Int Code-Target-Nat
begin

end

theory MyKeOS-test-conc
imports MyKeOS

∼∼/src/HOL/Library/Code-Target-Numeral
Code-gdb-script

begin

declare [[testgen-profiling]]

83

Interleaving

The purpose of this example is to model system calls that consists of a number of (internal)
atomic actions; the global behavior is presented by the interleaving of the actions actions

definition SEND tid tid ′ m = [send tid tid ′ m, status tid]

definition REC tid tid ′ m = [rec tid tid ′ m, status tid]

value interleave (SEND 5 0 m) (REC 0 5 m)

In the following, we do a predicate abstraction on the interleave language, leading to an
automaton represented as a set of rewrites ...

fun Interleave :: in-c list ⇒ nat × nat ⇒ int ⇒ nat ⇒ nat ⇒ bool (infixl ./100)
where S ./ (a, b) = (λ tid m m ′ . (S ∈ interleave (drop a (SEND tid 5 m))

(drop b (REC 5 tid m ′))))
lemma init-Interleave : (S ./ (0 , 0)) tid m m ′ = (S ∈ interleave (SEND tid 5 m) (REC 5 tid m ′))
by simp

value interleave (SEND 0 5 m) (REC 5 0 m ′)

find-theorems name:Interleave

lemma ref-mt [simp]: ¬([] ./ (0 , 0)) tid m m ′
by (simp add :REC-def SEND-def)

lemma ref-0-0 [simp]: ¬(((status a) # R) ./ (0 , 0)) tid m m ′
by (simp add :REC-def SEND-def)

lemma ref-1-0 [simp]: a 6= tid =⇒¬(((status a) # R) ./ (1 , 0)) tid m m ′
by (simp add :REC-def SEND-def)

lemma ref-0-1 [simp]: a 6= 5 =⇒ ¬(((status a) # R) ./ (0 , 1)) tid m m ′
by (simp add :REC-def SEND-def)

lemma ref-1-1 [simp]: a 6= 5 =⇒ a 6= tid =⇒ ¬(((status a) # R) ./ (1 , 1)) tid m m ′
by (simp add :REC-def SEND-def)

lemma ref-3-1 [simp]: a 6= 5 =⇒ ¬(((status a) # R) ./ (3 , 1)) tid m m ′
by (simp add :REC-def SEND-def)

lemma ref-1-3 [simp]: a 6= tid =⇒ ¬(((status a) # R) ./ (1 , 3)) tid m m ′
by (simp add :REC-def SEND-def)

value (((a # R) ./ (0 , 0)) tid m m ′)
lemma trans-0-0 [simp]: (((a # R) ./ (0 , 0)) tid m m ′) =

((a = send tid 5 m ∧ (R ./ (1 , 0)) tid m m ′) ∨

84

(a = rec 5 tid m ′ ∧ (R ./ (0 , 1)) tid m m ′))
apply (simp add : SEND-def REC-def)
by auto

lemma trans-1-0 [simp]: (((a # R) ./ (1 , 0)) tid m m ′) =
((a = rec 5 tid m ′ ∧ (R ./ (1 , 1)) tid m m ′) ∨
(a = status tid ∧ (R ./ (2 , 0)) tid m m ′))

apply (simp add :SEND-def REC-def)
by auto

lemma trans-2-0 [simp]: (((a # R) ./ (2 , 0)) tid m m ′) =
((a = rec 5 tid m ′ ∧ R = [status 5]))

by (simp add : SEND-def REC-def)

lemma trans-2-1 [simp]: (((a # R) ./ (2 , 1)) tid m m ′) = (a = status 5 ∧ R = [])
by (simp add : SEND-def REC-def)

value interleave (drop 0 (SEND tid m m ′))(drop 0 (REC tid m ′′ m ′′′))

TestData Hack:
lemma PO-norm0 [simp]: PO True by(simp add : PO-def)

The following scenario is meant to describe the symbolic execution step by step.
declare Monads.mbind ′-bind [simp del]

find-theorems mbindF ailStop []

lemma example-symbolic-execution-simulation :
assumes H : S = [send tid 1 m, rec tid 0 m ′, rec tid 1 m ′′′, status tid]
assumes SE : σ0 |= (s ← mbindF ailStop S SYS ; return (x = s))
shows P

apply(insert SE H)
apply(hypsubst)
apply(tactic ematch-tac @{context} [@{thm status.exec-mbindFStop-E},

@{thm receive.exec-mbindFStop-E},
@{thm send .exec-mbindFStop-E}] 1)

apply(tactic ematch-tac @{context} [@{thm status.exec-mbindFStop-E},
@{thm receive.exec-mbindFStop-E},
@{thm send .exec-mbindFStop-E}] 1)

apply(tactic ematch-tac @{context} [@{thm status.exec-mbindFStop-E},
@{thm receive.exec-mbindFStop-E},
@{thm send .exec-mbindFStop-E}] 1)

apply(tactic ematch-tac @{context} [@{thm status.exec-mbindFStop-E},
@{thm receive.exec-mbindFStop-E},
@{thm send .exec-mbindFStop-E}] 1)

apply(tactic ematch-tac @{context} [@{thm status.exec-mbindFStop-E},
@{thm receive.exec-mbindFStop-E},
@{thm send .exec-mbindFStop-E},
@{thm valid-mbind ′-mtE}] 1)

apply simp
oops

85

end

86

A. Glossary

Abstract test data : In contrast to pure ground terms over constants (like integers 1, 2, 3,
or lists over them, or strings ...) abstract test data contain arbitrary predicate symbols
(like triangle 3 4 5).

Regression testing: Repeating of tests after addition/bug fixes have been introduced into
the code and checking that behavior of unchanged portions has not changed.

Stub: Stubs are “simulated” implementations of functions, they are used to simulate func-
tionality that does not yet exist ore cannot be run in the test environment.

Test case: An abstract test stimuli that tests some aspects of the implementation and
validates the result.

Test case generation: For each operation the pre/postcondition relation is divided into
sub-relations. It assumes that all members of a sub-relation lead to a similar behavior
of the implementation.

Test data: One or more representative for a given test case.

Test data generation (Test data selection): For each test case (at least) one repre-
sentative is chosen so that coverage of all test cases is achieved. From the resulting
test data, test input data processable by the implementation is extracted.

Test execution: The implementation is run with the selected test input data in order to
determine the test output data.

Test executable: An executable program that consists of a test harness, the test script
and the program under test. The Test executable executes the test and writes a test
trace documenting the events and the outcome of the test.

Test harness: When doing unit testing the program under test is not a runnable program
in itself. The test harness or test driver is a main program that initiates test calls
(controlled by the test script), i. e. drives the method under test and constitutes a test
executable together with the test script and the program under test.

Test hypothesis : The hypothesis underlying a test that makes a successful test equivalent
to the validity of the tested property, the test specification. The current implementa-
tion of HOL-TestGen only supports uniformity and regularity hypotheses, which are
generated “on-the-fly” according to certain parameters given by the user like depth and
breadth.

Test specification : The property the program under test is required to have.

87

Test result verification: The pair of input/output data is checked against the specifica-
tion of the test case.

Test script: The test program containing the control logic that drives the test using the
test harness. HOL-TestGen can automatically generate the test script for you based
on the generated test data.

Test theorem: The test data together with the test hypothesis will imply the test spec-
ification. HOL-TestGen conservatively computes a theorem of this form that relates
testing explicitly with verification.

Test trace: Output made by a test executable.

88

Bibliography

[1] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Computer Science and Applied Mathematics. Academic Press, Orlando,
May 1986.

[2] S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In J. Cuellar and Z. Liu,
editors, Software Engineering and Formal Methods (SEFM 2004), pages 230–239. IEEE
Computer Society, 2004.

[3] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model checking.
In M. Zelkowitz, editor, Advances In Computers, volume 58. Academic Press, 2003.

[4] S. Böhme and T. Weber. Fast lcf-style proof reconstruction for Z3. In M. Kaufmann
and L. C. Paulson, editors, Interactive Theorem Proving (ITP), volume 6172 of Lecture
Notes in Computer Science, pages 179–194. Springer, 2010.

[5] A. D. Brucker, O. Havle, Y. Nemouchi, and B. Wolff. Testing the IPC protocol for
a real-time operating system. In Verified Software: Theories, Tools, and Experiments
- 7th International Conference, VSTTE 2015, San Francisco, CA, USA, July 18-19,
2015. Revised Selected Papers, pages 40–60, 2015.

[6] A. D. Brucker and B. Wolff. Symbolic test case generation for primitive recursive
functions. In J. Grabowski and B. Nielsen, editors, Formal Approaches to Testing of
Software, number 3395 in Lecture Notes in Computer Science, pages 16–32. Springer-
Verlag, Linz, 2005.

[7] A. D. Brucker and B. Wolff. A verification approach for applied system security. Inter-
national Journal on Software Tools for Technology Transfer (STTT), 2005.

[8] A. D. Brucker and B. Wolff. HOL-TestGen: An interactive test-case generation frame-
work. In M. Chechik and M. Wirsing, editors, Fundamental Approaches to Software
Engineering (FASE09), number 5503 in Lecture Notes in Computer Science, pages
417–420. Springer-Verlag, Heidelberg, 2009.

[9] A. D. Brucker and B. Wolff. On theorem prover-based testing. Formal Aspects of
Computing, 2012.

[10] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56–68, 1940.

[11] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs. In Proceedings of the fifth ACM SIGPLAN international conference
on Functional programming, pages 268–279. ACM Press, 2000.

89

[12] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 238–252. ACM Press, 1977.

[13] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming, volume 8 of
A.P.I.C. Studies in Data Processing. Academic Press, London, 1972.

[14] J. Dick and A. Faivre. Automating the generation and sequencing of test cases from
model-based specications. In J. Woodcock and P. Larsen, editors, Formal Methods
Europe 93: Industrial-Strength Formal Methods, volume 670 of LNCS, pages 268–284.
Springer, Apr. 1993.

[15] P. Dybjer, Q. Haiyan, and M. Takeyama. Verifying haskell programs by combining
testing and proving. In Proceedings of the Third International Conference on Quality
Software, page 272. IEEE Computer Society, 2003.

[16] M.-C. Gaudel. Testing can be formal, too. In P. D. Mosses, M. Nielsen, and M. I.
Schwartzbach, editors, TAPSOFT 95, volume 915 of Lecture Notes in Computer Science,
pages 82–96. Springer-Verlag, Aarhus, Denmark, 1995.

[17] S. Hayashi. Towards the animation of proofs—testing proofs by examples. Theoretical
Computer Science, 272(1–2):177–195, 2002.

[18] The Isabelle Home Page, 2016.

[19] MLj.

[20] MLton, 2016.

[21] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[22] Poly/ML – the poly/ml implementation of standard ml., 2016.

[23] sml.net.

[24] SML of New Jersey.

[25] M. Wenzel. The Isabelle/Isar Reference Manual. TU München, München, 2004.

[26] H. Zhu, P. A. Hall, and J. H. R. May. Software unit test coverage and adequacy. ACM
Computing Surveys, 29(4):366–427, 1997.

90

Index

abstract test data, 87

breadth, 87
〈breadth〉, 13

〈clasimpmod〉, 13

data separation lemma, 13
depth, 87
〈depth〉, 13

export_test_data (command), 15

gen_test_cases (method), 13
gen_test_data (command), 14
generate_test_script (command), 15

higher-order logic, see HOL
HOL, 7

Isabelle, 6, 7, 9

Main (theory), 11
mk_test_suite (command), 13

〈name〉, 13

program under test, 13, 15

random solver, 14
regression testing, 87
regularity hypothesis, 13

SML, 7
software

testing, 5
validation, 5
verification, 5

Standard ML, see SML
stub, 87

test, 6
test (attribute), 17
test specification, 11
test theorem, 13
test case, 11
test data generation, 11
test executable, 11
test specification, 6
test case, 5, 6, 87
test case generation, 5, 11, 13, 17, 87
test data, 5, 11, 14, 87
test data generation, 5, 87
test data selection, see test data genera-

tion
test driver , see test harness
test executable, 17–19, 87
test execution, 6, 11, 17, 87
test harness, 15, 87
test hypothesis, 6, 87
test procedure, 5
test result verification, 11
test result verification, 6, 88
test script, 11, 15–17, 88
test specification, 13, 87
test theorem, 88
test theory, 12
test trace, 18, 19, 88
test_spec (command), 11
Testing (theory), 11

unit test
specification-based, 5

91

	Introduction
	Preliminary Notes on Isabelle/HOL
	Higher-order logic — HOL
	Isabelle

	Installation
	Prerequisites
	Installing HOL-TestGen
	Starting HOL-TestGen

	Using HOL-TestGen
	HOL-TestGen: An Overview
	Test Case and Test Data Generation
	Test Execution and Result Verification
	Testing an SML-Implementation
	Testing Non-SML Implementations

	Profiling Test Generation

	Examples
	List

	Testing List Properties
	Bank

	A Simple Deterministic Bank Model
	A Simple Non-Deterministic Bank Model
	MyKeOS

	The MyKeOS Case Study
	The MyKeOS ``Traditional'' Data-sequence enumeration approach
	Glossary

