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Note:

This manual describes HOL-TestGen version 1.9.0 (r13138). The manual of version 1.8.0
is also available as technical report number 1586 from the Laboratoire en Recherche en
Informatique (LRI), Université Paris-Sud 11, France.
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1. Introduction

Today, essentially two validation techniques for software are used: software verification and
software testing. Whereas verification is rarely used in “real” software development, testing
is widely-used, but normally in an ad-hoc manner. Therefore, the attitude towards testing
has been predominantly negative in the formal methods community, following what we call
Dijkstra’s verdict [13, p.6]:

“Program testing can be used to show the presence of bugs, but never to show
their absence!”

More recently, three research areas, albeit driven by different motivations, converge and
result in a renewed interest in testing techniques:

Abstraction Techniques: model-checking raised interest in techniques to abstract infinite
to finite models. Provided that the abstraction has been proven sound, testing may
be sufficient for establishing correctness |3}, [12].

Systematic Testing: the discussion over test adequacy criteria [26], i.e. criteria solving
the question “when did we test enough to meet a given test hypothesis,” led to more
systematic approaches for partitioning the space of possible test data and the choice
of representatives. New systematic testing methods and abstraction techniques can be
found in [16], [14].

Specification Animation: constructing counter-examples has raised interest also in the
theorem proving community, since combined with animations of evaluations, they may
help to find modelling errors early and to increase the overall productivity [2] 17, [11].

The first two areas are motivated by the question “are we building the program right?” the
latter is focused on the question “are we specifying the right program?” While the first
area shows that Dijkstra’s Verdict is no longer true under all circumstances, the latter area
shows, that it simply does not apply in practically important situations. In particular,
if a formal model of the environment of a software system (e.g. based among others on
the operation system, middleware or external libraries) must be reverse-engineered, testing
(“experimenting”) is without alternative (see [7]).

Following standard terminology [26], our approach is a specification-based unit test. In
general, a test procedure for such an approach can be divided into:

Test Case Generation: for each operation the pre/postcondition relation is divided into
sub-relations. It assumes that all members of a sub-relation lead to a similar behavior
of the implementation.

Test Data Generation: (also: Test Data Selection) for each test case (at least) one rep-
resentative is chosen so that coverage of all test cases is achieved. From the resulting
test data, test input data processable by the implementation is extracted.



Test Execution: the implementation is run with the selected test input data in order to
determine the test output data.

Test Result Verification: the pair of input/output data is checked against the specifica-
tion of the test case.

The development of HOL-TestGen [8] has been inspired by [15], which follows the line of
specification animation works. In contrast, we see our contribution in the development of
techniques mostly on the first and to a minor extent on the second phase.

Building on QuickCheck [11], the work presented in [I5] performs essentially random test,
potentially improved by hand-programmed external test data generators. Nevertheless, this
work also inspired the development of a random testing tool for Isabelle [2]. It is well-known
that random test can be ineffective in many cases; in particular, if preconditions of a program
based on recursive predicates like “input tree must be balanced” or “input must be a typable
abstract syntax tree” rule out most of randomly generated data. HOL-TestGen exploits
these predicates and other specification data in order to produce adequate data, combining
automatic data splitting, automatic constraint solving, and manual deduction.

As a particular feature, the automated deduction-based process can log the underlying
test hypothesis made during the test; provided that the test hypothesis is valid for the
program and provided the program passes the test successfully, the program must guarantee
correctness with respect to the test specification, see [0, 9] for details.



2. Preliminary Notes on Isabelle/HOL

2.1. Higher-order logic — HOL

Higher-order logic(HOL) [10L 1] is a classical logic with equality enriched by total polymor-
phicE] higher-order functions. It is more expressive than first-order logic, since e. g. induction
schemes can be expressed inside the logic. Pragmatically, HOL can be viewed as a com-
bination of a typed functional programming language like Standard ML (SML) or Haskell
extended by logical quantifiers. Thus, it often allows a very natural way of specification.

2.2. Isabelle

Isabelle [21], [18] is a generic theorem prover. New object logics can be introduced by speci-
fying their syntax and inference rules. Among other logics, Isabelle supports first order logic
(constructive and classical), Zermelo-Friankel set theory and HOL, which we chose as the
basis for the development of HOL-TestGen.

Isabelle consists of a logical engine encapsulated in an abstract data type thm in Standard
ML; any thm object has been constructed by trusted elementary rules in the kernel. Thus
Isabelle supports user-programmable extensions in a logically safe way. A number of generic
proof procedures (tactics) have been developed; namely a simplifier based on higher-order
rewriting and proof-search procedures based on higher-order resolution.

We use the possibility to build on top of the logical core engine own programs performing
symbolic computations over formulae in a logically safe (conservative) way: this is what
HOL-TestGen technically is.

Lto be more specific: parametric polymorphism






3. Installation

3.1. Prerequisites

HOL-TestGen is built on top of Isabelle/HOL, version 2016, thus you need a working instal-
lation of Isabelle 2016. To install Isabelle, follow the instructions on the Isabelle web-site:

http://isabelle.in.tum.de/website-Isabelle2016/index.html

3.2. Installing HOL-TestGen

In the following we assume that you have a running Isabelle 2016 environment. The instal-
lation of HOL-TestGen requires the following steps:

1. Unpack the HOL-TestGen distribution, e. g.:
tar zxvf hol-testgen-1.9.0.tar.gz

This will create a directory hol-testgen-1.9.0 containing the HOL-TestGen distri-
bution.

cd hol-testgen-1.9.0
and build the HOL-TestGen heap image for Isabelle by calling

isabelle build -d . -b HOL-TestGen

3.3. Starting HOL-TestGen

HOL-TestGen can now be started using the isabelle command:E]
isabelle jedit -d . -1 HOL-TestGen "examples/unit/List/List_test.thy"

After a few seconds you should see an jEdit window similar to the one shown in
Alternatively, the example can be run in batch mode, e. g.,

isabelle build -d . HOL-TestGen-List

'Note that the isabelle command must be provided by Isabelle 2016.


http://isabelle.in.tum.de/website-Isabelle2016/index.html
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Figure 3.1.: A HOL-TestGen session Using the jEdit Interface of Isabelle



4. Using HOL-TestGen

4.1. HOL-TestGen: An Overview

HOL-TestGen allows one to automate the interactive development of test cases, refine them
to concrete test data, and generate a test script that can be used for test execution and test
result verification. The test case generation and test data generation (selection) is done in
an Isar-based [25] environment (see for details). The test executable (and the
generated test script) can be built with any SML-system.

4.2. Test Case and Test Data Generation

In this section we give a brief overview of HOL-TestGen related extension of the Isar [25]
proof language. We use a presentation similar to the one in the Isar Reference Manual [25],
e.g. “missing” non-terminals of our syntax diagrams are defined in [25]. We introduce the
HOL-TestGen syntax by a (very small) running example: assume we want to test a function
that computes the maximum of two integers.

Starting your own theory for testing: For using HOL-TestGen you have to build your
Isabelle theories (i. e. test specifications) on top of the theory Testing instead of Main.

A sample theory is shown in

Defining a test specification: Test specifications are defined similar to theorems in Is-
abelle, e. g.,

test spec "prog a b = maxa b"

would be the test specification for testing a simple program computing the maximum
value of two integers. The syntax of the keyword test spec : theory — proof (prove)

is given by:
»— test_spec (goal) have (goal) o
L (locale) JL (longgoal) J show
hence
thus
(goal) := »—t (props) -
and
(longgoal) ::= » shows — (goal) —
. (thmdecl) JL (contextelem) J

Please look into the Isar Reference Manual [25] for the remaining details, e.g. a
description of (contextelem).

11
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Figure 4.1.: Overview of the system architecture of HOL-TestGen

theory max_ test

imports Testing

begin

test spec "prog a b = maxa b"
apply(gen test cases "prog" simp: max_ def)
mk_test suite "max_ test"

gen test data "max_ test"

print _conc_ tests max_ test

generate test script "max_ test"
thm max_test.test script

text {x Testing an SML implementation: x}
export code max_test.test_script in SML module_name TestScript file "impl/sml/max_test _script.sml|"

text {x Finally, we export the raw test data in an XML—like format: }
export test data "impl/data/max_data.dat" max_test

end

Table 4.1.: A simple Testing Theory

12



Generating symbolic test cases: Now, abstract test cases for our test specification can
(automatically) be generated, e.g. by issuing

apply(gen test cases "prog" simp: max _def)

The gen test cases : method tactic allows to control the test case generation in a
fine-granular manner:

»— gen_test_cases (progname)
L (depth) — (breadth) J L (clamsimpmod) J

where (depth) is a natural number describing the depth of the generated test cases and
(breadth) is a natural number describing their breadth. Roughly speaking, the (depth)
controls the term size in data separation lemmas in order to establish a regularity
hypothesis (see [6] for details), while the (breadth) controls the number of variables
occurring in the test specification for which regularity hypotheses are generated. The
default for (depth) and (breadth) is 3 resp. 1. (progname) denotes the name of the
program under test. Further, one can control the classifier and simplifier sets used
internally in the gen test cases tactic using the optional (clasimpmod) option:

del
only

cong
spl it E add j
del

}LadeL JJ’

(clamsimpmod) ::= »w——~——— simp E addﬂ 1 — (thmrefs) —

M iff

intro
e11m
dest

The generated test cases can be further processed, e.g., simplified using the usual
Isabelle/HOL tactics.

Creating a test suite: HOL-TestGen provides a kind of container, called test-suites, which
store all relevant logical and configuration information related to a particular test-
scenario. Test-suites were initially created after generating the test cases (and test
hypotheses); you should store your result of the derivation, usually the test-theorem
which is the output of the test-generation phase, in a test suite by:

mk test suite "max_ test"

for further processing. This is done using the mk test suite : proof (prove) —
proof (prove) | theory command which also closes the actual “proof state” (or test
state. Its syntax is given by:

»— mk_test_suite — (name) —

where (name) is a fresh identifier which is later used to refer to this test state. This
name is even used at the very end of the test driver generation phase, when test-
executions are performed (externally to HOL-TestGen in a shell). Isabelle/HOL can
access the corresponding test theorem using the identifier (name).test thm, e.g.:

13



max_ test.test thm

Generating test data: In a next step, the test cases can be refined to concrete test data:

14

"max_test"

The gen test data : theory|proof — theory|proof command takes only one parame-
ter, the name of the test suite for which the test data should be generated:

»— gen_test_data — (name) ~

After the successful execution of this command Isabelle can access the test hypothe-
ses using the command (name) and the test data using the command
(name)

max _test
max _test

In our concrete example, we get the output:
THYP ((3x xa. x <xa Aprog x xa = xa) —> (Vx xa. x <xa —> prog x xa = xa))
THYP ((Ix xa. =x <xa Aprog x xa = x) — (Vx xa. = x <xa — prog x xa = x))
as well as :

prog —9 -3 = -3

prog —5 —8 = —5

By default, generating test data is done by calling the random solver. This is fine for
such a simple example, but as explained in the introduction, this is far incomplete when
the involved data-structures become more complex. To handle them, HOL-TestGen
also comes with a more advanced data generator based on SMT solvers (using their
integration in Isabelle, see e.g. [4]).

To turn on SMT-based data generation, use the following option:

declare [[testgen SMT]]

(which is thus set to false by default). It is also recommended to turn off the random
solver:

declare [[ testgen iterations =0]]
In order for the SMT solver to know about constant definitions and properties, one

needs to feed it with these definitions and lemmas. For instance, if the test case involves
some inductive function foo, you can provide its definition to the solver using:

declare foo.simps [testgen smt facts]

as well as related properties (if needed).
A complete description of the configuration options can be found below.

Note that the SMT solver which is used is Z3, which is restricted to non-commercial use
in Isabelle. Hence you can use the SMT backend only for academic purposes. To make
this clear, you need to define (in your operating system) the following environment
variable:



OLD_Z3_NON_COMMERCIAL=yes

Exporting test data: After the test data generation, HOL-TestGen is able to export the
test data into an external file, e. g.:

"test max.dat" "max test"

exports the generated test data into a file text_max.dat. The generation of a test
data file is done using the export test data : theory|proof — theory|proof command:

»— export_test_data — (filename) — (name) —
L (smlprogname) J

where (filename) is the name of the file in which the test data is stored and (name) is

the name of a collection of test data in the test environment.

Generating test scripts: After the test data generation, HOL-TestGen is able to generate
a test script, e. g.:

"test max.sml" "max_test" "prog"
"myMax.max"

produces the test script shown in [Table 4.2| that (together with the provided test
harness) can be used to test real implementations. The generation of test scripts is
done using the generate test script : theory|proof — theory|proof command:

»— gen_test_script — (filename) — (name) — (progname)

L (smlprogname) J
where (filename) is the name of the file in which the test script is stored, and (name)
is the name of a collection of test data in the test environment, and (progname) the
name of the program under test. The optional parameter (smiprogname) allows for
the configuration of different names of the program under test that is used within the
test script for calling the implementation.

Alternatively, the code-generator can be configured to generate test-driver code in
other progamming languages, see below.

Configure HOL-TestGen: The overall behavior of test data and test script generation
can be configured, e. g.

declare [[ testgen iterations =15]]

The parameters (all prefixed with testgen ) have the following meaning:

depth: Test-case generation depth. Default: 3.

breadth: Test-case generation breadth. Default: 1.

bound: Global bound for data statements. Default: 200.

case_breadth: Number of test data per case, weakening uniformity. Default: 1.
iterations: Number of attempts during random solving phase. Default: 25.

Set to 0 to turn off the random solver.

gen_prelude: Generate datatype specific prelude. Default: true.

15
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23

structure TestDriver :

val
fun

fun
fun
val

val
val
val
val

val
val
val
val

val
end

sig end = struct

return = ref 763;

eval x2 x1 = let
val
in

ret = myMax.max x2 x1

((return := ret);ret)

end

retval () = SOME(!'return);
toString a = Int.toString a;

testres = [];

pre_0 = [I;

post_0 = fn () => ( (eval 23 69 = 69));
res_0 = TestHarness.check retval pre_0O post_O0;
testres = testres@[res_0];

pre_1 = [1;

post_1 = fn () => ( (eval “11 ~15 = "11));
res_1 = TestHarness.check retval pre_1 post_1;
testres = testres@[res_1];

_ = TestHarness.printList toString testres;
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gen _wrapper:

SMT:

smt_facts:

toString:

setup_code:

dataconv_code:

type range bound:

type candidates:

Table 4.2.: Test Script

Generate wrapper/logging-facility (increases verbosity of the gen-
erated test script). Default: true.

If set to “true” external SMT solvers (e.g., Z3) are used during
test-case generation. Default: false.

Add a theorem to the SMT-based data generator basis.

Type-specific SML-function for converting literals into strings
(e.g., Int.toString), used for generating verbose output while
executing the generated test script. Default: "".

Customized setup/initialization code (copied verbatim to gener-
ated test script). Default: "".

Customized code for converting datatypes (copied verbatim to
generated test script). Default: "".

Bound for choosing type instantiation (effectively used elements
type grounding list). Default: 1.

List of types that are used, during test script generation, for in-
stantiating type variables (e.g., « list). The ordering of the types
determines their likelihood of being used for instantiating a poly-
morphic type. Default: [int, unit, bool, int set, int list]



structure myMax = struct
fun max x y = if (x < y) then y else x
end

Table 4.3.: Implementation in SML of max

Configuring the test data generation: Further, an attribute test : attribute is provided,
l.e.:

lemma max_abscase [test "maxtest"]:"max 4 7 = 7"

or

declare max_abscase [test "maxtest"]

that can be used for hierarchical test case generation:

»— test — (name) —

4.3. Test Execution and Result Verification

In principle, any SML-system, e.g. |24, 22] 23], [19] 20|, should be able to run the provided
test-harness and generated test-script. Using their specific facilities for calling foreign code,
testing of non-SML programs is possible. For example, one could test

e implementations using the .Net platform (more specific: CLR IL), e. g. written in C#
using sml.net [23],

e implementations written in C using, e. g. the foreign language interface of sml/NJ [24]
or MLton [20],

e implementations written in Java using mlj [19].

Also, depending on the SML-system, the test execution can be done within an interpreter
(it is even possible to execute the test script within HOL-TestGen) or using a compiled test
executable. In this section, we will demonstrate the test of SML programs (using SML/NJ
or MLton) and ANSI C programs.

4.3.1. Testing an SML-Implementation

Assume we have written a max-function in SML (see stored in the file max.sml
and we want to test it using the test script generated by HOL-TestGen. Following [Figure 4.1]
we have to build a test executable based on our implementation, the generic test harness
(harness.sml) provided by HOL-TestGen, and the generated test script (test_max.sml),
shown in [Table 4.2

If we want to run our test interactively in the shell provided by sml/NJ, we just have to
issue the following commands:

17



Test Results:

Test 0 - SUCCESS, result: 69

Test 1 - SUCCESS, result: ~11

Summary

Number successful tests cases: 2 of 2 (ca. 100%)
Number of warnings: 0 of 2 (ca. 0%)
Number of errors: 0 of 2 (ca. 0%)
Number of failures: 0 of 2 (ca. 0%)
Number of fatal errors: 0 of 2 (ca. 0%)

Overall result: success

Table 4.4.: Test Trace

use "harness.sml";
use "max.sml";
use "test_max.sml";

After the last command, sml/NJ will automatically execute our test and you will see a

output similar to the one shown in

If we prefer to use the compilation manager of sml/NJ, or compile our test to a single test
executable using MLton, we just write a (simple) file for the compilation manager of sml/NJ
(which is understood both, by MLton and sml/NJ) with the following content:

Group 1is
harness.sml
max.sml
test_max.sml

#if (defined (SMLNJ_VERSION))
$/basis.cm
$smlnj/compiler/compiler.cm

#else

#endif

and store it as test.cm. We have two options, we can

e use sml/NJ: we can start the sml/NJ interpreter and just enter
CM.make("test.cm")

which will build a test setup and run our test.

e use MLton to compile a single test executable by executing

18



int max (int x, int y) {

if (x <y) {
return y;
Yelse{
return Xx;
}

Table 4.5.: Implementation in ANSI C of max

mlton test.cm

on the system shell. This will result in a test executable called test which can be
directly executed.

In both cases, we will get a test output (test trace) similar to the one presented in[Table 4.4]

4.3.2. Testing Non-SML Implementations

Suppose we have an ANSI C implementation of max (see that we want to test
using the foreign language interface provided by MLton. First we have to import the max
method written in C using the _import keyword of MLton. Further, we provide a “wrapper”
function doing the pairing of the curried arguments:

structure myMax = struct

val cmax = _import "max": int * int -> int ;
fun max a b = cmax(a,b);
end

We store this file as max . sml and write a small configuration file for the compilation manager:

Group 1is
harness.sml
max.sml
test_max.sml

We can compile a test executable by the command
mlton -default-ann ’allowFFI true’ test.cm max.c

on the system shell. Again, we end up with an test executable test which can be called
directly. Running our test executable will result in trace similar to the one presented in

4.4. Profiling Test Generation

HOL-TestGen includes support for profiling the test procedure. By default, profiling is
turned off. Profiling can be turned on by issuing the command

»— profiling_on -

19



Profiling can be turned off again with the command

»— profiling_off —

When profiling is turned on, the time consumed by gen test cases and is
recorded and associated with the test theorem. The profiling results can be printed by

»— print_clocks >
A LaTeX version of the profiling results can be written to a file with the command

»— write_clocks - (filename) —

Users can also record the runtime of their own code. A time measurement can be started
by issuing

»— start_clock — (name) -

where (name) is a name for identifying the time measured. The time measurement is com-
pleted by

»— stop_clock — (name) -

where (name) has to be the name used for the preceding start clock. If the names do not
match, the profiling results are marked as erroneous. If several measurements are performed
using the same name, the times measured are added. The command

»— next_clock >

proceeds to a new time measurement using a variant of the last name used.

These profiling instructions can be nested, which causes the names used to be com-
bined to a path. The Clocks structure provides the tactic analogues start_clock_tac,
stop_clock_tac and next_clock_tac to these commands. The profiling features available
to the user are independent of HOL-TestGen’s profiling flag controlled by profiling on and
profiling _off.
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5. Examples

5.1. List

Implementation of integer numbers by target-language integers

theory Code-Target-Int
imports ../GCD
begin

code-datatype int-of-integer
declare [[code drop: integer-of-int]]

context
includes integer.lifting
begin

lemma [code]:
integer-of-int (int-of-integer k) = k
by transfer rule

lemma [code]:
Int.Pos = int-of-integer o integer-of-num
by transfer (simp add: fun-eg-iff)

lemma [code]:
Int.Neg = int-of-integer o uminus o integer-of-num
by transfer (simp add: fun-eq-iff)

lemma [code-abbrev]:
int-of-integer (numeral k) = Int.Pos k
by transfer simp

lemma [code-abbrev]:
int-of-integer (— numeral k) = Int.Neg k
by transfer simp

lemma [code, symmetric, code-post]:
0 = int-of-integer 0
by transfer simp

lemma [code, symmetric, code-post]:
1 = int-of-integer 1
by transfer simp
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lemma [code-post]:
int-of-integer (— 1) = — 1
by simp

lemma [code]:
k + 1 = int-of-integer (of-int k + of-int I)
by transfer simp

lemma [code]:
— k = int-of-integer (— of-int k)
by transfer simp

lemma [code]:
k — 1 = int-of-integer (of-int k — of-int 1)
by transfer simp

lemma [code]:
Int.dup k = int-of-integer (Code-Numeral.dup (of-int k))
by transfer simp

declare [[code drop: Int.sub]]

lemma [code]:
k % | = int-of-integer (of-int k * of-int [)
by simp

lemma [code]:
k div | = int-of-integer (of-int k div of-int 1)
by simp

lemma [code]:
k mod | = int-of-integer (of-int k mod of-int 1)
by simp

lemma [code]:
divmod m n = map-prod int-of-integer int-of-integer (divmod m n)
unfolding prod-eq-iff divmod-def map-prod-def case-prod-beta fst-conv snd-conv
by transfer simp

lemma [code]:
HOL.equal k| = HOL.equal (of-int k :: integer) (of-int 1)
by transfer (simp add: equal)

lemma [code]:
k <1 <+— (of-int k :: integer) < of-int
by transfer rule

lemma [code]:
k < 1+ (of-int k :: integer) < of-int |

by transfer rule

lemma ged-int-of-integer [code]:
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ged (int-of-integer x) (int-of-integer y) = int-of-integer (ged x y)
by transfer rule

lemma lem-int-of-integer [code]:
lem (int-of-integer x) (int-of-integer y) = int-of-integer (lem z y)
by transfer rule

end
lemma (in ring-1) of-int-code-if :

of-int k = (if k = 0 then 0
else if k < 0 then — of-int (— k)

else let
Il =2 % of-int (k div 2);
j =k mod 2
inifj = 0thenlelsel + 1)
proof —

from mod-div-equality have x: of-int k = of-int (k div 2 x 2 + k mod 2) by simp
show ?thesis
by (simp add: Let-def of-int-add [symmetric]) (simp add: * mult.commute)
qed

declare of-int-code-if [code]

lemma [code]:
nat = nat-of-integer o of-int
including integer.lifting by transfer (simp add: fun-eg-iff)

code-identifier
code-module Code-Target-Int —
(SML) Arith and (OCaml) Arith and (Haskell) Arith

end

Avoidance of pattern matching on natural numbers

theory Code-Abstract-Nat
imports Main
begin

When natural numbers are implemented in another than the conventional inductive 0/Suc
representation, it is necessary to avoid all pattern matching on natural numbers altogether.
This is accomplished by this theory (up to a certain extent).

Case analysis Case analysis on natural numbers is rephrased using a conditional expres-
sion:

lemma [code, code-unfold):
case-nat = (Af gn. if n = 0 then felse g (n — 1))
by (auto simp add: fun-eg-iff dest!: gr0-implies-Suc)
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Preprocessors The term Suc n is no longer a valid pattern. Therefore, all occurrences
of this term in a position where a pattern is expected (i.e. on the left-hand side of a code
equation) must be eliminated. This can be accomplished — as far as possible — by applying
the following transformation rule:

lemma Suc-if-eq:
assumes An. f (Sucn) = hn
assumes f0 =g
shows fn =ifn = 0thengelseh (n — 1)
by (rule eg-reflection) (cases n, insert assms, simp-all)

The rule above is built into a preprocessor that is plugged into the code generator.

setup ¢
let

val Suc-if-eq = Thm.incr-indexes 1 Q{thm Suc-if-eq};

fun remove-suc ctxt thms =
let
val vname = singleton (Name.variant-list (map fst
(fold (Term.add-var-names o Thm.full-prop-of) thms []))) n;
val cv = Thm.cterm-of ctet (Var ((vname, 0), HOLogic.natT));
val ths-of = snd o Thm.dest-comb o fst o Thm.dest-comb o Thm.cprop-of;
val rhs-of = snd o Thm.dest-comb o Thm.cprop-of;
fun find-vars ct = (case Thm.term-of ct of
(Const (Q{const-name Suc}, -) § Var -) => [(cv, snd (Thm.dest-comb ct))]

[ -8 -=>
let val (ct1, ct2) = Thm.dest-comb ct
mn

map (apfst (fn ct => Thm.apply ct ct2)) (find-vars ct1) @
map (apfst (Thm.apply ct1)) (find-vars ct2)
end
| -=> 1)
val eqs = maps
(fn thm => map (pair thm) (find-vars (lhs-of thm))) thms;
fun mk-thms (thm, (ct, cv’)) =
let
val thm’ =
Thm.implies-elim
(Conw.feconv-rule (Thm.beta-conversion true)
(Thm.instantiate’
[SOME (Thm.ctyp-of-cterm ct)] [SOME (Thm.lambda cv ct),
SOME (Thm.lambda cv’ (rhs-of thm)), NONE, SOME cv’|
Suc-if-eq)) (Thm.forall-intr cv’ thm)
in
case map-filter (fn thm' =>
SOME (thm", singleton
(Variable.trade (K (fn [thm''] => [thm'" RS thm']))
(Variable.declare-thm thm'' ctxt)) thm'’)
handle THM - => NONE) thms of
| => NONE
| thmps =>
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let val (thmsl1, thms2) = split-list thmps
in SOME (subtract Thm.eg-thm (thm :: thmsl) thms @ thms2) end
end
in get-first mk-thms egs end;

fun eqn-suc-base-preproc ctxt thms =
let
val dest = fst o Logic.dest-equals o Thm.prop-of;
val contains-suc = exists-Const (fn (¢, -) => ¢ = @Q{const-name Suc});
m
if forall (can dest) thms andalso exists (contains-suc o dest) thms

then thms |> perhaps-loop (remove-suc ctat) |> (Option.map o map) Drule.zero-var-indexes

else NONE
end;

val eqn-suc-preproc = Code-Preproc.simple-functrans eqn-suc-base-preproc;
m
Code-Preproc.add-functrans (eqn-Suc, eqn-suc-preproc)

end;
)

end

Implementation of natural numbers by target-language integers

theory Code-Target-Nat
imports Code-Abstract-Nat
begin

Implementation for nat context
includes natural.lifting integer.lifting
begin

lift-definition Nat :: integer = nat
is nat

lemma [code-post]:
Nat 0 = 0
Nat 1 =1
Nat (numeral k) = numeral k
by (transfer, simp)+

lemma [code-abbrev]:
integer-of-nat = of-nat
by transfer rule

lemma [code-unfold):
Int.nat (int-of-integer k) = nat-of-integer k
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by transfer rule

lemma [code abstype]:
Code-Target-Nat.Nat (integer-of-nat n) = n
by transfer simp

lemma [code abstract]:
integer-of-nat (nat-of-integer k) = maz 0 k
by transfer auto

lemma [code-abbrev]:
nat-of-integer (numeral k) = nat-of-num k
by transfer (simp add: nat-of-num-numeral)

lemma [code abstract]:
integer-of-nat (nat-of-num n) = integer-of-num n
by transfer (simp add: nat-of-num-numeral)

lemma [code abstract]:
integer-of-nat 0 = 0
by transfer simp

lemma [code abstract]:
integer-of-nat 1 = 1
by transfer simp

lemma [code]:
Sucn=mn+ 1
by simp

lemma [code abstract]:
integer-of-nat (m + n) = of-nat m + of-nat n
by transfer simp

lemma [code abstract]:
integer-of-nat (m — n) = maz 0 (of-nat m — of-nat n)
by transfer simp

lemma [code abstract]:
integer-of-nat (m x n) = of-nat m * of-nat n
by transfer (simp add: of-nat-mult)

lemma [code abstract]:
integer-of-nat (m div n) = of-nat m div of-nat n
by transfer (simp add: zdiv-int)

lemma [code abstract]:
integer-of-nat (m mod n) = of-nat m mod of-nat n

by transfer (simp add: zmod-int)

lemma [code]:
Divides.divmod-nat m n = (m div n, m mod n)
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by (fact divmod-nat-div-mod)

lemma [code]:
divmod m n = map-prod nat-of-integer nat-of-integer (divmod m n)
by (simp only: prod-eg-iff divmod-def map-prod-def case-prod-beta fst-conv snd-conv)
(transfer, simp-all only: nat-div-distrib nat-mod-distrib
zero-le-numeral nat-numeral)

lemma [code]:
HOL.equal m n = HOL.equal (of-nat m :: integer) (of-nat n)
by transfer (simp add: equal)

lemma [code]:
m < n <— (of-nat m :: integer) < of-nat n
by simp

lemma [code]:
m < n <— (of-nat m :: integer) < of-nat n
by simp

lemma num-of-nat-code [code]:
num-of-nat = num-of-integer o of-nat
by transfer (simp add: fun-eq-iff)

end

lemma (in semiring-1) of-nat-code-if:
of-nat n = (if n = 0 then 0
else let
(m, q) = Divides.divmod-nat n 2;
m’' = 2 x of-nat m
in if ¢ = 0 then m’ else m’ + 1)
proof —
from mod-div-equality have x: of-nat n = of-nat (n div 2 * 2 + n mod 2) by simp
show ?thesis
by (simp add: Let-def divmod-nat-div-mod of-nat-add [symmetric])
(simp add: x mult.commute of-nat-mult add.commute)
qed

declare of-nat-code-if [code]

definition int-of-nat :: nat = int where
[code-abbrev]: int-of-nat = of-nat

lemma [code]:
int-of-nat n = int-of-integer (of-nat n)
by (simp add: int-of-nat-def)

lemma [code abstract]:
integer-of-nat (nat k) = max 0 (integer-of-int k)
including integer.lifting by transfer auto
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lemma term-of-nat-code [code]:
— Use nat-of-integer in term reconstruction instead of Code-Target-Nat.Nat such that recon-
structed terms can be fed back to the code generator
term-of-class.term-of n =
Code-Fvaluation. App
(Code-Evaluation.Const (STR ''Code-Numeral.nat-of-integer'’)
(typerep. Typerep (STR "'fun’’)
[typerep. Typerep (STR ''Code-Numeral.integer’) ],
typerep. Typerep (STR ""Nat.nat’) []]))
(term-of-class.term-of (integer-of-nat n))
by (simp add: term-of-anything)

lemma nat-of-integer-code-post [code-post]:
nat-of-integer 0 = 0
nat-of-integer 1 = 1
nat-of-integer (numeral k) = numeral k
including integer.lifting by (transfer, simp)+

code-identifier
code-module Code-Target-Nat —
(SML) Arith and (OCaml) Arith and (Haskell) Arith
end
Implementation of natural and integer numbers by target-language integers

theory Code-Target-Numeral
imports Code-Target-Int Code-Target-Nat
begin

end
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6. Testing List Properties

This is a reference show-case for HOL-TestGen providing three test-scenarios that were
treated from A to Z. This includes:

1. The modeling phase ("building the test-theory") comprising definitions and theorems
representing the "background theory" of a particular model to test.

2. The test-specification, the formal statement from which the tests were derived.

3. The abstract test generation phase which basically cuts the input-output relation of
the program under test into partitions represented by constraint systems. (since the
constraint systems can be unsatisfiable, abstract test cases can be vacuous).

4. The test selection phase that attempts to find concrete test-cases, i. e. ground instances
of abstract test cases.

5. The test driver generation phase converts the concrete test-cases into a program that
executes these tests; it is linked to a test-harness allowing to track the test evaluation
and the program or system under test.

6. The test execution phase (which is currently done outside HOL-TestGen via makefiles.

In this example we present the current main application of HOL-TestGen: generating test
data for black box testing of functional programs within a specification based unit test.
We use a simple scenario, developing the test theory for testing sorting algorithms over
lists, develop test specifications (elsewhere called test targets or test goals), and explore the
different possibilities.
theory List-test
imports

List

~~ [src/HOL/ Library / Code- Target-Numeral

Code-Integer-Fsharp

Testing
begin

A Test-theory as a whole starts with the import of its main components, among
them the HOL-TestGen environment grouped together in the Testing. The theories
Code-Target-Numeral and Code-Integer-Fsharp are required to support the test driver gen-
eration process.

A First Model and a Quick Walk Through

In the following we give a first impression of how the testing process using HOL-TestGen
looks like. For brevity we stick to default parameters and explain possible decision points
and parameters where the testing can be improved in the next section.
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Modeling: Writing the Test Specification We start by specifying a primitive recursive
predicate describing sorted lists:

primrec is-sorted:: int list = bool

where is-sorted [] = True |
is-sorted (x#xs) = (case xs of
| = True

| y#ys = z < y A is-sorted zs)

We will use this HOL predicate for describing our test specification, i.e. the properties
our implementation should fulfill and which we ultimately will test.

test-spec  is-sorted(PUT 1)
oops

where PUT is a “placeholder” for our program under test. For the sake of the presentation,
we drop the test attempt here.

However, for the code-generation necessary to generate a test-driver and actually run the
test of an external program, the program under test or PUT for short, it is sensible to represent
the latter as an uninterpreted constant; the code-generation will later on configured such
that the place-holder in the test-driver code is actually linked to the real, external program
which is a black box from the point of view of this model (the testing procedure needs
actually only executable code).

consts PUT :: 'a list = 'a list

Note that the choice of the name is arbitrary.

Generating Abstract Test-cases Now we can automatically generate test cases. Using
the default setup, we just apply our gen-test-cases:

test-spec is-sorted(PUT (1))
apply (gen-test-cases 3 1 PUT)

which leads to the test partitioning one would expect:

1. is-sorted (PUT [])
2. THYP (is-sorted (PUT []) — is-sorted (PUT []))
3. is-sorted (PUT [?9X8X44])
4. THYP ((3z. is-sorted (PUT [z])) — (V. is-sorted (PUT [z])))
5. is-sorted (PUT [?22X6X38, ?2X5X37])
6. THYP
((3z za. is-sorted (PUT [za, z])) — (Y za. is-sorted (PUT [za, z])))
7. is-sorted (PUT [27X3X30, ?2X2X29, ?7X1X28])

8. THYP
((3z za xb. is-sorted (PUT [xb, za, x])) —
(Vz za xb. is-sorted (PUT [zb, za, z])))

9. THYP (3 < length | — is-sorted (PUT 1))

. Now we bind the test theorem to a particular named test suite, a kind of container into which all
relevant data is stored and under which a group of tests can be referred to during test execution.

mk-test-suite is-sorted-result
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The current test theorem contains holes, that correspond to the concrete data of the test
that have not been generated yet

thm is-sorted-result.test-thm

Generating Concrete Test-cases Now we want to generate concrete test data, i.e. all
variables in the test cases must be instantiated with concrete values. This involves a random
solver which tries to solve the constraints by randomly choosing values.

thm is-sorted-result.test-thm
gen-test-data is-sorted-result
thm is-sorted-result.test-thm-inst

Which leads to the following test data: \\ is-sorted (PUT |[]|) is-sorted (PUT [10])
is-sorted (PUT [3, 10]) is-sorted (PUT [— 8, — 3, — 3])

Note that the underlying test hypothesis remain: \\ THYP (is-sorted (PUT []) —
is-sorted (PUT [|)) THYP ((3z. is-sorted (PUT [z])) — (Vz. is-sorted (PUT [x])))
THYP ((3z za. is-sorted (PUT [za, z])) — (Y za. is-sorted (PUT |[za, z]))) THYP ((3x
za xb. is-sorted (PUT [zb, za, x])) — (Vz za xb. is-sorted (PUT [zb, za, z]))) THYP (3
< length | — is-sorted (PUT 1))

Note that by the following statements, the test data, the test hypotheses and the test
theorem can be inspected interactively.

print-conc-tests is-sorted-result
print-abs-tests is-sorted-result
print-thyps is-sorted-result
print-upos 1s-sorted-result

The generated test data can be exported to an external file:

export-test-data impl/data/test-data.data is-sorted-result

Test Execution and Result Verification In principle, any SML-system should be able
to run the provided test-harness and generated test-script. Using their specific facilities for
calling foreign code, testing of non-SML programs is possible. For example, one could test
implementations written:

e for the.Net platform, e.g., written in C# using sml.net [23],
e in C using, e.g. the foreign language interface of sml/NJ [24] or MLton [20],

e in Java using ML;j [19].

Depending on the SML-system, the test execution can be done within an interpreter or
using a compiled test executable. Testing implementations written in SML is straight-
forward, based on automatically generated test scripts. This generation is based on
the internal code generator of Isabelle and must be set up accordingly.

The the following, we show the general generation of test-scripts (part of the finally
generated test-driver) in different languages; finally, we will concentrate on the test-
generation scenario for C.
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code-printing
constant PUT => (Fsharp) ((List.map (fun x —> Int’-of "-integer z)) (myList.sort (List.map
(fun & —> integer’-of "-int ) ((-)) )))
and (SML)  ((map (fn x => Int’-of "-integer x)) o myList.sort o (map (fn z =>
integer’-of "-int x)))
and (Scala) ((myList.sort ((-).map {z => integer’-of -int(z)})).map {z =>
int’-of "-integer(z)})

generate-test-script is-sorted-result

thm 1s-sorted-result.test-script

Testing an SML implementation:

export-code is-sorted-result.test-script in SML
module-name TestScript file impl/sml/is-sorted-test-script.sml

We use the SML test script also for testing an implementation written in C:

export-code is-sorted-result.test-script in SML
module-name TestScript file impl/c/is-sorted-test-script.sml

Testing an F# implementation:

export-code is-sorted-result.test-script in Fsharp
module-name TestScript file impl/fsharp/is-sorted-test-script.fs

We use the F+# test script also for testing an implementation written in C#:

export-code 1s-sorted-result.test-script in Fsharp
module-name TestScript file impl/csharp/is-sorted-test-script.fs

Testing a Scala implementation:

export-code is-sorted-result.test-script in Scala
module-name TestScript file impl/scala/is-sorted-test-script.scala

We use the Scala script also for testing an implementation written in Java:

export-code is-sorted-result.test-script in Scala
module-name TestScript file impl/java/is-sorted-test-script.scala

Finally, we export the raw test data in an XML-like format:
export-test-data impl/data/is-sorted-test-data.dat is-sorted-result
which generates the following test harness:

In the following, we assume an ANSI C implementation of our sorting method for sorting
C arrays that we want to test. (In our example setup, it is contained in the file impl/c/
sort.c.) Using the foreign language interface provided by the SML compiler MLton we
first have to import the sort method written in C using the _import keyword of MLton and
further, we provide a “wrapper” doing some data-type conversion, e.g. converting lists to
arrays and vice versa:

structure myList = struct

val csort = _import "sort": int array * int -> int array;
fun ArrayTolList a = Array.foldl (op ::) [] a;
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>make
mlton -default-ann ’allowFFI true’ is_sorted_test.mlb sort.c
./is_sorted_test

Test Results:

Test 0 - SUCCESS
Test 1 - SUCCESS
Test 2 - SUCCESS
Test 3 - SUCCESS
Test 4 - SUCCESS
Test 5 - SUCCESS
Test 6 - SUCCESS
Summary

Number successful tests cases: 7 of 7 (ca. 100%)
Number of warnings: of 7 (ca. 0%)
Number of errors: of 7 (ca. 0%)
Number of failures: of 7 (ca. 0%)
Number of fatal errors: of 7 (ca. 0%)

O O O O

Overall result: success

Table 6.1.: A Sample Test Trace: The ascending property tested.

fun sort_list list = ArrayToList (csort(Array.fromList(list),(length list)));

fun sort list = map IntInf.fromInt (sort_list (map IntInf.toInt list))

end

That’s all, now we can build the test executable using MLton and end up with a test
executable which can be called directly. In impl/c, the process of:

1. compiling the generated impl/c/is_sorted_test_script.sml, the test harness
(harness.sml), a main routine impl/c/List.sml) and containing a wrapper into an
SML structure myList as well as the SML-to-C code-stub sort,

2. compiling the C test-driver and linking it to the program under test impl/c/sort.c,
and

3. executing the test is captured in a impl/c/Makefile. So: executes the test and displays
a test-statistic as shown in Table [6.11
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A Refined Model and Improved Test-Results

Obviously, in reality one would not be satisfied with the test cases generated in the pre-
vious section: for testing sorting algorithms one would expect that the test data somehow
represents the set of permutations of the list elements. We have already seen that the test
specification used in the last section “only” enumerates lists up to a specific length without
any ordering constraints on their elements. What is missing, is a test that input and output
sequence are in fact permutations of each other. We could state for example :

fun del-member :: 'a = 'a list = 'a list option
where del-member z [| = None
|del-member x (y # S) = (if © = y then Some S
else case del-member z S of
None = None
| Some S’ = Some(y # S'))

fun is-permutation :: 'a list = 'a list = bool
where is-permutation [| [| = True
|is-permutation (a#S)(a'#S’) =(if a = o’ then is-permutation S S’
else case del-member a S’ of
None = False
| Some S"" = is-permutation S (a'#S""))
|is-permutation - - = False

fun is-perm 1 'a list = 'a list = bool
where is-perm [| [| = True
|is-perm [| T = False
lis-perm (a#S) T = (if length T = length S + 1
then is-perm S (removel a T)
else False)

value is-perm [1,2,3::int] [3,1,2]

A test for permutation, that not is hopelessly non-constructive like "the existence of a
bijection on the indexes [0 .. n-1|, that is pairwise mapped to the list" or the like, is
obviously quite complex; the apparent "mathematical specification" is not always the easiest.
We convince ourselves that the predicate is-permutation indeed captures our intuition by
animations of the definition:
value is-permutation [1,2,3] [3,2,1::nat]
value — is-permutation [1,2,3] [3,1::nat]
value — is-permutation [2,3] [3,2,1::nat]
value — is-permutation [1,2,1,3] [3,2,1::nat]
value is-permutation [2,1,3] [1::nat,3,2]

value is-perm [1,2,3] [3,2,1::nat]
value — is-perm [1,2,3] [3,1::nat]
value — is-perm [2,3] [3,2,1::nat]
value — is-perm [1,2,1,3] [3,2,1::nat]
value is-perm [2,1,3] [1::nat,3,2]

. which are all executable and thus were compiled and all evaluated to true.

Based on these concepts, a test-specification is straight-forward and easy:
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declare [[goals-limit=¥5]]
apply (gen-test-cases 5 1 PUT)
mk-test-suite ascending-permutation-test

A quick inspection of the test theorem reveals that there are in fact no relevant constraints
to solve, so test-data selection is easy:

declare [[testgen-iterations=100]]
gen-test-data ascending-permutation-test

print-conc-tests  ascending-permutation-test
print-conc-tests (6)ascending-permutation-test
print-thyps ascending-permutation-test
print-thyps (0) ascending-permutation-test

Again, we convert this into test-scripts that can be compiled to a test-driver.

generate-test-script ascending-permutation-test
thm ascending-permutation-test.test-script

We use the SML implementation also for testing an implementation written in C:

export-code ascending-permutation-test.test-script in SML
module-name TestScript file impl/c/ascending-permutation-test-script.sml

Try make run_ascending_permutation in directory impl/c to compile and execute the
generated test-driver.

A Test-Specification based on a Comparison with a Reference Implementation

We might opt for an alternative modeling approach: Thus we decide to try a more “’descrip-
tive” test specification that is based on the behavior of an insertion sort algorithm:

fun ins :: (“a:linorder) = ‘a list = 'a list

where ins z || = [z]

lins © (y#ys) = (if (z < y) then z#yHys else (y#(ins © ys)))
fun  sort:: (‘a::linorder) list = 'a list
where sort [| = []

[sort (x#xs) = ins x (sort xs)

Now we state our test specification by requiring that the behavior of the program under
test PUT is identical to the behavior of our specified sorting algorithm sort:

Based on this specification gen-test-cases produces test cases representing all permutations
of lists up to a fixed length n. Normally, we also want to configure up to which length lists
should be generated (we call this the depth of the test case), e.g. we decide to generate lists
up to length (1::'a) + (1::'a) + (1::'a). Our standard setup:
declare [[goals-limit=100])
test-spec sort | = PUT |

apply (gen-test-cases PUT)
mk-test-suite is-sorting-algorithm0

generates (1:'a) + (1) 4+ ((1:2'a) + (1:7a)) + ((1::7a) + (1:7a) + (( ‘a) + (1:a)))
+ (1::'a) test cases describing all permutations of lists of length 1::’a,(1::’ ) + (1::'a) and

35



(1::'a) + (1:'a) + (1:'a). "Permutation" means here that not only test cases (i.e. I/O-
partitions) are generated for lists of length 0::'a, 1::'a,(1::'a) + (1::'a) and (1::'a) + (1::'a)
+ (1::'a); the partitioning is actually finer: for two-elementary lists, for example, the case of
a list with the first element larger or equal and the dual case are distinguished. The entire
test-theorem looks as follows:

[ = PUT [; THYP (| = PUT [| — [] = PUT [)); [??X31X190] = PUT [?2X31X190];
THYP ((3. [z] = PUT [z]) — (Vz. [s] = PUT [2])); PO (?7X29X182 < ?2X28X181);
[77X29X182, 77X28X181] = PUT [??X29X182, ??X28X181]; THYP ((3z za. 7a < © A
[za, z] = PUT [za, z]) — (V2 za. za < © — [za, 2] = PUT [za, z])); PO (= 77X26X171
< P2X25X170); [72X25X170, ?2X26X171) = PUT [?2X26X171, ?2X25X170); THYP (3
ra. ~za < ¢ A [z, za]) = PUT [za, z]) — (V2 za. - za < © — [z, za] = PUT |za, z])); PO
((29X22X157 < 22X21X156 N ?72X23X158 < 77X21X156) N\ 22X23X158 < 22X22X157);
[22X238X158, 7¢X22X157, ?9X21X156] = PUT [29X23X158, ?2X22X157, ?2¢2X21X156];
THYP (3zzaxb. za <z AN zb <z Azb< za A [zb, za, ] = PUT [zb, za, z]) — (Vz za
zh. za < v — zb < — xb < xa — [zb, za, x| = PUT [zb, za, z])); PO ((— ?7X18X140
< P2X17X139 A 22X19X1J1 < ?2X17X139) A ?2X19X141 < ?2X18X140); [??X19X141,
?P2X17X139, 22X18X140] = PUT [2X19X1/1, ??X18X140, ??X17X139); THYP ((3z wa
zh. mza < x N xb < x A xb < za A [zb, z, za] = PUT [2b, za, z]) — (Vz za zb. = za
<z —1ab <z — xb < za — [zb, x, za] = PUT [zb, za, z])); PO ((— ?7X14X123 <
PPX13X122 N - P2X15X12) < ?2X15X122) A ?2X15X124 < ?2X1/X123); [?2X13X122,
22X15X124, ?2X1/X123] = PUT [22X15X12}, ?2X1/X123, ?2X13X122]; THYP ((3z 1a
zh. mza <z A - xb <z Axb<zaA [z, zb, za] = PUT [zb, za, z]) — (V2 za zb. —
ra <z — nab < x — zb < za — [z, zb, za] = PUT [zb, za, z])); PO ((?2X10X106
< 22X9X105 N 22X11X107 < 22X9X105) N — 29X11X107 < ?2X10X106); [?2X10X106,
29X11X107, ?2X9X105] = PUT [99X11X107, ?22X10X106, ?2X9X105]; THYP ((3z za
zh. za < z AN xb < x A - zb < za A [za, b, x] = PUT [zb, za, z]) — (Y za xb. za
<z -— b <z — —ab<za— [za, zb, ] = PUT [zb, za, z])); PO ((?7X6X89 <
P2X5X88 N - P2XTX90 < 72X5X88) A - 22X7X90 < ?2X6X89); [72X6X89, 72X5X88,
79X7X90) = PUT [?22X7X90, ?7X6X89, ?¢X5X88]; THYP ((3z za zb. za < © A — b
<z A-ab < za A za, z, zb] = PUT [zb, za, z]) — (Vz za 2b. za < © — — b <
r — - ab < za — [za, z, zb] = PUT [zb, za, z])); PO ((— 27X2X72 < 22X1X71 A
- 29X3XT3 < 22X1XT1) N - 22X3X73 < 22X2X72); [72X1X7T1, ?2X2X72, ?7X3X73] =
PUT [97X3X73, 29X2X72, ?2X1X71]; THYP (3zzaxb. ~za <z AN—-zb <z A-zb<
za A [z, za, 2b] = PUT [zb, za, z]) — (Vo zazh. m2za <z — 2 2b <z — - b < za
— [z, za, xb] = PUT [zb, za, z])); THYP (3 < length | — List-test.sort | = PUT [)]
— (List-test.sort | = PUT 1)

A more ambitious setting is:

test-spec sort | = PUT 1

apply (gen-test-cases 5 1 PUT)

which leads after 2 seconds to the following test partitioning (excerpt):

1.[]=PUT ||

2. THYP ([| = PUT || — [| = PUT [))

3. [?2X871X8318] = PUT [?¢X871X8518]

4. THYP ((3z. [z] = PUT [z]) — (Vz. [z] = PUT [z]))
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5. PO (72X869X8310 < ?7X868X8309)
6.[77X869X8310, ?2X868X8309] = PUT [?7X869X8310, ?2X868X8309]
7. THYP

(Fzza. za < z A [za, z] = PUT [za, z]) —

(Vz za. za < x — [za, ] = PUT [za, z]))
8. PO (— ?22X866X8299 < ?72X865X8298)
9. [?2X865X8298, ?2X866X8299] = PUT [?7X866X8299, ?2X865X8298)|
10. THYP

(Fzza. - za < z A [z, za] = PUT [za, z]) —

(Vz za. = za < x — [z, za]| = PUT [za, z]))

A total of 461 subgoals...

mk-test-suite permutation-test

thm permutation-test.test-thm

In this scenario, 39 test cases are generated describing all permutations of lists of length
1,2,3 and 4. "Permutation" means here that not only test cases (i.e. I/O-partitions) are
generated for lists of length 0, 1, 2, 3, 4; the partitioning is actually finer: for two-elementary
lists, take one case for the lists with the first element larger or equal.

The case for all lists of depth 5 is feasible, however, it will already take 8 minutes. The
resulting constraints for the test cases are complex and require more intensive effort in
resolving.

There are several options for the test-data selection. On can either use the (very old)
random solver or the more modern smt interface. (One day, we would also have a nitpick-
interface to constsraint solving via bitblasting sub-models of the constraints to SAT.) The
random solver, however, finds only 67 instances out of 150 abstract test cases, while smt
instantiates all of them:

Test theorem (gen_test_data) ’permutation_test’: 67 test cases in 2.951 seconds

declare [[testgen-iterations=0]]
declare [[testgen-SMT]]
gen-test-data permutation-test

print-conc-tests  permutation-test
print-thyps permutation-test

generate-test-script permutation-test
thm permutation-test.test-script

We use the SML implementation also for testing an implementation written in C:

export-code permutation-test.test-script in SML
module-name TestScript file impl/c/permutation-test-script.sml

We obtain test cases like: \\ [| = PUT || [~ 3] = PUT [- 3] [- 1, 0] = PUT [- 1, 0]
0,0 =PUT[0,0]]-2,—1,0]=PUT[-2,—1,0]]0,1,1]=PUT |0, 1, 1]]0, 0,
1j=rUT(0,1,0]]-1,—1,0]=PUT [-1,—1,0][- 1,0,0] = PUT [0, — 1, 0]
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—2,-1,00=PUT[-2,—-3,—1,—2,0][-2 —1,—1,0,0] =PUT |- 1, — 2,
0,—1,0][-2,—1,0,0, 1]=PUT[0,—2,1,—1,0][0,1,1,1,2 =PUT[1,0
2,1,1][0,0,112]:PUT[Z,0,2,1,0][—2,—1,—1,—1,0]:PUT[—1,—
,—1,—1,0/[-2,—1,—1,0,00=PUT[0,—2,—1,—1,0][-2,—1,0,0, 0]
= PUT |0, 2,0— ,0][01111]:PUT[10111][0,0,1,1,1] PUT
[1,0,1,1,0][ 3, — 2, — 2, 1,0] PUT [-2,—1,—8,—2,0/[-2,—1,— 1,
0,0] = PUT |- 1, 0,—2 1,0][ 2,—1,0,0,1] = PUT[O,J, 2,— 1,000, 1,
1,1,2] = PUT [1, 2, 0, ][ 1,0,0,1]_PUT[0 1,—1,0,—1]]- 2, -
1,—1,—-1,0] = U [—1 —2 —1,0][-2 —1,—1,0,0] =PUT [0, — 1,
—2,— 1,0 [~ 2, 000]—PUT[0,0,—2 1,0)100,1,1, 1, ]_PUT[Z
1,0,1,1][0,0,1,1, ]_PUT[1,1,0,1,0][ 3, -3, —2 —1,0]=PUT [~ 3,
—2,—-1,-3,0/[-2, -2, —1,0,0]=PUT[-2,—1,0,—2,0][-1,—1,0,0,
1]=PUT[- 1,0, 1, — 10][— ,0,0,1,2]:PUT[012 1,0]10,0,0, 1, 2]
= PUT [0,1,2,0,0][- 2, — 2, — 2, 0)=PUT [-2,—2,—1,—2,0][- 1, —
1,—1,0,0]=PUT [~ 1, — 1,0 10][ 1, — 1 00 1]=PUT[0,— 1,1, 1,
0] [-1,0,0,0,1] = PUT [0, 0, 1, 1,0][0,0,0,0 1]: PUT [0, 0, 1, 0, 0] [— 2,
—2,—-1,-1,00=PUT[-2,—1,— 1, — 2,0][—, 2,—1,0,0] = PUT |- 2
0,—1,—-2,0/[-1,-1,0,0,0) = PUT [- 1,0, 0, ][ 1,0,0,1,1] = P
0,1, 1, — 1,0 [0,0,0, 1, 1] = PUT [0, 1, 1, 0, 0][ —1,—1,0] = T
—1,-2,—1,—-2,0][-2,—2,—1,0,0]=PUT[0 —2,—1,—2,0][ 1,—1,

T 1, 1, 0110, 0,0,

0,0,00=PUT[0,—1,0,—1,0][-1,0,0,1,1] =
1,1]=PUT [1,0,1,0,0][- 2, — 2, — 2, — ,0]
1,—1,—-1,0,00=PUT [—1,0,—1,— 1, 0] [~

2, 1—2 - 2,0] [—

P
PUT [~
1,0,0,1}:PUT[0,1, 1,
0,0, 1] = [0,

—1,0][-1,0,0,0,1] = PUT [0, 1,0, — 1, 0] [0 0, , 1] = PUT . 0,0, 0]
[—1,—1,—1,—1,0]:PUT[—1,—1,—1,—1,0][ ,—1,—1,0,0] PUT
0,—1,—1,—1,0][-1,—1,0,0,0]=PUT[0,0,—1,—1,0][- 1, 0,0, 0, 0] =

PUT [0, 0,0, — 1, 0] [0, 0,0, 0, 0] = PUT [0, 0, 0, 0, 0].

If we scale down to only 10 iterations, this is not sufficient to solve all conditions, i.e. we
obtain many test cases with unresolved constraints where RSF marks unsolved cases. In
these cases, it is unclear if the test partition is empty. Analyzing the generated test data
reveals that all cases for lists with length up to (and including) 3 could be solved. From the
24 cases for lists of length 4 only 9 could be solved by the random solver (thus, overall 19
of the 34 cases were solved). To achieve better results, we could interactively increase the
number of iterations which reveals that we need to set iterations to 100 to find all solutions
reliably.

iterations | 5[10]20]25]3040]50]|75] 100
solved goals (of 34) || 13| 19 | 23 [ 24 [ 25 |29 | 33 [ 33| 34

Instead of increasing the number of iterations one could also add other techniques such as

1. deriving new rules that allow for the generation of a simplified test theorem,
2. introducing abstract test cases or

3. supporting the solving process by derived rules.
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> make run_permutation_test
mlton -default-ann ’allowFFI true’ permutation_test.mlb sort.c
./permutation_test

Test Results:

Test 0 - SUCCESS
Test 1 - SUCCESS
Test - **xx FATLURE: post-condition false
Test - xxx FATLURE: post-condition false

- xxx FATLURE: post-condition false
FAILURE: post-condition false
- **xx FATLURE: post-condition false
- **xx FATLURE: post-condition false
- %% FATILURE: post-condition false
- %% FATLURE: post-condition false
FAILURE: post-condition false
- *%x*x FATLURE: post-condition false
Test 12 - **x FAILURE: post-condition false
Test 13 - **x FAILURE: post-condition false
Test 14 - *xx FAILURE: post-condition false
Test 15 - **x FAILURE: post-condition false
Test 16 - **x FAILURE: post-condition false
Test 17 - **x FAILURE: post-condition false
Test 18 - **x FAILURE: post-condition false
Test 19 - **x FAILURE: post-condition false
Test 20 - **x FAILURE: post-condition false
Test 21 - **x FAILURE: post-condition false
Test 22 - SUCCESS

Test 23 - SUCCESS

Test 24 - **xx FAILURE: post-condition false
Test 25 - **x FAILURE: post-condition false
Test 26 - **x FAILURE: post-condition false
Test 27 - **x FAILURE: post-condition false
Test 28 - **xx FAILURE: post-condition false
Test 29 - **xx FAILURE: post-condition false
Test 30 - **x FAILURE: post-condition false
Test 31 - **x FAILURE: post-condition false
Test 32 - **x FAILURE: post-condition false

=
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=
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Number successful tests cases: 4 of 33 (ca. 12%)

Number of warnings: 0 of 33 (ca. 0%)
Number of errors: 0 of 33 (ca. 0%)
Number of failures: 29 of 33 (ca. 87%)
Number of fatal errors: 0 of 33 (ca. 0%)

Overall result: failed

Table 6.2.: A Sample Test Trace for the Permutation Test Scenario
40



Running the test (in the current setup: make run_permutation_test )against our sample
C-program under impl/c yields the following result:

Summary A comparison of the three scenarios reveals that albeit a reasonable degree of
automation in the test generation process, the essence of model-based test case generation
remains an interactive process that is worth to be documented in a formal test-plan with
respect to various aspects: the concrete modeling that is chosen, the precise formulation of
the test-specifications (or: test-goals), the configuration and instrumentation of the test-data
selection process, the test-driver synthesis and execution. This process can be complemented
by proofs establishing equivalences allowing to convert initial test-specifications into more
executable ones, or more ’symbolically evaluatable’ ones, or that help to reduce the com-
plexity of the constraint- resolution in the test-data selection process.

But the most important aspect remains: what is a good testing model ? Besides the
possibility that the test specification simply does not test what the tester had in mind, the
test theory and test-specification have a crucial importance on the quality of the generated
test data that seems to be impossible to capture automatically.

Non-Inherent Higher-order Testing

HOL-TestGen can use test specifications that contain higher-order operators — although
we would not claim that the test case generation is actually higher-order (there are no
enumeration schemes for the function space, so function variables are untreated by the test
case generation procedure so far).

Just for fun, we reformulate the problem of finding the maximal number in a list as a
higher-order problem:

test-spec foldr maz | (0::int) = PUT2 1
apply(gen-test-cases PUT2 simp:maz-def)
mk-test-suite mazimal-number

declare [[testgen-iterations = 200])
gen-test-data mazimal-number

print-conc-tests (0) mazimal-number

end

6.1. Bank

Implementation of integer numbers by target-language integers

theory Code-Target-Int
imports ../GCD
begin
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code-datatype int-of-integer
declare [[code drop: integer-of-int]]

context
includes integer.lifti