Isabelle /Solidity

A deep Embedding of Solidity in Isabelle/HOL

Diego Marmsoler” and Achim D. Brucker

August 12, 2022

Department of Computer Science, University of Exeter, Exeter, UK
{d.marmsoler,a.brucker}@exeter.ac.uk

https://orcid.org/0000-0003-2859-7673
https://orcid.org/0000-0002-6355-1200

Abstract

Smart contracts are automatically executed programs, usually representing legal agreements such as
financial transactions. Thus, bugs in smart contracts can lead to large financial losses. For example,
an incorrectly initialized contract was the root cause of the Parity Wallet bug that saw $280M worth
of Ether destroyed. FEther is the cryptocurrency of the Ethereum blockchain that uses Solidity for
expressing smart contracts.

We address this problem by formalizing an executable denotational semantics for Solidity in the
interactive theorem prover Isabelle/HOL. This formal semantics builds the foundation of an interactive
program verification environment for Solidity programs and allows for inspecting them by (symbolic)
execution. We combine the latter with grammar based fuzzing to ensure that our formal semantics
complies to the Solidity implementation on the Ethereum Blockchain. Finally, we demonstrate the
formal verification of Solidity programs by two examples: constant folding and a simple verified token.

Keywords: Solidity, Denotational Semantics, Isabelle/HOL, Gas

Contents

[1_Introductionl

[2__Preliminaries|

2.1 Converting Types to Strings and Back Again (ReadShow)|

2.2 State Monad with Exceptions (StateMonad)[. Lo Lo

13 Types and Accounts|

[3.1 Value Types (Valuetypes)|

[4__Stores and Environment|

4

.1 Storage (Storage)|

4.2 Environment and State (Environment)| L oL o

[2__Expressions and Statements|

[6 A Solidity Evaluation System|

6.1 Towards a Setup for Symbolic Evaluation of Solidity (Solidity_Symbex)|

6.2 Solidty Evaluator and Code Generator Setup (Solidity_ Evaluator)|

6.3 Generating an Exectuable of the Evaluator (Compile BEvaluator)]

|7 _Applications|

.1 Constant Folding (Constant_Folding)|

:

.2 Reentrancy (Reentrancy)|

1 Introduction

An increasing number of businesses is adopting blockchain-based solutions. Most notably, the market value of
Bitcoin, most likely the first and most well-known blockchain-based cryptocurrency, passed USD 1 trillion in
February 2021 [I]. While Bitcoin might be the most well-known application of a blockchain, it lacks features that
applications outside cryptocurrencies require and that make blockchain solutions attractive to businesses.

For example, the Ethereum blockchain [6] is a feature-rich distributed computing platform that provides not only
a cryptocurrency, called Ether: Ethereum also provides an immutable distributed data structure (the blockchain)
on which distributed programs, called smart contracts, can be executed. Essentially, smart contracts are automat-
ically executed programs, usually representing a legal agreement, e.g., financial transactions. To support those
applications, Ethereum provides a dedicated account data structure on its blockchain that smart contracts can
modify, i.e., transferring Ether between accounts. Thus, bugs in smart contracts can lead to large financial losses.
For example, an incorrectly initialized contract was the root cause of the Parity Wallet bug that saw $280M worth
of Ether destroyed [5]. This risk of bugs being costly is already a big motivation for using formal verification
techniques to minimize this risk. The fact that smart contracts are deployed on the blockchain immutably, i.e.,
they cannot be updated or removed easily, makes it even more important to “get smart contracts” right, before
they are deployed on a blockchain for the very first time.

For implementing smart contracts, Ethereum provides Solidity [4], a Turing-complete, statically typed pro-
gramming language that has been designed to look familiar to people knowing Java, C, or JavaScript. Notably,
the type system provides, e.g., numerous integer types of different sizes (e.g., uint256) and Solidity also relies
on different types of stores. While Solidity is Turing-complete, the execution of Solidity programs is guaranteed
to terminate. The reason for this is that executing Solidity operations costs gas, a tradable commodity on the
Ethereum blockchain. Gas does cost Ether and hence, programmers of smart contracts have an incentive to write
highly optimized contracts whose execution consumes as little gas as possible. For example, the size of the integer
types used can impact the amount of gas required for executing a contract. This desire for highly optimized
contracts can conflict with the desire to write correct contracts.

In this paper, we address the problem of developing smart contracts in Solidity that are correct: we present an
executable denotational semantics for Solidity in the interactive theorem prover Isabelle/HOL.

In particular, our semantics supports the following features of Solidity:

e Fized-size integer types of various lengths and corresponding arithmetic.
e Domain-specific primitives, such as money transfer or balance queries.

e Different types of stores, such as storage, memory, and stack.

e Complex data types, such as hash-maps and arrays.

o Assignments with different semantics, depending on data types.

e An extendable gas model.

o Internal and external method calls.

A more abstract description of the semantics is given in [2] and the conformance testing approach for ensuring
that our semantics conforms to the actual implementation is described in [3].

The rest of this document is automatically generated from the formalization in Isabelle/HOL, i.e., all content
is checked by Isabelle. The structure follows the theory dependencies (see .

1 Introduction

[Pure]

[Tools]

EOL]

[HOL-Libraryl

| StateMonad | | [HOL-Eisbach] |

| Solidity_Symbex |

ReadShow

Valuetypes

Accounts |

Environment

Statements

Solidity_Main

Constant_Folding | | Solidity_Evaluator |

| Compile_Evaluator | | Reentrancy |

Figure 1.1: The Dependency Graph of the Isabelle Theories.

2 Preliminaries

In this chapter, we discuss auxiliary formalizations and functions that are used in our Solidity semantics but are
more generic, i.e., not specific to Solidity. This includes, for example, functions to convert values of basic types
to/from strings.

2.1 Converting Types to Strings and Back Again (ReadShow)

theory ReadShow
imports
Solidity_Symbex
begin

In the following, we formalize a family of projection (and injection) functions for injecting (projecting) ba-
sic types (i.e., nat, int, and bool in (out) of the domains of strings. We provide variants for the two string
representations of Isabelle/HOL, namely string and String.literal.

Bool

definition
<Readypool S
definition
<ShowWpoo; b = (if b then ’’True’’ else ’’False’’)>
definition

<STR_is_bool s = (Showpooi (Readpooi S)

(if s = ’’True’’ then True else False)>

s)>

declare Readyoo;_def [solidity_symbex]
Showpooi_def [solidity_symbex]

lemma Show_Read_bool_id: <STR_is_bool s = (Showpoo; (Readpoo; S) = s)>
using STR_is_bool_def by fastforce

lemma STR_is_bool_split: <STR_is_bool s =—> s = ’’False’’ V s = ’’True’’>
by (auto simp: STR_is_bool_def Readpooi_def Showpooi_derf)

lemma Read_Show_bool_id: <Readpoo; (Showpoo; b) = b>
by (auto simp: Readpooi_def Showpooi_def)

definition ReadLyoo;::<String.literal = bool> (<|_|>) where
<ReadLpoo; 8 = (if s = STR ’’True’’ then True else False)>
definition ShowLpoo::: <bool = String.literal> (<[_]>) where
<ShowLpoo; b = (if b then STR ’’True’’ else STR ’’False’’)>
definition

<strL_is_bool’ s = (ShowLpoo; (ReadLpoo; S) = 8)>

declare ReadLy,o;_def [solidity_symbex]
ShowLpooi_def [solidity_symbex]
lemma Show_Read_bool’_id: <strL_is_bool’ s == (ShowLpoo; (ReadLpoo; S) = 8)>

using strL_is_bool’_def by fastforce

lemma strL_is_bool’_split: <strL_is_bool’ s =—> s = STR ’’False’’ V s = STR ’’True’’>
by (auto simp: strL_is_bool’_def ReadLyooi_def ShowLpooi_def)

lemma Read_Show_bool’_id: <ReadLypooi (ShowLpoo; b) = b>
by (auto simp: ReadLyooi_def ShowLpooi_def)

2 Preliminaries

Natural Numbers

definition nat_of_digit ::
<nat_of_digit c

declare nat_of_digit_def [solidity_symbex]

(if ¢
else
else
else
else
else
else
else
else
else
else

if
if
if
if
if
if
if
if
if

<char = nat> where

CHR ’’0’’ then 0

c = CHR ’’1’’ then
c = CHR ’’2’’ then
c = CHR ’’3’’ then
c = CHR ’’4’’ then
c = CHR ’’5’’ then
c = CHR ’’6’’ then
c = CHR ’’7’’ then
c = CHR ’’8’’ then
c = CHR ’’9’’ then

undefined)>

definition digit_of_nat ::
<digit_of_nat x
then CHR

declare digit_of_nat_def [solidity_symbex]

lemma nat_of_digit_digit_of_nat_id:

(if x
else
else
else
else
else
else
else
else
else
else

if
if
if
if
if
if
if
if
if

0

MoK M M K M XX

X

=1

]
N

]
0N O W

=9

then
then
then
then
then
then
then
then
then

undefined)>

720
CHR
CHR
CHR
CHR
CHR
CHR
CHR
CHR
CHR

© O N Ok W=

<nat = char> where

20
1)1
)J2
73
1)4
)J5
106

20

20

bl

20

20

2

1)7))

g
LExe]

20

2

<x < 10 = nat_of_digit (digit_of_nat x) = x>
by (simp add:nat_of_digit_def digit_of_nat_def)

lemma img_digit_of_nat:
<n < 10 = digit_of_nat n € {CHR ’’0’’, CHR ’’1’’, CHR ’’2’’, CHR ’’3’’, CHR ’’4’~,

lemma digit_of_nat_nat_of_digit_id:

CHR ’’57°,

CHR ’’6°°, CHR ’’7°’, CHR ’’8’’, CHR ’’97’}>

by (simp add:nat_of_digit_def digit_of_nat_def)

<c € {CHR ’’0’’, CHR ’’1’’, CHR

CHR 1)5))’ CHR))6)1’ CHR))7)), CHR)}8)), CHR 1)9))}
—> digit_of_nat (nat_of_digit c) = c¢>

by (code_simp, auto)

definition
nat_implode ::
<nat_implode n =

221990
H

CHR 173;;’ CHR ;;4;)’

<’a::{numeral,power,zero} list = ’a> where
foldr (+) (map (A (p,d) = 10 ~ p * d) (enumerate O (rev n))) 0>

declare nat_implode_def [solidity_symbex]

fun nat_explode’

definition
nat_explode ::
<nat_explode x =

<nat = nat list> where
<nat_explode’ x = (case x < 10 of True = [x mod 10]

I

<nat = nat list> where
(rev (nat_explode’ x))>

declare nat_explode_def [solidity_symbex]

10

= (x mod 10)#(nat_explode’ (x div 10)))>

2.1 Converting Types to Strings and Back Again (ReadShow)

lemma nat_explode’_not_empty: <nat_explode’ n # []>
by (smt (z3) list.simps(3) nat_explode’.simps)

lemma nat_explode_not_empty: <nat_explode n # []>
using nat_explode’_not_empty nat_explode_def by auto

lemma nat_explode’_ne_suc: <3 n. nat_explode’ (Suc n) # nat_explode’ n>
by (rule exI [of _ <0::nat>], simp)

lemma nat_explode’_digit: <hd (nat_explode’ n) < 10>
proof(induct <n>)
case 0
then show 7case by simp
next
case (Suc n)
then show 7case proof (cases <n < 9>)
case True
then show ?7thesis by simp
next
case False
then show 7thesis
by simp
qed
qed

lemma div_ten_less: <n # 0 — ((m::nat) div 10) < n>
by simp

lemma unroll_nat_explode’:
< n < 10 => (case n < 10 of True = [n mod 10] | False = n mod 10 # nat_explode’ (n div 10)) =
(n mod 10 # nat_explode’ (n div 10))>
by simp

lemma nat_explode_mod_10_ident: <map (A x. x mod 10) (nat_explode’ n) = nat_explode’ n>
proof (cases <n < 10>)
case True
then show 7thesis by simp
next
case False
then show ?thesis
proof (induct <n> rule: nat_less_induct)
case (1 n) note * = this
then show ?case
using div_ten_less apply (simp (no_asm))
using unroll_nat_explode’[of n] *
by (smt (z3) list.simps(8) list.simps(9) mod_div_trivial mod_eq_self_iff_div_eq_O
nat_explode’.simps zero_less_numeral)
qed
qed

lemma nat_explode’_digits: <V d € set (nat_explode’ n). d < 10>
using image_set[of <(\ x. x mod 10)> <(nat_explode’ n)>]
nat_explode_mod_10_ident [symmetric]
by (metis (no_types, lifting) Euclidean_Division.div_eq_O_iff
imageE mod_div_trivial zero_neq_numeral)

lemma nat_explode_digits: <V d € set (nat_explode n). d < 10>
using nat_explode_def set_rev

by (metis nat_explode’_digits)

value <nat_implode(nat_explode 42) = 42>
value <nat_explode (Suc 21)>

11

2 Preliminaries

lemma nat_implode_append:
<nat_implode (a@[b]) = (1*b + foldr (+) (map (A(p, y). 10 ~ p * y) (enumerate (Suc 0) (rev a))) 0)>
by (simp add:nat_implode_def)

lemma enumerate_suc: <enumerate (Suc n) 1 = map (A (a,b). (a+l::nat,b)) (enumerate n 1)>
proof (induction <1>)

case Nil

then show ?case by simp
next

case (Cons a x) note * = this

then show ?case apply (simp only:enumerate_simps)

apply (simp only:<enumerate (Suc n) x = map (MAa. case a of (a, b) = (a + 1, b)) (enumerate n
x)> [symmetric])

apply (simp)

using *

by (metis apfst_conv cond_case_prod_eta enumerate_Suc_eq)
qed

lemma mult_assoc_auxl1:
<(A(p, y). 10 “p * y) o (A(a, y). (Suc a, y)) = (A(p, y). (10::nat) * (10 ~ p) * y)>
by (auto simp:o_def)

lemma fold_map_transfer:
<(foldr (+) (map (A(x,y). 10 * (f (x,y))) 1) (0::nat)) = 10 * (foldr (+) (map (A\x. (f x)) 1)
(0::nat))>
proof (induct <1>)
case Nil
then show ?7case by (simp)
next
case (Cons a 1)
then show ?7case by (simp)
qed

lemma mult_assoc_aux2: <(A(p, y). 10 * 10 ~ p * (y::nat)) = (A(p, y). 10 * (10 " p * y))>
by (auto)

lemma nat_implode_explode_id: <nat_implode (nat_explode n) = n>
proof (cases <n=0>)
case True note * = this
then show ?7thesis
by (simp add: nat_explode_def nat_implode_def)
next
case False
then show 7thesis
proof (induct <n> rule: nat_less_induct)
case (1 n) note * = this
then have
**: <nat_implode (nat_explode (n div 10)) = n div 10>
proof (cases <m div 10 = 0>)
case True
then show ?thesis by (simp add: nat_explode_def nat_implode_def)
next
case False
then show ?thesis
using div_ten_less[of <n>] *
by (simp)
qed
then show ?case
proof (cases <n < 10>)
case True
then show ?thesis by (simp add: nat_explode_def nat_implode_def)
next

12

2.1 Converting Types to Strings and Back Again (ReadShow)

case False note *** = this
then show ?thesis
apply (simp (no_asm) add:nat_explode_def del:rev_rev_ident)
apply (simp only: bool.case(2))
apply (simp del:nat_explode’.simps rev_rev_ident)
apply (fold nat_explode_def)
apply (simp only:nat_implode_append)
apply (simp add:enumerate_suc)
apply (simp only:mult_assoc_aux1)
using mult_assoc_aux2 apply (simp)
using fold_map_transfer[of <\(p, y). 10 ~ p * y>
<(enumerate 0 (rev (nat_explode (n div 10))))>, simplified]
apply (simp) apply (fold nat_implode_def) using **

by simp
qed
qed
qged
definition
Readnq¢ :: <string = nat> where

<Readnq: s = nat_implode (map nat_of_digit s)>

definition
ShoWnpqa:: : "nat = string" where
<Shownq+ n = map digit_of_nat (nat_explode n)>

declare Read,,:_def [solidity_symbex]
Show,qt_def [solidity_symbex]

definition
<STR_is_nat s = (Shown.: (Readnq: s) = s)>

value <Read,.: ’’10°°>

value <Shown.: 10>

value <Read,,: (Shown.: (10)) = 10>

value <Show,.: (Readnq: (°°10°7)) = ?710°7>

lemma Show_nat_not_neg:
<set (Show,q: n) C{CHR ’’0’’, CHR ’’1’’, CHR ’’2’’, CHR ’’3’’, CHR ’’4’’,
CHR ’’5’’, CHR ’’6’’, CHR ’’7’’, CHR ’’8’’, CHR ’’9’’}>
unfolding Show,.:_def
using nat_explode_digits[of n] img_digit_of_nat imageE image_set subsetI
by (smt (verit) imageE image_set subsetI)

lemma Show_nat_not_empty: <(Shownq: n) # [I>
by (simp add: Showy.:_def nat_explode_not_empty)

lemma not_hd: <L # [] = e ¢ set(L) = hd L # e>
by auto

lemma Show_nat_not_neg’’: <hd (Showpe: n) # (CHR °’-77)>
using Show_nat_not_negl[of <n>]
Show_nat_not_empty[of <n>] not_hd[of <Shownq: n>]
by auto

lemma Show_Read_nat_id: <STR_is_nat s =—> (Shownq: (Readna: S) = s)>
by (simp add:STR_is_nat_def)

lemma bar’: <V d € set 1 . d < 10 = map nat_of_digit (map digit_of_nat 1) = 1>
using nat_of_digit_digit_of_nat_id
by (simp add: map_idI)

lemma Read_Show_nat_id: <Read,.:(Show,.: n) = n>
apply (unfold Read,q:_def Showyg:_def)

13

2 Preliminaries

using bar’ nat_of_digit_digit_of_nat_id nat_explode_digits

using nat_implode_explode_id
by presburger

definition
ReadLnq.: :: <String.literal = nat> (<[_]>) where
<ReadLnqt = Readnq: © String.explode>

definition
ShowL pqt::<nat = String.literal> (<|_|>)where
<ShowLnqt = String.implode o Shownat>

declare ReadL,.:_def [solidity_symbex]
ShoWLyq¢_def [solidity_symbex]

definition
<strlL_is_nat’ s = (ShowLy,: (ReadL,qt S) = s)>

value <[STR ’’10’’]::nat>

value <ReadL,,: (STR ’’10°’)>

value <|10::nat|>

value <ShowL,.: 10>

value <ReadL,.¢ (ShowL,.: (10)) = 10>

value <ShowL,.: (ReadLnq: (STR ’’10’’)) = STR ’’10°’°’>

lemma Show_Read_nat’_id: <strL_is_nat’ s =—> (ShowLn.t+ (ReadLnq: s) = s)>

by (simp add:strL_is_nat’_def)

lemma digits_are_ascii:

<c € {CHR ’’0’’, CHR ’°1’’, CHR ’’2’’, CHR ’’3’’, CHR ’’4’’,
CHR ’°5°’, CHR ’’6’’, CHR ’’7°’, CHR °’8’’, CHR ’’9’°}

— String.ascii_of ¢ = c¢>
by auto

lemma Show,,:_ascii: <map String.ascii_of (Shownq¢ n) = Showpg: n>

using Show_nat_not_neg digits_are_ascii
by (meson map_idI subsetD)

lemma Read_Show_nat’_id: <ReadLnq¢(ShowLnq: n) = n>
apply (unfold ReadL, q:_def ShowL,q:_def, simp)
by (simp add: Showy.:_ascii Read_Show_nat_id)

Integer

definition
Readin: :: <string = int> where

<Read;nt x = (if hd x = (CHR ’’-’’) then -(int (Readnat

definition
Showin¢::<int = string> where

(tl x))) else int (Readnq: x))>

<Show;nt i = (if i < O then (CHR ’’-’’)#(Showna: (mat (-i)))

else Shown.: (nat 1))>
definition
<STR_is_int s = (Show;n: (Readin¢ s) = s8)>
declare Read;n:_def [solidity_symbex]

Shown¢_def [solidity_symbex]

value <Readin: (Show;n: 10) = 10>
value <Read;n: (Show;n: (-10)) -10>

14

2.1 Converting Types to Strings and Back Again (ReadShow)

value <Show;n: (Readin: (’’10°°)) 1010 7>
value <Show;n: (Read;n: (’°’-10’’)) = ?7-10°’>

lemma Show_Read_id: <STR_is_int s — (Show;n: (Readint s) = s)>
by (simp add:STR_is_int_def)

lemma Read_Show_id: <Read;n:(Show;n:(x)) = x>
apply (code_simp)
apply (auto simp:Show_nat_not_neg Read_Show_nat_id) [1]
apply (thin_tac <= x < 0 >)
using Show_nat_not_neg’’
by blast

lemma STR_is_int_Show: <STR_is_int (Show;n: n)>
by (simp add:STR_is_int_def Read_Show_id)

definition
ReadL;nt :: <String.literal = int> (<[_]>) where
<ReadL;nt = Read;n: o String.explode>

definition
ShowL iy ::<int = String.literal> (< I__J >) where
<ShowL;nt =String.implode o Show;n:>

definition
<strL_is_int’ s = (ShowL;n: (ReadL;n: s) = s)>

declare ReadL;,:_def [solidity_symbex]
ShowL;pn:_def [solidity_symbex]

value <ReadL;n: (ShowL;n: 10) = 10>
value <ReadL;n: (ShowL;n: (-10)) = -10>
value <ShowL;,: (ReadL;,: (STR °’10°’)) = STR ’’10’’>

value <ShowL;,: (ReadL;,: (STR ’’-10’’)) = STR ’’-10’’>

lemma Show_ReadL_id: <strL_is_int’ s — (ShowL;n: (ReadL;n: s) = s)>
by (simp add:strL_is_int’_def)

lemma Read_ShowL_id: <ReadL;,: (ShowLin: xX) = x>
proof(cases <x < 0>)
case True

then show 7thesis using ShowL;n:_def ReadL;,:_def Show;,:_def Show,q:_ascii
by (metis (no_types, lifting) Read_Show_id String.ascii_of_Char comp_def implode.rep_eq

list.simps(9))
next
case False

then show ?7thesis using ShowL;,:_def ReadL;n:_def Show;n:_def Showy.:_ascii

by (metis Read_Show_id String.explode_implode_eq comp_apply)
qed

lemma STR_is_int_ShowL: <strL_is_int’ (ShowL;n: n)>
by (simp add:strL_is_int’_def Read_ShowL_id)

lemma String Cancel: "a + (c::String.literal) = b + c = a = b"
using String.plus_literal.rep_eq
by (metis append_same_eq literal.explode_inject)

end

theory StateMonad

imports Main "HOL-Library.Monad_Syntax"
begin

15

2 Preliminaries

2.2 State Monad with Exceptions (StateMonad)
datatype (’n, ’e) result = Normal ’n | Exception ’e
type__synonym (’a, ’e, ’s) state_monad = "’s = (’a X ’s, ’e) result"

lemma result_cases[cases type: result]:
fixes x :: "(’a X ’s, ’e) result"
obtains (n) a s where "x = Normal (a, s)"
| (e) e where "x = Exception e"
proof (cases x)
case (Normal n)
then show ?thesis
by (metis n prod.swap_def swap_swap)
next
case (Exception e)
then show 7thesis ..
qged

2.2.1 Fundamental Definitions

fun
return :: "’a = (’a, ’e, ’s) state_monad" where
"return a s = Normal (a, s)"

fun
throw :: "’e = (’a, ’e, ’s) state_monad" where
"throw e s = Exception e"

fun
bind :: "(’a, ’e, ’s) state_monad = (’a = (’b, ’e, ’s) state_monad) =
(’b, ’e, ’s) state_monad" (infixl ">>=" 60)
where

"pind f g s = (case f s of
Normal (a, s’) = g a s’
| Exception e = Exception e)"

adhoc__overloading Monad_Syntax.bind bind

lemma throw_left[simp]: "throw x >= y = throw x" by auto

2.2.2 The Monad Laws
return is absorbed at the left of a (=), applying the return value directly:

lemma return_bind [simp]: "(return x >= f) = f x"
by auto

return is absorbed on the right of a (>=)

lemma bind_return [simp]: "(m >= return) = m"
proof -
have "Vs. bind m return s = m s"
proof
fix s
show "bind m return s = m s"
proof (cases "m s" rule: result_cases)
case (n a s)
then show ?thesis by auto
next
case (e e)
then show ?thesis by auto
qed
qed
thus ?thesis by auto
qed

16

2.2 State Monad with Exceptions (StateMonad)

(>=) is associative

lemma bind_assoc:

fixes m :: "(’a,’e,’s) state_monad"

fixes f :: "’a = (’b,’e,’s) state_monad"

fixes g :: "’b = (’c,’e,’s) state_monad"

shows "(m >= f) > g = m > (Ax. f x>= g)"
proof

fix s

show "bind (bind m f) g s = bind m (Ax. bind (f x) g) s"
by (cases "m s" rule: result_cases, simp+)
qged

2.2.3 Basic Conguruence Rules

lemma monad_cong[fundef_cong] :
fixes m1 m2 m3 m4
assumes "ml s = m2 s"
and "Av s’. m2 s = Normal (v, s’) = m3 v s’ =mé v s’"
shows "(bind m1 m3) s = (bind m2 m4) s"
apply (insert assms, cases "ml s")
apply (metis StateMonad.bind.simps old.prod.case result.simps(5))
by (metis bind.elims result.simps(6))

lemma bind_case_nat_cong [fundef_cong]:
assumes "x = x’" and "Aa. x = Suca = fah="f’ah"
shows "(case x of Suca = fa | 0 = g) h = (case x’ of Suca = f’ a | 0 = g) h"
by (metis assms(1) assms(2) old.nat.exhaust old.nat.simps(4) old.nat.simps(5))

lemma if_cong[fundef_cong] :
assumes "b = b’"
and "b’ — m1 s = m1’ s"
and " b’ — m2 s = m2’ s"
shows "(if b then m1 else m2) s = (if b’ then ml1’ else m2’) s"
using assms (1) assms(2) assms(3) by auto

lemma bind_case_pair_cong [fundef_cong]:
assumes "x = x’" and "Aa b. x = (a,b) = fabs=f"abs"
shows "(case x of (a,b) = f a b) s = (case x’ of (a,b) = f’ a b) s"
by (simp add: assms(1) assms(2) prod.case_eq_if)

lemma bind_case_let_cong [fundef_cong] :
assumes "M = N"
and "(Ax. x =N = fxs =gzxs)"
shows "(Let M f) s = (Let N g) s"
by (simp add: assms(1) assms(2))

lemma bind_case_some_cong [fundef_cong]:
assumes "x = x’" and "Aa. x = Some a = f a s =f’ a s" and "x = None — g s = g’ s"
shows "(case x of Some a = f a | None = g) s = (case x’ of Some a = f’ a | None = g’) s"
by (simp add: assms(1) assms(2) assms(3) option.case_eq_if)

2.2.4 Other functions

The basic accessor functions of the state monad. get returns the current state as result, does not fail, and does
not change the state. put s returns unit, changes the current state to s and does not fail.

fun get :: "(’s, ’e, ’s) state_monad" where
"get s = Normal (s, s)"

fun put :: "’s = (unit, ’e, ’s) state_monad" where
"put s _ = Normal ((), s)"

Apply a function to the current state and return the result without changing the state.

17

2 Preliminaries

fun
applyf :: "(’s = ’a) = (’a, ’e, ’s) state_monad" where
"applyf f = get >= (As. return (f s))"

Modify the current state using the function passed in.

fun
modify :: "(’s = ’s) = (unit, ’e, ’s) state_monad"
where "modify f = get >= (As::’s. put (f s))"

Perform a test on the current state, performing the left monad if the result is true or the right monad if the
result is false.

fun

condition :: "(’s = bool) = (’a, ’e, ’s) state_monad = (’a, ’e, ’s) state_monad = (’a, ’e, ’s)
state_monad"
where

"condition P L R s = (if (P s) then (L s) else (R s))"

notation (output)
condition ("(condition (_)// ()// (_))" [1000,1000,1000] 1000)

lemma condition_cong[fundef_cong] :
assumes "b s = b’ s"
and "b’ s = ml s = ml1’ s"
and "As’. s’ =s = - b’ s’ = m2 s’ =m2’ s’"
shows "(condition b m1 m2) s = (condition b’ ml1’ m2’) s"
by (simp add: assms(1) assms(2) assms(3))

fun
assert :: "’e = (’s = bool) = (’a, ’e, ’s) state_monad = (’a, ’e, ’s) state_monad" where
"agsert x t m = condition t (throw x) m"

notation (output)
assert ("(assert (_)// ()// ())" [1000,1000,1000] 1000)

lemma assert_cong[fundef_cong] :
assumes "b s = b’ s"
and "~ b’ s = ms =m’ s"
shows "(assert x b m) s = (assert x b’ m’) s"
by (simp add: assms(1) assms(2))

2.2.5 Some basic examples

lemma "do {
X < return 1;
return (2::nat);
return x
} =
return 1 >= (Mx. return (2::nat) >= (M_. (return x)))" ..

lemma "do {
X 4 return 1;

return 2;
return x
} = return 1"
by auto
fun subl :: "(unit, nat, nat) state_monad" where

"subl 0 = put 0 0"
| "subl (Suc n) = (do {
X < get;
put x;
subl
} "

18

fun sub2 :: "(unit, nat, nat) state_monad" where
"sub2 s =
(do {
n ¢ get;
(case n of
0 = put 0
| Suc n’ = (do {
put n’;
sub2
)

}) s"
fun sub3 :: "(unit, nat, nat) state_monad" where
"sub3 s =

condition (An. n=0)
(return ())
(do {
n < get;
put (n - 1);
sub3
}) s"

fun sub4 ::
"sub4 s =
assert (0) (An. n=0)
(do {
n < get;
put (n - 1);
sub4
}) s"

"(unit, nat, nat) state_monad" where

fun sub5 :: "(unit, nat, (nat*nat)) state_monad" where
"subb s =
assert (0) (An. fst n=0)
(do {
(n,m) < get;
put (n - 1,m);
subb
}) s"

end

2.2 State Monad with Exceptions (StateMonad)

19

3 Types and Accounts

In this chapter, we discuss the basic data types of Solidity and the representations of accounts.

3.1 Value Types (Valuetypes)

theory Valuetypes
imports ReadShow
begin

fun iter :: "(int = ’b = ’b) = ’b = int = ’b"
where
"iter f v x = (if x < O then v
else f (x-1) (iter f v (x-1)))"

fun iter’ :: "(int = ’b = ’b option) = ’b = int = ’b option"
where
"iter’ f v x = (if x < 0 then Some v
else case iter’ f v (x-1) of
Some v’ = f (x-1) v’
| None = None)"

type__synonym Address = String.literal
type__synonym Location = String.literal
type__synonym Valuetype = String.literal

datatype Types = TSInt nat
| TUInt nat
| TBool
| TAddr

fun createSInt :: "nat = int = Valuetype"
where
"createSInt b v =
(if v >0
then ShowL;n: (-(27(b-1)) + (v+2~(b-1)) mod (27b))
else ShowL;n: (27(b-1) - (-v+2~(b-1)-1) mod (27b) - 1))"

lemma upper_bound:
fixes b::nat
and c::int
assumes "b > 0"
and "c < 27(b-1)"
shows "c + 27(b-1) < 2°b"
proof -
have ai: "AP. (Vb::nat. P b) = (Vb>0. P ((b-1)::nat))" by simp
have b2: "Vb::nat. (V (c::int)<2"b. (¢ + 27b) < 27(Suc b))" by simp
show 7thesis using a1[0F b2] assms by simp
qed

lemma upper_bound2:
fixes b::nat
and c::int
assumes "b > 0"
and "c < 27b"
and "¢ > 0"

21

3 Types and Accounts

shows "c - (27(b-1)) < 27(b-1)"
proof -
have ai: "AP. (Vb::nat. P b) = (Vb>0. P ((b-1)::nat))" by simp
have b2: "Vb::nat. (V (c::int)<2”(Suc b). ¢>0 — (¢ - 27°b) < 2°b)" by simp
show 7thesis using a1[0F b2] assms by simp
qed

lemma upper_bound3:
fixes b::nat
and v::int
defines "x = - (2 ~(b-1)) + (v+ 2~ (b-1)) mod 2 ~ b"
assumes "b>0"
shows "x < 27(b-1)"
using upper_bound2 assms by auto

lemma lower_bound:
fixes b::nat
assumes "b>0"
shows "V (c::int) > -(27(b-1)). (-c + 27(b-1) - 1 < 27b)"
proof -
have a1: "AP. (Vb::nat. P b) = (Vb>0. P ((b-1)::nat))" by simp
have b2: "Vb::nat. V (c::int) > -(27b). (-c + (2°b) - 1) < 27(Suc b)" by simp
show ?7thesis using al[0F b2] assms by simp
qed

lemma lower_bound2:
fixes b::nat
and v::int
defines "x = 27°(b - 1) - (-v+27(b-1)-1) mod 2°b - 1"
assumes "b>0"
shows "x > - (2 =~ (b - 1))"
using upper_bound2 assms by auto

lemma createSInt_id_g0:
fixes b::nat
and v::int
assumes "v > 0"
and "v < 27(b-1)"
and "b > 0"
shows "createSInt b v = ShowL;n: v"
proof -
from assms have "v + 27(b-1) > 0" by simp
moreover from assms have "v + (27(b-1)) < 2°b" using upper_bound[of b] by auto
ultimately have "(v + 27(b-1)) mod (2°b) = v + 27(b-1)" by simp
moreover from assms have "createSInt b v=ShowL;,: (-(27(b-1)) + (v+2~(b-1)) mod (27b))" by simp
ultimately show ?thesis by simp
qed

lemma createSInt_id_10:
fixes b::nat
and v::int
assumes "v < 0"
and "v > -2 (b-1))"
and "b > 0"
shows "createSInt b v = ShowL;n: v"
proof -
from assms have "-v + 27(b-1) - 1 > 0" by simp
moreover from assms have "-v + 27(b-1) - 1 < 2°b" using lower_bound[of b] by auto
ultimately have "(-v + 27(b-1) - 1) mod (2°b) = (-v + 27(b-1) - 1)" by simp
moreover from assms have "createSInt b v= ShowL;n: (27(b-1) - (-v+2~(b-1)-1) mod (2°b) - 1)" by
simp
ultimately show ?thesis by simp
qed

22

lemma createSInt_id:
fixes b::nat
and v::int
assumes "v < 27(b-1)"
and "v > -(27(b-1))"
and "b > 0"

3.1 Value Types (Valuetypes)

shows "createSInt b v = ShowL;n+ v" using createSInt_id_gO createSInt_id_10

fun createUInt :: "nat = int = Valuetype"
where "createUInt b v = ShowLi,: (v mod (27°b))"

lemma createUInt_id:
assumes "v > 0"
and "v < 27b"
shows "createUInt b v = ShowL;nt V"
by (simp add: assms(1) assms(2))

fun createBool :: "bool = Valuetype"
where
"createBool b = ShowLpoo; b"

fun createAddress :: "Address =- Valuetype"
where
"createAddress ad = ad"

fun convert :: "Types = Types = Valuetype = (Valuetype * Types)

where
"convert (TSInt bl) (TSInt b2) v
(if b1 < b2
then Some (v, TSInt b2)
else None)"
| "convert (TUInt b1l) (TUInt b2) v
(if b1 < b2
then Some (v, TUInt b2)
else None)"
| "convert (TUInt bl) (TSInt b2) v
(if b1 < b2
then Some (v, TSInt b2)
else None)"
| "convert TBool TBool v = Some (v, TBool)"
| "convert TAddr TAddr v = Some (v, TAddr)"
| "convert _ _ _ = None"

lemma convert_id[simp]:
"convert tp tp kv = Some (kv, tp)"

option"

assms by simp

by (metis Types.exhaust convert.simps(1) convert.simps(2) convert.simps(4) convert.simps(5)

order_refl)

fun olift ::

"(int = int = int) = Types = Types = Valuetype = Valuetype = (Valuetype * Types) option"

where
"olift op (TSInt b1) (TSInt b2) vl v2 =
Some (createSInt (max bl b2) (op [v1]
| "olift op (TUInt b1) (TUInt b2) vl v2 =
Some (createUInt (max bl b2) (op [v1]
| "olift op (TSInt b1) (TUInt b2) vl v2 =
(if b2 < bl
then Some (createSInt bl (op [v1] [v2]), TSInt bl)
else None)"
| "olift op (TUInt b1) (TSInt b2) vl v2 =
(if bl < b2
then Some (createSInt b2 (op [v1] [v2]), TSInt b2)

[v2]), TSInt (max bl b2))"

[v2]), TUInt (max bl b2))"

23

3 Types and Accounts

else None)"
| "olift = None"

fun plift ::
"(int = int = bool) = Types = Types = Valuetype = Valuetype = (Valuetype * Types) option"
where
"plift op (TSInt bl) (TSInt b2) vl v2 = Some (createBool (op [v1] [v2]), TBool)"
| "plift op (TUInt bl) (TUInt b2) vl v2 = Some (createBool (op [v1] [v2]), TBool)"
| "plift op (TSInt b1) (TUInt b2) vl v2 =
(if b2 < b1
then Some (createBool (op [v1] [v2]), TBool)
else None)"
| "plift op (TUInt b1) (TSInt b2) vl v2 =
(if bl < b2
then Some (createBool (op [v1] [v2]), TBool)
else None)"

| "plift _ _ _ _ _ = None"
definition add :: "Types = Types = Valuetype = Valuetype = (Valuetype * Types) option"
where

"add = olift (+)"

definition sub :: "Types = Types = Valuetype = Valuetype = (Valuetype * Types) option"
where
"sub = olift (-)"

definition equal :: "Types = Types = Valuetype = Valuetype = (Valuetype * Types) option"
where
"equal = plift (=)"

definition less :: "Types = Types = Valuetype = Valuetype = (Valuetype * Types) option"
where
"less = plift (<)"

declare less_def [solidity_symbex]

definition leq :: "Types = Types = Valuetype = Valuetype = (Valuetype * Types) option"
where
"leq = plift ()"

fun vtand :: "Types = Types = Valuetype = Valuetype = (Valuetype * Types) option"
where
"vtand TBool TBool a b =
(if a = ShowLpoo; True A b = ShowLy,o; True then Some (ShowLyp,o,; True, TBool)
else Some (ShowLypoo; False, TBool))"

| "vtand _ _ _ _ = None"
fun vtor :: "Types = Types = Valuetype = Valuetype = (Valuetype * Types) option"
where

"vtor TBool TBool a b =
(if a = ShowLpoo; False A b = ShowLyp.o; False
then Some (ShowLyp..; False, TBool)
else Some (ShowLypoo; True, TBool))"
| "vtor _ _ _ _ = None"

24

fun ival :: "Types = Valuetype"
where

"jval (TSInt x) = ShowL;n,: 0"
| "ival (TUInt x) ShowL ;n+ 0"
| "ival TBool = ShowLyp,.,; False"

| "ival TAddr = STR °’’0x00° > "

end

3.1 Value Types (Valuetypes)

25

4 Stores and Environment

In this chapter, we focus on a particular aspect of Solidity that is different to most programming languages: the

handling of memory in general and, in particular, the different between store and storage.

4.1 Storage (Storage)

theory Storage
imports Valuetypes "HOL-Library.Finite_Map"

begin

fun hash :: "Location = String.literal = Location"
where "hash loc ix = ix + (STR ’’.°’ + loc)"

4.1.1 General Store

record ’v Store =
mapping :: "(Location,’v) fmap"
toploc :: nat

fun accessStore :: "Location = ’v Store = ’v option"
where "accessStore loc st = fmlookup (mapping st) loc"

definition emptyStore :: "’v Store"
where "emptyStore = (mapping=fmempty, toploc=0 |"

declare emptyStore_def [solidity_symbex]

fun allocate :: "’v Store = Location * (’v Store)"

where "allocate s = (let ntop = Suc(toploc s) in (ShowLnpa: ntop, s (toploc :

fun updateStore :: "Location = ’v = ’v Store = ’v Store"
where "updateStore loc val s = s (mapping := fmupd loc val (mapping s)|"

fun push :: "’v = ’v Store = ’v Store"

where "push val sto = (let s = updateStore (ShowLnpq: (toploc sto)) val sto in snd (allocate s))"

4.1.2 Stack

datatype Stackvalue = KValue Valuetype
| KCDptr Location
| KMemptr Location
| KStoptr Location

type__synonym Stack = "Stackvalue Store"

4.1.3 Storage
Definition

type__synonym Storagevalue = Valuetype

type__synonym StorageT = "(Location,Storagevalue) fmap"

27

4 Stores and Environment

datatype STypes = STArray int STypes
| STMap Types STypes
| STValue Types

Example

abbreviation mystorage::StorageT

where "mystorage = (fmap_of_list
[(STR ’°0.0.1°’, STR ’’True’’),
(STR ’’1.0.1°’, STR ’’False’’),
(STR ’’0.1.1°’, STR ’’True’’),

(STR ’’1.1.1°’, STR ’’False’’)])"

Access storage

fun accessStorage :: "Types = Location = StorageT = Storagevalue"
where
"accessStorage t loc sto =
(case fmlookup sto loc of
Some v = v
| None = ival t)"

Copy from storage to storage

fun copyRec :: "Location = Location = STypes =- StorageT = StorageT option"
where
"copyRec loc loc’ (STArray x t) sto =
iter’ (Ai s’. copyRec (hash loc (ShowL;n: i)) (hash loc’ (ShowL;n: i)) t s’) sto x"
| "copyRec loc loc’ (STValue t) sto =
(let e = accessStorage t loc sto in Some (fmupd loc’ e sto))"

| "copyRec _ _ (STMap _ _) _ = Nome"
fun copy :: "Location => Location = int = STypes => StorageT => StorageT option"
where

"copy loc loc’ x t sto =
iter’ (Ai s’. copyRec (hash loc (ShowL;n: i)) (hash loc’ (ShowLin: 1)) t s’) sto x"

4.1.4 Memory and Calldata
Definition

datatype Memoryvalue =
MValue Valuetype
| MPointer Location

type__synonym MemoryT = "Memoryvalue Store"
type__synonym CalldataT = MemoryT

datatype MTypes = MTArray int MTypes
| MTValue Types

Example

abbreviation mymemory: :MemoryT
where "mymemory =
(mapping = fmap_of_list

[(STR >’1.1.0°°, MValue STR ’’False’’),
(STR °’0.1.0°’, MValue STR ’’True’’),
(STR ’’1.0’’, MPointer STR ’’1.0°7),
(STR ’’1.0.0°’, MValue STR ’’False’’),
(STR °’0.0.0°’, MValue STR ’’True’’),
(STR °’0.0’°, MPointer STR ’°0.0°7)],

toploc = 1|)"

28

Initialization
Definition

fun minitRec :: "Location = MTypes = MemoryT = MemoryT"
where
"minitRec loc (MTArray x t) = (\mem.
let m = updateStore loc (MPointer loc) mem
in iter (A\i m’ . minitRec (hash loc (ShowL;n: i)) t m’) m x)"
| "minitRec loc (MTValue t) = updateStore loc (MValue (ival t))"

fun minit :: "int = MTypes = MemoryT = MemoryT"
where
"minit x t mem =
(let 1 = ShowLpq.¢ (toploc mem);

m iter (A\i m’ . minitRec (hash 1 (ShowL;n,: i)) t m’) mem x
in snd (allocate m))"

Example

lemma "minit 2 (MTArray 2 (MTValue TBool)) emptyStore =
(mapping = fmap_of_list
[(STR ’’0.0’’, MPointer STR ’’0.0°’), (STR ’’0.0.0°’, MValue STR ’’False’’),
(STR °’1.0.0°’, MValue STR ’’False’’), (STR ’’1.0’’, MPointer STR ’’1.0°’),
(STR °’0.1.0°’, MValue STR ’’False’’), (STR ’’1.1.0’°’, MValue STR ’’False’’)],
toploc = 1)" by eval

Copy from memory to memory

Definition

4.1 Storage (Storage)

fun cpm2mrec :: "Location = Location = MTypes = MemoryT = MemoryT = MemoryT option"

where
"cpm2mrec 1ls 1q (MTArray x t) ms mq =
(case accessStore 1, ms of
Some e =
(case e of
MPointer 1 = (let m = updateStore 1, (MPointer 1l4) mg4

in iter’ (Ai m’. cpm2mrec (hash 1y (ShowL;n¢ 1)) (hash 14 (ShowL;n¢ i)) t ms m’) m x)

| _ = None)

| None = Nome)"

| "cpmZmrec 15 1q (MTValue t) ms mq =
(case accessStore 1s ms of
Some e = (case e of
MValue v = Some (updateStore 1, (MValue v) mgq)

| _ = None)

| None = Nome)"

fun cpm2m :: "Location = Location = int = MTypes = MemoryT => MemoryT = MemoryT option"

where

"cpm2m 1s 1q x t ms mq = iter’ (Ai m. cpm2mrec (hash 1, (ShowL;,: i)) (hash 14 (ShowL;n: i)) t ms m)

mg x"

Example

lemma "cpm2m (STR ’’0°’) (STR ’’0’’) 2 (MTArray 2 (MTValue TBool)) mymemory (snd (allocate

emptyStore)) = Some mymemory"
by eval

4.1.5 Copy from storage to memory

Definition

fun cps2mrec :: "Location = Location = STypes = StorageT = MemoryT => MemoryT option"

where

29

4 Stores and Environment

"cps2mrec locs locm (STArray x t) sto mem =

(let m

= updateStore locm (MPointer locm) mem

in iter’ (A\i m’. cps2mrec (hash locs (ShowL;n: i)) (hash locm (ShowLin: i)) t sto m’) m x)"
| "cps2mrec locs locm (STValue t) sto mem =

(let v = accessStorage t locs sto

in Some (updateStore locm (MValue v) mem))"
| "cps2mrec _ _ (STMap _ _) _ _ = None"

fun cps2m ::

where

"Location = Location = int = STypes = StorageT = MemoryT = MemoryT option"

"cps2m locs locm x t sto mem =

iter’

Example

(Ai m’. cps2mrec (hash locs (ShowL;n: i)) (hash locm (ShowLin: i)) t sto m’) mem x"

lemma "cps2m (STR ’’1°’) (STR ’’0°’) 2 (STArray 2 (STValue TBool)) mystorage (snd (allocate
emptyStore)) = Some mymemory"

by eval

4.1.6 Copy from memory to storage

Definition

fun cpm2srec :: "Location = Location = MTypes = MemoryT = StorageT = StorageT option"

where

"cpm2srec locm locs (MTArray x t) mem sto =

(case

accessStore locm mem of

Some e =
(case e of

s’) sto x

I

MPointer 1 = iter’ (Ai s’. cpm2srec (hash locm (ShowL;n: 1)) (hash locs (ShowLin: i)) t mem

= None)

| None = Nonme)"
| "cpm2srec locm locs (MTValue t) mem sto =

(case

accessStore locm mem of

Some e = (case e of

I

MValue v = Some (fmupd locs v sto)
= None)

| None = Nome)"

fun cpm2s ::

where

"Location = Location = int = MTypes => MemoryT = StorageT = StorageT option"

"cpm2s locm locs x t mem sto =

iter’

Example

(A\i s’. cpm2srec (hash locm (ShowL;n: i)) (hash locs (ShowLin: i)) t mem s’) sto x"

lemma "cpm2s (STR °’0°’) (STR ’’1°’) 2 (MTArray 2 (MTValue TBool)) mymemory fmempty = Some mystorage"

by eval

end

4.2 Environment and State (Environment)

theory Environment
imports Accounts Storage StateMonad

begin

4.2.1 Environment

datatype Type = Value Types

30

| Calldata MTypes

4.2 Environment and State (Environment)

| Memory MTypes
| Storage STypes

datatype Denvalue = Stackloc Location
| Storeloc Location

type__synonym Identifier = String.literal

record Environment =

address :: Address

sender :: Address

svalue :: Valuetype

denvalue :: "(Identifier, Type X Denvalue) fmap"
fun identifiers :: "Environment —> Identifier fset"

where "identifiers e = fmdom (denvalue e)"

fun emptyEnv :: "Address = Address = Valuetype = Environment"
where "emptyEnv a s v = (address = a, sender = s, svalue =v, denvalue = fmempty|)"

definition eempty :: "Environment"
where "eempty = emptyEnv (STR ’’’’) (STR ’’’’) (STR ’’’’)"

declare eempty_def [solidity_symbex]

fun updateEnv :: "Identifier = Type = Denvalue = Environment = Environment"
where "updateEnv i t v e = e (denvalue := fmupd i (t,v) (denvalue e) |)"

fun updateEnvOption :: "Identifier = Type = Denvalue = Environment = Environment option"
where "updateEnvOption i t v e = (case fmlookup (denvalue e) i of
Some _ => None
| None =- Some (updateEnv i t v e))"

lemma updateEnvOption_address: "updateEnvOption i t v e = Some e’ —> address e = address e’"
by (auto split:option.split_asm)

fun updateEnvDup :: "Identifier = Type => Denvalue => Environment = Environment"
where "updateEnvDup i t v e = (case fmlookup (denvalue e) i of
Some _ = e
| None = updateEnv i t v e)"

lemma updateEnvDup_address[simp]: "address (updateEnvDup i t v e) = address e"
by (auto split:option.split)

lemma updateEnvDup_sender[simp]: "sender (updateEnvDup i t v e) = sender e"
by (auto split:option.split)

lemma updateEnvDup_svalue[simp]: "svalue (updateEnvDup i t v e) = svalue e"
by (auto split:option.split)

lemma updateEnvDup_dup:
assumes "i#i’" shows "fmlookup (denvalue (updateEnvDup i t v e)) i’ = fmlookup (denvalue e) i’"
proof (cases "fmlookup (denvalue e) i = None")
case True
then show 7thesis using assms by simp
next
case False
then obtain e’ where "fmlookup (denvalue e) i = Some e’" by auto
then show ?thesis using assms by simp
qed

lemma env_reorder_neq:

assumes "x#y"
shows "updateEnv x t1 vl (updateEnv y t2 v2 e) = updateEnv y t2 v2 (updateEnv x tl1 vl e)"

31

4 Stores and Environment

proof -
have "address (updateEnv x t1 vl (updateEnv y t2 v2 e)) = address (updateEnv y t2 v2 (updateEnv x tl
vl e))" by simp
moreover from assms have "denvalue (updateEnv x tl1 vl (updateEnv y t2 v2 e)) = denvalue (updateEnv
y t2 v2 (updateEnv x t1 vl e))" using Finite_Map.fmupd_reorder_neq[of x y "(t1,v1)" "(t2,v2)"] by simp
ultimately show ?thesis by simp
qed

lemma uEQ_in:
assumes "i [€| fmdom (denvalue e)"
shows "updateEnvOption i t v e = None"
using assms by auto

lemma uEO_n_In:
assumes "— i [€]| fmdom (denvalue e)"
shows "updateEnvOption i t v e = Some (updateEnv i t v e)"
using assms by auto

fun astack :: "Identifier = Type = Stackvalue = Stack * Environment = Stack * Environment"
where "astack i t v (s, e) = (push v s, (updateEnv i t (Stackloc (ShowL,q: (toploc s))) e))"

4.2.2 State

type__synonym Gas = nat

record State =
accounts :: Accounts
stack :: Stack
memory :: MemoryT
storage :: "(Address,StorageT) fmap"
gas :: Gas

datatype Ex = Gas | Err

fun append :: "Identifier = Type = Stackvalue
= CalldataT = Environment = (CalldataT X Environment, Ex, State) state_monad"
where
"append id0 tp v cd e st =
(let (k, e’) = astack id0 tp v (stack st, e)
in do {
modify (Ast. st (stack := k|));
return (cd, e’)

}) st"

4.2.3 Declarations

This function is used to declare a new variable: decl id tp val copy cd mem cd’ env st

id is the name of the variable

tp is the type of the variable

val is an optional initialization parameter. If it is None, the types default value is taken.

copy is a flag to indicate whether memory should be copied (from mem parameter) or not (copying is required
for example for external method calls).

cd is the original calldata which is used as a source
mem is the original memory which is used as a source
cd’ is the new calldata

env is the new environment

st is the new state

32

4.2 Environment and State (Environment)

fun decl :: "Identifier = Type = (Stackvalue * Type) option = bool = Calldatal = MemoryT
= CalldataT = Environment =- (CalldataT X Environment, Ex, State) state_monad"
where

"decl i (Value t) None _ _ _ c env st = append i (Value t) (KValue (ival t)) c env st'
| "decl i (Value t) (Some (KValue v, Value t’)) _ _ _ ¢ env st =
(case convert t’ t v of
Some (v’, t’’) = append i (Value t’’) (KValue v’) c env
| None = throw Err) st"
| "decl _ (Value _) (Some _) st = throw Err st'

| "decl i (Calldata (MTArray x t)) (Some (KCDptr p, _)) True cd _ c env st =
(let 1 = ShowLnq: (toploc c);
(_, ¢’) = allocate c¢
in (case cpm2m p 1 x t cd ¢’ of
Some c¢’’ = append i (Calldata (MTArray x t)) (KCDptr 1) c’’ env
| None = throw Err)) st"
| "decl i (Calldata (MTArray x t)) (Some (KMemptr p, _)) True _ mem c env st =
(let 1 = ShowLpnq: (toploc c);
(_, ¢’) = allocate ¢
in (case cpm2m p 1 x t mem c’ of
Some c’’ = append i (Calldata (MTArray x t)) (KCDptr 1) c’’ env
| None = throw Err)) st"

| "decl i (Calldata _) _ _ _ _ _ _ st = throw Err st"
| "decl i (Memory (MTArray x t)) None _ _ _ c env st =
(do {

m < applyf (Ast. memory st);
modify (Ast. st (memory := minit x t m));
append i (Memory (MTArray x t)) (KMemptr (ShowLn.: (toploc m))) ¢ env
}) st
| "decl i (Memory (MTArray x t)) (Some (KMemptr p, _)) True _ mem c env st =
(do {
m < (applyf (Ast. memory st));
(case cpm2m p (ShowLy,q: (toploc m)) x t mem (snd (allocate m)) of
Some m’ =
do {
modify (Ast. st (memory := m’));
append i (Memory (MTArray x t)) (KMemptr (ShowLn.: (toploc m))) ¢ env

}
| None = throw Err)
}) st
| "decl i (Memory (MTArray x t)) (Some (KMemptr p, _)) False _ _ c env st =

append i (Memory (MTArray x t)) (KMemptr p) c env st"
| "decl i (Memory (MTArray x t)) (Some (KCDptr p, _)) _ cd _ c env st =
(do {
m < (applyf (Ast. memory st));
(case cpm2m p (ShowLnq: (toploc m)) x t cd (snd (allocate m)) of
Some m’ =
do {
modify (Ast. st (memory := m’)));
append i (Memory (MTArray x t)) (KMemptr (ShowL,.: (toploc m))) c env
}
| None =- throw Err)
}) st
| "decl i (Memory (MTArray x t)) (Some (KStoptr p, Storage (STArray x’ t’))) _ _ _ c env st =
(do {
s ¢ (applyf (Ast. storage st));
(case fmlookup s (address env) of
Some s’ =
(do {
m < (applyf (Ast. memory st));

33

4 Stores and Environment

(case cps2m p (ShowL,q: (toploc m)) x’ t’ s’ (snd (allocate m)) of
Some m’’ =
do {
modify (Ast. st (memory := m’’|));
append i (Memory (MTArray x t)) (KMemptr (ShowL,.: (toploc m))) c env

}
| None = throw Err)
3
| None = throw Err)

}) st
| "decl _ (Memory (MTArray _ _)) (Some _) _ _ _ _ _ st = throw Err st"
| "decl _ (Memory (MTValue _)) _ _ _ _ _ _ st = throw Err st"
| "decl _ (Storage (STArray _ _)) Nome _ _ _ _ _ st = throw Err st"
| "decl i (Storage (STArray x t)) (Some (KStoptr p, _)) _ _ _ c env st =

append i (Storage (STArray x t)) (KStoptr p) c env st"
| "decl _ (Storage (STArray _ _)) (Some _) _ _ _ _ _ st = throw Err st"
| "decl _ (Storage (STMap _ _)) Nome _ _ _ _ _ st = throw Err st
| "decl i (Storage (STMap t t’)) (Some (KStoptr p, _)) _ _ _ c env st =

append i (Storage (STMap t t’)) (KStoptr p) c env st"

| "decl _ (Storage (STMap _ _)) (Some _) _ _ _ _ _ st = throw Err st"
| "decl _ (Storage (STValue _)) _ _ _ _ _ _ st = throw Err st"

lemma decl_gas_address:
assumes "decl al a2 a3 cp cd mem ¢ env st = Normal ((11°, t1°’), st1’)"
shows "gas st1’ = gas st A address env = address tl1’ A sender env = sender t1’
svalue t1°"
proof (cases a2)
case (Value t)
then show ?thesis
proof (cases a3)
case None
with Value show 7thesis using assms by auto
next
case (Some a)
show ?thesis
proof (cases a)
case (Pair a b)
then show ?thesis
proof (cases a)
case (KValue v)
then show ?thesis
proof (cases b)
case v2: (Value t’)
show 7thesis
proof (cases "convert t’ t v")
case None
with Some Pair KValue Value v2 show ?thesis using assms by simp
next
case s2: (Some a)
show ?thesis
proof (cases a)
case p2: (Pair a b)
with Some Pair KValue Value v2 s2 show ?thesis using assms by auto
qed
qed
next
case (Calldata x2)
with Some Pair KValue Value show 7thesis using assms by simp
next
case (Memory x3)
with Some Pair KValue Value show 7thesis using assms by simp

34

N\ svalue env

4.2 Environment and State (Environment)

next
case (Storage x4)
with Some Pair KValue Value show ?thesis using assms by simp
qed
next
case (KCDptr x2)
with Some Pair Value show 7thesis using assms by simp
next
case (KMemptr x3)
with Some Pair Value show 7thesis using assms by simp
next
case (KStoptr x4)
with Some Pair Value show 7thesis using assms by simp
qed
qed
qed
next
case (Calldata x2)
then show 7thesis
proof (cases cp)
case True
then show 7thesis
proof (cases x2)
case (MTArray x t)
then show ?thesis
proof (cases a3)
case None
with Calldata show ?thesis using assms by simp
next
case (Some a)
show ?thesis
proof (cases a)
case (Pair a b)
then show 7thesis
proof (cases a)
case (KValue x1)
with Calldata Some Pair show ?thesis using assms by simp
next
case (KCDptr p)
define 1 where "1 = ShowLy,: (toploc c)"
obtain ¢’ where c_def: "Jx. (x, c¢’) = allocate c" by simp
show ?thesis
proof (cases "cpm2m p 1 x t cd c’")
case None

with Calldata MTArray Some Pair KCDptr 1_def c_def True show 7thesis using assms by

simp
next
case s2: (Some a)
with Calldata MTArray Some Pair KCDptr 1_def c_def True show 7thesis using assms by
auto
qed
next
case (KMemptr p)
define 1 where "1 = ShowL,q: (toploc c)"
obtain ¢’ where c_def: "dx. (x, c¢’) = allocate c" by simp
show ?thesis
proof (cases "cpm2m p 1 x t mem c’")
case None
with Calldata MTArray Some Pair KMemptr 1_def c_def True show ?thesis using assms by
simp

next
case s2: (Some a)

with Calldata MTArray Some Pair KMemptr 1_def c_def True show ?thesis using assms by

auto

4 Stores and Environment

qed
next
case (KStoptr x4)
with Calldata Some Pair show ?thesis using assms by simp
qed
qed
qged
next
case (MTValue x2)
with Calldata show ?thesis using assms by simp
qed
next
case False
with Calldata show ?thesis using assms by simp
qed
next
case (Memory x3)
then show ?7thesis
proof (cases x3)
case (MTArray x t)
then show ?thesis
proof (cases a3)
case None
with Memory MTArray None show ?7thesis using assms by (auto simp add:Let_def)
next
case (Some a)
then show ?thesis
proof (cases a)
case (Pair a b)
then show 7thesis
proof (cases a)
case (KValue x1)
with Memory MTArray Some Pair show ?thesis using assms by simp
next
case (KCDptr p)
define m 1 where "m = memory st" and "1 = ShowLy.: (toploc m)"
obtain m’ where m’_def: "dx. (x, m’) = allocate m" by simp
then show ?thesis
proof (cases "cpm2m p 1 x t cd m’")
case None
with Memory MTArray Some Pair KCDptr m_def 1_def m’_def show 7thesis using assms by simp
next
case s2: (Some a)
with Memory MTArray Some Pair KCDptr m_def 1_def m’_def show 7thesis using assms by auto
qed
next
case (KMemptr p)
then show 7thesis
proof (cases cp)
case True
define m 1 where "m = memory st" and "1 = ShowL,q: (toploc m)"
obtain m’ where m’_def: "dx. (x, m’) = allocate m" by simp
then show ?thesis
proof (cases "cpm2m p 1 x t mem m’")
case None
with Memory MTArray Some Pair KMemptr True m_def 1_def m’_def show ?7thesis using assms

by simp
next
case s2: (Some a)
with Memory MTArray Some Pair KMemptr True m_def 1_def m’_def show ?thesis using assms
by auto
qed
next

case False

36

4.2 Environment and State (Environment)

with Memory MTArray Some Pair KMemptr show 7thesis using assms by auto
qed
next
case (KStoptr p)
then show ?thesis
proof (cases b)
case (Value x1)
with Memory MTArray Some Pair KStoptr show 7thesis using assms by simp
next
case (Calldata x2)
with Memory MTArray Some Pair KStoptr show 7thesis using assms by simp
next
case m2: (Memory x3)
with Memory MTArray Some Pair KStoptr show 7thesis using assms by simp
next
case (Storage x4)
then show ?thesis
proof (cases x4)
case (STArray x’ t’)
define m 1 where "m = memory st" and "1 = ShowLy,: (toploc m)"
obtain m’ where m’_def: "Jx. (x, m’) = allocate m" by simp
from assms(1) Memory MTArray Some Pair KStoptr Storage STArray m_def 1_def m’_def
obtain s where *: "fmlookup (storage st) (address env) = Some s" using Let_def by (auto
simp add: Let_def split:option.split_asm)
then show ?thesis
proof (cases "cps2m p 1 x’ t’ s m’")
case None
with Memory MTArray Some Pair KStoptr Storage STArray m_def 1_def m’_def * show
7thesis using assms by simp
next
case s2: (Some a)
with Memory MTArray Some Pair KStoptr Storage STArray m_def 1_def m’_def * show
7?thesis using assms by auto
qed
next
case (STMap x21 x22)
with Memory MTArray Some Pair KStoptr Storage show 7thesis using assms by simp
next
case (STValue x3)
with Memory MTArray Some Pair KStoptr Storage show 7thesis using assms by simp
qed
qed
qed
ged
qed
next
case (MTValue x2)
with Memory show 7thesis using assms by simp
qed
next
case (Storage x4)
then show ?thesis
proof (cases x4)
case (STArray x t)
then show ?thesis
proof (cases a3)
case None
with Storage STArray show 7thesis using assms by simp
next
case (Some a)
then show 7thesis
proof (cases a)
case (Pair a b)
then show ?thesis

37

4 Stores and Environment

proof (cases a)

case
with
next
case
with
next
case
with
next
case
with
qed
qed
qed
next
case (STMap
then show

(KValue x1)
Storage STArray Some Pair

(KCDptr x2)
Storage STArray Some Pair

(KMemptr x3)
Storage STArray Some Pair

(KStoptr x4)
Storage STArray Some Pair

t t’)
?thesis

proof (cases a3)

case None

show

show

show

show

?thesis

?thesis

?thesis

?thesis

using

using

using

using

with Storage STMap show ?thesis using assms by simp

next

case (Some a)

then show 7thesis

proof (cases a)
case (Pair a b)
then show ?thesis
proof (cases a)

case
with

next
case
with

next
case
with

next
case
with

qed

ged
qged
next

(KValue x1)
Storage STMap Some Pair
(KCDptr x2)
Storage STMap Some Pair
(KMemptr x3)
Storage STMap Some Pair
(KStoptr x4)

Storage STMap Some Pair

case (STValue x3)
with Storage show ?thesis using assms by simp

qed
qed

end

38

show

show

show

show

?thesis

?thesis

?thesis

?thesis

using

using

using

using

assms

assms

assms

assms

assms

assms

assms

assms

by

by

by

by

by

by

by

simp

simp

simp

auto

simp

simp

simp

auto

5 Expressions and Statements

In this chapter, we formalize expressions, declarations, and statements. The results up to here form the core of
our Solidity semantics.

5.1 Statements (Statements)

theory Statements
imports Environment StateMonad
begin

5.1.1 Syntax

Expressions

datatype L = Id Identifier
| Ref Identifier "E list"
and E = INT nat int
UINT nat int
ADDRESS String.literal
BALANCE E
THIS
SENDER

CALL Identifier "E list"
ECALL E Identifier "E list" E

Statements

datatype S = SKIP
| BLOCK "(Identifier X Type) X (E option)" S
| ASSIGN L E

| TRANSFER E E

| coMP S S

/

| WHILE E S

/
/

INVOKE Identifier "E list"
EXTERNAL E Identifier "E list" E

abbreviation
"vbits=1{8,16,24,32,40,48,56,64,72,80,88,96,104,112,120, 128,
136,144,152,160,168,176,184,192,200,208,216,224,232,240,248,256}"

lemma vbits_max[simp] :
assumes "bl € vbits"
and "b2 € vbits"
shows "(max bl b2) € vbits"
proof -

39

5 Expressions and Statements

consider (b1) "max bl b2 = b1" | (b2) "max bl b2 = b2" by (metis max_def)
then show 7thesis
proof cases
case bl
then show 7thesis using assms(1) by simp
next
case b2
then show 7thesis using assms(2) by simp
qed
qed

lemma vbits_ge_0: "(x::nat)€vbits =—> x>0" by auto

5.1.2 Contracts

A contract consists of methods or storage variables. A method is a triple consisting of
o A list of formal parameters
e A statement

e An optional return value

datatype Member = Method "(Identifier x Type) list X S x E option"
| Var STypes

A procedure environment assigns a contract to an address. A contract consists of
e An assignment of members to identifiers
e An optional fallback statement which is executed after money is beeing transferred to the contract.

https://docs.soliditylang.org/en /v0.8.6 /contracts.html#fallback-function

type__synonym Environmentp = "(Address, (Identifier, Member) fmap X S) fmap"

definition init::"(Identifier, Member) fmap = Identifier = Environment = Environment"
where "init ct i e = (case fmlookup ct i of
Some (Var tp) = updateEnvDup i (Storage tp) (Storeloc i) e
[_ = e

lemma init_si11[simp]:
assumes "fmlookup ct i = Some (Var tp)"
shows "init ct i e = updateEnvDup i (Storage tp) (Storeloc i) e"
using assms init_def by simp

lemma init_s12[simp]:
assumes "i [€]| fmdom (denvalue e)"
shows "init ct i e = e"
proof (cases "fmlookup ct i")
case None
then show 7thesis using init_def by simp
next
case (Some a)
then show 7thesis
proof (cases a)
case (Method x1)
with Some show ?7thesis using init_def by simp
next
case (Var tp)
with Some have "init ct i e = updateEnvDup i (Storage tp) (Storeloc i) e" using init_def by simp
moreover from assms have "updateEnvDup i (Storage tp) (Storeloc i) e = e" by auto
ultimately show ?thesis by simp
qed
qed

40

https://docs.soliditylang.org/en/v0.8.6/contracts.html#fallback-function

lemma init_s13[simp]:
assumes "fmlookup ct i = Some (Var tp)"
and "— i |€| fmdom (denvalue e)"
shows "init ct i e = updateEnv i (Storage tp) (Storeloc i) e"
using assms init_def by auto

lemma init_s21[simp]:
assumes "fmlookup ct i = None"
shows "init ct i e = e"
using assms init_def by auto

lemma init_s22[simp]:
assumes "fmlookup ct i = Some (Method m)"
shows "init ct i e = e"
using assms init_def by auto

lemma init_commte: "comp_fun_commute (init ct)"
proof
fix xy
show "init ct y o init ct x = init ct x o init ct y"
proof
fix e
show "(init ct y o init ct x) e = (init ct x o init ct y) e"
proof (cases "fmlookup ct x")
case None
then show ?thesis by simp
next
case s1: (Some a)
then show ?thesis
proof (cases a)
case (Method x1)
with s1 show ?thesis by simp
next
case v1: (Var tp)
then show ?thesis
proof (cases "x |€| fmdom (denvalue e)")
case True
with s1 v1 have *: "init ct x e = e" by auto
then show 7thesis
proof (cases "fmlookup ct y")
case None
then show ?thesis by simp
next
case s2: (Some a)
then show ?thesis
proof (cases a)
case (Method x1)
with s2 show ?thesis by simp
next
case v2: (Var tp’)
then show ?thesis
proof (cases "y |€| fmdom (denvalue e)")
case tl1: True

with s1 vl True s2 v2 show 7thesis by fastforce
next

5.1 Statements (Statements)

define e’ where "e’ = updateEnv y (Storage tp’) (Storeloc y) e"

case False
with s2 v2 have "init ct y e = e’" using e’_def by auto
with s1 vl True e’_def * show 7thesis by auto
qed
qed
qged
next
define e’ where "e’ = updateEnv x (Storage tp) (Storeloc x) e"

41

5 Expressions and Statements

case f1: False
with s1 vl have *: "init ct x e = e’" using e’_def by auto
then show ?7thesis
proof (cases "fmlookup ct y")
case None
then show ?thesis by simp
next
case s3: (Some a)
then show ?thesis
proof (cases a)
case (Method x1)
with s3 show ?thesis by simp
next
case v2: (Var tp’)
then show ?thesis
proof (cases "y |€| fmdom (denvalue e)")
case t1: True
with e’_def have "y |€| fmdom (denvalue e’)" by simp
with s1 s3 vl f1 v2 show ?thesis using e’_def by fastforce
next
define f’ where "f’ = updateEnv y (Storage tp’) (Storeloc y) e"
define e’’ where "e’’ = updateEnv y (Storage tp’) (Storeloc y) e’"
case f2: False
with s3 v2 have **: "init ct y e = £’" using f’_def by auto
show ?thesis
proof (cases "y = x")
case True
with s3 v2 e’_def have "init ct y e’ = e’" by simp
moreover from s3 v2 True f’_def have "init ct x f’ = f°" by simp
ultimately show ?thesis using True by simp
next
define f’’ where "f’’ = updateEnv x (Storage tp) (Storeloc x) f’"
case f3: False
with f2 have "— y |€/| fmdom (denvalue e’)" using e’_def by simp
with s3 v2 e’’_def have "init ct y e’ = e’’" by auto
with * have "(init ct y o init ct x) e = e’’" by simp
moreover have "init ct x £’ = f’°"
proof -
from s1 v1 have "init ct x f’ = updateEnvDup x (Storage tp) (Storeloc x) f’" by
simp
moreover from f1 £3 have "x |¢| fmdom (denvalue f’)" using f’_def by simp
ultimately show ?thesis using f’’_def by auto
qed
moreover from f’’_def e’’_def f’_def e’_def f3 have "Some f’’ = Some e’’" using
env_reorder_neq by simp
ultimately show ?thesis using ** by simp
qged
qed
qed
qed
qed
qed
qed
qed
qed

lemma init_address[simp]:

"address (init ct i e) = address e A sender (init ct i e) = sender e"
proof (cases "fmlookup ct i")

case None

then show 7thesis by simp
next

case (Some a)

show ?thesis

42

5.1 Statements (Statements)

proof (cases a)
case (Method x1)
with Some show ?7thesis by simp
next
case (Var tp)
with Some show ?7thesis using updateEnvDup_address updateEnvDup_sender by simp
qed
qed

lemma init_sender[simp]:
"sender (init ct i e) = sender e"
proof (cases "fmlookup ct i")
case None
then show 7thesis by simp
next
case (Some a)
show 7thesis
proof (cases a)
case (Method x1)
with Some show 7thesis by simp
next
case (Var tp)
with Some show 7thesis using updateEnvDup_sender by simp
qed
qed

lemma init_svalue[simp]:
"svalue (init ct i e) = svalue e"
proof (cases "fmlookup ct i")
case None
then show 7thesis by simp
next
case (Some a)
show 7thesis
proof (cases a)
case (Method x1)
with Some show ?7thesis by simp
next
case (Var tp)
with Some show ?7thesis using updateEnvDup_svalue by simp
qed
qed

lemma ffold_init_ad_same[rule_format]: "Ve’. ffold (init ct) e xs = e’ —> address e’ = address e A
sender e’ = sender e AN svalue e’ = svalue e
proof (induct xs)
case empty
then show 7case by (simp add: ffold_def)
next
case (insert x xs)
then have *: "ffold (init ct) e (finsert x xs) =
init ct x (ffold (init ct) e xs)" using FSet.comp_fun_commute.ffold_finsert[OF init_commte] by simp
show 7case
proof (rule allI[OF impI])
fix e’ assume **: "ffold (init ct) e (finsert x xs) = e’"
with * obtain e’’ where ***: "ffold (init ct) e xs = e’’" by simp
with insert have "address e’’ = address e A sender e’’ = sender e A svalue e’’ = svalue e" by
blast
with * ** *x* show "address e’ = address e A sender e’ = sender e A svalue e’ = svalue e" using
init_address init_sender init_svalue by metis
qed
qed

lemma ffold_init_dom:

43

5 Expressions and Statements

"fmdom (denvalue (ffold (init ct) e xs)) |C| fmdom (denvalue e) |U| xs"
proof (induct "xs")
case empty
then show ?case
proof
fix x
assume "x |€| fmdom (denvalue (ffold (init ct) e {[[}))"
moreover have "ffold (init ct) e {/[|} = e" using FSet.comp_fun_commute.ffold_empty[OF init_commte,
of "init ct" e] by simp
ultimately show "x [€| fmdom (denvalue e) |U| {/[/}" by simp
qed
next
case (insert x xs)
then have *: "ffold (init ct) e (finsert x xs) =
init ct x (ffold (init ct) e xs)" using FSet.comp_fun_commute.ffold_finsert[OF init_commte] by simp

show 7case
proof
fix x’ assume "x’ [€| fmdom (denvalue (ffold (init ct) e (finsert x xs)))"
with * have *x: "x’ |€| fmdom (denvalue (init ct x (ffold (init ct) e xs)))" by simp
then consider "x’ |€| fmdom (denvalue (ffold (init ct) e xs))" | "x’=x"
proof (cases "fmlookup ct x")
case None
then show ?thesis using that ** by simp
next
case (Some a)
then show ?thesis
proof (cases a)
case (Method x1)
then show ?thesis using Some ** that by simp
next
case (Var x2)
show ?thesis
proof (cases "x=x’")
case True
then show 7thesis using that by simp
next
case False
then have "fmlookup (denvalue (updateEnvDup x (Storage x2) (Storeloc x) (ffold (init ct) e
xs))) x’ = fmlookup (denvalue (ffold (init ct) e xs)) x’" using updateEnvDup_dup by simp
moreover from ** Some Var have **x:"x’ |€| fmdom (denvalue (updateEnvDup x (Storage x2)
(Storeloc x) (ffold (init ct) e xs)))" by simp
ultimately have "x’ [€| fmdom (denvalue (ffold (init ct) e xs))" by (simp add:
fmlookup_dom_iff)
then show 7thesis using that by simp
qed
ged
qed
then show "x’ |€| fmdom (denvalue e) |U| finsert x xs"
proof cases
case 1
then show ?thesis using insert.hyps by auto
next
case 2
then show ?thesis by simp
qed
qed
qed

lemma ffold_init_fmap:
assumes "fmlookup ct i = Some (Var tp)"
and "i |¢/| fmdom (denvalue e)"
shows "i|€|xs == fmlookup (denvalue (ffold (init ct) e xs)) i = Some (Storage tp, Storeloc i)"
proof (induct "xs")

44

5.1 Statements (Statements)

case empty

then show 7case by simp
next

case (insert x xs)

then have *: "ffold (init ct) e (finsert x xs) =
init ct x (ffold (init ct) e xs)" using FSet.comp_fun_commute.ffold_finsert[OF init_commte] by simp

from insert.prems consider (a) "i [€]| xs" | (b) "= i |[€] xs AN i = x" by auto
then show "fmlookup (denvalue (ffold (init ct) e (finsert x xs))) i = Some (Storage tp, Storeloc i)"
proof cases
case a
with insert.hyps(2) have "fmlookup (denvalue (ffold (init ct) e xs)) i = Some (Storage tp, Storeloc
i)" by simp
moreover have "fmlookup (denvalue (init ct x (ffold (init ct) e xs))) i = fmlookup (denvalue
(ffold (init ct) e xs)) i"
proof (cases "fmlookup ct x")
case None
then show ?thesis by simp
next
case (Some a)
then show 7thesis
proof (cases a)
case (Method x1)
with Some show 7thesis by simp
next

case (Var x2)
with Some have "init ct x (ffold (init ct) e xs) = updateEnvDup x (Storage x2) (Storeloc x)

(ffold (init ct) e xs)" using init_def[of ct x "(ffold (init ct) e xs)"] by simp
moreover from insert a have "i#x" by auto
then have "fmlookup (denvalue (updateEnvDup x (Storage x2) (Storeloc x) (ffold (init ct) e
xs))) i = fmlookup (denvalue (ffold (init ct) e xs)) i" using updateEnvDup_dup[of x i] by simp
ultimately show 7thesis by simp
qged
qed
ultimately show ?thesis using * by simp
next
case b
with assms(1) have "fmlookup ct x = Some (Var tp)" by simp
moreover from b assms(2) have "— x |€| fmdom (denvalue (ffold (init ct) e xs))" using

ffold_init_dom by auto
ultimately have "init ct x (ffold (init ct) e xs) = updateEnv x (Storage tp) (Storeloc x) (ffold
(init ct) e xs)" by auto
with b * show ?thesis by simp
qed
qed

The following definition allows for a more fine-grained configuration of the code generator.

definition ffold_init::"(String.literal, Member) fmap = Environment = String.literal fset =
Environment" where

<ffold_init ct a ¢ = ffold (init ct) a c>
declare ffold_init_def [simp]

lemma ffold_init_code [code]:
<ffold_init ct a ¢ = fold (init ct) (remdups (sorted_list_of_set (fset c))) a>

using comp_fun_commute_on.fold_set_fold_remdups ffold.rep_eq
ffold_init_def init_commte sorted_list_of_fset.rep_eq
sorted_list_of_fset_simps (1)

by (metis comp_fun_commute.comp_fun_commute comp_fun_commute_on.intro order_refl)

lemma bind_case_stackvalue_cong [fundef_cong]:
assumes "x = x’"
and "Av. x = KValue v = f v s = f’ v s"
and "Ap. x = KCDptr p = gp s =g’ p s"
and "Ap. x = KMemptr p = hp s =h’ p s"

45

5 Expressions and Statements

and "Ap. x = KStoptr p = i ps =1’ p s"
shows "(case x of KValue v = f v | KCDptr p = g p | KMemptr p = h p | KStoptr p = i p) s
= (case x’ of KValue v = f’ v | KCDptr p = g’ p | KMemptr p = h’ p | KStoptr p = i’ p) s"

using assms by (cases x, auto)

lemma bind_case_type_cong [fundef_cong]:

assumes "x = x’"
and "At. x = Value t = f t s = f’ t s"

and "At. x = Calldata t = gt s =g’ t s"
and "At. x = Memory t = ht s = h’ t s"
and "At. x = Storage t = it s =i’ t s"

shows "(case x of Value t = f t | Calldatat = gt | Memory t = h t | Storage t = it) s
= (case x’ of Value t = f’ t | Calldata t = g’ t | Memory t = h’ t | Storage t = i’ t) s"

using assms by (cases x, auto)

lemma bind_case_denvalue_cong [fundef_cong]:
assumes "x = x’"
and "Aa. x = (Stackloc a) = f as = f’ a s"
and "Aa. x = (Storeloc a) — gas =g’ as"
shows "(case x of (Stackloc a) = f a | (Storeloc a) = g a) s
= (case x’ of (Stackloc a) = f’ a | (Storeloc a) = g’ a) s"

using assms by (cases x, auto)

lemma bind_case_mtypes_cong [fundef_cong]:
assumes "x = x’"
and "Aa t. x = (MTArray at) = fats==f"ats"
and "Ap. x = (MTValue p) = gp s =g’ p s"
shows "(case x of (MTArray a t) = f a t | (MIValue p) = g p) s
= (case x’ of (MTArray a t) = f’ a t | (MIValue p) = g’ p) s"

using assms by (cases x, auto)

lemma bind_case_stypes_cong [fundef_cong]:
assumes "x = x’"
and "Aa t. x = (STArray at) = fats=7f"ats"
and "Aat. x = (STMap at) = gats =g’ at s"
and "Ap. x = (STValue p) = hps =h’ p s"
shows "(case x of (STArray a t) = f at | (STMap a t) = g a t | (STValue p) = h p) s
= (case x’ of (STArray at) = f’ at | (STMap a t) = g’ a t | (STValue p) = h’ p) s"

using assms by (cases x, auto)

lemma bind_case_types_cong [fundef_cong]:
assumes "x = x’"
and "Aa. x = (TSInt a) = f a s = f’ a s"
and "Aa. x = (TUInt a) = gas =g’ a s"
and "x = TBool = h s = h’ s"
and "x = TAddr = 1 s = i’ 8"
shows "(case x of (TSInt a) = f a | (TUInt a) = g a | TBool = h | TAddr = i) s
= (case x’ of (TSInt a) = f’ a | (TUInt a) = g’ a | TBool = h’ | TAddr = i’) s"

using assms by (cases x, auto)

lemma bind_case_contract_cong [fundef_cong]:
assumes "x = x’"
and "Aa. x = Method a =—> f a s = f’ a s"
and "Aa. x =Vara = gas =g’ as"
shows "(case x of (Method a) = f a | (Var a) = g a) s
= (case x’ of (Method a) = f’ a | (Var a) = g’ a) s"
using assms by (cases x, auto)

lemma bind_case_memoryvalue_cong [fundef_cong]:
assumes "x = x’"
and "Aa. x = MValue a = f a s = f’ a s"
and "Aa. x = MPointer a =—> ga s =g’ a s"
shows "(case x of (MValue a) = f a | (MPointer a) = g a) s
= (case x’ of (MValue a) = f’ a | (MPointer a) = g’ a) s"

46

5.1 Statements (Statements)

using assms by (cases x, auto)

abbreviation 1ift
"(E = Environmentp = Environment = Calldatal = (Stackvalue * Type, Ex, State) state_monad)
= (Types = Types = Valuetype = Valuetype = (Valuetype * Types) option)
= E = E = Environmentp = Environment = CalldataT = (Stackvalue * Type, Ex, State) state_monad"
where
"lift expr f el e2 e, e cd =
(do {
kvl < expr el e, e cd;
(case kvl of
(KValue v1, Value t1) = (do
{
kv2 < expr e2 e, e cd;
(case kv2 of
(KValue v2, Value t2) =
(case f t1 t2 vl v2 of
Some (v, t) = return (KValue v, Value t)
| None = throw Err)
| _ = (throw Err::(Stackvalue * Type, Ex, State) state_monad))

»
| _ = (throw Err::(Stackvalue * Type, Ex, State) state_monad))

}) "

abbreviation gascheck ::
"(State = Gas) = (unit, Ex, State) state_monad"
where
"gascheck check =
do {
g < (applyf check::(Gas, Ex, State) state_monad);
(assert Gas (Ast. gas st < g) (modify (Ast. st (gas:=gas st - g|))::(unit, Ex, State) state_monad))

}n

5.1.3 Semantics

datatype LType = LStackloc Location
| LMemloc Location
| LStoreloc Location

locale statement_with_gas =
fixes costs :: "S= Environmentp => Environment => CalldataT => State => Gas"
and costs. :: "E= Environmentp => Environment => CalldataT = State = Gas"
assumes while_not_zero[termination_simp]: "/\e e, cd st ex s0. 0 < (costs (WHILE ex s0) e, e cd st) "
and call_not_zero[termination_simp]: "/e e, cd st i ix. 0 < (costs. (CALL i ix) e, e cd st)"
and ecall_not_zero[termination_simp]: "/e e, cd st a i ix val. 0 < (costs. (ECALL a i ix val) e,
e cd st)"
and invoke_not_zero[termination_simp]: "/\e e, cd st i xe. 0 < (costs (INVOKE i xe) e, e cd st)"
and external_not_zero[termination_simp]: "/\e e, cd st ad i xe val. 0 < (costs (EXTERNAL ad i xe
val) e, e cd st)"
and transfer_not_zero[termination_simp]: "/\e e, cd st ex ad. 0 < (costs (TRANSFER ad ex) e, e cd
st)"
begin

function msel::"bool = MTypes = Location => E list => Environmentp => Environment = Calldatal =

(Location * MTypes, Ex, State) state_monad"
and ssel::"STypes = Location = E list = Environmentp = Environment = CalldataT = (Location

* STypes, Ex, State) state_monad"
and lexp :: "L = Environmentp = Environment = CalldataT = (LType * Type, Ex, State)

state_monad"
and expr::"E = Environmentp = Environment = CalldataT = (Stackvalue * Type, Ex, State)

state_monad"
and load :: "bool = (Identifier x Type) list = E list = Environmentp = Environment =-
CalldataT = State = Enviromment = CalldataT = (Environment X CalldataT X State, Ex, State)

47

5 Expressions and Statements

state_monad"

and rexp::"L = Environmentp = Environment = CalldataT = (Stackvalue * Type, Ex, State)
state_monad"

and stmt :: "S = Environmentp = Environment = CalldataT =- (unit, Ex, State) state_monad"
where
"msel _ _ _ [] _ _ _ st = throw Err st"
| "msel _ (MTValue _) _ _ _ _ _ st = throw Err st"
| "msel _ (MTArray al t) loc [x] e, env cd st =
(do {

kv < expr x ep env cd;
(case kv of
(KValue v, Value t’) =
(if less t’ (TUInt 256) v (ShowL;n: al) = Some (ShowLpoo,; True, TBool)

then return (hash loc v, t)
else throw Err)

| _ = throw Err)

}) st"

| "msel mm (MTArray al t) loc (x # y # ys) ep env cd st =
(do {
kv < expr x ep env cd;
(case kv of
(KValue v, Value t’) =
(if less t’ (TUInt 256) v (ShowL;n: al) = Some (ShowLy,.; True, TBool)
then do {
s « applyf (Ast. if mm then memory st else cd);
(case accessStore (hash loc v) s of
Some (MPointer 1) = msel mm t 1 (y#ys) e, env cd
| _ = throw Err)
} else throw Err)
| _ = throw Err)

}) st
| "ssel tp loc Nil _ _ _ st = return (loc, tp) st"
| "ssel (STValue _) _ (_ # _) _ _ _ st = throw Err st"
| "ssel (STArray al t) loc (x # xs) e, env cd st =
(do {

kv < expr x ep env cd;
(case kv of
(KValue v, Value t’) =
(if less t’ (TUInt 256) v (ShowL;n: al) = Some (ShowLpoo,; True, TBool)
then ssel t (hash loc v) xs e, env cd
else throw Err)
| _ = throw Err)
}) st"
| "ssel (STMap _ t) loc (x # xs) ep env cd st =
(do {
kv < expr x e, env cd;
(case kv of
(Kvalue v, _) = ssel t (hash loc v) xs e, env cd
| _ = throw Err)
}) st
| "lexp (Id i) _ e _ st =
(case fmlookup (denvalue e) i of
Some (tp, (Stackloc 1)) = return (LStackloc 1, tp)
| Some (tp, (Storeloc 1)) = return (LStoreloc 1, tp)
| _ = throw Err) st"
| "lexp (Ref i r) e, e cd st =
(case fmlookup (denvalue e) i of
Some (tp, Stackloc 1) =
do {
k + applyf (Ast. accessStore 1 (stack st));
(case k of
Some (KCDptr _) = throw Err
| Some (KMemptr 1°) =

48

5.1 Statements (Statements)

(case tp of
Memory t =
do {
(1°°, t’) < msel True t 1’ r e, e cd;
return (LMemloc 1°’, Memory t’)
F}
| _ = throw Err)
| Some (KStoptr 1°) =
(case tp of
Storage t =
do {
(1’7, t’) <~ ssel t 1’ r e, e cd;
return (LStoreloc 1’°’, Storage t’)
}
| _ = throw Err)
| Some (KValue _) = throw Err
| None = throw Err)
}
| Some (tp, Storeloc 1) =
(case tp of
Storage t =
do {
(1’, t’) < ssel t 1 r e, e cd;
return (LStoreloc 1’, Storage t’)
F
| _ = throw Err)
| None = throw Err) st"
| "expr (E.INT b x) e, e cd st =
(do {
gascheck (costs. (E.INT b x) ep e cd);
(if (b € vbits)
then (return (KValue (createSInt b x), Value (TSInt b)))
else (throw Err))
}) st
| "expr (UINT b x) e, e cd st =
(do {
gascheck (costs. (UINT b x) e, e cd);
(if (b € vbits)
then (return (KValue (createUInt b x), Value (TUInt b)))
else (throw Err))
}) st"
| "expr (ADDRESS ad) e, e cd st =
(do {
gascheck (costs. (ADDRESS ad) e, e cd);
return (KValue ad, Value TAddr)
}) st
| "expr (BALANCE ad) e, e cd st =
(do {
gascheck (costs. (BALANCE ad) e, e cd);
kv < expr ad e, e cd;
(case kv of
(KValue adv, Value TAddr) =
return (KValue (accessBalance (accounts st) adv), Value (TUInt 256))
| _ = throw Err)
}) st
| "expr THIS e, e cd st =
(do {
gascheck (costs. THIS e, e cd);
return (KValue (address e), Value TAddr)
}) st
| "expr SENDER e, e cd st =
(do {
gascheck (costs. SENDER e, e cd);
return (KValue (sender e), Value TAddr)

49

5 Expressions and Statements

» st
| "expr VALUE e, e cd st =
(do {
gascheck (costs. VALUE e, e cd);
return (KValue (svalue e), Value (TUInt 256))
}) st
| "expr TRUE e, e cd st =
(do {
gascheck (costs. TRUE e, e cd);
return (KValue (ShowLyoo; True), Value TBool)
}) st"
| "expr FALSE e, e cd st =
(do {
gascheck (costs. FALSE e, e cd);
return (KValue (ShowLy,,; False), Value TBool)
}) st
| "expr (NOT x) e, e cd st =
(do {
gascheck (costs. (NOT x) ep e cd);
kv < expr x e, e cd;
(case kv of
(KValue v, Value t) =
(if v = ShowLpoo; True
then expr FALSE e, e cd
else (if v = ShowLpo,o; False
then expr TRUE e, e cd
else throw Err))
| _ = throw Err)
}) st"
| "expr (PLUS el e2) e, e cd st = (gascheck (costs. (PLUS el e2) e, e cd) >= (A_. 1lift expr add el e2
ep e cd)) st"
| "expr (MINUS el e2) e, e cd st = (gascheck (costs. (MINUS el e2) e, e cd) >= (A_. lift expr sub el
e2 e, e cd)) st"
| "expr (LESS el e2) e, e cd st = (gascheck (costs. (LESS el e2) e, e cd) >= (A_. 1lift expr less el e2
ep e cd)) st
| "expr (EQUAL el e2) e, e cd st = (gascheck (costs. (EQUAL el e2) e, e cd) >= (_. lift expr equal el
e2 e, e cd)) st"
| "expr (AND el e2) e, e cd st = (gascheck (costs. (AND el e2) e, e cd) >= (A_. 1lift expr vtand el e2
ep e cd)) st"
| "expr (OR el e2) e, e cd st = (gascheck (costs. (OR el e2) e, e cd) >= (A_. lift expr vtor el e2 e,
e cd)) st"
| "expr (LVAL i) e, e cd st =
(do {
gascheck (costs. (LVAL i) e, e cd);
rexp i ep e cd

}) st"

| "expr (CALL i xe) e, e cd st =
(do {
gascheck (costs. (CALL i xe) ep e cd);
(case fmlookup e, (address e) of
Some (ct, _) =
(case fmlookup ct i of
Some (Method (fp, f, Some x)) =
let e’ = ffold_init ct (emptyEnv (address e) (sender e) (svalue e)) (fmdom ct)
in (do {
st’ <+ applyf (Ast. st(stack:=emptyStorel));
(e’’, cd’, st’’) < load False fp xe e, e’ emptyStore st’ e cd;
st’’’ < get;
put st’’;
stmt f e, e’’ cd’;
IV < expr x ep e’’ cd’;
modify (Ast. st(stack:=stack st’’’, memory := memory st’’’)));
return rv

50

»

| _ = throw Err)

| None = throw Err)

}) st"

5.1 Statements (Statements)

| "expr (ECALL ad i xe val) e, e cd st =

(do {

gascheck (costs. (ECALL ad i xe val) e, e cd);
kad < expr ad e, e cd;

(case kad of

(KValue adv, Value TAddr) =
(case fmlookup e, adv of
Some (ct, _) =
(case fmlookup ct i of
Some (Method (fp, f, Some x)) =
(do {

kv < expr val ep e cd;

(case kv of

I

»

(KValue v, Value t) =

let e’

= ffold_init ct (emptyEnv adv (address e) v) (fmdom ct)

in (do {
st’ < applyf (Ast. st(stack:=emptyStore, memory:=emptyStore|) ;

(e’?,

cd’, st’’) < load True fp xe e, e’ emptyStore st’ e cd;

st’’’ < get;
(case transfer (address e) adv v (accounts st’’) of
Some acc =

}

do {

put (st’’(accounts := acc|));

stmt f e, e’’ cd’;

IV < expr x ep e’’ cd’;

modify (Ast. st(stack:=stack st’’’, memory := memory st’’’)));
return rv

| None = throw Err)

»

= throw Err)

| _ = throw Err)

| None => throw Err)

| _ = throw Err)

}) st"

| "load cp ((ip, tp)#pl) (e#el) e, e,’ cd’ st’ e, cd st =

(do {

(v, t) < expr e e, e, cd;

st’’ < get;
put st’;

(cd’’, ey’’) 4+ decl i, t, (Some (v,t)) cp cd (memory st’’) cd’ e,’;

st’’’ < get;

put st’’;

load cp pl el e, e,’’ cd’’ st’’’ e, cd

}) st
| "load _ [] (_#_)
| "load _ (_#_.) []

throw Err st"
throw Err st"

9]
(33
[}

st

| "load _ [] [] _ ey’ cd’ st’ e, cd st = return (e,’, cd’, st’) st"

| "rexp (Id i) ep e cd st

(case fmlookup (denvalue e) i of
Some (tp, Stackloc 1) =

do {

s < applyf (Ast. accessStore 1 (stack st));
(case s of
Some (KValue v) = return (KValue v, tp)

| Some (KCDptr p) = return (KCDptr p, tp)
| Some (KMemptr p) = return (KMemptr p, tp)
| Some (KStoptr p) = return (KStoptr p, tp)

51

5 Expressions and Statements

| _ = throw Err)
}

| Some (Storage (STValue t), Storeloc 1) =
do {

so ¢+ applyf (Ast. fmlookup (storage st) (address e));
(case so of

Some s = return (KValue (accessStorage t 1 s), Value t)
| None = throw Err)
}

_ = throw Err) st"
| "rexp (Ref i r) e, e cd st =

(case fmlookup (denvalue e) i of

Some (tp, (Stackloc 1)) =
do {

| Some (Storage (STArray x t), Storeloc 1) = return (KStoptr 1, Storage (STArray x t))
/

kv < applyf (Ast. accessStore 1 (stack st));
(case kv of

Some (KCDptr 1°) =
(case tp of
Calldata t =
do {
(1°’, t’) 4 msel False t 1’ r e, e cd;
(case t’ of
MTValue t’’ =
(case accessStore 1’’ cd of
Some (MValue v) = return (KValue v, Value t’’)

| _ = throw Err)
| MTArray x t’’ =

(case accessStore 1°’ cd of

Some (MPointer p) = return (KCDptr p, Calldata (MTArray x t’’))
| _ = throw Err))

}
| _ = throw Err)
| Some (KMemptr 1°) =
(case tp of
Memory t =
do {
(1’7, t’) + msel True t 1’ r e, e cd;
(case t’ of
MTValue t’’ =
do {

mv < applyf (Ast. accessStore 1’’ (memory st));
(case mv of

Some (MValue v) = return (KValue v, Value t’’)
| _ = throw Err)
}
| MTArray x t’’ =
do {

mv < applyf (Ast. accessStore 1’’ (memory st));
(case mv of

Some (MPointer p) = return (KMemptr p, Memory (MTArray x t’’))
| _ = throw Err)

}
)
}
| _ = throw Err)
| Some (KStoptr 1°) =
(case tp of
Storage t =
do {
(1°’, t’) ¢ ssel t 1’ r e, e cd;
(case t’ of
STValue t’’ =
do {

52

5.1 Statements (Statements)

so < applyf (Ast. fmlookup (storage st) (address e));
(case so of

Some s = return (KValue (accessStorage t’’ 1°’ s), Value t’’)
| None = throw Err)

}
| STArray _ _ = return (KStoptr 1’’, Storage t’)
| STMap _ _ = return (KStoptr 1’’, Storage t’))

}
| _ = throw Err)
| _ = throw Err)

}
| Some (tp, (Storeloc 1)) =
(case tp of
Storage t =
do {
(1’, t’) < ssel t 1 r e, e cd;
(case t’ of
STValue t’’ =
do {
so < applyf (Ast. fmlookup (storage st) (address e));
(case so of
Some s = return (KValue (accessStorage t’’ 1’ s), Value t’’)
| None = throw Err)
}
| STArray _ _ = return (KStoptr 1’, Storage t’)
| STMap _ _ = return (KStoptr 1’, Storage t’))
}

| _ = throw Err)
| None = throw Err) st"
| "stmt SKIP e, e cd st = gascheck (costs SKIP e, e cd) st"
| "stmt (ASSIGN 1lv ex) e, env cd st =
(do {
gascheck (costs (ASSIGN 1lv ex) e, env cd);
re < expr ex e, env cd;
(case re of
(KValue v, Value t) =
do {
rl < lexp 1v e, env cd;
(case rl of
(LStackloc 1, Value t’) =
(case convert t t’ v of
Some (v’, _) = modify (Ast. st (stack := updateStore 1 (KValue v’) (stack st)))
| None = throw Err)
| (LStoreloc 1, Storage (STValue t’)) =
(case convert t t’ v of
Some (v’, _) =
do {
so < applyf (Ast. fmlookup (storage st) (address env));
(case so of
Some s = modify (Ast. st(storage := fmupd (address env) (fmupd 1 v’ s)
(storage st))
| None = throw Err)
}
| None = throw Err)
| (LMemloc 1, Memory (MTValue t’)) =
(case convert t t’ v of
Some (v’, _) = modify (Ast. st(memory := updateStore 1 (MValue v’) (memory st)|))
| None = throw Err)
| _ = throw Err)
}
| (KCDptr p, Calldata (MTArray x t)) =
do {
rl < lexp 1v e, env cd;
(case rl of

53

5 Expressions and Statements

(LStackloc 1, Memory _) = modify (Ast. st (stack := updateStore 1 (KCDptr p) (stack
st)))
| (LStackloc 1, Storage _) =
do {
sv < applyf (Ast. accessStore 1 (stack st));
(case sv of
Some (KStoptr p’) =
do {
so ¢ applyf (Ast. fmlookup (storage st) (address env));
(case so of
Some s =

(case cpm2s p p’ x t cd s of
Some s’ = modify (Ast. st (storage := fmupd (address env) s’ (storage

st)))
| None = throw Err)
| None = throw Err)
}
| _ = throw Err)
}
| (LStoreloc 1, _) =
do {
so < applyf (Ast. fmlookup (storage st) (address env));
(case so of
Some 5 =
(case cpm2s p 1 x t cd s of
Some s’ = modify (Ast. st (storage := fmupd (address env) s’ (storage st)|)
| None = throw Err)
| None = throw Err)
}
| (LMemloc 1, _) =
do {
cs < applyf (Ast. cpm2m p 1 x t cd (memory st));
(case cs of
Some m = modify (Ast. st (memory := ml)
| None =- throw Err)
}
| _ = throw Err)
}
| (KMemptr p, Memory (MTArray x t)) =
do {
rl < lexp 1v e, env cd;
(case rl of
(LStackloc 1, Memory _) = modify (Ast. st(stack := updateStore 1 (KMemptr p) (stack
st)))
| (LStackloc 1, Storage _) =
do {
sv < applyf (Ast. accessStore 1 (stack st));
(case sv of
Some (KStoptr p’) =
do {
so <« applyf (Ast. fmlookup (storage st) (address env));
(case so of
Some s =
do {
cs < applyf (Ast. cpm2s p p’ x t (memory st) s);
(case cs of
Some s’ = modify (Ast. st (storage := fmupd (address env) s’ (storage
st)))
| None =- throw Err)

}
| None = throw Err)

}
| _ = throw Err)

54

5.1 Statements (Statements)

| (LStoreloc 1, _) =
do {
so < applyf (Ast. fmlookup (storage st) (address env));
(case so of
Some s =
do {

cs < applyf (Ast. cpm2s p 1 x t (memory st) s);
(case cs of

Some s’ = modify (Ast. st (storage := fmupd (address env) s’ (storage

st)))
| None = throw Err)
F
| None = throw Err)
}

| (LMemloc 1, _) = modify (Ast. st (memory := updateStore 1 (MPointer p) (memory st))
| _ = throw Err)

}
| (KStoptr p, Storage (STArray x t)) =
do {
rl < lexp 1lv ep env cd;
(case rl of
(LStackloc 1, Memory _) =
do {
sv < applyf (Ast. accessStore 1 (stack st));
(case sv of
Some (KMemptr p’) =
do {
so < applyf (Ast. fmlookup (storage st) (address env));
(case so of
Some 5 =
do {
cs < applyf (Ast. cps2m p p’ x t s (memory st));
(case cs of
Some m = modify (Ast. st(memory := ml)
| None =- throw Err)
}
| None = throw Err)
}
| _ = throw Err)
}

| (LStackloc 1, Storage _) = modify (Ast. st(stack :=

:= updateStore 1 (KStoptr p) (stack
st))))

| (LStoreloc 1, _) =
do {
so < applyf (Ast. fmlookup (storage st) (address env));
(case so of
Some s =
(case copy p1 x t s of
Some s’ = modify (Ast. st (storage
| None =- throw Err)
| None = throw Err)

:= fmupd (address env) s’ (storage st)))

}
| (LMemloc 1, _) =
do {
so < applyf (Ast. fmlookup (storage st) (address env));
(case so of
Some s =
do {

cs <« applyf (Ast. cps2m p 1 x t s (memory st));
(case cs of

Some m = modify (Ast. st(memory := ml))
| None = throw Err)
}

| None = throw Err)

55

5 Expressions and Statements

}
| _ = throw Err)
}
| (KStoptr p, Storage (STMap t t’)) =
do {
rl < lexp 1v e, env cd;
(case rl of
(LStackloc 1, _) = modify (Ast. st(stack := updateStore 1 (KStoptr p) (stack st)|)
| _ = throw Err)
}
| _ = throw Err)
}) st
| "stmt (COMP sl s2) e, e cd st =
(do {
gascheck (costs (COMP s1 s2) e, e cd);
stmt s1 e, e cd;
stmt s2 e, e cd
}) st
| "stmt (ITE ex sl s2) e, e cd st =
(do {
gascheck (costs (ITE ex s1 s2) ep e cd);
V < expr ex ep e cd;
(case v of
(KValue b, Value TBool) =
(if b = ShowLpoo; True
then stmt s1 e, e cd
else stmt s2 e, e cd)
| _ = throw Err)
}) st"
| "stmt (WHILE ex s0) e, e cd st =
(do {
gascheck (costs (WHILE ex s0) e, e cd);
V < expr ex ep e cd;
(case v of
(KValue b, Value TBool) =
(if b = ShowLpoo; True
then do {
stmt s0 e, e cd;
stmt (WHILE ex s0) e, e cd
}
else return ())
| _ = throw Err)
}) st
| "stmt (INVOKE i xe) e, e cd st =
(do {
gascheck (costs (INVOKE i xe) ep e cd);
(case fmlookup e, (address e) of
Some (ct, _) =
(case fmlookup ct i of
Some (Method (fp, f, None)) =
(let e’ = ffold_init ct (emptyEnv (address e) (sender e) (svalue e)) (fmdom ct)
in (do {
st’ <« applyf (Ast. (st(stack:=emptyStore|));
(e’’, cd’, st’’) < load False fp xe e, e’ emptyStore st’ e cd;
st’’’ < get;

put st’’;

stmt f ep e’’ cd’;

modify (Ast. st(stack:=stack st’’’, memory := memory st’’’)))
»)

| _ = throw Err)
| None =- throw Err)
}) st

56

5.1 Statements (Statements)

| "stmt (EXTERNAL ad i xe val) e, e cd st
(do {

gascheck (costs (EXTERNAL ad i xe val) e, e cd);
kad < expr ad e, e cd;
(case kad of
(KValue adv, Value TAddr) =
(case fmlookup e, adv of
Some (ct, fb) =
(do {
kv < expr val e, e cd;
(case kv of
(KValue v, Value t) =
(case fmlookup ct i of
Some (Method (fp, f, None)) =

let e’ = ffold_init ct (emptyEnv adv (address e) v) (fmdom ct)
in (do {

st’ « applyf (\st. st(stack:=emptyStore, memory:=emptyStore|);
(e’’, cd’, st’’) < load True fp xe e, e’ emptyStore st’ e cd;
st’’’ < get;
(case transfer (address e) adv v (accounts st’’) of
Some acc =
do {

put (st’’(accounts := acc|);
stmt f ep e’’ cd’;

modify (Ast. st(stack:=stack st’’’, memory := memory st’’’)))

}
| None = throw Err)
»
| None =
do {
st’ < get;
(case transfer (address e) adv v (accounts st’) of
Some acc =
do {
st’’ < get;
modify (Ast. st(laccounts :=

= acc,stack:=emptyStore, memory:=emptyStorel));
stmt fb e, (emptyEnv adv (address e) v) cd;

modify (Ast. st(stack:=stack st’’, memory

:= memory st’’|)

}
| None = throw Err)
}
| _ = throw Err)
| _ = throw Err)
»
| None = throw Err)
| _ = throw Err)

}) st"

| "stmt (TRANSFER ad ex) e, e cd st
(do {

gascheck (costs (TRANSFER ad ex) ep e cd);
kv < expr ex e, e cd;
(case kv of
(KValue v, Value t) =
(do {
kv’ < expr ad e, e cd;
(case kv’ of

(KValue adv, Value TAddr) =
(do {
acs < applyf accounts;
(case transfer (address e) adv v acs of
Some acc = (case fmlookup e, adv of
Some (ct, f) =

let e’ = ffold_init ct (emptyEnv adv (address e) v) (fmdom ct)
in (do {

57

5 Expressions and Statements

st’ < get;
modify (Ast. (st(accounts := acc, stack:=emptyStore,
memory :=emptyStorel))) ;
stmt f e, e’ emptyStore;
modify (Ast. st(stack:=stack st’, memory := memory st’|))
»
| None = modify (Ast. (st(accounts := accl))))
| None = throw Err)
»
| _ = throw Err)
»
| _ = throw Err)
}) st
| "stmt (BLOCK ((id0, tp), ex) s) e, e, cd st =
(do {
gascheck (costs (BLOCK ((id0, tp), ex) s) ep e, cd);
(case ex of
None = (do {
mem <— applyf memory;
(cd’, e’) < decl idO tp None False cd mem cd e,;
stmt s ep e’ cd’
»
| Some ex’ = (do {
(v, t) < expr ex’ e, e, cd;
mem <— applyf memory;
(cd’, e’) <+ decl id0 tp (Some (v, t)) False cd mem cd e,;
stmt s ep e’ cd’
)
}) st

by pat_completeness auto

5.1.4 Gas Consumption

lemma 1lift_gas:
assumes "lift expr f el e2 e, e cd st = Normal ((v, t), st4’)"
and "Ast4’ v4 t4. expr el e, e cd st = Normal ((v4, t4), st4’) —> gas st4’ < gas st"
and "Ax1 x y xa ya xla x1b st4’ v4 t4. expr el e, e cd st = Normal (x, y)
— (xa, ya) = x
— xa = KValue xla
—> ya = Value x1b
—> expr e2 e, e cd y = Normal ((v4, t4), st4’)
—> gas st4’ < gas y"
shows "gas st4’ < gas st"
proof (cases "expr el e, e cd st")
case (n a st’)
then show ?7thesis
proof (cases a)
case (Pair b c)
then show ?thesis
proof (cases b)
case (KValue v1)
then show ?thesis
proof (cases c)
case (Value t1)
then show 7thesis
proof (cases "expr e2 e, e cd st’")
case r2: (n a’ st’’)
then show 7thesis
proof (cases a’)
case p2: (Pair b c)
then show ?thesis
proof (cases b)
case v2: (KValue v2)
then show ?thesis

58

5.1 Statements (Statements)

proof (cases c)
case t2: (Value t2)
then show 7thesis
proof (cases "f t1 t2 vi v2")
case None
with assms n Pair KValue Value r2 p2 v2 t2 show 7thesis by simp
next
case (Some a’’)
then show ?thesis
proof (cases a’’)
case p3: (Pair v t)
with assms n Pair KValue Value r2 p2 v2 t2 Some have "gas st4’<gas st’’" by simp
moreover from assms n Pair KValue Value r2 p2 v2 t2 Some have "gas st’’<gas st’"

by simp
moreover from assms n Pair KValue Value r2 p2 v2 t2 Some have '"gas st’<gas st"
by simp
ultimately show ?thesis by arith
qed
qed
next
case (Calldata x2)
with assms n Pair KValue Value r2 p2 v2 show ?thesis by simp
next
case (Memory x3)
with assms n Pair KValue Value r2 p2 v2 show ?thesis by simp
next
case (Storage x4)
with assms n Pair KValue Value r2 p2 v2 show ?thesis by simp
ged
next
case (KCDptr x2)
with assms n Pair KValue Value r2 p2 show 7thesis by simp
next
case (KMemptr x3)
with assms n Pair KValue Value r2 p2 show 7thesis by simp
next
case (KStoptr x4)
with assms n Pair KValue Value r2 p2 show 7thesis by simp
qed
qed
next
case (e x)
with assms n Pair KValue Value show 7thesis by simp
qged
next

case (Calldata x2)
with assms n Pair KValue show 7thesis by simp
next
case (Memory x3)
with assms n Pair KValue show 7thesis by simp
next
case (Storage x4)
with assms n Pair KValue show 7thesis by simp
qged
next
case (KCDptr x2)
with assms n Pair show ?thesis by simp
next
case (KMemptr x3)
with assms n Pair show ?thesis by simp
next
case (KStoptr x4)
with assms n Pair show ?thesis by simp
qed

59

5 Expressions and Statements

qed
next

case (e x)

with assms show ?thesis by simp
qed

lemma msel_ssel_lexp_expr_load_rexp_stmt_dom_gas:
"msel_ssel_lexp_expr_load_rexp_stmt_dom (Inl (Inl (c1, t1, 11, xel, epl, evl, cdl, stl1)))
= (V11’ t1’ st1’. msel c1 t1 11 xel epl evl cdl stl = Normal ((11’°, t1’), st1’) — gas st1’ <
gas st1)"
"msel_ssel_lexp_expr_load_rexp_stmt_dom (Inl (Inr (Inl (t2, 12, xe2, ep2, ev2, cd2, st2))))
= (V12° t2’ st2’. ssel t2 12 xe2 ep2 ev2 cd2 st2 = Normal ((12°, t2’), st2’) — gas st2’ <
gas st2)"
"msel_ssel_lexp_expr_load_rexp_stmt_dom (Inl (Inr (Inr (15, ep5, ev5, cd5, st5))))
= (V15° t5’ st5’. lexp 15 ep5 ev5 cd5 st5 = Normal ((15°, t5°), st5’) — gas st5’ < gas st5)"
"msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inl (e4, ep4, ev4, cd4, st4))))
= (Vst4’ v4 t4. expr e4 ep4 ev4d cd4 st4 = Normal ((v4, t4), st4’) —> gas st4’ < gas st4)"
"msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inr (lcp, lis, lxs, lep, levO, lcd0, 1stO, lev,
lcd, 1st))))
— (Vev cd st st’. load lcp lis 1lxs lep levO lcdO 1stO lev lcd 1st = Normal ((ev, cd, st), st’)
— gas st < gas 1st0 A gas st’ < gas 1lst A address ev = address lev0)"
"msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inr (Inl (13, ep3, ev3, cd3, st3))))
= (V13’ t3’ st3’. rexp 13 ep3 ev3 cd3 st3 = Normal ((13’, t3’), st3’) — gas st3’ < gas st3)"
"msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inr (Inr (s6, ep6, ev6, cd6, st6))))
— (Vst6’. stmt s6 ep6 ev6 cd6 st6 = Normal((), st6’) — gas st6’ < gas st6)"
proof (induct rule: msel_ssel_lexp_expr_load_rexp_stmt.pinduct
[where 7P1.0="Acl t1 11 xel epl evl cdl st1. (V11’ t1’ st1’. msel cl t1 11 xel epl evl cdl stl =
Normal ((11’, t1’), st1’) — gas st1’ < gas st1)"
and ?7P2.0=")\t2 12 xe2 ep2 ev2 cd2 st2. (V12’ t2’ st2’. ssel t2 12 xe2 ep2 ev2 cd2 st2 = Normal
((12°, t2’), st2’) — gas st2’ < gas st2)"
and ?7P3.0="\15 ep5 ev5 cd5 st5. (V15’ t5’ st5’. lexp 15 ep5 ev5 cd5 st5 = Normal ((15°, t5’), st5’)
—> gas stb5’ < gas st5)"
and 7P4.0="Xe4 ep4 ev4 cd4 st4. (Vst4d’ v4 t4d. expr e4 ep4 evd cd4 st4 = Normal ((v4, t4), st4’) —
gas st4’ < gas st4)"
and ?P5.0="MAlcp lis lxs lep levO lcdO 1st0 lev lcd 1lst. (Vev cd st st’. load lcp lis lxs lep
levO 1cd0 1st0 lev lcd 1lst = Normal ((ev, cd, st), st’) — gas st < gas 1stO0 A gas st’ < gas 1lst
A address ev = address lev0)"
and 7P6.0="A13 ep3 ev3 cd3 st3. (V13’ t3’ st3’. rexp 13 ep3 ev3 cd3 st3 = Normal ((13’, t3’), st3’)
— gas st3’ < gas st3)"
and 7P7.0="\s6 ep6 ev6 cd6 st6. (Vst6’. stmt s6 ep6 ev6 cd6 st6 = Normal ((), st6’) — gas st6’ <
gas st6)"
D
case (1 uu uv uw ux uy uz va)
then show ?case using msel.psimps(1) by auto
next
case (2 vb vc vd ve vf vg vh vi)
then show ?case using msel.psimps(2) by auto
next
case (3 vj al t loc x e, env cd st)
then show ?case using msel.psimps(3) by (auto split: if_split_asm Type.split_asm
Stackvalue.split_asm prod.split_asm StateMonad.result.split_asm)
next
case (4 mm al t loc x y ys ep env cd st)
show 7case
proof (rule allI[THEN allI, THEN allIl, OF impI])
fix 11’ t1’ st1’ assume al: "msel mm (MTArray al t) loc (x # y # ys) ep env cd st = Normal ((11°,
t1’), st1’)"
show '"gas st1’ < gas st"
proof (cases "expr x e, env cd st")
case (n a st’)
then show 7thesis
proof (cases a)
case (Pair b c)
then show ?thesis

60

proof (cases b)
case (KValue v)
then show 7thesis
proof (cases c)
case (Value t’)
then show ?7thesis
proof (cases)

5.1 Statements (Statements)

assume 1: "less t’ (TUInt 256) v (ShowL;n: al) = Some (ShowLy,o.; True, TBool)"

then show ?thesis

proof (cases "accessStore (hash loc v) (if mm then memory st’ else cd)")

case None

with 4 al n Pair KValue Value 1 show ?thesis using msel.psimps(4) by simp

next
case (Some a)
then show ?thesis
proof (cases a)
case (MValue x1)

with 4 al n Pair KValue Value Some 1 show 7thesis using msel.psimps(4) by simp

next
case (MPointer 1)

with n Pair KValue Value 1 Some

have "msel mm (MTArray al t) loc (x # y # ys) e, env cd st

env cd st’"

using msel.psimps(4) 4(1) by simp
moreover from n Pair have "gas st’ < gas st" using 4(2) by simp

moreover from al MPointer n Pair KValue Value 1 Some

=msel mmt 1 (y # ys) ep

have "gas st1’ < gas st’" using msel.psimps(4) 4(3) 4(1) by simp
ultimately show ?thesis by simp

ged
qed
next

assume "— less t’ (TUInt 256) v (ShowL;,: al) = Some (ShowLy,o,; True, TBool)"
with 4 al n Pair KValue Value show ?thesis using msel.psimps(4) by simp

qed
next
case (Calldata x2)

with 4 al n Pair KValue show 7thesis using msel.psimps(4) by simp

next
case (Memory x3)

with 4 al n Pair KValue show 7thesis using msel.psimps(4) by simp

next
case (Storage x4)

with 4 al n Pair KValue show 7thesis using msel.psimps(4) by simp

qged
next
case (KCDptr x2)
with 4 al n Pair show ?thesis
next
case (KMemptr x3)
with 4 al n Pair show ?thesis
next
case (KStoptr x4)
with 4 al n Pair show ?thesis
qed
qed
next
case (e x)
with 4 al show 7thesis using msel
qed
qed
next
case (5 tp loc vk vl vm st)

using msel.psimps(4) by simp

using msel.psimps(4) by simp

using msel.psimps(4) by simp

.psimps (4) by simp

then show 7case using ssel.psimps(1) by auto

next

61

5 Expressions and Statements

case (6 vn vo vp vq vr vs vt vu)

then show 7case using ssel.psimps(2) by auto
next

case (7 al t loc x xs ep env cd st)

show 7case

proof (rule allI[THEN allI, THEN alll, OF impI])

fix 127 t2’ st2’ assume al: "ssel (STArray al t) loc (x # xs) e, env cd st = Normal ((12’°, t2’),
St2’)"

show "gas st2’ < gas st"
proof (cases "expr x e, env cd st")
case (n a st’’)
then show ?thesis
proof (cases a)
case (Pair b c)
then show 7thesis
proof (cases b)
case (KValue v)
then show 7thesis
proof (cases c)
case (Value t’)
then show ?thesis
proof (cases)

assume 1: "less t’ (TUInt 256) v (ShowL;,: al) = Some (ShowLp,,; True, TBool)"
with n Pair KValue Value 1

have "ssel (STArray al t) loc (x # xs) e, env cd st = ssel t (hash loc v) xs e, env cd

st’’"
using ssel.psimps(3) 7(1) by simp
moreover from n Pair have "gas st’’ < gas st" using 7(2) by simp
moreover from al n Pair KValue Value 1
have "gas st2’ < gas st’’" using ssel.psimps(3) 7(3) 7(1) by simp
ultimately show ?thesis by simp
next
assume "— less t’ (TUInt 256) v (ShowL;n: al) = Some (ShowLp,o; True, TBool)"
with 7 al n Pair KValue Value show ?thesis using ssel.psimps(3) by simp
qed
next
case (Calldata x2)
with 7 al n Pair KValue show 7thesis using ssel.psimps(3) by simp
next
case (Memory x3)
with 7 al n Pair KValue show 7thesis using ssel.psimps(3) by simp
next
case (Storage x4)
with 7 al n Pair KValue show 7thesis using ssel.psimps(3) by simp
qed
next
case (KCDptr x2)
with 7 al n Pair show ?thesis using ssel.psimps(3) by simp
next
case (KMemptr x3)
with 7 al n Pair show ?thesis using ssel.psimps(3) by simp
next
case (KStoptr x4)
with 7 al n Pair show ?thesis using ssel.psimps(3) by simp
qed
ged
next

case (e e)
with 7 al show ?thesis using ssel.psimps(3) by simp
qed
qed
next
case (8 vv t loc x xs e), env cd st)
show 7case

62

5.1 Statements (Statements)

proof (rule allI[THEN allIl, THEN alll, OF impI])

fix 12’ t2’ st2’ assume al: "ssel (STMap vv t) loc (x # xs) e, env cd st = Normal ((12°, t2’),
St2’)"

show "gas st2’ < gas st"
proof (cases "expr x e, env cd st")
case (n a st’)
then show 7thesis
proof (cases a)
case (Pair b c)
then show ?thesis
proof (cases b)
case (KValue v)
with 8 n Pair have "ssel (STMap vv t) loc (x # xs) e, env cd st = ssel t (hash loc v) xs e,
env cd st’" using ssel.psimps(4) by simp
moreover from n Pair have "gas st’ < gas st" using 8(2) by simp
moreover from al n Pair KValue
have '"gas st2’ < gas st’" using ssel.psimps(4) 8(3) 8(1) by simp
ultimately show ?thesis by simp
next
case (KCDptr x2)
with 8 al n Pair show ?thesis using ssel.psimps(4) by simp
next
case (KMemptr x3)
with 8 al n Pair show ?thesis using ssel.psimps(4) by simp
next
case (KStoptr x4)
with 8 al n Pair show ?thesis using ssel.psimps(4) by simp
qed
ged
next
case (e x)
with 8 a1l show ?thesis using ssel.psimps(4) by simp
qed
qed
next
case (9 i vw e vx st)
then show 7case using lexp.psimps(1)[of i vw e vx st] by (simp split: option.split_asm
Denvalue.split_asm prod.split_asm)
next
case (10 i r e, e cd st)
show 7case
proof (rule allI[THEN alll, THEN alll, OF impI])
fix st5’ xa xaa
assume al: "lexp (Ref i r) e, e cd st = Normal ((st5’, xa), xaa)"
then show "gas xaa < gas st"
proof (cases "fmlookup (denvalue e) i")
case None
with 10 al show ?thesis using lexp.psimps(2) by simp
next
case (Some a)
then show ?thesis
proof (cases a)
case (Pair tp b)
then show ?thesis
proof (cases b)
case (Stackloc 1)
then show ?thesis
proof (cases "accessStore 1 (stack st)")
case None
with 10 al Some Pair Stackloc show ?thesis using lexp.psimps(2) by simp
next
case s2: (Some a)
then show ?thesis
proof (cases a)

63

5 Expressions and Statements

case (KValue x1)
with 10 al Some Pair Stackloc s2 show 7thesis using lexp.psimps(2) by simp
next
case (KCDptr x2)
with 10 al Some Pair Stackloc s2 show 7thesis using lexp.psimps(2) by simp
next
case (KMemptr 1°)
then show ?thesis
proof (cases tp)
case (Value x1)
with 10 al Some Pair Stackloc s2 KMemptr show 7thesis using lexp.psimps(2) by simp
next
case (Calldata x2)
with 10 al Some Pair Stackloc s2 KMemptr show 7thesis using lexp.psimps(2) by simp
next
case (Memory t)
then show 7thesis
proof (cases "msel True t 1’ r e, e cd st")
case (n a s)
with 10 al Some Pair Stackloc s2 KMemptr Memory show ?7thesis using lexp.psimps(2)
by (simp split: prod.split_asm)
next
case (e e)
with 10 al Some Pair Stackloc s2 KMemptr Memory show 7thesis using lexp.psimps(2)
by simp
qged
next
case (Storage x4)
with 10 al Some Pair Stackloc s2 KMemptr show 7thesis using lexp.psimps(2) by simp
qed
next
case (KStoptr 1°)
then show 7thesis
proof (cases tp)
case (Value x1)
with 10 al Some Pair Stackloc s2 KStoptr show ?7thesis using lexp.psimps(2) by simp
next
case (Calldata x2)
with 10 al Some Pair Stackloc s2 KStoptr show ?thesis using lexp.psimps(2) by simp
next
case (Memory t)
with 10 al Some Pair Stackloc s2 KStoptr show ?7thesis using lexp.psimps(2) by simp
next
case (Storage t)
then show 7thesis
proof (cases "ssel t 1’ r e, e cd st")
case (n a s)
with 10 al Some Pair Stackloc s2 KStoptr Storage show ?thesis using lexp.psimps(2)
by (auto split: prod.split_asm)
next
case (e x)
with 10 al Some Pair Stackloc s2 KStoptr Storage show 7thesis using lexp.psimps(2)
by simp
qed
qed
qed
qed
next
case (Storeloc 1)
then show ?thesis
proof (cases tp)
case (Value x1)
with 10 al Some Pair Storeloc show ?thesis using lexp.psimps(2) by simp
next

64

5.1 Statements (Statements)

case (Calldata x2)

with 10 al Some Pair Storeloc show ?thesis using lexp.psimps(2) by simp
next
case (Memory t)

with 10 al Some Pair Storeloc show ?thesis using lexp.psimps(2) by simp
next

case (Storage t)

then show ?thesis

proof (cases "ssel t 1 r e, e cd st")
case (n a s)

with 10 al Some Pair Storeloc Storage show ?7thesis using lexp.psimps(2) by (auto split:
prod.split_asm)

next

case (e x)

with 10 al Some Pair Storeloc Storage show ?thesis using lexp.psimps(2) by simp
qed

qed
qed
qed
qged

qed
next

case (11 b x e, e vy st)
then show ?7case using expr.psimps(1) by (simp split:if_split_asm)
next

case (12 b x e, e vz st)
then show 7case using expr.psimps(2) by (simp split:if_split_asm)
next

case (13 ad e, e wa st)

then show ?case using expr.psimps(3) by simp
next

case (14 ad e, e wb st)

define g where "g = costs. (BALANCE ad) e, e wb st"

show 7case

proof (rule allI[THEN alll, THEN alll, OF impI])
fix t4 xa xaa

assume *: "expr (BALANCE ad) e, e wb st = Normal ((xa, xaa), t4)"
show "gas t4 < gas st"
proof (cases)
assume "gas st < g"
with 14 g def * show 7thesis using expr.psimps(4) by simp
next
assume gcost: "— gas st < g
then show ?thesis
proof (cases "expr ad e, e wb (st(gas := gas st - g)))")
case (n a s)
show ?thesis
proof (cases a)
case (Pair b c)
then show ?thesis
proof (cases b)
case (KValue x1)
then show ?thesis
proof (cases c)
case (Value x1)
then show ?thesis
proof (cases x1)
case (TSInt x1)

with 14 g def * gcost n Pair KValue Value show 7thesis using expr.psimps(4)[of ad e, e
wb st] by simp

next
case (TUInt x2)

with 14 g def * gcost n Pair KValue Value show 7thesis using expr.psimps(4)[of ad e, e
wb st] by simp

65

5 Expressions and Statements

next
case TBool
with 14 g _def * gcost n Pair KValue Value show 7thesis using expr.psimps(4)[of ad e, e
wb st] by simp
next
case TAddr
with 14 g def * gcost n Pair KValue Value show '"gas t4 < gas st" using
expr.psimps (4) [of ad e, e wb st] by simp
qed
next
case (Calldata x2)
with 14 g _def * gcost n Pair KValue show ?thesis using expr.psimps(4)[of ad e, e wb st]
by simp
next
case (Memory x3)
with 14 g def * gcost n Pair KValue show 7?thesis using expr.psimps(4)[of ad e, e wb st]
by simp
next
case (Storage x4)
with 14 g def * gcost n Pair KValue show ?thesis using expr.psimps(4)[of ad e, e wb st]
by simp
qed
next
case (KCDptr x2)
with 14 g _def * gcost n Pair show 7thesis using expr.psimps(4)[of ad e, e wb st] by simp
next
case (KMemptr x3)
with 14 g _def * gcost n Pair show 7thesis using expr.psimps(4)[of ad e, e wb st] by simp
next
case (KStoptr x4)
with 14 g _def * gcost n Pair show 7thesis using expr.psimps(4)[of ad e, e wb st] by simp
qged
qed
next
case (e _)
with 14 g _def * gcost show ?thesis using expr.psimps(4)[of ad e, e wb st] by simp
qed
qged
qed
next
case (15 e, e wc st)
then show ?7case using expr.psimps(5) by simp
next
case (16 e, e wd st)
then show 7case using expr.psimps(6) by simp
next
case (17 e, e wd st)
then show ?7case using expr.psimps(7) by simp
next
case (18 e, e wd st)
then show 7case using expr.psimps(8) by simp
next
case (19 e, e wd st)
then show ?7case using expr.psimps(9) by simp
next
case (20 x e, e cd st)
define g where "g = costs. (NOT x) e, e cd st"
show 7case
proof (rule allI[THEN alll, THEN alll, OF impI])
fix st4’ v4 t4 assume al: "expr (NOT x) e, e cd st = Normal ((v4, t4), st4’)"
show '"gas st4’ < gas st"
proof (cases)
assume '"gas st < g"
with 20 g_def al show 7thesis using expr.psimps by simp

66

5.1 Statements (Statements)

next
assume gcost: "— gas st < g
then show 7thesis
proof (cases "expr x ep, e cd (st(gas := gas st - g)))")
case (n a st’)
then show ?thesis
proof (cases a)
case (Pair b c)
then show ?thesis
proof (cases b)
case (KValue v)
then show ?thesis
proof (cases c)
case (Value t)
then show ?thesis
proof (cases)
assume v_def: "v = ShowLpoo; ITrue”
with 20(1) g_def gcost n Pair KValue Value have "expr (NOT x) e, e cd st = expr FALSE
ep e cd st’" using expr.psimps(10) by simp
moreover from 20(2) g_def gcost n Pair have "gas st’ < gas st" by simp
moreover from 20(1) 20(3) al g_def gcost n Pair KValue Value v_def have "gas st4’ <
gas st’" using expr.psimps(10) by simp
ultimately show ?thesis by arith
next
assume v_def: "— v = ShowLpoo; True"
then show 7thesis
proof (cases)
assume v_def2: "v = ShowLpoo; False"
with 20(1) g_def gcost n Pair KValue Value v_def have "expr (NOT x) ep e cd st =
expr TRUE e, e cd st’" using expr.psimps(10) by simp
moreover from 20(2) g _def gcost n Pair have "gas st’ < gas st" by simp
moreover from 20 al g def gcost n Pair KValue Value v_def v_def2 have "gas st4’ <
gas st’" using expr.psimps(10) by simp
ultimately show 7thesis by arith
next
assume "— v = ShowLp,o.; False"
with 20 al g def gcost n Pair KValue Value v_def show ?thesis using expr.psimps(10)
by simp
qed
qed
next
case (Calldata x2)
with 20 al g_def gcost n Pair KValue show ?thesis using expr.psimps(10) by simp
next
case (Memory x3)
with 20 al g_def gcost n Pair KValue show ?thesis using expr.psimps(10) by simp
next
case (Storage x4)
with 20 al g_def gcost n Pair KValue show ?thesis using expr.psimps(10) by simp
qed
next
case (KCDptr x2)
with 20 al g_def gcost n Pair show ?thesis using expr.psimps(10) by simp
next
case (KMemptr x3)
with 20 al g_def gcost n Pair show ?thesis using expr.psimps(10) by simp
next
case (KStoptr x4)
with 20 al g _def gcost n Pair show ?7thesis using expr.psimps(10) by simp
qed
qed
next
case (e e)
with 20 al g def gcost show 7thesis using expr.psimps(10) by simp

67

5 Expressions and Statements

qed
qed
qed
next
case (21 el e2 e, e cd st)
define g where "g = costs. (PLUS el e2) e, e cd st"
show 7case
proof (rule allI[THEN alll, THEN alll, OF impI])
fix t4 xa xaa assume e_def: "expr (PLUS el e2) e, e cd st = Normal ((xa, xaa), t4)"
then show "gas t4 < gas st"
proof (cases)
assume '"gas st < g"
with 21(1) e_def show ?thesis using expr.psimps(11) g def by simp
next
assume "— gas st < g"
with 21(1) e_def g_def have "lift expr add el e2 e, e cd (st(gas := gas st - g|)) = Normal ((xa,
xaa), t4)" using expr.psimps(11) [of el e2 e, e cd st] by simp
moreover from 21(2) ‘- gas st < g‘ g def have "(/\st4’ v4 t4. expr el e, e cd (st(gas := gas
st - g))) = Normal ((v4, t4), st4’) — gas st4’ < gas (st(gas := gas st - g))))" by simp
moreover from 21(3) ‘- gas st < g‘ g_def have "(Axl1 x y xa ya xla x1b st4’ v4 t4.
expr el e, e cd (st(gas := gas st - g|)) = Normal (x, y) —
(xa, ya) = x =
xa = KValue xla —
ya = Value x1b =—> expr e2 e, e cd y = Normal ((v4, t4), st4’) — gas st4’ < gas y)" by
auto
ultimately show "gas t4 < gas st" using 1lift_gas[of el e, e cd e2 "add" "st(gas := gas st - g)"
xa xaa t4] by simp
qed
qed
next
case (22 el e2 e, e cd st)
define g where "g = costs. (MINUS el e2) e, e cd st"
show 7case
proof (rule allI[THEN allIl, THEN alll, OF impI])
fix t4 xa xaa assume e_def: "expr (MINUS el e2) e, e cd st = Normal ((xa, xaa), t4)"
then show "gas t4 < gas st"
proof (cases)
assume '"gas st < g"
with 22(1) e_def show ?thesis using expr.psimps(12) g_def by simp
next
assume "— gas st < g"
with 22(1) e_def g def have "lift expr sub el e2 e, e cd (st(gas := gas st - g|)) = Normal ((xa,
xaa), t4)" using expr.psimps(12) [of el e2 e, e cd st] by simp
moreover from 22(2) ‘- gas st < g‘ g_def have "(A\st4’ v4 t4. expr el e, e cd (st(gas := gas
st - g))) = Normal ((v4, t4), st4’) —> gas st4’ < gas (st(gas := gas st - g))))" by simp
moreover from 22(3) ‘- gas st < g‘ g_def have "(Axl1 x y xa ya xla x1b st4’ v4 t4.
expr el e, e cd (st(gas := gas st - g|)) = Normal (x, y) —
(xa, ya) = x =
xa = KValue xla —
ya = Value x1b —> expr e2 e, e cd y = Normal ((v4, t4), st4’) —> gas st4’ < gas y)" by
auto
ultimately show "gas t4 < gas st" using 1lift_gas[of el e, e cd e2 "sub" "st(gas := gas st - g))"
xa xaa t4] by simp
qed
qed
next
case (23 el e2 e, e cd st)
define g where "g = costs. (LESS el e2) e, e cd st"
show 7case
proof (rule allI[THEN allIl, THEN alll, OF impI])
fix t4 xa xaa assume e_def: "expr (LESS el e2) e, e cd st = Normal ((xa, xaa), t4)"
then show "gas t4 < gas st"
proof (cases)
assume '"gas st < g"

68

5.1 Statements (Statements)

with 23(1) e_def show ?thesis using expr.psimps(13) g_def by simp
next
assume "— gas st < g"
with 23(1) e_def g _def have "lift expr less el e2 e, e cd (st(gas := gas st - g|)) = Normal ((xa,
xaa), t4)" using expr.psimps(13) [of el e2 e, e cd st] by simp
moreover from 23(2) ‘- gas st < g‘ g_def have "(A\st4’ v4 t4. expr el e, e cd (st(gas := gas
st - g))) = Normal ((v4, t4), st4’) — gas st4’ < gas (st(gas := gas st - g))))" by simp
moreover from 23(3) ‘- gas st < g‘ g_def have "(Axl1 x y xa ya xla x1b st4’ v4 t4.
expr el e, e cd (st(gas := gas st - g|)) = Normal (x, y) —
(xa, ya) = x =
xa = KValue xla —
ya = Value x1b =—> expr e2 e, e cd y = Normal ((v4, t4), st4’) — gas st4’ < gas y)" by

auto
ultimately show "gas t4 < gas st" using lift_gas[of el e, e cd e2 "less" "st(gas := gas st -
g)" xa xaa t4] by simp
qed
qed
next
case (24 el e2 e, e cd st)
define g where "g = costs. (EQUAL el e2) e, e cd st"
show 7case
proof (rule allI[THEN allIl, THEN alll, OF impI])
fix t4 xa xaa assume e_def: "expr (EQUAL el e2) e, e cd st = Normal ((xa, xaa), t4)"
then show "gas t4 < gas st"
proof (cases)
assume '"gas st < g"
with 24(1) e_def show ?thesis using expr.psimps(14) g_def by simp
next
assume "— gas st < g"
with 24(1) e_def g _def have "lift expr equal el e2 e, e cd (st(gas := gas st - g|)) = Normal
((xa, xaa), t4)" using expr.psimps(14) [of el e2 e, e cd st] by simp
moreover from 24(2) ‘- gas st < g‘ g_def have "(Ast4’ v4 t4. expr el e, e cd (st(gas := gas
st - g))) = Normal ((v4, t4), st4’) —> gas st4’ < gas (st(gas := gas st - g))))" by simp
moreover from 24(3) ‘- gas st < g‘ g_def have "(Axl x y xa ya xla x1b st4’ v4 t4.
expr el e, e cd (st(gas := gas st - g|)) = Normal (x, y) —
(xa, ya) = x =
xa = KValue xla —
ya = Value x1b —> expr e2 e, e cd y = Normal ((v4, t4), st4’) — gas st4’ < gas y)" by

auto
ultimately show "gas t4 < gas st" using 1ift_gas[of el e, e cd e2 "equal" "st(gas := gas st -
g)" xa xaa t4] by simp
qged
qed
next
case (25 el e2 e, e cd st)
define g where "g = costs. (AND el e2) e, e cd st"
show 7case
proof (rule allI[THEN allIl, THEN alll, OF impI])
fix t4 xa xaa assume e_def: "expr (AND el e2) e, e cd st = Normal ((xa, xaa), t4)"
then show "gas t4 < gas st"
proof (cases)
assume '"gas st < g"
with 25(1) e_def show ?thesis using expr.psimps(15) g_def by simp
next
assume "— gas st < g"
with 25(1) e_def g_def have "lift expr vtand el e2 e, e cd (st(gas := gas st - g|)) = Normal
((xa, xaa), t4)" using expr.psimps(15) [of el e2 e, e cd st] by simp
moreover from 25(2) ‘- gas st < g‘ g _def have "(Ast4’ v4 t4. expr el e, e cd (st(gas := gas
st - g))) = Normal ((v4, t4), st4’) —> gas st4’ < gas (st(gas := gas st - g))))" by simp
moreover from 25(3) ‘- gas st < g‘ g_def have "(Axl x y xa ya xla x1b st4’ v4 t4.
expr el e, e cd (st(gas := gas st - g|)) = Normal (x, y) =
(xa, ya) = x —
xa = KValue xla —
ya = Value x1b = expr e2 e, e cd y = Normal ((v4, t4), st4’) — gas st4’ < gas y)" by

69

5 Expressions and Statements

auto
ultimately show "gas t4 < gas st" using 1ift_gas[of el e, e cd e2 "vtand" "st(gas := gas st -
g)" xa xaa t4] by simp
qed
qed
next
case (26 el e2 e, e cd st)
define g where "g = costs. (OR el e2) e, e cd st"
show 7case
proof (rule allI[THEN allIl, THEN alll, OF impI])
fix t4 xa xaa assume e_def: "expr (OR el e2) e, e cd st = Normal ((xa, xaa), t4)"
then show "gas t4 < gas st"
proof (cases)
assume '"gas st < g"
with 26(1) e_def show ?thesis using expr.psimps(16) g_def by simp
next
assume "— gas st < g"
with 26(1) e_def g_def have "lift expr vtor el e2 e, e cd (st(gas := gas st - g|)) = Normal ((xa,
xaa), t4)" using expr.psimps(16) [of el e2 e, e cd st] by simp
moreover from 26(2) ‘- gas st < g‘ g_def have "(Ast4’ v4 t4. expr el e, e cd (st(gas := gas
st - g))) = Normal ((v4, t4), st4’) —> gas st4’ < gas (st(gas := gas st - g))))" by simp
moreover from 26(3) ‘- gas st < g‘ g_def have "(Axl x y xa ya xla x1b st4’ v4 t4.
expr el e, e cd (st(gas := gas st - g|)) = Normal (x, y) —
(xa, ya) = x =
xa = KValue xla —
ya = Value x1b —> expr e2 e, e cd y = Normal ((v4, t4), st4’) — gas st4’ < gas y)" by

auto
ultimately show "gas t4 < gas st" using 1ift_gas[of el e, e cd e2 "vtor" "st(gas := gas st -
g)" xa xaa t4] by simp
qed
qed
next
case (27 i ep e cd st)
then show 7case using expr.psimps(17) by (auto split: prod.split_asm option.split_asm
StateMonad.result.split_asm)
next
case (28 i xe e, e cd st)
define g where "g = costs. (CALL i xe) e, e cd st"
show 7case
proof (rule allI[THEN alll, THEN allIl, OF impI])
fix st4’ v4 t4 assume al: "expr (CALL i xe) e, e cd st = Normal ((v4, t4), st4’)"
show "gas st4’ < gas st"
proof (cases)
assume '"gas st < g"
with 28 g_def al show 7thesis using expr.psimps by simp
next
assume gcost: "— gas st < g
then show ?thesis
proof (cases "fmlookup e, (address e)")
case None
with 28(1) a1l g_def gcost show ?thesis using expr.psimps(18) by simp
next
case (Some a)
then show ?thesis
proof (cases a)
case (Pair ct _)
then show ?thesis
proof (cases "fmlookup ct i")
case None
with 28(1) a1l g_def gcost Some Pair show ?thesis using expr.psimps(18) by simp
next
case s1: (Some a)
then show ?thesis
proof (cases a)

70

5.1 Statements (Statements)

case (Method x1)
then show 7thesis
proof (cases x1)
case (fields fp f c)
then show ?thesis
proof (cases c)
case None
with 28(1) al g _def gcost Some Pair s1 Method fields show 7thesis using
expr.psimps (18) by simp
next
case s2: (Some x)
define st’ e’
where "st’ = st(gas := gas st - g|)(stack:=emptyStorel|)"
and "e’ = ffold (init ct) (emptyEnv (address e) (sender e) (svalue e)) (fmdom
ct)"
then show ?thesis
proof (cases "load False fp xe e, e’ emptyStore st’ e cd (st(gas := gas st - g))")
case s4: (n a st’’’)
then show ?thesis
proof (cases a)
case f2: (fields e’’ cd’ st’’)
then show ?thesis
proof (cases "stmt f e, e’’ cd’ st’’")
case n2: (n a st’’’’)
then show 7thesis
proof (cases "expr x e, e’’ cd’ st’’’’")
case n3: (n a st’’’’’)
then show ?thesis
proof (cases a)
case pl: (Pair sv tp)
with 28(1) al g def gcost Some Pair s1 Method fields s2 st’_def e’_def s4
f2 n2 n3
have "expr (CALL i xe) e, e cd st = Normal ((sv, tp), st’’’’’(stack:=stack
st’’’, memory := memory st’’’))" and *: "gas st’ < gas (st(gas := gas st - g|))"
using expr.psimps(18) [of i xe e, e cd st] by (auto simp add: Let_def
split: unit.split_asm)
with a1l have '"gas st4’ < gas st’’’’’" by auto
also from 28(4) [of "()" "st(gas := gas st - g|)" _ ct] g_def gcost Some Pair
s1 Method fields s2 st’_def e’_def s4 f2 n2 n3

have "... < gas st’’’’" by auto
also from 28(3) [of "()" "st(gas := gas st - g|)" _ct _ _x1 fp _ f c x e’
st’ "st(gas := gas st - g)" _ st’’’ e’’ _ cd’ st’’ st’’’ st’’’ "()" st’’] al g_def gcost Some Pair sl
Method fields s2 st’_def e’_def s4 f2 n2
have "... < gas st’’" by auto
also have "... < gas st - g"
proof -

from g_def gcost have "(applyf (costs. (CALL i xe) e, e cd) >= ()\g.
assert Gas (Ast. gas st < g) (modify (Ast. st(gas := gas st - g|))))) st = Normal ((), st(gas := gas st
- g))" by simp
moreover from e’_def have "e’ = ffold_init ct (emptyEnv (address e)
(sender e) (svalue e)) (fmdom ct)" by simp
moreover from st’_def have "applyf (Ast. st(stack := emptyStore|)
(st(gas := gas st - g|)) = Normal (st’, st(gas := gas st - g|))" by simp
ultimately have "Vev cda sta st’a. load False fp xe e, e’ emptyStore st’
e cd (st(gas := gas st - g|)) = Normal ((ev, cda, sta), st’a) — gas sta < gas st’ A gas st’a < gas
(st(gas := gas st - g|)) A address ev = address e’" using 28(2) [of "()" "st(gas := gas st - g|)" _ ct _
_x1 fp "(f,c)" f ¢ x e’ st’ "st(gas := gas st - g|)"] using Some Pair s1 Method fields s2 by blast
thus 7thesis using st’_def s4 f2 by auto
qged
finally show ?thesis by simp
qed
next
case (e x)
with 28(1) al g def gcost Some Pair s1 Method fields s2 st’_def e’_def

71

5 Expressions and Statements

s4 f2 n2 show 7thesis using expr.psimps(18)[of i xe e, e cd st] by (auto simp add:Let_def
split:unit.split_asm)
qed
next
case (e x)
with 28(1) al g_def gcost Some Pair s1 Method fields s2 st’_def e’_def s4 f2
show 7thesis using expr.psimps(18)[of i xe e, e cd st] by (auto split:unit.split_asm)
qed
qed
next
case (e x)
with 28(1) a1l g_def gcost Some Pair s1 Method fields s2 st’_def e’_def show
7thesis using expr.psimps(18)[of i xe e, e cd st] by auto
qed
qed
qed
next
case (Var x2)
with 28(1) a1l g def gcost Some Pair sl show ?thesis using expr.psimps(18) by simp
qed
qed
qed
ged
qed
qed
next
case (29 ad i xe val e, e cd st)
define g where "g = costs. (ECALL ad i xe val) e, e cd st"
show 7case
proof (rule allI[THEN alll, THEN alll, OF impI])
fix st4’ v4 t4 assume al: "expr (ECALL ad i xe val) e, e cd st = Normal ((v4, t4), st4’)"
show "gas st4’ < gas st"
proof (cases)
assume "gas st < g"
with 29 g _def al show 7thesis using expr.psimps by simp
next
assume gcost: "— gas st < g
then show ?thesis
proof (cases "expr ad e, e cd (st(gas := gas st - g)))")
case (n a st’)
then show 7thesis
proof (cases a)
case (Pair a b)
then show 7thesis
proof (cases a)
case (KValue adv)
then show ?thesis
proof (cases b)
case (Value x1)
then show ?thesis
proof (cases x1)
case (TSInt x1)
with 29(1) a1l g_def gcost n Pair KValue Value show 7thesis using expr.psimps(19) [of ad
i xe val e, e cd st] by simp
next
case (TUInt x2)
with 29(1) a1l g_def gcost n Pair KValue Value show 7thesis using expr.psimps(19) [of ad
i xe val e, e cd st] by simp
next
case TBool
with 29(1) al g_def gcost n Pair KValue Value show 7thesis using expr.psimps(19) [of ad
i xe val e, e cd st] by simp
next
case TAddr

72

5.1 Statements (Statements)

then show ?thesis
proof (cases "fmlookup e, adv")
case None
with 29(1) al g def gcost n Pair KValue Value TAddr show ?thesis using
expr.psimps(19) [of ad i xe val e, e cd st] by simp
next
case (Some a)
then show 7thesis
proof (cases a)
case p2: (Pair ct _)
then show 7thesis
proof (cases "fmlookup ct i")
case None
with 29(1) al g_def gcost n Pair KValue Value TAddr Some p2 show 7thesis using
expr.psimps(19) by simp
next
case sl1: (Some a)
then show ?thesis
proof (cases a)
case (Method x1)
then show ?thesis
proof (cases x1)
case (fields fp f c)
then show 7thesis
proof (cases c)
case None
with 29(1) al g _def gcost n Pair KValue Value TAddr Some p2 sl Method
fields show 7thesis using expr.psimps(19) by simp
next
case s2: (Some x)
then show 7thesis
proof (cases "expr val e, e cd st’")
case nl: (n kv st’’)
then show 7thesis
proof (cases kv)
case p3: (Pair a b)
then show ?thesis
proof (cases a)
case k1: (KValue v)
then show 7thesis
proof (cases b)
case v1: (Value t)
define stl e’
where "stl = st’’(stack:=emptyStore, memory:=emptyStore|"
and "e’ = ffold (init ct) (emptyEnv adv (address e) v) (fmdom
ct)"
then show 7thesis
proof (cases "load True fp xe e, e’ emptyStore stl e cd st’’")
case s4: (n a st’’’)
then show 7thesis
proof (cases a)
case f2: (fields e’’ cd’ st’’’’)
then show 7thesis
proof (cases "transfer (address e) adv v (accounts st’’’’)")
case n2: None
with 29(1) al g_def gcost n Pair KValue Value TAddr Some p2
s1 Method fields s2 nl p3 k1 vl stl_def e’_def s4 f2 show 7thesis using expr.psimps(19) by simp
next
case s3: (Some acc)
show ?thesis
proof (cases "stmt f e, e’’ cd’ (st’’’’(accounts:=acc|))")
case n2: (n a st’’’’’)
then show 7thesis
proof (cases "expr x e, e’’ cd’ st’’’’’")

73

5 Expressions and Statements

case n3: (n a st’’’’’’)
then show ?thesis
proof (cases a)
case pl: (Pair sv tp)
with 29(1) a1l g_def gcost n Pair KValue Value TAddr
Some p2 s1 Method fields s2 nl1 p3 k1 vl s3 stl_def e’_def s4 f2 n2 n3
have "expr (ECALL ad i xe val) e, e cd st = Normal
((sv, tp), st’’’’’’(stack:=stack st’’’, memory := memory st’’’))"
using expr.psimps(19) [of ad i xe val e, e cd st] by
(auto simp add: Let_def split: unit.split_asm)
with a1l have '"gas st4’ < gas st’’’’’’" by auto
also from 29(6) [of "()" "st(gas := gas st - g|)" _ st’

adv ct _ _ x1 fp "(f,c)" f ¢ x kv st’’ _ b v t] al g def gcost n Pair KValue Value TAddr Some p2
sl Method fields s2 n1 p3 k1 vl s3 stl_def e’_def s4 f2 n2 n3
have "... < gas st’’’’’" by auto
also from 29(5) [OF _ n Pair KValue Value TAddr Some p2
s1 Method fields _ s2 nl1 p3 k1 vl _ _ s4 f2 _ _ _, of "(O" £ cd’ st’’’’ st’’’ st’’’ acc] f2 s3 stl_def
e’_def n2 n3 al g_def gcost
have "... < gas (st’’’’(accounts:=acc|))" by auto
also have "... < gas stl"
proof -

from g_def gcost have "(applyf (costs. (ECALL ad i
xe val) ep, e cd) >= (\g. assert Gas (Ast. gas st < g) (modify (Ast. st(gas := gas st - g)))))) st =
Normal ((), st(gas := gas st - g)))" by simp

moreover from e’_def have "e’ = ffold_init ct
(emptyEnv adv (address e) v) (fmdom ct)" by simp

moreover from nil have "expr val e, e cd st’ =
Normal (kv, st’’)" by simp

moreover from stl_def have "applyf (Ast. st(stack
:= emptyStore, memory := emptyStorel|)) st’’ = Normal (stl, st’’)" by simp

moreover have "applyf accounts st’’ = Normal
((accounts st’’), st’’)" by simp

ultimately have "Vev cda sta st’a. load True fp xe
ep, e’ emptyStore stl e cd st’’ = Normal ((ev, cda, sta), st’a) —> gas sta < gas stl A gas st’a < gas
st’’ A address ev = address e’" using 29(4) [of "()" "st(gas := gas st - g)" _ st’ _ _ adv _ _ ct _ _ x1
fp "(f,c)" f ¢ x kv st’’ _ b v t] al g_def gcost n Pair KValue Value TAddr Some p2 s1 Method fields s2
nl p3 k1 vl s3 stl_def e’_def s4 f2 n2 n3 by blast

thus 7thesis using stl_def s4 f2 by auto

qed
also from stl_def have "... < gas st’’" by simp
also from 29(3) [of "()" "st(gas := gas st - g)" _ st’ _
adv ct _ _ x1 fp "(f,c)" f ¢ x] al g_def gcost n Pair KValue Value TAddr Some p2 s1 Method fields
s2 ni p3 k1 vl s3 stl_def e’_def s4 f2 n2 n3
have "... < gas st’" by (auto split:unit.split_asm)

also from 29(2) [of "(O" "st(gas := gas st - g)"] al
g_def gcost n Pair KValue Value TAddr Some p2 sl Method fields s2 nl p3 k1 vl s3 stl_def e’_def s4 f2 n2
n3
have "... < gas (st(gas := gas st - g|))" by simp
finally show ?thesis by simp
qed
next
case (e x)
with 29(1) a1l g_def gcost n Pair KValue Value TAddr Some
p2 s1 Method fields s2 nl p3 k1 vl s3 stl_def e’_def s4 f2 n2 show ?thesis using expr.psimps(19) [of ad
i xe val e, e cd st] by simp
qged
next
case (e x)
with 29(1) al g _def gcost n Pair KValue Value TAddr Some p2
s1 Method fields s2 nl p3 k1 vl s3 stl_def e’_def s4 f2 show 7thesis using expr.psimps(19) [of ad i xe
val e, e cd st] by simp
qed
qed
qed

74

5.1 Statements (Statements)

next
case (e x)
with 29(1) al g_def gcost n Pair KValue Value TAddr Some p2 sl
Method fields s2 nl p3 k1 vl stl_def e’_def show 7thesis using expr.psimps(19)[of ad i xe val e, e cd
st] by simp
qed
next
case (Calldata x2)
with 29(1) al g_def gcost n Pair KValue Value TAddr Some p2 sl
Method fields s2 nl p3 k1 show 7thesis using expr.psimps(19)[of ad i xe val e, e cd st] by simp
next
case (Memory x3)
with 29(1) al g def gcost n Pair KValue Value TAddr Some p2 sl
Method fields s2 nl p3 k1 show 7thesis using expr.psimps(19)[of ad i xe val e, e cd st] by simp
next
case (Storage x4)
with 29(1) al g_def gcost n Pair KValue Value TAddr Some p2 sl
Method fields s2 nl1 p3 k1 show 7thesis using expr.psimps(19)[of ad i xe val e, e cd st] by simp
qed
next
case (KCDptr x2)
with 29(1) al g def gcost n Pair KValue Value TAddr Some p2 sl Method
fields s2 nl p3 show 7thesis using expr.psimps(19)[of ad i xe val e, e cd st] by simp
next
case (KMemptr x3)
with 29(1) al g def gcost n Pair KValue Value TAddr Some p2 sl Method
fields s2 nl1 p3 show 7thesis using expr.psimps(19)[of ad i xe val e, e cd st] by simp
next
case (KStoptr x4)
with 29(1) al g _def gcost n Pair KValue Value TAddr Some p2 sl Method
fields s2 nl1 p3 show 7thesis using expr.psimps(19)[of ad i xe val e, e cd st] by simp
ged
qed
next
case n2: (e x)
with 29(1) a1l g_def gcost n Pair KValue Value TAddr Some p2 s1 Method
fields s2 show 7thesis using expr.psimps(19)[of ad i xe val e, e cd st] by simp
qged
qed
qed
next
case (Var x2)
with 29(1) al g _def gcost n Pair KValue Value TAddr Some p2 s1 show ?thesis
using expr.psimps(19) [of ad i xe val e, e cd st] by simp
qed
qed
qed
qed
qed
next
case (Calldata x2)
with 29(1) a1l g _def gcost n Pair KValue show ?thesis using expr.psimps(19) [of ad i xe
val e, e cd st] by simp
next
case (Memory x3)
with 29(1) a1l g_def gcost n Pair KValue show ?thesis using expr.psimps(19) [of ad i xe
val e, e cd st] by simp
next
case (Storage x4)
with 29(1) a1l g_def gcost n Pair KValue show 7?thesis using expr.psimps(19) [of ad i xe
val e, e cd st] by simp
qed
next
case (KCDptr x2)

75

5 Expressions and Statements

with 29(1) a1l g_def gcost n Pair show 7thesis using expr.psimps(19)[of ad i xe val e, e cd
st] by simp
next
case (KMemptr x3)
with 29(1) a1l g_def gcost n Pair show 7thesis using expr.psimps(19)[of ad i xe val e, e cd
st] by simp
next
case (KStoptr x4)
with 29(1) al g_def gcost n Pair show 7thesis using expr.psimps(19)[of ad i xe val e, e cd
st] by simp
qed
qed
next
case (e _)
with 29(1) a1l g_def gcost show ?thesis using expr.psimps(19) [of ad i xe val e, e cd st] by
simp
qed
qed
qed
next
case (30 cp ip tp pl e el e, e,’ cd’ st’ e, cd st)
then show ?case
proof (cases "expr e e, e, cd st")
case (n a st’’)
then show ?thesis
proof (cases a)
case (Pair v t)
then show ?thesis
proof (cases "decl i, t, (Some (v,t)) cp cd (memory st’’) cd’ e,’ st’")
case n2: (n a’ st’’’)
then show ?thesis
proof (cases a’)
case f2: (Pair cd’’ e,’’)
show 7thesis
proof (rule allI[THEN allIl, THEN alll, THEN alll, OF impI])
fix ev xa xaa xaaa assume load_def: "load cp ((ip, tp) # pl) (e # el) e, e,’ cd’ st’ e, cd
st = Normal ((ev, xa, xaa), xaaa)"
with 30(1) n Pair n2 f2 have "load cp ((ip, tp) # pl) (e # el) e, e,’ cd’ st’ e, cd st =
load cp pl el ey, e,’’ cd’’ st’’’ e, cd st’’" using load.psimps(1)[of cp i, t, pl e el e, e,’ cd’ st’
e, cd st] by simp
with load_def have "load cp pl el e, e,’’ cd’’ st’’’ e, cd st’’ = Normal ((ev, xa, xaa),
xaaa)" by simp
with n Pair n2 f2 have '"gas xaa < gas st’’’ A gas xaaa < gas st’’ A address ev = address
e,’’" using 30(3)[of a st’’ v t st’’ st’’ "()" st’ a’ st’’’ cd’’ e,’’ st’’’ st’’’ "()" st’’] by simp
moreover from n Pair have '"gas st’’ < gas st" using 30(2) by simp
moreover from n2 f2 have " address e,’’ = address e,’" and "gas st’’’ < gas st’" using
decl_gas_address by auto
ultimately show "gas xaa < gas st’ A gas xaaa < gas st A address ev = address e,’" by
simp
qed
qed
next
case (e x)
with 30(1) n Pair show 7thesis using load.psimps(1) by simp
qed
qed
next
case (e x)
with 30(1) show ?thesis using load.psimps(1) by simp
qed
next
case (31 we wf wg wh wi wj wk st)
then show 7case using load.psimps(2) by auto
next

76

5.1 Statements (Statements)

case (32 wl wm wn WO Wp wq Wr St)
then show 7case using load.psimps(3)[of wl wm wn wo wp wq wr] by auto
next
case (33 ws wt wu wv cd e, s sSt)
then show 7case using load.psimps(4)[of ws wt wu wv cd e, s st] by auto
next
case (34 i e, e cd st)
show 7case
proof (rule allI[THEN allI, THEN allIl, OF impI])
fix st3’ xa xaa assume "rexp (L.Id i) e, e cd st = Normal ((st3’, xa), xaa)"
then show '"gas xaa < gas st" using 34(1) rexp.psimps(1) by (simp split: option.split_asm
Denvalue.split_asm Stackvalue.split_asm prod.split_asm Type.split_asm STypes.split_asm)
qed
next
case (35 i r e, e cd st)
show 7case
proof (rule allI[THEN alll, THEN alll, OF impI])
fix st3’ xa xaa assume rexp_def: "rexp (Ref i r) e, e cd st = Normal ((st3’, xa), xaa)"
show '"gas xaa < gas st"
proof (cases "fmlookup (denvalue e) i")
case None
with 35(1) show ?thesis using rexp.psimps rexp_def by simp
next
case (Some a)
then show ?thesis
proof (cases a)
case (Pair tp b)
then show ?thesis
proof (cases b)
case (Stackloc 1)
then show ?thesis
proof (cases "accessStore 1 (stack st)")
case None
with 35(1) Some Pair Stackloc show ?thesis using rexp.psimps(2) rexp_def by simp
next
case s1: (Some a)
then show ?thesis
proof (cases a)
case (KValue x1)

with 35(1) Some Pair Stackloc s1 show 7thesis using rexp.psimps(2) rexp_def by simp

next
case (KCDptr 1°)

with 35 Some Pair Stackloc s1 show 7thesis using rexp.psimps(2)[of i r e, e cd st]

rexp_def by (simp split: option.split_asm Memoryvalue.split_asm MTypes.split_asm prod.split_asm
Type.split_asm StateMonad.result.split_asm)
next
case (KMemptr x3)

with 35 Some Pair Stackloc s1 show 7thesis using rexp.psimps(2)[of i r e, e cd st]

rexp_def by (simp split: option.split_asm Memoryvalue.split_asm MTypes.split_asm prod.split_asm
Type.split_asm StateMonad.result.split_asm)
next
case (KStoptr x4)
with 35 Some Pair Stackloc s1 show 7thesis using rexp.psimps(2)[of i r e, e cd
st] rexp_def by (simp split: option.split_asm STypes.split_asm prod.split_asm Type.split_asm
StateMonad.result.split_asm)
qed
qed
next
case (Storeloc x2)

with 35 Some Pair show 7thesis using rexp.psimps rexp_def by (simp split: option.split_asm

STypes.split_asm prod.split_asm Type.split_asm StateMonad.result.split_asm)
qed
qged
qed

7

5 Expressions and Statements

qed
next
case (36 e, e cd st)
then show 7case using stmt.psimps(1) by simp
next
case (37 1v ex e, env cd st)
define g where "g = costs (ASSIGN 1lv ex) e, env cd st"
show 7case
proof (rule allI[OF impI])
fix st6’
assume stmt_def: "stmt (ASSIGN 1lv ex) e, env cd st = Normal ((), st6’)"
then show "gas st6’ < gas st"
proof cases
assume '"gas st < g"
with 37 stmt_def show ?thesis using stmt.psimps(2) g_def by simp
next
assume "— gas st < g"
show ?thesis
proof (cases "expr ex e, env cd (st(gas := gas st - g)))")
case (n a st’)
then show 7thesis
proof (cases a)
case (Pair b c)
then show ?thesis
proof (cases b)
case (KValue v)
then show ?thesis
proof (cases c)
case (Value t)
then show ?thesis
proof (cases "lexp 1v e, env cd st’")
case n2: (n a st’’)
then show ?thesis
proof (cases a)
case pl: (Pair a b)
then show 7thesis
proof (cases a)
case (LStackloc 1)
then show ?thesis
proof (cases b)
case v2: (Value t’)
then show ?thesis
proof (cases "convert t t’ v ")
case None
with 37(1) stmt_def ‘— gas st < g‘ n Pair KValue Value n2 pl LStackloc v2
show ?thesis using stmt.psimps(2) g_def by simp
next
case s3: (Some a)
then show ?thesis
proof (cases a)
case p2: (Pair v’ b)
with 37(1) ‘- gas st < g¢ n Pair KValue Value n2 pl LStackloc v2 s3
have "stmt (ASSIGN 1v ex) e, env cd st = Normal ((), st’’ (stack :=
updateStore 1 (KValue v’) (stack st’’)))"
using stmt.psimps(2) g_def by simp
with stmt_def have "st6’= (st’’(stack := updateStore 1 (KValue v’) (stack
st??)))" by simp

¢ ¢

moreover from 37(3) ‘- gas st < g‘ n Pair KValue Value n2 pl have '"gas
st’’ < gas st’" using g_def by simp
moreover from 37(2)
< gas st" using g_def by simp
ultimately show ?thesis by simp
qged
qed

[4 ¢

78

- gas st < g n Pair KValue Value n2 p2 have "gas st’

5.1 Statements (Statements)

next
case (Calldata x2)
with 37(1) stmt_def ‘— gas st < g n Pair KValue Value n2 pl LStackloc show
7?thesis using stmt.psimps(2) g_def by simp
next
case (Memory x3)
with 37(1) stmt_def ‘— gas st < g n Pair KValue Value n2 pl LStackloc show
7thesis using stmt.psimps(2) g_def by simp
next
case (Storage x4)
with 37(1) stmt_def ‘— gas st < g‘ n Pair KValue Value n2 pl LStackloc show
7thesis using stmt.psimps(2) g_def by simp
qed
next
case (LMemloc 1)
then show ?thesis
proof (cases b)
case v2: (Value t’)
with 37(1) stmt_def ‘— gas st < g n Pair KValue Value n2 pl LMemloc show
7thesis using stmt.psimps(2) g_def by simp
next
case (Calldata x2)
with 37(1) stmt_def ‘— gas st < g‘ n Pair KValue Value n2 pl LMemloc show
7thesis using stmt.psimps(2) g_def by simp
next
case (Memory x3)
then show ?thesis
proof (cases x3)
case (MTArray x11 x12)
with 37(1) stmt_def ‘— gas st < g n Pair KValue Value n2 pl LMemloc Memory
show ?thesis using stmt.psimps(2) g_def by simp
next
case (MTValue t’)
then show 7thesis
proof (cases '"convert t t’ v ")
case None
with 37(1) stmt_def ‘— gas st < g n Pair KValue Value n2 pl LMemloc Memory
MIValue show 7thesis using stmt.psimps(2) g_def by simp
next
case s3: (Some a)
then show 7thesis
proof (cases a)
case p2: (Pair v’ b)
with 37(1) ‘- gas st < g° n Pair KValue Value n2 pl LMemloc Memory MTValue
s3
have "stmt (ASSIGN 1v ex) e, env cd st = Normal ((), st’’ (memory :=
updateStore 1 (MValue v’) (memory st’’)|)"
using stmt.psimps(2) g_def by simp
with stmt_def have "st6’= (st’’(memory := updateStore 1 (MValue v’) (memory
st’?)))" by simp
moreover from 37(3) ‘- gas st < g‘ n Pair KValue Value n2 pl have "gas
st’’ < gas st’" using g def by simp
moreover from 37(2)
st’ < gas st" using g _def by simp
ultimately show ?thesis by simp
qged
qed
qed
next
case (Storage x4)
with 37(1) stmt_def ‘— gas st < g n Pair KValue Value n2 pl LMemloc show
7thesis using stmt.psimps(2) g_def by simp
qed
next

¢

- gas st < g‘ n Pair KValue Value n2 pl have "gas

79

5 Expressions and Statements

case (LStoreloc 1)
then show ?thesis
proof (cases b)
case v2: (Value t’)
with 37(1) stmt_def ‘— gas st < g n Pair KValue Value n2 pl LStoreloc show
7thesis using stmt.psimps(2) g_def by simp
next
case (Calldata x2)
with 37(1) stmt_def ‘— gas st < g n Pair KValue Value n2 pl LStoreloc show
7thesis using stmt.psimps(2) g_def by simp
next
case (Memory x3)
with 37(1) stmt_def ‘— gas st < g n Pair KValue Value n2 pl LStoreloc show
7thesis using stmt.psimps(2) g_def by simp
next
case (Storage x4)
then show ?thesis
proof (cases x4)
case (STArray x11 x12)
with 37(1) stmt_def ‘— gas st < g n Pair KValue Value n2 pl LStoreloc Storage
show 7thesis using stmt.psimps(2) g_def by simp
next
case (STMap x21 x22)
with 37(1) stmt_def ‘— gas st < g n Pair KValue Value n2 pl LStoreloc Storage
show ?thesis using stmt.psimps(2) g_def by simp
next
case (STValue t’)
then show 7thesis
proof (cases '"convert t t’ v ")
case None
with 37(1) stmt_def ‘— gas st < g n Pair KValue Value n2 pl LStoreloc
Storage STValue show ?thesis using stmt.psimps(2) g_def by simp
next
case s3: (Some a)
then show 7thesis
proof (cases a)
case p2: (Pair v’ b)
then show 7thesis
proof (cases "fmlookup (storage st’’) (address env)")
case None
with 37(1) stmt_def ‘— gas st < g n Pair KValue Value n2 pl LStoreloc
Storage STValue s3 p2 show 7thesis using stmt.psimps(2) g_def by simp
next
case s4: (Some s)
with 37(1) ‘- gas st < g n Pair KValue Value n2 pl LStoreloc Storage
STValue s3 p2
have "stmt (ASSIGN 1v ex) e, env cd st = Normal ((), st’’ (storage :=
fmupd (address env) (fmupd 1 v’ s) (storage st’’)|))"
using stmt.psimps(2) g_def by simp
with stmt_def have "st6’= st’’ (storage := fmupd (address env) (fmupd 1
v’ s) (storage st’’)|)" by simp
moreover from 37(3)
st’’ < gas st’" using g_def by simp
moreover from 37(2) ‘- gas st < g‘ n Pair KValue Value n2 pl have "gas
st’ < gas st" using g _def by simp
ultimately show ?thesis by simp
qed
qed
qged
qed
qed
qed
qed
next

‘- gas st < g n Pair KValue Value n2 pl have "gas

80

5.1 Statements (Statements)

case (e x)
with 37(1) stmt_def ‘- gas st < g‘ n Pair KValue Value show 7?thesis using
stmt.psimps(2) g_def by simp
qed
next
case (Calldata x2)
with 37(1) stmt_def ‘— gas st < g n Pair KValue show 7thesis using stmt.psimps(2)
g_def by simp
next
case (Memory x3)
with 37(1) stmt_def ‘— gas st < g n Pair KValue show 7thesis using stmt.psimps(2)
g_def by simp
next
case (Storage x4)
with 37(1) stmt_def ‘— gas st < g‘ n Pair KValue show ?thesis using stmt.psimps(2)
g_def by simp
qed
next
case (KCDptr p)
then show ?7thesis
proof (cases c)
case (Value x1)
with 37(1) stmt_def ‘- gas st < g‘ n Pair KCDptr show ?thesis using stmt.psimps(2)
g_def by simp
next
case (Calldata x2)
then show ?thesis
proof (cases x2)
case (MTArray x t)
then show 7thesis
proof (cases "lexp 1v e, env cd st’")
case n2: (n a st’’)
then show ?thesis
proof (cases a)
case p2: (Pair a b)
then show ?thesis
proof (cases a)
case (LStackloc 1)
then show ?thesis
proof (cases b)
case v2: (Value t’)
with 37(1) stmt_def ‘- gas st < g‘ n Pair KCDptr Calldata MTArray n2 p2
LStackloc show 7thesis using stmt.psimps(2) g_def by simp
next
case c2: (Calldata x2)
with 37(1) stmt_def ‘- gas st < g‘ n Pair KCDptr Calldata MTArray n2 p2
LStackloc show 7thesis using stmt.psimps(2) g_def by simp
next
case (Memory x3)
with 37(1) ‘- gas st < g‘ n Pair KCDptr Calldata MTArray n2 p2 LStackloc
have "stmt (ASSIGN 1lv ex) e, env cd st = Normal ((), st’’ (stack := updateStore
1 (KCDptr p) (stack st’’)))"
using stmt.psimps(2) g_def by simp
with stmt_def have "st6’= (st’’(stack := updateStore 1 (KCDptr p) (stack
st’?)))" by simp
moreover from 37(4) ‘- gas st < g‘ n Pair KCDptr Calldata MTArray n2 p2 have
"gas st’’ < gas st’" using g_def by simp
moreover from 37(2) ‘- gas st < g‘ n Pair have '"gas st’ < gas st" using
g_def by simp
ultimately show ?thesis by simp
next
case (Storage x4)
then show 7thesis
proof (cases "accessStore 1 (stack st’’)")

81

5 Expressions and Statements

case None
with 37(1) stmt_def ‘— gas st < g‘ n Pair KCDptr Calldata MTArray n2 p2
LStackloc Storage show 7thesis using stmt.psimps(2) g_def by simp
next
case s3: (Some a)
then show ?thesis
proof (cases a)
case (KValue x1)
with 37(1) stmt_def ‘— gas st < g n Pair KCDptr Calldata MTArray n2 p2
LStackloc Storage s3 show 7thesis using stmt.psimps(2) g _def by simp
next
case c3: (KCDptr x2)
with 37(1) stmt_def ‘— gas st < g n Pair KCDptr Calldata MTArray n2 p2
LStackloc Storage s3 show 7thesis using stmt.psimps(2) g_def by simp
next
case (KMemptr x3)
with 37(1) stmt_def ‘— gas st < g n Pair KCDptr Calldata MTArray n2 p2
LStackloc Storage s3 show 7thesis using stmt.psimps(2) g_def by simp
next
case (KStoptr p’)
then show ?thesis
proof (cases "fmlookup (storage st’’) (address env)")
case None
with 37(1) stmt_def ‘— gas st < g n Pair KCDptr Calldata MTArray n2 p2
LStackloc Storage s3 KStoptr show ?thesis using stmt.psimps(2) g_def by simp
next
case s4: (Some s)
then show ?thesis
proof (cases "cpm2s p p’ x t cd s")
case None
with 37(1) stmt_def ‘— gas st < g n Pair KCDptr Calldata MTArray n2
p2 LStackloc Storage s3 KStoptr s4 show 7thesis using stmt.psimps(2) g_def by simp
next
case (Some s’)
with 37(1) ‘- gas st < g n Pair KCDptr Calldata MTArray n2 p2
LStackloc Storage s3 KStoptr s4
have "stmt (ASSIGN 1v ex) e, env cd st = Normal ((), st’’ (storage :=
fmupd (address env) s’ (storage st’’)|))"
using stmt.psimps(2) g_def by simp
with stmt_def have "st6’= st’’ (storage := fmupd (address env) s’
(storage st’’)))" by simp
moreover from 37(4) ¢
p2 have "gas st’’ < gas st’" using g_def by simp
moreover from 37(2)

- gas st < g‘ n Pair KCDptr Calldata MTArray n2
‘- gas st < g‘ n Pair have "gas st’ < gas st"
using g_def by simp
ultimately show ?thesis by simp
qed
qed
qed
qged
qed
next
case (LMemloc 1)
then show ?thesis
proof (cases "cpm2m p 1 x t cd (memory st’’)")
case None
with 37(1) stmt_def ‘- gas st < g‘ n Pair KCDptr Calldata MTArray n2 p2
LMemloc show 7thesis using stmt.psimps(2) g_def by simp
next
case (Some m)
with 37(1) ‘- gas st < g‘ n Pair KCDptr Calldata MTArray n2 p2 LMemloc
have "stmt (ASSIGN 1v ex) e, env cd st = Normal ((), st’’ (memory := m|)"
using stmt.psimps(2) g_def by simp
with stmt_def have "st6’= (st’’(memory := m|))" by simp

82

5.1 Statements (Statements)

moreover from 37(4) ‘- gas st < g‘ n Pair KCDptr Calldata MTArray n2 p2 have
"gas st’’ < gas st’" using g_def by simp
moreover from 37(2) ‘- gas st < g n Pair have "gas st’ < gas st" using
g_def by simp
ultimately show ?thesis by simp
qed
next
case (LStoreloc 1)
then show ?thesis
proof (cases "fmlookup (storage st’’) (address env)")
case None
with 37(1) stmt_def ‘— gas st < g n Pair KCDptr Calldata MTArray n2 p2
LStoreloc show 7thesis using stmt.psimps(2) g_def by simp
next
case s4: (Some s)
then show 7thesis
proof (cases "cpm2s p 1 x t cd s")
case None
with 37(1) stmt_def ‘— gas st < g‘ n Pair KCDptr Calldata MTArray n2 p2
LStoreloc s4 show ?thesis using stmt.psimps(2) g_def by simp
next
case (Some s’)
with 37(1) ‘- gas st < g n Pair KCDptr Calldata MTArray n2 p2 LStoreloc s4
have "stmt (ASSIGN 1v ex) e, env cd st = Normal ((), st’’ (storage := fmupd
(address env) s’ (storage st’’)|))"
using stmt.psimps(2) g_def by simp
with stmt_def have "st6’= (st’’(storage := fmupd (address env) s’ (storage
st’?)))" by simp
moreover from 37(4) ‘- gas st < g n Pair KCDptr Calldata MTArray n2 p2
have "gas st’’ < gas st’" using g_def by simp
moreover from 37(2) ‘- gas st < g‘ n Pair have "gas st’ < gas st" using
g_def by simp
ultimately show ?thesis by simp
qed
qged
qed
qed
next
case (e x)
with 37(1) stmt_def ‘— gas st < g n Pair KCDptr Calldata MTArray show 7thesis
using stmt.psimps(2) g_def by simp
qed
next
case (MTValue x2)
with 37(1) stmt_def ‘— gas st < g‘ n Pair KCDptr Calldata show ?thesis using
stmt.psimps(2) g_def by simp
ged
next
case (Memory x3)
with 37(1) stmt_def ‘— gas st < g‘ n Pair KCDptr show ?thesis using stmt.psimps(2)
g_def by simp
next
case (Storage x4)
with 37(1) stmt_def ‘— gas st < g‘ n Pair KCDptr show ?thesis using stmt.psimps(2)
g_def by simp
qed
next
case (KMemptr p)
then show ?thesis
proof (cases c)
case (Value x1)
with 37(1) stmt_def ‘— gas st < g n Pair KMemptr show 7thesis using stmt.psimps(2)
g_def by simp
next

83

5 Expressions and Statements

case (Calldata x2)
with 37(1) stmt_def ‘— gas st < g n Pair KMemptr show ?thesis using stmt.psimps(2)
g_def by simp
next
case (Memory x3)
then show 7thesis
proof (cases x3)
case (MTArray x t)
then show 7thesis
proof (cases "lexp 1lv e, env cd st’")
case n2: (n a st’’)
then show ?thesis
proof (cases a)
case p2: (Pair a b)
then show ?thesis
proof (cases a)
case (LStackloc 1)
then show ?thesis
proof (cases b)
case v2: (Value t’)
with 37(1) stmt_def ‘— gas st < g n Pair KMemptr Memory MTArray n2 p2
LStackloc show 7thesis using stmt.psimps(2) g_def by simp
next
case c2: (Calldata x2)
with 37(1) stmt_def ‘— gas st < g n Pair KMemptr Memory MTArray n2 p2
LStackloc show 7thesis using stmt.psimps(2) g_def by simp
next
case m2: (Memory x3)
with 37(1) ‘- gas st < g‘ n Pair KMemptr Memory MTArray n2 p2 LStackloc
have "stmt (ASSIGN 1v ex) e, env cd st = Normal ((), st’’ (stack := updateStore
1 (KMemptr p) (stack st’’)))"
using stmt.psimps(2) g_def by simp
with stmt_def have "st6’= (st’’(stack := updateStore 1 (KMemptr p) (stack
st’?)))" by simp
moreover from 37(5) ¢
"gas st’’ < gas st’" using g_def by simp
moreover from 37(2)

- gas st < g n Pair KMemptr Memory MTArray n2 p2 have
‘- gas st < g° n Pair have "gas st’ < gas st" using
g_def by simp
ultimately show ?thesis by simp
next
case (Storage x4)
then show 7thesis
proof (cases "accessStore 1 (stack st’’)")
case None
with 37(1) stmt_def ‘— gas st < g‘ n Pair KMemptr Memory MTArray n2 p2
LStackloc Storage show 7thesis using stmt.psimps(2) g_def by simp
next
case s3: (Some a)
then show ?thesis
proof (cases a)
case (KValue x1)
with 37(1) stmt_def ‘— gas st < g n Pair KMemptr Memory MTArray n2 p2
LStackloc Storage s3 show 7thesis using stmt.psimps(2) g_def by simp
next
case c3: (KCDptr x2)
with 37(1) stmt_def ‘— gas st < g n Pair KMemptr Memory MTArray n2 p2
LStackloc Storage s3 show 7thesis using stmt.psimps(2) g_def by simp
next
case m3: (KMemptr x3)
with 37(1) stmt_def ‘— gas st < g‘ n Pair KMemptr Memory MTArray n2 p2
LStackloc Storage s3 show 7thesis using stmt.psimps(2) g_def by simp
next
case (KStoptr p’)
then show ?thesis

84

5.1 Statements (Statements)

proof (cases "fmlookup (storage st’’) (address env)")
case None
with 37(1) stmt_def ‘— gas st < g n Pair KMemptr Memory MTArray n2 p2
LStackloc Storage s3 KStoptr show ?thesis using stmt.psimps(2) g_def by simp
next
case s4: (Some s)
then show ?thesis
proof (cases "cpm2s p p’ x t (memory st’’) s")
case None
with 37(1) stmt_def ‘— gas st < g n Pair KMemptr Memory MTArray n2 p2
LStackloc Storage s3 KStoptr s4 show 7thesis using stmt.psimps(2) g_def by simp
next
case (Some s’)
with 37(1) ‘- gas st < g‘ n Pair KMemptr Memory MTArray n2 p2
LStackloc Storage s3 KStoptr s4
have "stmt (ASSIGN 1lv ex) e, env cd st = Normal ((), st’’ (storage :=
fmupd (address env) s’ (storage st’’)|))"
using stmt.psimps(2) g_def by simp
with stmt_def have "st6’= (st’’(storage := fmupd (address env) s’
(storage st’’)))" by simp
moreover from 37(5) ¢
p2 have "gas st’’ < gas st’" using g_def by simp
moreover from 37(2)

- gas st < g‘ n Pair KMemptr Memory MTArray n2
‘- gas st < g‘ n Pair have "gas st’ < gas st"
using g_def by simp
ultimately show ?thesis by simp
qed
qed
qed
ged
qed
next

case (LMemloc 1)

with 37(1) ‘- gas st < g n Pair KMemptr Memory MTArray n2 p2 LMemloc

have "stmt (ASSIGN 1v ex) e, env cd st = Normal ((), st’’ (memory := updateStore
1 (MPointer p) (memory st’’))))"

using stmt.psimps(2) g_def by simp

with stmt_def have "st6’= st’’ (memory := updateStore 1 (MPointer p) (memory
st’’))" by simp

moreover from 37(5) ¢
"gas st’’ < gas st’" using g def by simp

moreover from 37(2) ‘- gas st < g‘ n Pair have "gas st’ < gas st" using g_def

- gas st < g n Pair KMemptr Memory MTArray n2 p2 have

by simp
ultimately show ?thesis by simp
next
case (LStoreloc 1)
then show ?thesis
proof (cases "fmlookup (storage st’’) (address env)")
case None
with 37(1) stmt_def ‘- gas st < g‘ n Pair KMemptr Memory MTArray n2 p2
LStoreloc show 7thesis using stmt.psimps(2) g_def by simp
next
case s3: (Some s)
then show ?thesis
proof (cases "cpm2s p 1 x t (memory st’’) s")
case None
with 37(1) stmt_def ‘— gas st < g‘ n Pair KMemptr Memory MTArray n2 p2
LStoreloc s3 show 7thesis using stmt.psimps(2) g_def by simp
next
case (Some s’)
with 37(1) ‘- gas st < g n Pair KMemptr Memory MTArray n2 p2 LStoreloc s3
have "stmt (ASSIGN 1v ex) e, env cd st = Normal ((), st’’ (storage := fmupd
(address env) s’ (storage st’’)|))"
using stmt.psimps(2) g_def by simp
with stmt_def have "st6’= st’’(storage := fmupd (address env) s’ (storage

85

5 Expressions and Statements

st??))" by simp
moreover from 37(5) ¢
have "gas st’’ < gas st’" using g_def by simp

moreover from 37(2)

- gas st < g¢ n Pair KMemptr Memory MTArray n2 p2
‘- gas st < g‘ n Pair have "gas st’ < gas st" using
g_def by simp
ultimately show ?thesis by simp
qed
qed
qed
qed
next
case (e x)
with 37(1) stmt_def ‘— gas st < g n Pair KMemptr Memory MTArray show ?thesis using
stmt.psimps(2) g_def by simp
qed
next
case (MTValue x2)
with 37(1) stmt_def ‘— gas st < g n Pair KMemptr Memory show 7thesis using
stmt.psimps(2) g_def by simp
qged
next
case (Storage x4)
with 37(1) stmt_def ‘- gas st
g_def by simp
qed
next
case (KStoptr p)
then show ?thesis
proof (cases c)
case (Value x1)
with 37(1) stmt_def ‘— gas st
g_def by simp
next
case (Calldata x2)
with 37(1) stmt_def ‘- gas st < g‘ n Pair KStoptr show 7thesis using stmt.psimps(2)
g_def by simp
next
case (Memory x3)
with 37(1) stmt_def ‘- gas st
g_def by simp
next
case (Storage x4)
then show ?thesis
proof (cases x4)
case (STArray x t)
then show ?thesis
proof (cases "lexp 1lv e, env cd st’")
case n2: (n a st’’)
then show ?thesis
proof (cases a)
case p2: (Pair a b)
then show ?thesis
proof (cases a)
case (LStackloc 1)
then show ?thesis
proof (cases b)
case v2: (Value t’)
with 37(1) stmt_def ‘— gas st < g n Pair KStoptr Storage STArray n2 p2
LStackloc show 7thesis using stmt.psimps(2) g_def by simp
next
case c2: (Calldata x2)
with 37(1) stmt_def ‘— gas st < g n Pair KStoptr Storage STArray n2 p2
LStackloc show 7thesis using stmt.psimps(2) g_def by simp
next

IN

g°‘ n Pair KMemptr show 7thesis using stmt.psimps(2)

IN

g¢ n Pair KStoptr show 7thesis using stmt.psimps(2)

IN

g° n Pair KStoptr show 7thesis using stmt.psimps(2)

86

5.1 Statements (Statements)

case (Memory x3)
then show 7thesis
proof (cases "accessStore 1 (stack st’’)")
case None
with 37(1) stmt_def ‘— gas st < g‘ n Pair KStoptr Storage STArray n2 p2
LStackloc Memory show 7thesis using stmt.psimps(2) g_def by simp
next
case s3: (Some a)
then show ?thesis
proof (cases a)
case (KValue x1)
with 37(1) stmt_def ‘— gas st < g n Pair KStoptr Storage STArray n2 p2
LStackloc Memory s3 show ?thesis using stmt.psimps(2) g_def by simp
next
case c3: (KCDptr x2)
with 37(1) stmt_def ‘— gas st < g n Pair KStoptr Storage STArray n2 p2
LStackloc Memory s3 show ?thesis using stmt.psimps(2) g_def by simp
next
case (KMemptr p’)
then show 7thesis
proof (cases "fmlookup (storage st’’) (address env)")
case None
with 37(1) stmt_def ‘— gas st < g n Pair KStoptr Storage STArray n2 p2
LStackloc Memory s3 KMemptr show ?thesis using stmt.psimps(2) g_def by simp
next
case s4: (Some s)
then show ?thesis
proof (cases "cps2m p p’ x t s (memory st’’)")
case None
with 37(1) stmt_def ‘— gas st < g n Pair KStoptr Storage STArray n2
p2 LStackloc Memory s3 KMemptr s4 show ?thesis using stmt.psimps(2) g_def by simp
next
case (Some m)
with 37(1) ‘- gas st < g‘ n Pair KStoptr Storage STArray n2 p2
LStackloc Memory s3 KMemptr s4
have "stmt (ASSIGN 1lv ex) e, env cd st = Normal ((), st’’ (memory :=
ml))"
using stmt.psimps(2) g_def by simp
with stmt_def have "st6’= (st’’(memory := m|))" by simp
moreover from 37(6) ‘- gas st < g‘ n Pair KStoptr Storage STArray n2
p2 have "gas st’’ < gas st’" using g_def by simp

moreover from 37(2) ¢

- gas st < g n Pair have '"gas st’ < gas st"
using g_def by simp
ultimately show ?thesis by simp
qed
qed
next
case sp2: (KStoptr p’)
with 37(1) stmt_def ‘— gas st < g n Pair KStoptr Storage STArray n2 p2
LStackloc Memory s3 show 7thesis using stmt.psimps(2) g_def by simp
qed
qed
next
case st2: (Storage x4)
with 37(1) ‘- gas st < g‘ n Pair KStoptr Storage STArray n2 p2 LStackloc
have "stmt (ASSIGN 1v ex) e, env cd st = Normal ((), st’’ (stack :=
updateStore 1 (KStoptr p) (stack st’’)]))"
using stmt.psimps(2) g_def by simp
with stmt_def have "st6’= (st’’(stack := updateStore 1 (KStoptr p) (stack
st??)))" by simp
moreover from 37(6) ¢
"gas st’’ < gas st’" using g_def by simp
moreover from 37(2) ‘- gas st < g‘ n Pair have '"gas st’ < gas st" using

- gas st < g‘ n Pair KStoptr Storage STArray n2 p2 have

g_def by simp

87

5 Expressions and Statements

ultimately show ?thesis by simp
qed
next
case (LMemloc 1)
then show ?thesis
proof (cases "fmlookup (storage st’’) (address env)")
case None
with 37(1) stmt_def ‘- gas st < g‘ n Pair KStoptr Storage STArray n2 p2
LMemloc show 7thesis using stmt.psimps(2) g_def by simp
next
case s4: (Some s)
then show 7thesis
proof (cases "cps2m p 1 x t s (memory st’’)")
case None
with 37(1) stmt_def ‘— gas st < g n Pair KStoptr Storage STArray n2 p2
LMemloc s4 show 7thesis using stmt.psimps(2) g_def by simp
next
case (Some m)
with 37(1) ‘- gas st < g‘ n Pair KStoptr Storage STArray n2 p2 LMemloc s4
have "stmt (ASSIGN 1v ex) e, env cd st = Normal ((), st’’ (memory := m|))"
using stmt.psimps(2) g_def by simp
with stmt_def have "st6’= (st’’(memory := m]))" by simp
moreover from 37(6) ‘- gas st < g n Pair KStoptr Storage STArray n2 p2
have "gas st’’ < gas st’" using g_def by simp

moreover from 37(2) ¢

- gas st < g¢ n Pair have "gas st’ < gas st" using
g_def by simp
ultimately show ?thesis by simp
qed
qged
next
case (LStoreloc 1)
then show ?thesis
proof (cases "fmlookup (storage st’’) (address env)")
case None
with 37(1) stmt_def ‘— gas st < g n Pair KStoptr Storage STArray n2 p2
LStoreloc show 7thesis using stmt.psimps(2) g_def by simp
next
case s4: (Some s)
then show 7thesis
proof (cases "copy p 1 x t s")
case None
with 37(1) stmt_def ‘— gas st < g¢ n Pair KStoptr Storage STArray n2 p2
LStoreloc s4 show 7thesis using stmt.psimps(2) g_def by simp
next
case (Some s’)
with 37(1) ‘- gas st < g¢ n Pair KStoptr Storage STArray n2 p2 LStoreloc s4
have "stmt (ASSIGN 1v ex) e, env cd st = Normal ((), st’’ (storage := fmupd
(address env) s’ (storage st’’))))"
using stmt.psimps(2) g_def by simp
with stmt_def have "st6’= st’’(storage := fmupd (address env) s’ (storage
st??))" by simp
moreover from 37(6) ¢
have '"gas st’’ < gas st’" using g_def by simp
moreover from 37(2) ‘- gas st < g‘ n Pair have "gas st’ < gas st" using

- gas st < g¢ n Pair KStoptr Storage STArray n2 p2

g_def by simp
ultimately show 7thesis by simp
qed
qed
qed
qed
next
case (e x)
with 37(1) stmt_def ‘— gas st < g‘ n Pair KStoptr Storage STArray show 7thesis
using stmt.psimps(2) g_def by simp

88

5.1 Statements (Statements)

qed
next
case (STMap t t’)
then show 7thesis
proof (cases "lexp 1lv e, env cd st’")
case n2: (n a st’’)
then show ?thesis
proof (cases a)
case p2: (Pair a b)
then show ?thesis
proof (cases a)
case (LStackloc 1)
with 37(1) ‘- gas st < g‘ n Pair KStoptr Storage STMap n2 p2
have "stmt (ASSIGN 1v ex) e, env cd st = Normal ((), st’’ (stack := updateStore 1
(KStoptr p) (stack st’’)))"
using stmt.psimps(2) g_def by simp
with stmt_def have "st6’= st’’(stack := updateStore 1 (KStoptr p) (stack st’’))"
by simp
moreover from 37(7) ‘- gas st < g¢ n Pair KStoptr Storage STMap n2 p2 have
"gas st’’ < gas st’" using g_def by simp
moreover from 37(2) ‘- gas st < g n Pair have "gas st’ < gas st" using g_def
by simp
ultimately show ?thesis by simp
next
case (LMemloc x2)
with 37(1) stmt_def ‘— gas st < g‘ n Pair KStoptr Storage STMap n2 p2 show
7thesis using stmt.psimps(2) g_def by simp
next
case (LStoreloc x3)
with 37(1) stmt_def ‘— gas st < g n Pair KStoptr Storage STMap n2 p2 show
7thesis using stmt.psimps(2) g_def by simp
qed
qed
next
case (e x)
with 37(1) stmt_def ‘— gas st < g‘ n Pair KStoptr Storage STMap show ?thesis using
stmt.psimps (2) g_def by simp
qged
next
case (STValue x3)
with 37(1) stmt_def ‘- gas st < g‘ n Pair KStoptr Storage show 7thesis using
stmt.psimps(2) g_def by simp
qed
qed
qed
qed
next
case (e x)
with 37(1) stmt_def ‘— gas st < g show 7thesis using stmt.psimps(2) g_def by (simp split:
Ex.split_asm)
qed
qed
qed
next
case (38 s1 s2 e, e cd st)
define g where "g = costs (COMP s1 s2) e, e cd st"
show 7case
proof (rule allI[OF impI])
fix st6’
assume stmt_def: "stmt (COMP s1 s2) e, e cd st = Normal ((), st6’)"
then show '"gas st6’ < gas st"
proof cases
assume '"gas st < g"
with 38 stmt_def g _def show 7thesis using stmt.psimps(3) by simp

89

5 Expressions and Statements

next
assume "— gas st < g"
show 7thesis
proof (cases "stmt s1 ep, e cd (st(gas := gas st - g)))")
case (n a st’)
with 38(1) stmt_def ‘— gas st < g have "stmt (COMP s1 s2) e, e cd st = stmt s2 e, e cd st’"
using stmt.psimps(3) [of s1 s2 e, e cd st] g_def by (simp add:Let_def split:unit.split_asm)
with 38(3) [of _ "(st(gas := gas st - g)))" _ st’] stmt_def <— gas st < g> n have "gas st6’ <
gas st’" using g_def by fastforce
moreover from 38(2) <— gas st < g> n have "gas st’ < gas st" using g_def by simp
ultimately show ?thesis by simp
next
case (e x)
with 38 stmt_def ‘— gas st < g show ?thesis using stmt.psimps(3)[of s1 s2 e, e cd st] g_def
by (simp split: Ex.split_asm)
qed
qed
qed
next
case (39 ex sl s2 e, e cd st)
define g where "g = costs (ITE ex s1 s2) e, e cd st"
show 7case
proof (rule allI[OF impI])
fix st6’
assume stmt_def: "stmt (ITE ex sl s2) e, e cd st = Normal ((), st6’)"
then show "gas st6’ < gas st"
proof cases
assume "gas st < g"
with 39 stmt_def show ?thesis using stmt.psimps(4) g_def by simp
next
assume "— gas st < g"
show 7thesis
proof (cases "expr ex e, e cd (st(gas := gas st - g)))")
case (n a st’)
then show 7thesis
proof (cases a)
case (Pair b c)
then show 7thesis
proof (cases b)
case (KValue b)
then show ?7thesis
proof (cases c)
case (Value x1)
then show ?thesis
proof (cases x1)
case (TSInt x1)
with 39(1) stmt_def ‘— gas st < g‘ n Pair KValue Value show 7thesis using
stmt.psimps(4) g_def by simp
next
case (TUInt x2)
with 39(1) stmt_def ‘— gas st < g¢ n Pair KValue Value show 7thesis using
stmt.psimps (4) g_def by simp
next
case TBool
then show ?thesis
proof cases
assume "b = ShowLyp,o; True"
with 39(1) ‘- gas st < g n Pair KValue Value TBool have "stmt (ITE ex sl s2) e, e
cd st = stmt sl e, e cd st’" using stmt.psimps(4) g_def by simp
with 39(3) stmt_def ‘— gas st < g‘ n Pair KValue Value TBool ‘b = ShowLyoo True‘
have "gas st6’ < gas st’" using g def by simp
moreover from 39(2) ‘- gas st < g n Pair have "gas st’ < gas st" using g_def by
simp
ultimately show 7thesis by arith

90

5.1 Statements (Statements)

next
assume "— b = ShowLpoo; True"
with 39(1) ‘- gas st < g‘ n Pair KValue Value TBool have "stmt (ITE ex sl s2) e, e
cd st = stmt s2 e, e cd st’" using stmt.psimps(4) g_def by simp
with 39(4) stmt_def ‘— gas st < g n Pair KValue Value TBool ‘— b = ShowLpoo True‘
have "gas st6’ < gas st’" using g_def by simp
moreover from 39(2) ‘- gas st < g¢ n Pair have "gas st’ < gas st" using g_def by
simp
ultimately show ?thesis by arith
qed
next
case TAddr
with 39(1) stmt_def ‘- gas st < g‘ n Pair KValue Value show ?thesis using
stmt.psimps (4) g_def by simp
qed
next
case (Calldata x2)
with 39(1) stmt_def ‘- gas st < g‘ n Pair KValue show ?thesis using stmt.psimps(4)
g_def by simp
next
case (Memory x3)
with 39(1) stmt_def ‘— gas st < g n Pair KValue show 7thesis using stmt.psimps(4)
g_def by simp
next
case (Storage x4)
with 39(1) stmt_def ‘- gas st < g‘ n Pair KValue show ?thesis using stmt.psimps(4)
g_def by simp
qed
next
case (KCDptr x2)
with 39(1) stmt_def ‘— gas st < g n Pair show ?thesis using stmt.psimps(4) g_def by

simp
next
case (KMemptr x3)
with 39(1) stmt_def ‘— gas st < g‘ n Pair show 7thesis using stmt.psimps(4) g_def by
simp
next
case (KStoptr x4)
with 39(1) stmt_def ‘— gas st < g‘ n Pair show 7thesis using stmt.psimps(4) g_def by
simp
qged
qed
next
case (e e)
with 39(1) stmt_def ‘— gas st < g‘ show ?thesis using stmt.psimps(4) g_def by simp
qed
qed
qed
next

case (40 ex sO e, e cd st)
define g where "g = costs (WHILE ex s0) e, e cd st"
show 7case
proof (rule allI[OF impI])
fix st6’
assume stmt_def: "stmt (WHILE ex s0) e, e cd st = Normal ((), st6’)"
then show "gas st6’ < gas st"
proof cases
assume "gas st < costs (WHILE ex sO) e, e cd st"
with 40(1) stmt_def show 7thesis using stmt.psimps(5) by simp
next
assume gcost: "— gas st < costs (WHILE ex sO) e, e cd st"
show 7thesis
proof (cases "expr ex ep, e cd (st(gas := gas st - g)))")
case (n a st’)

91

5 Expressions and Statements

then show ?thesis
proof (cases a)
case (Pair b c)
then show ?thesis
proof (cases b)
case (KValue b)
then show ?thesis
proof (cases c)
case (Value x1)
then show ?thesis
proof (cases x1)
case (TSInt x1)

with 40(1) stmt_def gcost n Pair KValue Value show 7thesis using stmt.psimps(5) g_def

by simp
next
case (TUInt x2)
with 40(1) stmt_def gcost n Pair KValue Value show 7thesis using stmt.psimps(5) g_def
by simp

next
case TBool
then show 7thesis
proof cases
assume "b = ShowLpoor True"
then show ?thesis
proof (cases "stmt sO e, e cd st’")
case n2: (n a st’’)
with 40(1) gcost n Pair KValue Value TBool ‘b = ShowLpoo; True‘ have "stmt (WHILE
ex s0) e, e cd st = stmt (WHILE ex s0) e, e cd st’’" using stmt.psimps(5)[of ex sO e, e cd st] g_def
by (simp add: Let_def split:unit.split_asm)
with 40(4) stmt_def gcost n2 Pair KValue Value TBool ‘b = ShowLpoo; True‘ n have
"gas st6’ < gas st’’" using g_def by simp
moreover from 40(3) gcost n2 Pair KValue Value TBool ‘b = ShowLpoo; True‘ n have
"gas st’’ < gas st’" using g_def by simp
moreover from 40(2) [of _ "st(gas := gas st - g|)"] gcost n Pair have "gas st’ <
gas st" using g def by simp
ultimately show ?thesis by simp
next
case (e x)
with 40(1) stmt_def gcost n Pair KValue Value TBool ‘b = ShowLyoo; True‘ show
7thesis using stmt.psimps(5) g_def by (simp split: Ex.split_asm)
qed
next
assume "— b = ShowLpoo; True"
with 40(1) gcost n Pair KValue Value TBool have "stmt (WHILE ex s0) e, e cd st =
return () st’" using stmt.psimps(5) g_def by simp
with stmt_def have '"gas st6’ < gas st’" by simp
moreover from 40(2) [of _ "st(gas := gas st - g|)"] gcost n have "gas st’ < gas st"
using g_def by simp
ultimately show ?thesis by simp
qged
next
case TAddr
with 40(1) stmt_def gcost n Pair KValue Value show 7thesis using stmt.psimps(5) g_def
by simp
qed
next
case (Calldata x2)
with 40(1) stmt_def gcost n Pair KValue show 7thesis using stmt.psimps(5) g_def by simp
next
case (Memory x3)
with 40(1) stmt_def gcost n Pair KValue show ?thesis using stmt.psimps(5) g_def by simp
next
case (Storage x4)

with 40(1) stmt_def gcost n Pair KValue show 7?thesis using stmt.psimps(5) g_def by simp

92

5.1 Statements (Statements)

qed
next
case (KCDptr x2)
with 40(1) stmt_def gcost n Pair show 7thesis using stmt.psimps(5) g_def by simp
next
case (KMemptr x3)
with 40(1) stmt_def gcost n Pair show 7thesis using stmt.psimps(5) g_def by simp
next
case (KStoptr x4)
with 40(1) stmt_def gcost n Pair show 7thesis using stmt.psimps(5) g_def by simp
qed
qed
next
case (e e)
with 40(1) stmt_def gcost show ?thesis using stmt.psimps(5) g_def by simp
qed
qed
qed
next
case (41 i xe ep e cd st)
define g where "g = costs (INVOKE i xe) e, e cd st"
show 7case
proof (rule allI[OF impI])
fix st6’ assume al: "stmt (INVOKE i xe) e, e cd st = Normal ((), st6’)"
show "gas st6’ < gas st"
proof (cases)
assume "gas st < costs (INVOKE i xe) e, e cd st”
with 41(1) a1l show ?thesis using stmt.psimps(6) by simp
next
assume gcost: "— gas st < costs (INVOKE i xe) e, e cd st”
then show 7thesis
proof (cases "fmlookup e, (address e)")
case None
with 41(1) al gcost show 7thesis using stmt.psimps(6) by simp
next
case (Some x)
then show ?thesis
proof (cases x)
case (Pair ct _)
then show ?thesis
proof (cases "fmlookup ct i")
case None
with 41(1) g_def al gcost Some Pair show 7thesis using stmt.psimps(6) by simp
next
case s1: (Some a)
then show ?thesis
proof (cases a)
case (Method x1)
then show ?thesis
proof (cases x1)
case (fields fp f c)
then show ?thesis
proof (cases c)
case None
define st’ e’
where "st’ = st(gas := gas st - g|)(stack:=emptyStore|)"

and "e’ = ffold (init ct) (emptyEnv (address e) (sender e) (svalue e)) (fmdom
Ct) "

then show ?thesis
proof (cases "load False fp xe e, e’ emptyStore st’ e cd (st(gas := gas st - g|))")
case s3: (n a st’’’)
then show ?thesis
proof (cases a)
case f1: (fields e’’ cd’ st’’)

93

5 Expressions and Statements

then show ?thesis
proof (cases "stmt f e, e’’ cd’ st’’")
case n2: (n a st’’’’)
with 41(1) g_def al gcost Some Pair s1 Method fields None st’_def e’_def s3 f1
have "stmt (INVOKE i xe) ep e cd st = Normal ((), st’’’’(stack:=stack st’’’,
memory := memory st’’’)))" and #*: "gas st’ < gas (st(gas := gas st - g)))"
using stmt.psimps(6) [of i xe e, e cd st] by (auto simp add:Let_def
split:unit.split_asm)
with a1l have "gas st6’ < gas st’’’’" by auto
also from 41(3) gcost g_def Some Pair s1 Method fields None st’_def e’_def s3

f1 n2
have "... < gas st’’" by (auto split:unit.split_asm)
also have "... < gas st’"
proof -

from g_def gcost have "(applyf (costs (INVOKE i xe) ep e cd) >= (M\g.
assert Gas (Ast. gas st < g) (modify (Ast. st(gas := gas st - g|))))) st = Normal ((), st(gas := gas st
- g))" by simp

moreover from e’_def have "e’ = ffold_init ct (emptyEnv (address e)
(sender e) (svalue e)) (fmdom ct)" by simp

moreover from st’_def have "applyf (Ast. st(stack := emptyStore])) (st(gas
:= gas st - g|)) = Normal (st’, st(gas := gas st - g|))" by simp

ultimately have "Vev cda sta st’a. load False fp xe e, e’ emptyStore st’
e cd (st(gas := gas st - g|)) = Normal ((ev, cda, sta), st’a) — gas sta < gas st’ A gas st’a < gas
(st(gas := gas st - g|)) A address ev = address e’" using al g_def gcost Some Pair s1 Method fields None
st’_def e’_def s3 f1 41(2)[of _ "st(gas := gas st - g))" x ct _ _ x1 fp _ f c e’ st’ "st(gas := gas st -
g)"] by blast

then show ?thesis using s3 f1 by auto

qed
also from * have "... < gas (st(gas := gas st - g))" .
finally show ?7thesis by simp
next

case (e x)
with 41(1) g_def al gcost Some Pair s1 Method fields None st’_def e’_def s3 f1
show 7thesis using stmt.psimps(6) [of i xe e, e cd st] by auto
qged
qed
next
case n2: (e x)
with 41(1) g_def al gcost Some Pair s1 Method fields None st’_def e’_def show
7thesis using stmt.psimps(6) by auto
qed
next
case s2: (Some a)
with 41(1) g_def al gcost Some Pair s1 Method fields show ?thesis using
stmt.psimps (6) by simp
qed
ged
next
case (Var x2)
with 41(1) g_def al gcost Some Pair s1 show ?thesis using stmt.psimps(6) by simp
qed
qed
qged
qged
qed
qed
next
case (42 ad i xe val e, e cd st)
define g where "g = costs (EXTERNAL ad i xe val) e, e cd st"
show 7case
proof (rule allI[OF impI])
fix st6’ assume al: "stmt (EXTERNAL ad i xe val) e, e cd st = Normal ((), st6’)"
show "gas st6’ < gas st"
proof (cases)

94

assume "gas st < costs (EXTERNAL ad i xe val) e, e cd st"
with 42(1) a1l show ?thesis using stmt.psimps(7) by simp
next
assume gcost: "— gas st < costs (EXTERNAL ad i xe val) e, e cd st"
then show ?thesis
proof (cases "expr ad e, e cd (st(gas := gas st - g))")
case (n a st’)
then show 7thesis
proof (cases a)
case (Pair b ¢)
then show 7thesis
proof (cases b)
case (KValue adv)
then show ?thesis
proof (cases c)
case (Value x1)
then show ?thesis
proof (cases x1)
case (TSInt x1)
with 42(1) g_def al gcost n Pair KValue Value show ?thesis
auto
next
case (TUInt x2)
with 42(1) g_def al gcost n Pair KValue Value show ?thesis
simp
next
case TBool
with 42(1) g def al gcost n Pair KValue Value show 7thesis
simp
next
case TAddr
then show 7thesis
proof (cases "fmlookup e, adv")
case None
with 42(1) g_def al gcost n Pair KValue Value TAddr show
stmt.psimps (7) by simp
next
case (Some x)
then show 7thesis
proof (cases x)
case p2: (Pair ct fb)
then show ?7thesis
proof (cases "expr val e, e cd st’")
case nl: (n kv st’’)
then show ?thesis
proof (cases kv)
case p3: (Pair a b)
then show ?thesis
proof (cases a)
case k2: (KValue v)
then show 7thesis
proof (cases b)
case v: (Value t)
show ?thesis
proof (cases "fmlookup ct i")
case None
show ?thesis

5.1 Statements (Statements)

using stmt.psimps(7) by

using stmt.psimps(7) by

using stmt.psimps(7) by

7thesis using

proof (cases "transfer (address e) adv v (accounts st’’)")

case n2: None

with 42(1) g_def al gcost n Pair KValue Value TAddr Some p2 None nl p3

k2 v show 7?thesis using stmt.psimps(7)[of ad i xe val e, e cd st] by simp
next
case s4: (Some acc)
show ?thesis

95

5 Expressions and Statements

proof (cases "stmt fb e, (emptyEnv adv (address e) v) cd (st’’(accounts

:= acc,stack:=emptyStore, memory:=emptyStorel|))")

case n2: (n a st’’’)

with 42(1) g def al gcost n Pair KValue Value TAddr Some p2 None nl
p3 k2 v s4

have "stmt (EXTERNAL ad i xe val) e, e cd st = Normal ((),
st’’’(stack:=stack st’’, memory := memory st’’))"

using stmt.psimps(7) [of ad i xe val e, e cd st] by (auto simp

add:Let_def split:unit.split_asm)

with al have "gas st6’ < gas st’’’" by auto

also from 42(6) [OF _ n Pair KValue Value TAddr Some p2 nl p3 k2 v
None _ s4, of _ st’’ st’’ st’’ "()"] n2 g_def gcost

have "... < gas (st’’(accounts := acc,stack:=emptyStore,
memory :=emptyStore|))" by auto
also from 42(3) [of _ "st(gas := gas st - g)" _ st’ _ _ adv _ x ct]
g_def al gcost n Pair KValue Value TAddr Some p2 None nl p3 k2 v s4 n2
have "... < gas st’" by auto

also from 42(2) [of _ "st(gas := gas st - g|)"] g_def al gcost n Pair
KValue Value TAddr Some p2 None nl p3 k2 v s4 n2

have "... < gas (st(gas := gas st - g)))" by auto
finally show ?7thesis by simp
next

case (e x)
with 42(1) g_def al gcost n Pair KValue Value TAddr Some p2 None nl
p3 k2 v s4 show 7?thesis using stmt.psimps(7)[of ad i xe val e, e cd st] by simp
qged
qed
next
case s1: (Some a)
then show ?thesis
proof (cases a)
case (Method x1)
then show 7thesis
proof (cases x1)
case (fields fp f c)
then show 7thesis
proof (cases c)
case None
define stl e’
where "stl = st’’(stack:=emptyStore, memory:=emptyStore|"
and "e’ = ffold (init ct) (emptyEnv adv (address e) v) (fmdom
ct)"
then show ?thesis
proof (cases "load True fp xe e, e’ emptyStore stl e cd st’’")
case s3: (n a st’’’)
then show ?thesis
proof (cases a)
case f1: (fields e’’ cd’ st’’’’)
show ?thesis
proof (cases "transfer (address e) adv v (accounts st’’’’)")
case n2: None
with 42(1) g _def al gcost n Pair KValue Value TAddr Some p2
s1 Method fields None nl1 p3 k2 v s3 f1 stl_def e’_def show 7thesis using stmt.psimps(7)[of ad i xe val
ep e cd st] by simp
next
case s4: (Some acc)
show ?thesis
proof (cases "stmt f e, e’’ cd’ (st’’’’(accounts := acc|))")
case n2: (n a st’’’’’)
with 42(1) g_def al gcost n Pair KValue Value TAddr Some p2
s1 Method fields None nl p3 k2 v stl_def e’_def s3 f1 s4
have "stmt (EXTERNAL ad i xe val) e, e cd st = Normal ((),
st??’’’(stack:=stack st’’’, memory := memory st’’’|))"
using stmt.psimps(7) [of ad i xe val e, e cd st] by (auto

96

5.1 Statements (Statements)

simp add:Let_def split:unit.split_asm)
with a1l have '"gas st6’ < gas (st’’’’’)" by auto
also from 42(5) [OF _ n Pair KValue Value TAddr Some p2 ni

p3 k2 v s1 Method fields _ None _ _ s3 _ _ _ _, of "(OO" £ e’’ "(cd’, st’’’’)" cd’ st’’’’ st’’’ st’’’ acc
"()" "st’’’’(accounts := acc|)"] s4 stl_def e’_def f1 n2 g_def gcost
have "... < gas (st’’’’(accounts := acc)))" by auto
also have "... < gas stl"
proof -

from g_def gcost have "(applyf (costs (EXTERNAL ad i
xe val) ep e cd) >= (\g. assert Gas (Ast. gas st < g) (modify (Ast. st(gas := gas st - g|))))) st =
Normal ((), st(gas := gas st - g|))" by simp

moreover from e’_def have "e’ = ffold_init ct (emptyEnv
adv (address e) v) (fmdom ct)" by simp

moreover from n! have "expr val e, e cd st’ = Normal
(kv, st’’)" by simp

moreover from stl_def have "applyf (Ast. st(stack :=
emptyStore, memory := emptyStorel|)) st’’ = Normal (stl, st’’)" by simp

moreover have "applyf accounts st’’ = Normal ((accounts
st’’), st’’)" by simp

ultimately have "Vev cda sta st’a. load True fp xe e, e’
emptyStore stl e cd st’’ = Normal ((ev, cda, sta), st’a) —> gas sta < gas stl A gas st’a < gas st’’
A address ev = address e’" using 42(4) [of _ "st(gas := gas st - g)" _ st’ _ _adv _ xct _ _st’’ _bv
t _ x1 fp "(f,c)" £ ¢ e’] g_def al gcost n Pair KValue Value TAddr Some p2 s1 Method fields None nl1 p3
k2 v stl_def e’_def s3 f1 s4 n2 by blast

then show ?7thesis using s3 f1 by auto

qged
also from stl_def have "... < gas st’’" by simp
also from 42(3) [of _ "st(gas := gas st - g)" _ st’ _ _ adv

_ x ct] g_def al gcost n Pair KValue Value TAddr Some p2 s1 Method fields None nl p3 k2 v stl_def e’_def
s3 f1 s4 n2
have "... < gas st’" by auto
also from 42(2) [of _ "st(gas := gas st - g|)"] g_def al
gcost n Pair KValue Value TAddr Some p2 sl Method fields None nl p3 k2 v stl_def e’_def s3 f1 s4 n2

have "... < gas (st(gas := gas st - g|))" by auto
finally show ?thesis by simp
next

case (e x)
with 42(1) g_def al gcost n Pair KValue Value TAddr Some p2
s1 Method fields None nl1 p3 k2 v stl_def e’_def s3 f1 s4 show ?thesis using stmt.psimps(7)[of ad i xe
val e, e cd st] by simp
qged
qed
qed
next
case (e x)
with 42(1) g_def al gcost n Pair KValue Value TAddr Some p2 sl
Method fields None nl1 p3 k2 v stl_def e’_def show ?thesis using stmt.psimps(7)[of ad i xe val e, e cd
st] by simp
qed
next
case s2: (Some a)
with 42(1) g_def al gcost n Pair KValue Value TAddr Some p2 sl
Method fields nl p3 k2 v show 7thesis using stmt.psimps(7)[of ad i xe val e, e cd st] by simp
qed
qed
next
case (Var x2)
with 42(1) g_def al gcost n Pair KValue Value TAddr Some p2 s1 nl p3 k2
v show ?thesis using stmt.psimps(7)[of ad i xe val e, e cd st] by simp
qed
qed
next
case (Calldata x2)
with 42(1) g_def al gcost n Pair KValue Value TAddr Some p2 nl p3 k2 show

97

5 Expressions and Statements

7?thesis using

7thesis using

7?thesis using

7thesis using

?thesis using

7?thesis using

stmt.psimps(7) [of ad i xe val e, e cd st] by simp
next
case (Memory x3)
with 42(1) g def al gcost n Pair KValue Value TAddr Some p2 nl p3 k2 show
stmt.psimps(7) [of ad i xe val e, e cd st] by simp
next
case (Storage x4)
with 42(1) g_def al gcost n Pair KValue Value TAddr Some p2 nl p3 k2 show
stmt.psimps(7) [of ad i xe val e, e cd st] by simp
qed
next
case (KCDptr x2)
with 42(1) g def al gcost n Pair KValue Value TAddr Some p2 nl p3 show
stmt.psimps(7) [of ad i xe val e, e cd st] by simp
next
case (KMemptr x3)
with 42(1) g_def al gcost n Pair KValue Value TAddr Some p2 nl1 p3 show
stmt.psimps(7) [of ad i xe val e, e cd st] by simp
next
case (KStoptr x4)
with 42(1) g_def al gcost n Pair KValue Value TAddr Some p2 nl p3 show
stmt.psimps(7) [of ad i xe val e, e cd st] by simp
ged
qed
next
case n2: (e x)
with 42(1) g_def al gcost n Pair KValue Value TAddr Some p2 show 7thesis using

stmt.psimps(7) [of ad i xe val e, e cd st] by simp

qed
qed
qed

ged

next

case (Calldata x2)
with 42(1) g_def al gcost n Pair KValue show ?thesis using stmt.psimps(7)[of ad i xe val

ep e cd st] by simp
next

case (Memory x3)
with 42(1) g_def al gcost n Pair KValue show ?thesis using stmt.psimps(7)[of ad i xe val

ep e cd st] by simp
next

case (Storage x4)
with 42(1) g_def al gcost n Pair KValue show ?thesis using stmt.psimps(7)[of ad i xe val

ep, e cd st] by simp
qed

next

case (KCDptr x2)
with 42(1) g_def al gcost n Pair show 7thesis using stmt.psimps(7)[of ad i xe val e, e cd

st] by simp

next

case (KMemptr x3)
with 42(1) g_def al gcost n Pair show 7thesis using stmt.psimps(7) [of ad i xe val e, e cd

st] by simp

next

case (KStoptr x4)
with 42(1) g_def al gcost n Pair show 7thesis using stmt.psimps(7) [of ad i xe val e, e cd

st] by simp
qed
qged
next

case (e _)
with 42(1) g _def al gcost show ?thesis using stmt.psimps(7) [of ad i xe val e, e cd st] by

simp
qed

98

5.1 Statements (Statements)

qed
qed
next
case (43 ad ex e, e cd st)
define g where "g = costs (TRANSFER ad ex) e, e cd st"
show 7case
proof (rule allI[OF impI])
fix st6’ assume stmt_def: "stmt (TRANSFER ad ex) e, e cd st = Normal ((), st6’)"
show "gas st6’ < gas st"
proof cases
assume '"gas st < g"
with 43 stmt_def g_def show ?thesis using stmt.psimps(8)[of ad ex e, e cd st] by simp
next
assume "— gas st < g"
show ?thesis
proof (cases "expr ex ep, e cd (st(gas := gas st - g)))")
case (n a st’)
then show 7thesis
proof (cases a)
case (Pair b c)
then show ?7thesis
proof (cases b)
case (KValue v)
then show ?thesis
proof (cases c)
case (Value t)
then show ?thesis
proof (cases "expr ad e, e cd st’")
case n2: (n a st’’)
then show ?thesis
proof (cases a)
case p2: (Pair b c)
then show 7thesis
proof (cases b)
case k2: (KValue adv)
then show ?thesis
proof (cases c)
case v2: (Value x1)
then show ?thesis
proof (cases x1)
case (TSInt x1)
with 43(1) stmt_def ‘— gas st < g‘ n Pair KValue Value n2 p2 k2 v2 g_def show
7thesis using stmt.psimps(8) by simp
next
case (TUInt x2)
with 43(1) stmt_def ‘- gas st < g‘ n Pair KValue Value n2 p2 k2 v2 g_def show
7thesis using stmt.psimps(8) by simp
next
case TBool
with 43(1) stmt_def ‘— gas st < g n Pair KValue Value n2 p2 k2 v2 g_def show
?thesis using stmt.psimps(8) by simp
next
case TAddr
then show ?thesis
proof (cases "transfer (address e) adv v (accounts st’’)")
case None
with 43(1) stmt_def g_def ‘— gas st < g n Pair KValue Value n2 p2 k2 v2
TAddr show 7thesis using stmt.psimps(8) by simp
next
case (Some acc)
then show 7thesis
proof (cases "fmlookup e, adv")
case None
with 43(1) ‘- gas st < g‘ n Pair KValue Value n2 p2 k2 v2 TAddr Some g_def

99

5 Expressions and Statements

have "stmt (TRANSFER ad ex) e, e cd st = Normal ((),st’’(accounts:=acc|)"
using stmt.psimps(8) [of ad ex e, e cd st] by simp
with stmt_def have "gas st6’ < gas st’’" by auto
also from 43(3)[of "O" "(st(gas := gas st - g))" _ st’] ‘- gas st < g‘n
Pair KValue Value n2 g _def have "... < gas st’" by simp
also from 43(2) [of "()" "(st(gas := gas st - g))"] ‘- gas st < g‘ n g_def
have "... < gas st" by simp
finally show ?thesis .
next
case s2: (Some a)
then show ?thesis
proof (cases a)
case p3: (Pair ct f)
define e’ where "e’ = ffold_init ct (emptyEnv adv (address e) v) (fmdom
ct)"
show ?thesis
proof (cases "stmt f e, e’ emptyStore (st’’(accounts := acc,
stack:=emptyStore, memory:=emptyStore|)")
case n3: (n a st’’’)
with 43(1) ‘- gas st < g n Pair KValue Value n2 p2 k2 v2 TAddr Some
52 p3 g_def
have "stmt (TRANSFER ad ex) ep e cd st = Normal ((),st’’’(stack:=stack
st’’, memory := memory st’’))" using e’_def stmt.psimps(8)[of ad ex e, e cd st] by simp
with stmt_def have "gas st6’ < gas st’’’" by auto
also from 43(4) [of "(" "st(gas := gas st - g)" _ st’ _ _ vt _ st’’

_ adv x1 "accounts st’’" st’’ acc _ ct f e’ _ st’’ "()" ”st“qaccounts := acc, stack:=emptyStore,
memory :=emptyStore|)"] ‘— gas st < g‘ n Pair KValue Value n2 p2 k2 v2 TAddr Some s2 p3 g_def n2 e’_def
n3

have "... < gas (st’’(accounts := acc, stack := emptyStore, memory :=
emptyStore|))" by simp
also from 43(3)[of "(" "(st(gas := gas st - g)))" _ st’] ‘- gas st <

g‘ n Pair KValue Value n2 g _def have "... < gas st’" by simp
also from 43(2)[of "()" "(st(gas := gas st - g))"] ‘- gas st < g‘n
g_def have "... < gas st" by simp
finally show ?thesis .
next

case (e x)
with 43(1) ‘- gas st < g n Pair KValue Value n2 p2 k2 v2 TAddr Some
s2 p3 g_def e’_def stmt_def show 7thesis using stmt.psimps(8) [of ad ex e, e cd st] by simp
qed
qged
qed
qed
qged
next
case (Calldata x2)
with 43(1) stmt_def ‘— gas st < g‘ n Pair KValue Value n2 p2 k2 g_def show
?thesis using stmt.psimps(8) by simp
next
case (Memory x3)
with 43(1) stmt_def ‘— gas st < g‘ n Pair KValue Value n2 p2 k2 g_def show
7thesis using stmt.psimps(8) by simp
next
case (Storage x4)
with 43(1) stmt_def ‘— gas st < g n Pair KValue Value n2 p2 k2 g_def show
7thesis using stmt.psimps(8) by simp
qed
next
case (KCDptr x2)
with 43(1) stmt_def ‘— gas st < g‘ n Pair KValue Value n2 p2 g_def show 7thesis
using stmt.psimps(8) by simp
next
case (KMemptr x3)
with 43(1) stmt_def ‘— gas st < g n Pair KValue Value n2 p2 g_def show 7thesis

100

5.1 Statements (Statements)

using stmt.psimps(8) by simp
next
case (KStoptr x4)
with 43(1) stmt_def ‘— gas st < g n Pair KValue Value n2 p2 g_def show ?thesis
using stmt.psimps(8) by simp
qed
qed
next
case (e e)
with 43(1) stmt_def ‘— gas st < g‘ n Pair KValue Value g_def show 7thesis using
stmt.psimps(8) by simp
qed
next
case (Calldata x2)
with 43(1) stmt_def ‘— gas st < g n Pair KValue g_def show ?thesis using
stmt.psimps (8) by simp
next
case (Memory x3)
with 43(1) stmt_def ‘- gas st < g
stmt.psimps (8) by simp
next
case (Storage x4)
with 43(1) stmt_def ‘- gas st <
stmt.psimps(8) by simp
qed
next
case (KCDptr x2)

~

n Pair KValue g_def show ?7thesis using

A
()

n Pair KValue g_def show 7thesis using

with 43(1) stmt_def ‘— gas st < g n Pair g def show ?7thesis using stmt.psimps(8) by
simp
next
case (KMemptr x3)
with 43(1) stmt_def ‘— gas st < g‘ n Pair g_def show 7thesis using stmt.psimps(8) by
simp
next
case (KStoptr x4)
with 43(1) stmt_def ‘— gas st < g‘ n Pair g_def show 7thesis using stmt.psimps(8) by
simp
qged
qed
next
case (e e)
with 43(1) stmt_def ‘— gas st < g g_def show ?thesis using stmt.psimps(8) by simp
qed
qed
qed
next

case (44 idO tp ex s e, e, cd st)
define g where "g = costs (BLOCK ((id0, tp), ex) s) ep e, cd st"
show 7case
proof (rule allI[OF impI])
fix st6’ assume stmt_def: "stmt (BLOCK ((id0, tp), ex) s) ep e, cd st = Normal ((), st6’)"
show '"gas st6’ < gas st"
proof cases
assume '"gas st < g"
with 44 stmt_def g _def show 7thesis using stmt.psimps(9) by simp
next
assume "— gas st < g"
show 7thesis
proof (cases ex)
case None
then show ?thesis
proof (cases "decl id0 tp None False cd (memory (st(gas := gas st - g|))) cd e, (st(gas := gas
st - g))")
case (n a st’)

101

5 Expressions and Statements

then show ?thesis
proof (cases a)
case (Pair cd’ e’)
with 44(1) stmt_def ‘— gas st < g‘ None n g _def have "stmt (BLOCK ((id0, tp), ex)
s8) ep e, cd st = stmt s e, e’ cd’ st’" using stmt.psimps(9) [of idO tp ex s e, e, cd st] by (simp
split:unit.split_asm)
with 44(4) [of "O" "st(gas := gas st - g))"] stmt_def ‘— gas st < g° None n Pair g_def
have "gas st6’ < gas st’" by simp
moreover from n Pair have '"gas st’ < gas st" using decl_gas_address by simp
ultimately show ?thesis by simp
qed
next
case (e x)
with 44 stmt_def ‘— gas st < g None g_def show ?7thesis using stmt.psimps(9) by simp
qed
next
case (Some ex’)
then show ?thesis
proof (cases "expr ex’ e, e, cd (st(gas := gas st - g))")
case (n a st’)
then show ?thesis
proof (cases a)
case (Pair v t)
then show ?thesis
proof (cases "decl idO tp (Some (v, t)) False cd (memory st’) cd e, st’")
case s2: (n a st’’)
then show ?thesis
proof (cases a)
case f2: (Pair cd’ e’)
with 44(1) stmt_def ‘— gas st < g° Some n Pair s2 g_def have "stmt (BLOCK ((id0O, tp),
ex) s) ep e, cd st = stmt s e, e’ cd’ st’’" using stmt.psimps(9) [of idO tp ex s e, e, cd st] by (simp
split:unit.split_asm)
with 44(3)[of "(" "st(gas := gas st - g|)" ex’ _ st’] stmt_def ‘- gas st < g Some n
Pair s2 f2 g def have '"gas st6’ < gas st’’" by simp
moreover from Some n Pair s2 f2 g_def have '"gas st’’ < gas st’" using
decl_gas_address by simp
moreover from 44(2) [of "(O" "st(gas := gas st - g|)" ex’] ‘- gas st < g Some n Pair
g_def have "gas st’ < gas st" by simp
ultimately show ?thesis by simp
qed
next
case (e x)
with 44(1) stmt_def ‘— gas st < g° Some n Pair g _def show 7thesis using stmt.psimps(9)
by simp
qed
qed
next
case (e e)
with 44 stmt_def ‘— gas st < g Some g_def show ?7thesis using stmt.psimps(9) by simp
qged
qed
qed
qed
qed

5.1.5 Termination

lemma x1:
assumes "expr x e, env cd st = Normal (val, s’)"
and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inl (x, e,, env, cd, st))))"

shows "gas s’ < gas st V gas s’ = gas st"
using assms msel_ssel_lexp_expr_load_rexp_stmt_dom_gas(4) [of x e, env cd st] by auto

lemma x2:

102

5.1 Statements (Statements)

assumes "(if gas st < c then throw Gas st else (get >= (As. put (s(gas := gas s - c|)))) st) = Normal
O, s?)"
and "expr x e, e cd s’ = Normal (val, s’a)"
and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inl (x, ep, e, cd, s’))))"
shows "gas s’a < gas st V gas s’a = gas st
proof -
from assms have '"gas s’ < gas st V gas s’ = gas st" by (auto split:if_split_asm)
with assms show ?thesis using x1[of x e, e cd s’ val s’a] by auto
qed

lemma x2sub:
assumes "(if gas st < costs (TRANSFER ad ex) e, e cd st then throw Gas st
else (get >= (As. put (s(gas := gas s - costs (TRANSFER ad ex) e, e cd st|))) st) =
Normal ((), s’)" and
" expr ex e, e cd s’ = Normal ((KValue vb, Value t), s’a)"
and " msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inl (ex, ep, e, cd, s’))))"
and "(Aad i xe val e, e cd st. 0 < costs (EXTERNAL ad i xe val) e, e cd st)" and "gas s’a # gas st"
shows "gas s’a < gas st"
proof -
from assms have '"gas s’ < gas st V gas s’ = gas st" by (auto split:if_split_asm)
with assms show ?thesis using x1[of ex e, e cd s’ "(KValue vb, Value t)" s’al] by auto
qed

lemma x3:
assumes "(if gas st < c then throw Gas st else (get >= (As. put (s(gas := gas s - c|)))) st) =
Normal ((), s’)"
and "s’(stack := emptyStore| = va"
and "load False ad xe e (ffold (init aa) (address = address e, sender = sender e, svalue = svalue
e, denvalue = fmempty|) (fmdom aa)) emptyStore va e cd s’ = Normal ((ag, ah, s’d), vc)"
and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inr (False, ad, xe, e,, ffold (init aa)
(|address = address e, sender = sender e, svalue = svalue e, denvalue = fmempty|) (fmdom aa), emptyStore,
va, e, cd, s’))))"
and "c>0"
shows '"gas s’d < gas st"
proof -
from assms have '"gas s’d < gas va" using msel_ssel_lexp_expr_load_rexp_stmt_dom_gas(5) [of False ad
xe ep "ffold (init aa) (address = address e, sender = sender e, svalue = svalue e, denvalue = fmempty|
(fmdom aa)" emptyStore va e cd s’] by blast

also from assms(2) have "... = gas s’" by auto
also from assms(1,5) have "... < gas st" by (auto split:if_split_asm)
finally show ?thesis .

qed

lemma x4:
assumes "(if gas st < c then throw Gas st else (get >= (As. put (s(gas := gas s - c|)))) st) =
Normal ((), s’)"
and "s’(stack := emptyStore| = va"
and "load False ad xe e, (ffold (init aa) (address = address e, sender = sender e, svalue =
svalue e, denvalue = fmempty|) (fmdom aa)) emptyStore va e cd s’ = Normal ((ag, ah, s’d), vc)"
and "stmt ae e, ag ah s’d = Normal ((), s’e)"
and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inr (Inr (ae, e,, ag, ah, s’d))))"
and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inr (False, ad, xe, ep, ffold (init aa)
(address = address e, sender = sender e, svalue = svalue e, denvalue = fmempty|) (fmdom aa), emptyStore,
va, e, cd, s’))))"
and "c>0"
shows "gas s’e < gas st"
proof -
from assms have '"gas s’e < gas s’d" using msel_ssel_lexp_expr_load_rexp_stmt_dom_gas(7) by blast
with assms show ?thesis using x3[0F assms(1) assms(2) assms(3) assms(6)] by simp
qed

lemma x5:

assumes "(if gas st < costs (COMP s1 s2) e, e cd st then throw Gas st else (get >= (\s. put (s(gas
:= gas s - costs (COMP s1 s2) ep e cd st))))) st) = Normal ((), s’)"

103

5 Expressions and Statements

and "stmt s1 e, e cd s’ = Normal ((), s’a)"
and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inr (Inr (s1, ep, e, cd, s’))))"
shows "gas s’a < gas st V gas s’a = gas st"
using assms msel_ssel_lexp_expr_load_rexp_stmt_dom_gas(7) [of s1 e, e cd s’] by (auto
split:if_split_asm)

lemma x6:
assumes "(if gas st < costs (WHILE ex sO) e, e cd st then throw Gas st else (get >= (\s. put
(s(gas := gas s - costs (WHILE ex sO) e, e cd st])))) st) = Normal ((), s’)"
and "expr ex e, e cd s’ = Normal (val, s’a)"
and "stmt s0 ep, e cd s’a = Normal ((), s’b)"
and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inr (Inr (sO, ep, e, cd, s’a))))"
and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inl (ex, ep, e, cd, s8’))))"
shows "gas s’b < gas st"
proof -
from assms have '"gas s’b < gas s’a" using msel_ssel_lexp_expr_load_rexp_stmt_dom_gas(7) [of sO e, e
cd s’a] by blast

also from assms have "... < gas s’" using msel_ssel_lexp_expr_load_rexp_stmt_dom_gas (4) [of ex e, e
cd s’] by auto

also from assms(1) have "... < gas st" using while_not_zero by (auto split:if_split_asm)

finally show ?thesis .
qed

lemma x7:
assumes "(if gas st < c then throw Gas st else (get >= (As. put (s(gas := gas s - c|)))) st) =
Normal ((), s’)"
and "expr ad e, e cd s’ = Normal ((KValue vb, Value TAddr), s’a)"
and "expr val e, e cd s’a = Normal ((KValue vd, Value ta), s’b)"
and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inl (val, e,, e, cd, s’a))))"
and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inl (ad, ep, e, cd, s’))))"
and "c>0"
shows '"gas s’b < gas st"
proof -
from assms(4,3) have "gas s’b < gas s’a" using msel_ssel_lexp_expr_load_rexp_stmt_dom_gas(4) [of val
ep e cd s’al by simp

also from assms(5,2) have "... < gas s’" using msel_ssel_lexp_expr_load_rexp_stmt_dom_gas (4) [of ad
ep e cd s’] by simp

also from assms(1,6) have "... < gas st" by (auto split:if_split_asm)

finally show ?thesis .
qed

lemma x8:
assumes "(if gas st < costs (TRANSFER ad ex) e, e cd st then throw Gas st else (get >= (As. put
(s(gas := gas s - costs (TRANSFER ad ex) e, e cd st|)))) st) = Normal ((), s’)"
and "expr ex e, e cd s’ = Normal ((KValue vb, Value t), s’a)"
and "expr ad e, e cd s’a = Normal ((KValue vd, Value TAddr), s’b)"
and "s’b(accounts := ab, stack := emptyStore, memory := emptyStore|) = s’e"
and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inl (ad, ep, e, cd, s’a))))"
and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inl (ex, ep, e, cd, s’))))"
shows "gas s’e < gas st"
proof -
from assms(4) have "gas s’e = gas s’b" by auto
also from assms(5,3) have "... < gas s’a" using msel_ssel_lexp_expr_load_rexp_stmt_dom_gas(4) [of ad
ep e cd s’a] by simp
also from assms(6,2) have "... < gas s’" using msel_ssel_lexp_expr_load_rexp_stmt_dom_gas(4) [of ex
ep e cd s’] by simp
also from assms(1) have "... < gas st" using transfer_not_zero by (auto split:if_split_asm)
finally show ?thesis .
qed

lemma x9:

assumes "(if gas st < costs (BLOCK ((id0, tp), Some a) s) e, e, cd st then throw Gas st else (get
>= (Asa. put (sa(gas := gas sa - costs (BLOCK ((id0, tp), Some a) s) e, e, cd st|)))) st) = Normal ((),
S))“

104

5.1 Statements (Statements)

and "expr a e, e, cd s’ = Normal ((aa, b), s’a)"
and "decl id0O tp (Some (aa, b)) False cd vb cd e, s’a = Normal ((ab, ba), s’c)"
and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inl (a, ep, ey, cd, s’))))"
shows "gas s’c < gas st V gas s’c = gas st"
proof -
from assms have "gas s’c = gas s’a" using decl_gas_address[of idO tp "(Some (aa, b))" False cd vb cd
e, s’al] by simp

also from assms have "... < gas s’" using msel_ssel_lexp_expr_load_rexp_stmt_dom_gas(4) [of a e, e,
cd s’] by simp

also from assms(1) have "... < gas st" by (auto split:if_split_asm)

finally show ?thesis by auto
qed

lemma x10:
assumes "(if gas st < costs (BLOCK ((idO, tp), None) s) e, e, cd st then throw Gas st else (get >=
(Asa. put (sa(gas := gas sa - costs (BLOCK ((id0, tp), None) s) e, e, cd st|))) st) = Normal ((), s’)"
and "decl idO tp None False cd va cd e, s’ = Normal ((a, b), s’b)"
shows "gas s’b < gas st V gas s’b = gas st"

proof -

from assms have '"gas s’b = gas s’" using decl_gas_address[of id0 tp None False cd va cd e, s’] by
simp

also from assms(1) have "... < gas st" by (auto split:if_split_asm)

finally show ?thesis by auto
qed

lemma x11:
assumes "(if gas st < c then throw Gas st else (get >= (\s. put (s(gas := gas s - c|)))) st) =

Normal ((), s’)"

and "expr ad e, e cd s’ = Normal ((KValue vb, Value TAddr), s’a)"

and "expr val e, e cd s’a = Normal ((KValue vd, Value ta), s’b)"

and "load True af xe e, (ffold (init ab) (address = vb, sender = address e, svalue = vd, denvalue
= fmempty|) (fmdom ab)) emptyStore (s’b(stack := emptyStore, memory := emptyStore|)) e cd s’b = Normal
((ak, al, s’g), vh)"

and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inr (True, af, xe, ep, ffold (init ab)
(address = vb, sender = address e, svalue = vd, denvalue = fmempty| (fmdom ab), emptyStore, s’b(stack
:= emptyStore, memory := emptyStorel|), e, cd, s’b))))"

and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inl (val, e,, e, cd, s’a))))"

and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inl (ad, ep, e, cd, s’))))"

and "c>0"
shows '"gas s’g < gas st"

proof -

from assms have "gas s’g < gas (s’b(stack := emptyStore, memory := emptyStore|))" using
msel_ssel_lexp_expr_load_rexp_stmt_dom_gas(5) [of True af xe e, "ffold (init ab) (address = vb, sender =
address e, svalue = vd, denvalue = fmempty| (fmdom ab)" emptyStore "s’b(stack := emptyStore, memory :=
emptyStore|)" e cd s’b] by blast

also have "... = gas s’b" by simp

also from assms have "... < gas st" using x7[0F assms(1) assms(2) assms(3) assms(6)] by auto

finally show ?thesis .

qed

lemma x12:
assumes "(if gas st < c then throw Gas st else (get >= (As. put (s(gas := gas s - c|)))) st) =

Normal ((), s’)"

and "expr ad e, e cd s’ = Normal ((KValue vb, Value TAddr), s’a)"

and "expr val e, e cd s’a = Normal ((KValue vd, Value ta), s’b)"

and "load True af xe e, (ffold (init ab) (address = vb, sender = address e, svalue = vd, denvalue
= fmempty| (fmdom ab)) emptyStore (s’b(stack := emptyStore, memory := emptyStore|)) e cd s’b = Normal
((ak, al, s’g), vh)"

and "stmt ag e, ak al (s’g(accounts := alal)) = Normal ((), s’h)"

and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inr (True, af, xe, ep, ffold (init ab)
(|address = vb, sender = address e, svalue = vd, denvalue = fmemptyD (fmdom ab), emptyStore, s’b(|stack
:= emptyStore, memory := emptyStore|), e, cd, s’b))))"

and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inl (val, ep, e, cd, s’a))))"

and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inl (Inl (ad, ep, e, cd, s’))))"

105

5 Expressions and Statements

and "msel_ssel_lexp_expr_load_rexp_stmt_dom (Inr (Inr (Inr (ag, ep, ak, al, (s’g(accounts :=

alal))))))"
and "c>0"
shows "gas s’h < gas st"

proof -

from assms have "gas s’h < gas (s’g(accounts := ala))" using msel_ssel_lexp_expr_load_rexp_stmt_dom_gas(7)
by blast

also from assms have "... < gas st" using x11[0F assms(1) assms(2) assms(3) assms(4)] by auto

finally show ?thesis .
qed
termination

apply (relation
"measures [Ax. case x of Inr (Inr (Inr 1)) = gas (snd (snd (snd (snd 1))))
| Inr (Inr (Inl 1)) = gas (snd (snd (snd (snd 1))))
| Inr (Inl (Inr 1)) = gas (snd (snd (snd (snd (snd (snd (snd (snd (snd

1)))))))))

| Inr (Inl (Inl 1)) = gas (snd (snd (snd (snd 1))))
| Inl (Inr (Inr 1)) = gas (snd (snd (snd (snd 1))))
| Inl (Inr (Inl 1)) = gas (snd (snd (snd (snd (snd (snd 1))))))
| Inl (Inl 1) = gas (snd (snd (snd (snd (snd (snd (snd 1))))))),

Ax. case x of Inr (Inr (Inr 1)) = 1
| Inr (Inr (Inl 1)) = 0
| Inr (Inl (Inr 1)) = O
| Inr (Inl (Inl 1)) = O
| Inl (Inr (Inr 1)) = 0
| Inl (Inr (Inl 1)) = O
| Inl (Inl 1) = O,

Ax. case x of Inr (Inr (Inr 1)) = size (fst 1)
| Inr (Inr (Inl 1)) = size (fst 1)
| Inr (Inl (Inr 1)) = size_list size (fst (snd (snd 1)))
| Inr (Inl (Inl 1)) = size (fst 1)
| Inl (Inr (Inr 1)) = size (fst 1)
| Inl (Inr (Inl 1)) = size_list size (fst (snd (snd 1)))
| Inl (Inl 1) = size_list size (fst (snd (snd (snd 1))))]

")

apply simp_all

apply (simp only: x1)

apply (simp only: x1)

apply (simp only: x1)

apply (auto split: if_split_asm)[1]
apply (auto split: if_split_asm)[1]
apply (simp only: x2)

apply (simp only: x2)

apply (auto split: if_split_asm)[1]
apply (simp only: x2)

apply (auto split: if_split_asm)[1]
apply (simp only: x2)

apply (auto split: if_split_asm)[1]
apply (simp only: x2)

apply (auto split: if_split_asm)[1]
apply (simp only: x2)

apply (auto split: if_split_asm)[1]
apply (simp only: x2)

apply (auto split: if_split_asm)[1]
apply (simp only: x2)

apply (auto split: if_split_asm)[1]
apply (auto split: if_split_asm)[1]
using call_not_zero apply (simp only: x3)
using call_not_zero apply (simp add: x4)
apply (auto split: if_split_asm)[1]
apply (simp only: x2)

using ecall_not_zero apply (simp add: x7)
using ecall_not_zero apply (auto simp add: x11)[1]

106

using
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
using
apply
apply
llSlIlg
using
using
apply
apply
apply
apply
apply
apply
done
end

ecall_not_zero apply (auto simp add: x12)[1]

(simp only: x1)

(auto split: if_split_asm)[1]

(simp only: x2)

(simp only: x2)

(simp only: x2)

(simp only: x2)

(simp only: x2)

(auto split: if_split_asm)[1]

(simp only: x5)

(auto split: if_split_asm) [1]

(simp only: x2)

(simp only: x2)

(auto split: if_split_asm) [1]

(simp only: x2)

(simp only: x6)

(auto split: if_split_asm)[1]
invoke_not_zero apply (simp only: x3)
(auto split: if_split_asm)[1]

(simp only: x2)

external_not_zero apply (simp add: x7)

5.1 Statements (Statements)

external_not_zero apply (auto simp add: x11)[1]
external_not_zero apply (auto simp add: x7)[1]

(auto split: if_split_asm)[1]
(simp add: x2)

(simp add: x8)

(auto split: if_split_asm)[1]
(simp only: x9)

(simp only: x10)

5.1.6 A minimal cost model

fun costs_min ::

where

"costs_min SKIP e, e cd st = 0"

—_—— — — — — - —

fun costs_ex ::

where

"costs_min (ASSIGN 1v ex) e, e cd st = 0"
"costs_min (COMP s1 s2) e, e cd st = 0"
"costs_min (ITE ex sl s2) e, e cd st = 0"
"costs_min (WHILE ex s0) e, e cd st = 1"
"costs_min (TRANSFER ad ex) e, e cd st = 1"
"costs_min (BLOCK ((id0, tp), ex) s) e, e cd st =0"
"costs_min (INVOKE _ _) ep e cd st = 1"
"costs_min (EXTERNAL _ _ _

_) ep ecdst =1"

"E = Environmentp =- Environment

"costs_ex (E.INT _ _) ep, e cd st = 0"

— e — — —

"costs_ex (UINT _ _) ep e cd st = 0"
"costs_ex (ADDRESS _) e, e cd st = 0"
"costs_ex (BALANCE _) e, e cd st = 0"
"costs_ex THIS e, e cd st = 0"
"costs_ex SENDER e, e cd st = 0"
"costs_ex VALUE e, e cd st = 0"
"costs_ex (TRUE) e, e cd st = 0"
"costs_ex (FALSE) e, e cd st = 0"
"costs_ex (LVAL _) e, e cd st = 0"
"costs_ex (PLUS _ _) ep e cd st = 0"
"costs_ex (MINUS _ _) e, e cd st = 0"
"costs_ex (EQUAL _ _) e, e cd st = 0"
"costs_ex (LESS _ _) ep e cd st = 0"
"costs_ex (AND _ _) e, e cd st = 0"
"costs_ex (OR _ _) ep e cd st = 0"

=

"S=- Environment p = Environment = CalldataT = State = Gas"

CalldataT = State = Gas"

107

5 Expressions and Statements

| "costs_ex (NOT _) e, e cd st = 0"
| "costs_ex (CALL _ _) e, e cd st = 1"
| "costs_ex (ECALL _ _ _ _) ep e cd st = 1"

global__interpretation solidity: statement_with_gas costs_min costs_ex
defines stmt = "solidity.stmt"

and lexp = solidity.lexp
and expr = solidity.expr
and ssel = solidity.ssel
and rexp = solidity.rexp
and msel = solidity.msel
and load = solidity.load

by unfold_locales auto

end

5.2 The Main Entry Point (Solidity_Main)

theory
Solidity_Main
imports
Valuetypes
Storage
Environment
Statements
begin

This theory is the main entry point into the session Solidity, i.e., it serves the same purpose as Main for the

session HOL.
It is based on Solidity v0.5.16 https://docs.soliditylang.org/en/v0.5.16/index.html

end

108

https://docs.soliditylang.org/en/v0.5.16/index.html

6 A Solidity Evaluation System

This chapter discussed a tactic for symbolically executing Solidity statements and expressions as well as provides a
configuration for Isabelle’s code generator that allows us to generate an efficient implementation of our executable
formal semantics in, e.g., Haskell, SML, or Scala. In our test framework, we use Haskell as a target language.

6.1 Towards a Setup for Symbolic Evaluation of Solidity
(Solidity__Symbex)

In this chapter, we lay out the foundations for a tactic for executing Solidity statements and expressions symbol-
ically.

theory Solidity_Symbex
imports
Main
"HOL-Eisbach.Eisbach"
begin

lemma string literal_cat: "a+b = String.implode ((String.explode a) @ (String.explode b))"
by (metis String.implode_explode_eq plus_literal.rep_eq)

lemma string literal_conv: "(map String.ascii_of y = y) = (x = String.implode y) = (String.explode
X = y) "
by auto

lemmas string literal_opt = Literal.rep_eq zero_literal.rep_eq plus_literal.rep_eq
string_literal_cat string_literal_conv

named__theorems solidity_symbex
method solidity_symbex declares solidity_symbex =
((simp add:solidity_symbex cong:unit.case), (simp add:string literal_opt)?; (code_simp,simp?)+)

declare Let_def [solidity_symbex]
o_def [solidity_symbex]

end

6.2 Solidty Evaluator and Code Generator Setup (Solidity__Evaluator)

theory
Solidity_Evaluator

imports
Solidity_Main
"HOL-Library.Code_Target_Numeral"
"HOL-Library.Sublist"
"HOL-Library.Finite_Map"

begin

6.2.1 Code Generator Setup and Local Tests

Utils

definition FAILURE::"String.literal" where "FAILURE = STR ’’Failure’’"
definition "inta_of_int = int o nat_of_integer"
definition "nat_of_int = nat_of_integer"

109

6 A Solidity Evaluation System

fun astore :: "Identifier = Type = Valuetype = StorageT * Environment = StorageT * Environment"
where "astore i t v (s, e) = (fmupd i v s, (updateEnv i t (Storeloc i) e))"

Valuetypes

fun dumpvaiuetypes::"Types = Valuetype = String.literal" where
"dumpvaiuetypes (TSInt _) n = n"
/ ”dumpv%ﬂuetypes (TUInt _) n =n"
| "dumpvgiuetypes TBool b = (if b = (STR ’’True’’) then STR ’’true’’ else STR ’’false’’)"
| "dumpvaiuetypes TAddr ad = ad"

Generalized Unit Tests lemma "createSInt 8 500 = STR ’’-12°7"
by (eval)

lemma "STR ’’-92134039538802366542421159375273829975""°
= createSInt 128 45648483135649456465465452123894894554654654654654646999465"
by (eval)

lemma "STR ’’-128’’ = createSInt 8 (-128)"
by (eval)

lemma "STR ’’244°’ = (createUInt 8 500)"
by (eval)

lemma "STR ’’220443428915524155977936330922349307608°
= (createUInt 128 4564848313564945646546545212389489455465465465465464699946544654654654654168) "
by (eval)

lemma "less (TUInt 144) (TSInt 160) (STR ’’5’’) (STR ’’8’’) = Some(STR ’’True’’, TBool) "
by (eval)

Load: Accounts

fun load Accounts :: "Accounts => (Address X Balance) list => Accounts" where
"load Accounts acc [] = acc"
| "load Accounts acc ((ad, bal)#as) = loadAccounts (updateBalance ad bal acc) as"

definition dump accounts :: "Accounts = Address list = String.literal"
where

"dump Accounts acc = foldl (A t a . String.implode ((String.explode t)
(String.explode a)
’? .balance’’

Py

String.explode (accessBalance acc a)

);IHI):))

Q@ 0 @

(STR 1))1)n

definition init Account::"(Address X Balance) list => Accounts" where
"init Account = loadAccounts emptyAccount"
Load: Store

type__synonym Datagstore = "(Location X String.literal) list"

fun showsiore::"’a Store = ’a fset" where
"showsiore s = (fmran (mapping s))"
Load: Memory

datatype Datanremory = MArray "Datajnremory list"
| MBool bool
| MInt int
| MAddress Address

fun

110

6.2 Solidty Evaluator and Code Generator Setup (Solidity Evaluator)

loadReC pmemory :: "Location = Datamemory = MemoryT = MemoryT" where

"loadRecC premory loc (MArray dat) mem =

(fst (foldl (A S d . let (s’,x) = S in (loadRecremory (hash loc (ShowLp.: x)) d s’, Suc x))
(updateStore loc (MPointer loc) mem,0) dat))"

| "loadRecpemory loc (MBool b) mem = updateStore loc ((MValue o ShowLyoo;) b) mem "

| "loadRec Memory loc (MInt i) mem = updateStore loc ((MValue o ShowLn:) i) mem "

| "loadRecpemory loc (MAddress ad) mem = updateStore loc (MValue ad) mem"

definition loadaremory :: "Datamemory list = MemoryT =- MemoryT" where
"load pemory dat mem = (let 1 = ShowL .+ (toploc mem);
(m, _) = foldl (A (m’,x) d . (loadRecnremory (((hash 1) o ShowLpq¢) x) d m’,
Suc x)) (mem, 0) dat
in (snd o allocate) m)"

fun dumprec pMemory ¢ "Location = MTypes = MemoryT = String.literal = String.literal =
String.literal” where
"dumprec premory loc tp mem 1s str = (case accessStore loc mem of
Some (MPointer 1) = (case tp of
(MTArray x t) = iter (A i str’ . dumprecyemory ((hash 1 o ShowL;n:) 1) t mem
(1s + (STR ’’[’’) + (ShowL;n: i) + (STR ’’]’’)) str’) str x
| _ = FAILURE)
| Some (MValue v) = (case tp of
MTValue t = str + 1s + (STR ’’==’’) + dumpvaiuetypes t v + (STR *’[<]"?)
| _ = FAILURE)
| None = FAILURE)"

definition dumparemory :: "Location = int = MTypes = MemoryT = String.literal =-String.literal
=String.literal" where

"dump premory loc x t mem 1s str = iter (Ai. dumprecyemory ((hash loc (ShowL;n: 1i))) t mem (1s + STR
’2[27 + (ShowL;nt i + STR °°]’’))) str x"

Storage

datatype Datasiorage =
SArray "Datastorage 1ist" |
SMap "(String.literal X Datastorage) list" |
SBool bool |
SInt int |
SAddress Address

definition splitAt::"nat = String.literal = String.literal x String.literal" where
"splitAt n xs = (String.implode(take n (String.explode xs)), String.implode(drop n (String.explode
xs)))"

fun splitOn’:: "’a = ’a list = ’a list = ’a list list" where
"splitOn’ x [] acc = [rev accl”
| "splitOn’ x (y#ys) acc = (if x =y then (rev acc)#(splitOn’ x ys [])
else splitOn’ x ys (y#acc))"

fun splitOn::"’a = ’a list = ’a list list" where
"splitOn x xs = splitOn’ x xs []"

definition isSuffixOf::"String.literal = String.literal = bool" where
"isSuffix0Of s x = suffix (String.explode s) (String.explode x)"

definition tolist :: "Location = String.literal list" where
"tolist s = map String.implode (splitOn (CHR ’’.°’) (String.explode s))"

abbreviation convert :: "Location = Location"

where "convert loc = (if loc= STR ’’True’’ themn STR ’’true’’ else
if loc=STR ’’False’’ then STR ’’false’’ else loc)"

111

6 A Solidity Evaluation System

fun gosiorage :: "Location = (String.literal X STypes) = (String.literal X STypes)" where
"g0Storage 1 (s, STArray _ t) = (s + (STR ’’[’’) + (convert 1) + (STR ’’]’’), t)"

| "gostorage 1 (s, STMap _ t) = (s + (STR ’’[’’) + (convert 1) + (STR ’’]’’), t)"

| "gostorage 1 (s, STValue t) (s + (STR ’’[’’) + (convert 1) + (STR ’’]’’), STValue t)"

fun dumpSinglesiorage :: "StorageT = String.literal = STypes = (Location X Location) =
String.literal = String.literal" where
"dumpSingle storage Sto id’ tp (loc,l) str =
(case foldr gosStorage (tolist loc) (str + id’, tp) of
(s, STValue t) = (case fmlookup sto (loc + 1) of
Some v = s + (STR ’’==’’) + dumpvaluetypes t V
| None = FAILURE)
| _ = FAILURE)"

definition <sorted_list_of_set’ = map_fun id id (folding_on.F insort [])>

lemma sorted_list_of_fset’_def’: <sorted_list_of_set’ = sorted_list_of_set>
apply (rule ext)
by (simp add: sorted_list_of_set’_def sorted_list_of_set_def sorted_key_list_of_set_def)

lemma sorted_list_of_set_sort_remdups’ [code]:
<sorted_list_of_set’ (set xs) = sort (remdups xs)>
using sorted_list_of_fset’_def’ sorted_list_of_set_sort_remdups
by metis

definition locations_map :: "Location = (Location, ’v) fmap = Location list" where
"locations_map loc = (filter (isSuffixOf ((STR ’’.’’)+loc))) o sorted_list_of_set’ o fset o fmdom"

definition locations :: "Location = ’v Store = Location list" where
"locations loc = locations_map loc o mapping"

fun dumpstorage :: "StorageT => Location = String.literal = STypes = String.literal =
String.literal”
where
"dump Storage Sto loc id’ (STArray _ t) str = foldl
(A s 1 . dumpSinglestorage Sto id’ t ((splitAt (length (String.explode 1) - length (String.explode
loc) - 1) 1)) s
+ (STR ””)) str (locations_map loc sto)"
| "dumpstorage Sto loc id’ (STMap _ t) str =
foldl (A s 1 . dumpSinglesiorage Sto id’ t (splitAt (length (String.explode 1) - length
(String.explode loc) - 1) 1) s + (STR ””)) str
(locations_map loc sto)"
| "dumpsiorage Sto loc id’ (STValue t) str = (case fmlookup sto loc of
Some v = str + id’ + (STR ’’==’’) + dumpvaiuetypes t v + (STR >/[<]"7)
| _ = str)"

fun loadRecCStorage :: "Location = Datastorage = StorageT = StorageT" where

"loadReCstorage loc (SArray dat) sto = fst (foldl (A S d . let (s’, x) = S in (loadRecCsSiorage (hash loc
(ShowLpqt x)) d s’, Suc x)) (sto,0) dat)"

| "loadRecCsStorage loc (SMap dat) sto = (foldr (A (k, v) s’. loadReCst¢orage (hash loc k) v s’) dat
sto)"

| "loadRecsSiorage loc (SBool b) sto = fmupd loc (ShowLpoo; b) sto"

| "loadRecCsStorage loc (SInt i) sto = fmupd loc (ShowL;n:; i) sto"

| "loadReCstorage loc (SAddress ad) sto = fmupd loc ad sto"

Environment

datatype Datagnvironment =
Memarr "Datanfemory list" |
CDarr "Datamremory list" |
Stoarr "Datasiorage list"]
Stomap "(String.literal X Datastorage) list" |

112

6.2 Solidty Evaluator and Code Generator Setup (Solidity Evaluator)

Stackbool bool |
Stobool bool |
Stackint int |
Stoint int |
Stackaddr Address |
Stoaddr Address

fun loadsimpleEnvironment :: "(Stack X CalldataT X MemoryT X StorageT X Environment)
= (Identifier X Type X Datagmnwvironment) = (Stack X CalldataT X MemoryT X
StorageT X Environment)"
where
"loadsimple Environment (K, ¢, m, s, e) (id’, tp, d) = (case d of
Stackbool b =
let (k’, e’) = astack id’ tp (KValue (ShowLpoo; b)) (k, e)
in (k’, ¢, m, s, e’)
| Stobool b =
let (s’, e’) = astore id’ tp (ShowLpoor b) (s, e)
in (k, ¢, m, s’, e’)
| Stackint n =
let (k’, e’) = astack id’ tp (KValue (ShowLin: n)) (k, e)
in (k’, ¢, m, s, e’)
| Stoint n =
let (s’, e’) = astore id’ tp (ShowL;n: n) (s, e)
in (k, ¢, m, s’, e’)
| Stackaddr ad =
let (k’, e’) = astack id’ tp (KValue ad) (k, e)
in (k’, ¢, m, s, e’)
| Stoaddr ad =
let (s’, e’) = astore id’ tp ad (s, e)
in (k, ¢, m, s’, e’)
| CDarr a =
let 1 = ShowLna: (toploc c);
c’ = loadMemory @ Cj;
(k’, e’) = astack id’ tp (KCDptr 1) (k, e)
in (k’, ¢’, m, s, e’)
| Memarr a =
let 1 = ShowLpq.+ (toploc m);
m’ = loadMemory am;
(k’, e’) = astack id’ tp (KMemptr 1) (k, e)
in (k’, ¢, m’, s, e’)
| Stoarr a =
let s’ = loadReCstorage id’ (SArray a) s;
e’ = updateEnv id’ tp (Storeloc id’) e
in (k, ¢, m, s’, e’)
| Stomap mp =
let s’ = loadReCsiorage id’ (SMap mp) s;
e’ = updateEnv id’ tp (Storeloc id’) e
in (k, ¢, m, s’, e’)

)n

definition loadgnvironment::"(Stack X CalldataT X MemoryT X StorageT X Environment) = (Identifier
Type X Datagnvironment) 1ist
= (Stack x CalldataT X MemoryT X StorageT X Environment)"
where

HloadEn'uironment = foldl loadSimpleEnviranment”

definition getValuegnvironment :: "Stack = CalldataT = MemoryT = StorageT = Environment =
Identifier = String.literal = String.literal"
where

"getValue Environment kK ¢ m s e 1 txt = (case fmlookup (denvalue e) i of
Some (tp, Stackloc 1) = (case accessStore 1 k of
Some (KValue v) = (case tp of
Value t = (txt + i + (STR ’’==’’) + dumpvaiuetypes t Vv + (STR)’)’))
| _ = FAILURE)

X

113

6 A Solidity Evaluation System

| Some (KCDptr p) = (case tp of
Calldata (MTArray x t) = dumpnyemory P X t € 1 txt
| _ = FAILURE)
| Some (KMemptr p) = (case tp of
Memory (MTArray x t) = dumppemory P X t m 1 txt
| _ = FAILURE)
| Some (KStoptr p) = (case tp of
Storage t = dumpstorage S p 1 t txt
| _ = FAILURE))
| Some (Storage t, Storeloc 1) = dumpsStorage S 1 1 t txt
| _ = FAILURE

)n
type_synonym Datap = "(Address X ((Identifier X Member) list X S))"
definition dumpgnvironment :: "Stack = CalldataT =- MemoryT = StorageT =- Environment =- Identifier

list = String.literal"
where "dumpgnvironment Xk ¢ m s e sl = foldr (getValuegnvironment kK ¢ m s e) sl (STR >’’7)"

fun loadProc::"Environmentp = Datap = Environmentp"
where "loadProc ep (ad, (xs, fb)) = fmupd ad (fmap_of_list xs, fb) ep"

fun initStorage::"(Address X Balance) list = (Address, StorageT) fmap = (Address, StorageT) fmap"
where "initStorage [] m = m"
| "initStorage (x # xs) m = fmupd (fst x) (fmempty) m"

6.2.2 Test Setup

definition eval::"Gas = (S = Environmentp = Environment = CalldataT =- (unit, Ex, State)
state_monad)

= S = Address = Address = Valuetype = (Address X Balance) list

= Datap list

= (String.literal X Type X Datapnvironment) 1ist

= String.literal"
where "eval g stmteyqr stm addr adest aval acc d dat
= (let (k,c,m,s,e) = loadEnvironment (emptyStore, emptyStore, emptyStore, fmempty, emptyEnv

addr adest aval) dat;

ep = foldl loadProc fmempty d;

a = init Account acc;

s’ = fmupd addr s (initStorage acc fmempty);

z = (laccounts=a, stack=k,memory=m,storage=s’,gas=g)

in (
case (stmteyq: Stm e, e ¢ z) of
Normal ((), z’) = (dumpgnvironment (stack z’) c (memory z’) (the (fmlookup (storage z’)
addr)) e (map (A (a,b,c). a) dat))
+ (dump Accounts (accounts z’) (map fst acc))
| Exception Err = STR ’’Exception’’
| Exception Gas = STR ’’OutOfGas’’))"

value "eval 1

stmt

SKIP

(STR ’’089Beb381FcEab8aF334101414c04F993947C733°)

(STR 7777)

(STR 102))

[(STR ’’089Beb381FcEab8aF334101414c04F993947C733’°, STR ’’100°°), (STR
?7115f6e2F70210C14f7DB1AC69737a3CC78435d49°’, STR ’’100°°)]

[1

[(STR ’’v1’’, (Value TBool, Stackbool True))]"

lemma "eval 1000
stmt
SKIP
(STR ’’089Beb381FcEab8aF334101414c04F993947C733°)

114

6.2 Solidty Evaluator and Code Generator Setup (Solidity Evaluator)

(STR ’’°7)
(STR ’’0°°)
[(STR ’’089Beb381FcEab8aF334101414c04F993947C733’’, STR ’’100°°’), (STR
’2115f6e2F70210C14f7DB1AC69737a3CC78435d49°°, STR ’’100°7)]
[]
[(STR ’’v1’’, (Value TBool, Stackbool True))]
= STR ~’ ’V1==true089B65381FOEa58aF334101414CO4F993947C733. bala.nce==100115f662F7021OC14f7DB1AC69737a3CC7E
by (eval)

value "eval 1000

stmt

SKIP

(STR ’’089Beb381FcEab8aF334101414c04F993947C733°)

(STR 7777)

(STR J)O J))

[(STR ’’089Beb381FcEab8aF334101414c04F993947C733’’, STR ’’100°°’), (STR
77115f6e2F70210C14f7DB1AC69737a3CC78435d49°°, STR ’’100°°)]

[]

[(STR ’’v1’’, (Storage (STArray 5 (STValue TBool)), Stoarr [SBool True, SBool False, SBool
True, SBool False, SBool True]))]"

lemma "eval 1000

stmt

SKIP

(STR ’’089Beb381FcEab58aF334101414c04F993947C733°)

(STR PPN))

(STR ’7077)

[(STR ’’089Beb381FcEab8aF334101414c04F993947C733’’, STR ’’100°’), (STR
77115f6e2F70210C14f7DB1AC69737a3CC78435d49°’, STR ’’100°°)]

[1

[(STR ’’v1’’, (Memory (MTArray 5 (MTValue TBool)), Memarr [MBool True, MBool False, MBool
True, MBool False, MBool Truel))]

= STR ’’v1[0]==true[< |v1[1]==false[< |v1[2]==true[< |v1[3]==false| < |v1[4]==true| < |089Be5381FcEa58aF3341014

by (eval)

lemma "eval 1000

stmt

(ITE FALSE (ASSIGN (Id (STR ’°’x’’)) TRUE) (ASSIGN (Id (STR ’’y’’)) TRUE))

(STR ’’089Beb381FcEab8aF334101414c04F993947C733°)

(STR ’7°7)

(STR 102))

[(STR ’’089Beb381FcEab8aF334101414c04F993947C733’’, STR ’’100°°’), (STR
?7115f6e2F70210C14f7DB1AC69737a3CC78435d49°’, STR ’’100°°)]

[]

[(STR ’’x’’, (Value TBool, Stackbool False)), (STR ’’y’’, (Value TBool, Stackbool False))]

= STR ’’y==true| < [x==false[<> |089Be5381FcEa58aF334101414c04F993947C733. balance==100] = |115f6e2F70210C14£7DB1
by (eval)

lemma "eval 1000

stmt

(BLOCK ((STR ’’v2’’, Value TBool), Nome) (ASSIGN (Id (STR ’’v1’’)) (LVAL (Id (STR
70v27°)))))

(STR ’’089Beb381FcEab8aF334101414c04F993947C733°)

(STR 7777)

(STR J)O J))

[(STR ’’089Beb381FcEab8aF334101414c04F993947C733’’, STR ’’100°°’), (STR
’2115f6e2F70210C14f7DB1AC69737a3CC78435d49°°, STR ’’100°7)]

[]

[(STR ’’v1’’, (Value TBool, Stackbool True))]

= STR ~’ ’V1==falseO893e5381FcEa58aF3341 01414c04F993947C733. balance==100115f692F7021OCI4f7DBlAC69737aE
by (eval)

lemma "eval 1000

115

6 A Solidity Evaluation System

stmt

(ASSIGN (Id (STR ’’a_s120_21_m8’°)) (LVAL (Id (STR ’’a_s120_21_s8’’))))

(STR ’’089Be5381FcEa58aF334101414c04F993947C733°)

(STR °7°7)

(STR °°0°7)

[(STR ’’089Beb5381FcEa58aF334101414c04F993947C733’’, STR ’°100°°)]

[

[((STR ’’a_s120_21_s8’’), Storage (STArray 1 (STArray 2 (STValue (TSInt 120)))), Stoarr
[SArray [SInt 347104507864064359095275590289383142, SInt 565831699297331399489670920129618233]1),

((STR ’’a_s120_21_m8’’), Memory (MTArray 1 (MTArray 2 (MIValue (TSInt 120)))), Memarr
[MArray [MInt (290845675805142398428016622247257774), MInt ((-96834026877269277170645294669272226))1]1)]
= STR ’’a_s120_21_m8[0] [0] ==347104507864064359095275590289383142a_5120_21_m8 [0] [1]==565831699297331399489670920:
by (eval)

lemma "eval 1000

stmt

(ASSIGN (Ref (STR ’’a_s8_32_m0’’) [UINT 8 1]) (LVAL (Ref (STR ’’a_s8_31_s7’’) [UINT 8 01)))

(STR ’’089Be5381FcEa58aF334101414c04F993947C733°)

(STR ’777)

(STR °’07°)

[(STR ’’089Beb5381FcEa58aF334101414c04F993947C733’’, STR ’°100°°)]

[

[(STR ’’a_s8_31_s7’’, (Storage (STArray 1 (STArray 3 (STValue (TSInt 8)))), Stoarr [SArray
[SInt ((98)), SInt ((-23)), SInt (36)11)),

(STR ’’a_s8_32_m0’’, (Memory (MTArray 2 (MTArray 3 (MTValue (TSInt 8)))), Memarr [MArray
[MInt ((-64)), MInt ((39)), MInt ((-125))], MArray [MInt ((-32)), MInt ((-82)), MInt ((-105))11))]

= STR ’’a_s8_32_m0[0] [0]==-64 > |a_s8_32_m0[0] [1]==39] < |a_s8_32_m0[0] [2]==-125 = |a_s8_32_m0[1] [0]==98] < |a_.
by (eval)

lemma "eval 1000

stmt

SKIP

(STR ’’089Be5381FcEab8aF334101414c04F993947C733°7)

(STR °7°7)

(STR ’’0°7)

[(STR ’’089Beb381FcEab8aF334101414c04F993947C733’°, STR ’°100°°), (STR
?2115f6e2F70210C14f7DB1AC69737a3CC78435d49° 7, STR ’°100°°)]

[

[(STR ’’v1’’, (Storage (STMap (TUInt 32) (STValue (TUInt 8))), Stomap [(STR ’’2129136830°°,
SInt (247))1))]1

= STR ’’v1[2129136830] ==247089B65381F6Ea58aF3341 01414c04F993947C733. balance==1001 15f6e2F70210C14£7DB1
by (eval)

value "eval 1000
stmt
(INVOKE (STR ’’m1’’) [])
(STR ”myaddr”)
(STR 7777)
(STR ’’0°°)
[(STR ’’myaddr’’, STR ’’100°°)]
[
(STR ’’myaddr’’,
([(STR ’’m1°’’, Method ([], SKIP, Nome))],
SKIP))
]
[(STR ’’x’’, (Value TBool, Stackbool True))]"

lemma "eval 1000
stmt
(ASSIGN (Id (STR ’’v1’’)) (CALL (STR ’’m1’’) []))
(STR ’’myaddr’’)
(STR ;:;;)
(STR 77077)

116

6.2 Solidty Evaluator and Code Generator Setup (Solidity Evaluator)

[(STR ’’myaddr’’, STR ’’100’°)]
[
(STR ’’myaddr’’,
([(STR ’’m1’’, Method ([], SKIP, Some (UINT 8 5)))],
SKIP))
]
[(STR ’’v1’’, (Value (TUInt 8), Stackint 0))]

= STR ’ ’v1==5yaddr. balance==100’ -

by (eval)

lemma "eval 1000
stmt
(ASSIGN (Id (STR ’’v1’’)) (CALL (STR ’’m1’’) [E.INT 8 3, E.INT 8 4]))
(STR ’’myaddr’’)
(STR)))))
(STR *7077)
[(STR ’’myaddr’’, STR ’’100°°)]
[
(STR ’’myaddr’’,
([(STR ’’m1’’, Method ([(STR ’’v2’’, Value (TSInt 8)), (STR ’’v3’’, Value (TSInt 8))],
SKIP, Some (PLUS (LVAL (Id (STR ’’v2’’))) (LVAL (Id (STR ’’v3’’))))))]1,
SKIP))
]
[(STR ’’v1’’, (Value (TSInt 8), Stackint 0))]

= STR ’’v1==7] > |myaddr.balance==100[< |’’"

by (eval)

lemma "eval 1000
stmt
(ASSIGN (Id (STR ’’v1’’)) (ECALL (ADDRESS (STR ’’extaddr’’)) (STR ’’mi1’’) [E.INT 8 3, E.INT
8 4] (E.UINT 8 0)))
(STR ’’myaddr’’)
(STR :;:;)
(STR *7077)
[(STR ’’myaddr’’, STR ’7100°°)]
[
(STR ’’extaddr’’,
([(STR ’’m1’’, Method ([(STR ’’v2’’, Value (TSInt 8)), (STR ’’v3’’, Value (TSInt 8))],
SKIP, Some (PLUS (LVAL (Id (STR ’’v2’’))) (LVAL (Id (STR ’’v3’’))))))]1,
SKIP))
]
[(STR ’’v1’’, (Value (TSInt 8), Stackint 0))]

= STR ’’v ==7myaddr.balance==100”"

by (eval)

lemma "eval 1000
stmt
(TRANSFER (ADDRESS (STR ’’myaddr’’)) (UINT 256 10))
(STR ’’089Be5381FcEab8aF334101414c04F993947C733°°)
(STR 7777)
(STR 7002))
[(STR ’’089Be5381FcEa58aF334101414c04F993947C733°°, STR ’’100°’), (STR
77 0x2d5F6£401c770eEAdd68deB348948ed4504c46767 7, STR 77100°7)]
[
(STR ’’myaddr’’,
([1, SKIP))
]
[
= STR ’’089Be5381FcEa58aF334101414c04F993947C733. balance==90] = |0x2d5F6£401c770eEAdd68deB348948ed4504c4676. ba
by (eval)

value "eval 1000

stmt
(TRANSFER (ADDRESS (STR ’’myaddr’’)) (UINT 256 10))

117

6 A Solidity Evaluation System

(STR ’’089Be5381FcEab8aF334101414c04F993947C733°7)
(STR ’7’’)
(STR J)O J))
[(STR ’’089Be5381FcEa58aF334101414c04F993947¢C733’’, STR ’’100°’), (STR
7 0x2d5F6f401c770eEAdd68deB348948ed4504c4676° 7, STR *71007°)]
[
(STR ’’myaddr’’,
([1, SKIP))
]
["

lemma "eval 1000

stmt

(COMP (COMP (((ASSIGN (Id (STR ’’x’?’)) (E.UINT 8 0))))(TRANSFER (ADDRESS (STR ’’myaddr’’))
(UINT 256 5))) (SKIP))

(STR ’’089Be5381FcEa58aF334101414c04F993947C73377)

(STR 7777)

(STR))O)))

[(STR ’’089Be5381FcEa58aF334101414c04F993947C733°7, STR ’’100°’), (STR
77115f6e2F70210C14f7DB1AC69737a3CC78435d497 7, STR ’7100°°)]

[

(STR ’’myaddr’’,
([1, SKIP))
]
[(STR ’’x’’, (Value (TUInt 8), Stackint 9))]

= STR ’’x==0| < |089Be5381FcEa58aF334101414c04F993947C733. balance==95 < |115f6e2F70210C14£7DB1AC69737a3CC78435c¢
by (eval)

value "eval 1000
stmt
(EXTERNAL (ADDRESS (STR ’’Victim’’)) (STR ’’withdraw’’) [] (E.UINT 8 0))
(STR ’’Victim’’)
(STR :;:;)
(STR *7077)
[(STR ’’Victim’’, STR ’°100°’’), (STR ’’Attacker’’, STR ’’100°’)]
[
(STR ’’Attacker’’,
[(STR ’’withdraw’’, Method ([], EXTERNAL (ADDRESS (STR ’’Victim’’)) (STR ’’withdraw’’)
[1 (E.UINT 8 0), Nome))],
SKIP),
(STR ’’Victim’’,
[(STR ’’withdraw’’, Method ([], EXTERNAL (ADDRESS (STR ’’Attacker’’)) (STR ’’withdraw’’)
[] (E.UINT 8 0), Nome))],
SKIP)
]
o

value "eval 1000
stmt
(INVOKE (STR ’’withdraw’’) [])
(STR ’’Victim’’)
(STR ’77’)
(STR J)Ol))
[(STR ’’Victim’’, STR ’’100’’), (STR ’’Attacker’’, STR ’’100°7)]
[
(STR ’’Victim’”’,
[(STR ’’withdraw’’, Method ([], INVOKE (STR ’’withdraw’’) [], Nome))l,
SKIP)
]
["

6.2.3 The Final Code Export

consts ReadL s :: "String.literal = S"

118

6.2 Solidty Evaluator and Code Generator Setup (Solidity Evaluator)

consts ReadLqc. :: "String.literal => (String.literal X String.literal) list"
consts ReadLq.: :: "String.literal = (String.literal X Type X Datagnvironment) list"
consts ReadLp :: "String.literal = Datap list"

code__printing
constant ReadlLs — (Haskell) "Prelude.read"
| constant ReadL,.. — (Haskell) "Prelude.read"
| constant ReadL,,: — (Haskell) "Prelude.read"
| constant ReadLp — (Haskell) "Prelude.read"

fun main_stub :: "String.literal list = (int X String.literal)"
where
"main_stub [credit, stm, saddr, raddr, val, acc, pr, dat]
= (0, eval (ReadL,.¢ credit) stmt (ReadlLs stm) saddr raddr val (ReadL,.. acc) (ReadLp pr)
(ReadL 4,¢ dat))"
| "main_stub [stm, saddr, raddr, val, acc, pr, dat]
= (0, eval 1000 stmt (ReadLs stm) saddr raddr val (ReadL,.. acc) (ReadLp pr) (ReadLg.: dat))"
| "main_stub _ = (2,
STR ’’solidity-evaluator [credit] "Statement" "ContractAddress" "OriginAddress" "Value"“
+ STR ’’ "(Address * Balance) list" "(Address * ((Identifier * Member) list) * Statement)"
"(Variable * Type * Value) list””

+ STR J))I)H

generate__file "code/solidity-evaluator/app/Main.hs" = <
module Main where

import System.Environment

import Solidity_Evaluator

import Prelude

main :: I0 ()
main = do
args <- getArgs
Prelude.putStr(snd $ Solidity_Evaluator.main_stub args)

export_ generated_ files _

export__code eval SKIP main_stub
in Haskell module__name "Solidity_Evaluator" file_prefix "solidity-evaluator/src"
(string_classes)

6.2.4 Demonstrating the Symbolic Execution of Solidity

abbreviation P1::S
where "P1 = COMP (ASSIGN (Id (STR ’’sa’’)) (LVAL (Id (STR ’’ma’’))))
(ASSIGN (Ref (STR ’’sa’’) [UINT (8::nat) 0]) TRUE)"
abbreviation myenv::Environment
where "myenv = updateEnv (STR ’’ma’’) (Memory (MTArray 1 (MTValue TBool))) (Stackloc (STR ’°1°°))
(updateEnv (STR ’’sa’’) (Storage (STArray 1 (STValue TBool))) (Storeloc (STR ’’1°°))
(emptyEnv (STR ’’ad’’) (STR ’’ad’’) (STR °’0°°)))"

abbreviation mystack::Stack
where "mystack = updateStore (STR ’’1’°’) (KMemptr (STR ’’1°’’)) emptyStore"

abbreviation mystore::StorageT
where "mystore = fmempty"

abbreviation mymemory: :MemoryT
where "mymemory = updateStore (STR °’0.1°’) (MValue (STR ’’false’’)) emptyStore"

abbreviation mystorage::StorageT
where "mystorage = fmupd (STR ’’0.1°°) (STR ’’True’’) fmempty"

119

6 A Solidity Evaluation System

lemma "(stmt P1 fmempty myenv emptyStore (accounts=emptyAccount, stack=mystack, memory=mymemory,
storage=fmupd (STR ’’ad’’) mystorage fmempty, gas=1000|)) =

(Normal ((), (accounts=emptyAccount, stack=mystack, memory=mymemory, storage=fmupd (STR ’’ad’’)
mystorage fmempty, gas=1000])))"

by (solidity_symbex)

end

6.3 Generating an Exectuable of the Evaluator (Compile_Evaluator)

theory
Compile_Evaluator
imports
Solidity_Evaluator
begin
compile__generated_ files _ (in Solidity_Evaluator) export_ files "solidity-evaluator" (executable)
where <fn dir =>
Iet

val modules_src =
Generated_Files.get_files theory<Solidity_Evaluator>
|> filter (fn p => String.isSubstring "src" (Path.implode (#path p)))
|> map (#path #> Path.implode #> unsuffix ".hs" #> space_explode "/" #> space_implode "."
#> unprefix "code.solidity-evaluator.src.");
val modules_app =
Generated_Files.get_files theory<Solidity_Evaluator>
|> filter (fn p => String.isSubstring "app" (Path.implode (#path p)))
|> map (#path #> Path.implode #> unsuffix ".hs" #> space_explode "/" #> space_implode "."
#> unprefix "code.solidity-evaluator.app.");

val _ =
GHC.new_project dir
{name = "solidity-evaluator",
depends =
[1,
modules = modules_app};
val _ = writeln (Path.implode dir)

val res = Generated_Files.execute dir <Build> (String.concat [
"echo \"\n default-extensions: TypeSynonymInstances, FlexibleInstances\" >>
solidity-evaluator.cabal"
," & rm -rf src"
," && mv code/solidity-evaluator/src src"
," && mv code/solidity-evaluator/app/* src/"
," && isabelle ghc_stack install --local-bin-path . ‘pwd‘"])
in
writeln (res)
end>

end

120

7 Applications

In this chapter, we discuss various applications of our Solidity semantics.

7.1 Constant Folding (Constant_Folding)

theory Constant_Folding
imports

begin

Solidity_Main

The following function optimizes expressions w.r.t. gas consumption.

fun eupdate :: "E = E"
and lupdate :: "L = L"
where

"lupdate

(Id i) = Id

.

| "lupdate (Ref i exp) = Ref i (map eupdate exp)"

/

—_—— o — o — — — — —

"eupdate
(if (b
then

th

el

else
"eupdate
"eupdate
"eupdate
"eupdate
"eupdate
"eupdate
"eupdate
"eupdate
"eupdate
"eupdate
(case

(E.INT b v)
€vbits)
ifv >0
en E.INT b (-(27(b-1)) + (v+27(b-1)) mod (27b))
se E.INT b (27(b-1) - (-v+2~(b-1)-1) mod (2°b) - 1)

E.INT b v)"

(UINT b v) = (if (b€vbits) then UINT b (v mod (2°b)) else UINT b v)"
(ADDRESS a) = ADDRESS a"

(BALANCE a) = BALANCE a"

THIS = THIS"

SENDER = SENDER"

VALUE = VALUE"

TRUE = TRUE"

FALSE = FALSE"

(LVAL 1) = LVAL (lupdate 1)"

(PLUS ex1 ex2) =

(eupdate ex1) of

E.INT bl vl =

if

b2)))

b2)) - 1)

el

bl € vbits
then (case (eupdate ex2) of
E.INT b2 v2 =
if b2evbits
then let v=v1+v2 in
if v > 0

then E.INT (max bl b2) (-(2°((max bl b2)-1)) + (v+2~((max bl b2)-1)) mod (2~ (max bl

else E.INT (max bl b2) (2" ((max bl b2)-1) - (-v+2~((max bl b2)-1)-1) mod (2~ (max b1l

else (PLUS (E.INT bl v1) (E.INT b2 v2))
| UINT b2 v2 =
if b2€vbits A b2 < bl
then let v=v1+v2 in
ifv >0
then E.INT b1 (-(27(b1-1)) + (v+2~(b1-1)) mod (27b1))
else E.INT bl (27(b1-1) - (-v+2~(b1-1)-1) mod (2°b1) - 1)
else PLUS (E.INT b1 v1) (UINT b2 v2)
| _ = PLUS (E.INT bl vi) (eupdate ex2))
se PLUS (E.INT bl v1) (eupdate ex2)

| UINT b1 vl =
if bl € vbits

then (case (eupdate ex2) of

121

7 Applications

UINT b2 v2 =
if b2 € vbits
then UINT (max bl b2) ((v1 + v2) mod (2~ (max bl b2)))
else (PLUS (UINT b1 v1) (UINT b2 v2))
| E.INT b2 v2 =
if b2e€vbits A bl < b2
then let v=v1+v2 in
ifv >0
then E.INT b2 (-(27(b2-1)) + (v+27(b2-1)) mod (27b2))
else E.INT b2 (27(b2-1) - (-v+27(b2-1)-1) mod (2°b2) - 1)
else PLUS (UINT bl v1) (E.INT b2 v2)
| _ = PLUS (UINT bl v1) (eupdate ex2))
else PLUS (UINT b1l v1) (eupdate ex2)
| _ = PLUS (eupdate ex1) (eupdate ex2))"
| "eupdate (MINUS ex1 ex2) =
(case (eupdate exl1) of
E.INT bl vl =
if bl € vbits
then (case (eupdate ex2) of
E.INT b2 v2 =
if b2€vbits
then let v=v1-v2 in
ifv >0
then E.INT (max bl b2) (-(2°((max bl b2)-1)) + (v+2~((max bl b2)-1)) mod (2~ (max bl
b2)))
else E.INT (max bl b2) (2~ ((max bl b2)-1) - (-v+2~((max bl b2)-1)-1) mod (2~ (max b1l
b2)) - 1)
else (MINUS (E.INT bl v1) (E.INT b2 v2))
| UINT b2 v2 =
if b2€vbits A b2 < bl
then let v=v1-v2 in
ifv >0
then E.INT b1l (-(27(b1-1)) + (v+27(b1-1)) mod (27b1))
else E.INT bl (27(b1-1) - (-v+27(b1-1)-1) mod (2°b1) - 1)
else MINUS (E.INT b1 v1) (UINT b2 v2)
| _ = MINUS (E.INT bl v1) (eupdate ex2))
else MINUS (E.INT bl v1) (eupdate ex2)
| UINT b1 vi =
if bl € vbits
then (case (eupdate ex2) of
UINT b2 v2 =
if b2 € vbits
then UINT (max bl b2) ((v1 - v2) mod (2~ (max bl b2)))
else (MINUS (UINT b1l v1) (UINT b2 v2))
| E.INT b2 v2 =
if b2evbits A bl < b2
then let v=v1-v2 in
if v >0
then E.INT b2 (-(27(b2-1)) + (v+27(b2-1)) mod (27b2))
else E.INT b2 (27(b2-1) - (-v+2~(b2-1)-1) mod (2°b2) - 1)
else MINUS (UINT b1 v1) (E.INT b2 v2)
| _ = MINUS (UINT bl v1) (eupdate ex2))
else MINUS (UINT bl v1) (eupdate ex2)
| _ = MINUS (eupdate ex1) (eupdate ex2))"
| "eupdate (EQUAL exl ex2) =
(case (eupdate ex1) of
E.INT bl vl =
if bl € vbits
then (case (eupdate ex2) of
E.INT b2 v2 =
if b2€vbits
then if vl = v2
then TRUE
else FALSE

122

else EQUAL (E.INT bl v1) (E.INT b2 v2)
| UINT b2 v2 =
if b2€vbits A b2 < bl
then if vl = v2
then TRUE
else FALSE
else EQUAL (E.INT bl v1) (UINT b2 v2)
| _ = EQUAL (E.INT bl v1) (eupdate ex2))
else EQUAL (E.INT b1l v1) (eupdate ex2)

| UINT bl vl =

I

if bl € vbits
then (case (eupdate ex2) of
UINT b2 v2 =
if b2 € vbits
then if vl = v2
then TRUE
else FALSE
else EQUAL (E.INT bl v1) (UINT b2 v2)
| E.INT b2 v2 =
if b2€vbits A bl < b2
then if vl = v2
then TRUE
else FALSE
else EQUAL (UINT bl v1) (E.INT b2 v2)
| _ = EQUAL (UINT bl v1) (eupdate ex2))
else EQUAL (UINT b1 v1) (eupdate ex2)
= EQUAL (eupdate ex1) (eupdate ex2))"

| "eupdate (LESS exl ex2) =
(case (eupdate ex1) of

E.INT bl vl =
if bl € vbits
then (case (eupdate ex2) of
E.INT b2 v2 =
if b2€vbits
then if v1 < v2
then TRUE
else FALSE
else LESS (E.INT bl v1) (E.INT b2 v2)
| UINT b2 v2 =
if b2evbits N b2 < bl
then if vl < v2
then TRUE
else FALSE
else LESS (E.INT bl v1) (UINT b2 v2)
| _ = LESS (E.INT bl v1) (eupdate ex2))
else LESS (E.INT bl v1) (eupdate ex2)

| UINT b1 vi =

I

if bl € vbits
then (case (eupdate ex2) of
UINT b2 v2 =
if b2 € vbits
then if v1 < v2
then TRUE
else FALSE
else LESS (E.INT b1l v1) (UINT b2 v2)
| E.INT b2 v2 =
if b2€vbits A bl < b2
then if v1 < v2
then TRUE
else FALSE
else LESS (UINT b1 v1) (E.INT b2 v2)
| _ = LESS (UINT bl v1) (eupdate ex2))
else LESS (UINT bl v1) (eupdate ex2)
= LESS (eupdate ex1) (eupdate ex2))"

7.1 Constant Folding (Constant_ Folding)

123

7 Applications

| "eupdate (AND exl ex2) =
(case (eupdate exl1) of
TRUE = (case (eupdate ex2) of
TRUE = TRUE
| FALSE = FALSE
| _ = AND TRUE (eupdate ex2))
| FALSE = (case (eupdate ex2) of
TRUE = FALSE
| FALSE = FALSE
| _ = AND FALSE (eupdate ex2))
| _ = AND (eupdate exl1) (eupdate ex2))"
| "eupdate (OR exl ex2) =
(case (eupdate exl1) of
TRUE = (case (eupdate ex2) of
TRUE = TRUE
| FALSE = TRUE
| _ = OR TRUE (eupdate ex2))
| FALSE = (case (eupdate ex2) of
TRUE = TRUE
| FALSE = FALSE
| _ = OR FALSE (eupdate ex2))
| _ = OR (eupdate ex1) (eupdate ex2))"
| "eupdate (NOT ex1) =
(case (eupdate exl1) of
TRUE = FALSE
| FALSE = TRUE
| _ = NOT (eupdate ex1))"
| "eupdate (CALL i xs) = CALL i xs"
| "eupdate (ECALL e i xs r) = ECALL e i xs r"

value "eupdate (UINT 8 250)"
lemma "eupdate (UINT 8 250)
=UINT 8 250"
by (simp)
lemma "eupdate (UINT 8 500)
= UINT 8 244"
by (simp)
lemma "eupdate (E.INT 8 (-100))
= E.INT 8 (- 100)"
by (simp)
lemma "eupdate (E.INT 8 (-150))
= E.INT 8 106"
by (simp)
lemma "eupdate (PLUS (UINT 8 100) (UINT 8 100))
= UINT 8 200"
by (simp)
lemma "eupdate (PLUS (UINT 8 257) (UINT 16 100))
= UINT 16 101"
by (simp)
lemma "eupdate (PLUS (E.INT 8 100) (UINT 8 250))
= PLUS (E.INT 8 100) (UINT 8 250)"
by (simp)
lemma "eupdate (PLUS (E.INT 8 250) (UINT 8 500))
= PLUS (E.INT 8 (- 6)) (UINT 8 244)"
by (simp)
lemma "eupdate (PLUS (E.INT 16 250) (UINT 8 500))
= E.INT 16 494"
by (simp)
lemma "eupdate (EQUAL (UINT 16 250) (UINT 8 250))
= TRUE"
by (simp)
lemma "eupdate (EQUAL (E.INT 16 100) (UINT 8 100))
= TRUE"
by (simp)

124

lemma "eupdate (EQUAL (E.INT 8 100) (UINT 8 100))
= EQUAL (E.INT 8 100) (UINT 8 100)"
by (simp)

lemma update_bounds_int:
assumes "eupdate ex = (E.INT b v)" and "b€vbits"
shows "(v < 27(b-1)) N v > -(27(b-1))"
proof (cases ex)
case (INT b’ v’)
then show ?7thesis
proof cases
assume "b’cvbits"”
show ?thesis
proof cases
let 7x="-(2"(b’-1)) + (v’+2~(b’-1)) mod 2°b’"
assume "v’>0"

7.1 Constant Folding (Constant_ Folding)

with ‘b’cvbits‘ have "eupdate (E.INT b’ v’) = E.INT b’ ?x" by simp
with assms have "b=b’" and "v=7x" using INT by (simp,simp)

moreover from ‘b’cvbits‘ have "b’>0" by auto

hence "?x < 2 “(b’-1)" using upper_bound2[of b’ "(v’ + 2 ~ (b’ - 1)) mod 27b’"] by simp

moreover have "7?x > -(27(b’-1))" by simp
ultimately show ?thesis by simp
next

let 7x="2"(b’-1) - (-v’+2°(b’-1)-1) mod (2°b’) - 1"

assume "—v’>0"

with ‘b’cvbits‘ have "eupdate (E.INT b’ v’) = E.INT b’ ?x" by simp
with assms have "b=b’" and "v=7x" using INT by (simp,simp)

moreover have "(-v’+27(b’-1)-1) mod (27b’)>0" by simp

hence "?x < 2 “(b’-1)" by arith
moreover from ‘b’cvbits‘ have "b’>0" by auto

hence "?x > -(27(b’-1))" using lower_bound2[of b’ v’] by simp

ultimately show ?thesis by simp
qed
next
assume "— b’cvbits"
with assms show ?7thesis using INT by simp
qed
next
case (UINT b’ v’)
with assms show 7thesis
proof cases
assume "b’cvbits"
with assms show 7thesis using UINT by simp
next
assume "— b’cvbits"
with assms show 7thesis using UINT by simp
qed
next
case (ADDRESS x3)
with assms show ?thesis by simp
next
case (BALANCE x4)
with assms show ?thesis by simp
next
case THIS
with assms show ?thesis by simp
next
case SENDER
with assms show ?thesis by simp
next
case VALUE
with assms show ?thesis by simp
next
case TRUE

125

7 Applications

with assms show ?thesis by simp

next

case FALSE
with assms show ?thesis by simp

next

case (LVAL x7)
with assms show ?thesis by simp

next
case p:

(PLUS el e2)

show ?thesis
proof (cases "eupdate el")
case i: (INT b1l v1)

show

?thesis

proof cases
assume "blevbits"
show ?thesis
proof (cases "eupdate e2")
case i2: (INT b2 v2)
then show ?thesis
proof cases

simp

simp

let ?v="vi+v2"
assume "b2cvbits"
show 7thesis
proof cases
let 7x="-(2"((max bl b2)-1)) + (?v+2~((max bl b2)-1)) mod 2~ (max bl b2)"
assume "?v>0"
with ‘bicvbits ‘b2c€vbits‘ i i2 have "eupdate (PLUS el e2) = E.INT (max bl b2) 7x" by

with assms have "b=max bl b2" and "v=7x" using p by (simp,simp)
moreover from ‘blcvbits‘ have "max bl b2>0" by auto
hence "7?x < 2 “(max b1 b2 - 1)"
using upper_bound2[of "max bl b2" "(?v + 2 ~ (max bl b2 - 1)) mod 2 max bl b2"] by simp
moreover have "?x > -(27(max bl b2-1))" by simp
ultimately show ?thesis by simp
next
let 7x="2"((max bl b2)-1) - (-?v+2~((max bl b2)-1)-1) mod (2~ (max bl b2)) - 1"
assume "—?7v>0"
with ‘bicvbits® ‘b2€vbits® i i2 have "eupdate (PLUS el e2) = E.INT (max bl b2) ?x" by

with assms have "b=max bl b2" and "v=7x" using p by (simp,simp)
moreover have "(-?v+2~(max bl b2-1)-1) mod (2"max bl b2)>0" by simp
hence "?x < 2 ~“(max bl b2-1)" by arith
moreover from ‘bi€vbits‘ have "max bl b2>0" by auto
hence "?x > -(27(max bl b2-1))" using lower_bound2[of "max bl b2" ?v] by simp
ultimately show ?thesis by simp
qed

next

assume "b2¢vbits"
with p i i2 ‘bi€vbits‘ show ?thesis using assms by simp

qged

next
case u: (UINT b2 v2)
then show 7thesis
proof cases

126

let 7v="vi+v2"
assume "b2cvbits"
show 7thesis
proof cases
assume "b2<b1"
then show 7thesis
proof cases
let 7x="(-(27(b1-1)) + (?v+27(b1-1)) mod (2°b1))"
assume "?v>0"
with ‘bilevbits® ‘b2c€vbits‘ ‘b2<bl‘ i u have "eupdate (PLUS el e2) = E.INT bl ?x" by

simp

simp

with assms have "b=b1" and "v=7x" using p by (simp,simp)

moreover from ‘blcvbits‘ have "b1>0" by auto

hence "?x < 2 “(b1 - 1)" using upper_bound2[of bl] by simp

moreover have "7x > -(27(b1-1))" by simp
ultimately show ?thesis by simp

next

let 7x="2"(b1-1) - (-?v+27(b1-1)-1) mod (27b1) - 1"

assume "?v>0"

with ‘bilevbits ‘b2€vbits® ‘b2<bl1‘ i u have "eupdate (PLUS el e2) = E.INT bl ?x" by

with assms have "b=b1" and "v=7x" using p i u by (simp,simp)
moreover have "(-7v+27(b1-1)-1) mod 2°b1>0" by simp

hence "?x < 2 “(b1-1)" by arith
moreover from ‘bicvbits‘ have "b1>0" by auto

hence "?x > -(27(b1-1))" using lower_bound2[of bl ?v] by simp

ultimately show ?thesis by simp

qed
next

assume "— b2<b1l"

with p i u ‘bicvbits‘ show 7thesis using assms by simp

qed
next

assume "b2¢vbits"
with p i u ‘bicvbits‘ show 7thesis using assms by simp

qged
next

case (ADDRESS x3)

with p i ‘bicvbits’
next

case (BALANCE x4)

with p i ‘bilcvbits’
next

case THIS

with p i ‘bicvbits’
next

case SENDER

with p i ‘bicvbits’
next

case VALUE

with p i ‘bicvbits’
next

case TRUE

with p i ‘bilcvbits’
next

case FALSE

with p i ‘bilevbits’
next

case (LVAL x7)

with p i ‘bilcvbits’
next

case (PLUS x81 x82)

with p i ‘b1€vbits®
next

case (MINUS x91 x92)

with p i ‘b1€vbits®
next

show

show

show

show

show

show

show

show

show

show

case (EQUAL x101 x102)

with p i ‘b1€vbits®
next

case (LESS x111 x112)

with p i ‘bi€vbits’
next
case (AND x121 x122)

show

show

?thesis

?thesis

?thesis

?thesis

?thesis

?thesis

?thesis

?thesis

?thesis

?thesis

?thesis

?thesis

using

using

using

using

using

using

using

using

using

using

using

using

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

by

by

by

by

by

by

by

by

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

7.1 Constant Folding (Constant_ Folding)

127

7 Applications

with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case (OR x131 x132)
with p i ‘biecvbits‘ show 7thesis using assms by simp
next
case (NOT x131)
with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case (CALL x181 x182)
with p i ‘biecvbits‘ show 7thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with p i ‘bilecvbits‘ show 7thesis using assms by simp
qed
next
assume "— blcvbits"
with p i show ?thesis using assms by simp
qed
next
case u: (UINT b1l v1)
show ?thesis
proof cases
assume "blevbits"
show ?thesis
proof (cases "eupdate e2")
case i: (INT b2 v2)
then show 7thesis
proof cases
let ?v="vi+v2"
assume "b2cvbits"
show ?thesis
proof cases
assume "b1<b2"
then show 7thesis
proof cases
let 7x="(-(27(b2-1)) + (?v+27(b2-1)) mod (2°b2))"
assume "?7v>0"
with ‘bilevbits® ‘b2c€vbits‘ ‘b1<b2‘ i u have "eupdate (PLUS el e2) = E.INT b2 ?x" by

simp

with assms have "b=b2" and "v=7x" using p by (simp,simp)

moreover from ‘b2c€vbits‘ have "b2>0" by auto

hence "?x < 2 (b2 - 1)" using upper_bound2[of b2] by simp

moreover have "?x > -(27(b2-1))" by simp

ultimately show ?thesis by simp

next

let 7x="2"(b2-1) - (-?v+27(b2-1)-1) mod (27°b2) - 1"

assume "—?v>0"

with ‘bilevbits® ‘b2evbits® ‘bi<b2‘ i u have "eupdate (PLUS el e2) = E.INT b2 ?x" by
simp

with assms have "b=b2" and "v=7x" using p i u by (simp,simp)
moreover have "(-7v+27(b2-1)-1) mod 2°b2>0" by simp
hence "?x < 2 ~(b2-1)" by arith
moreover from ‘b2c€vbits‘ have "b2>0" by auto
hence "?x > -(27(b2-1))" using lower_bound2[of b2 ?v] by simp
ultimately show ?thesis by simp
qed
next
assume "— bi<b2"
with p i u ‘bi1€vbits‘ show ?thesis using assms by simp
qed
next
assume "b2¢vbits"
with p i u ‘bicvbits‘ show 7thesis using assms by simp
qed

128

7.1 Constant Folding (Constant_ Folding)

next
case u2: (UINT b2 v2)
then show ?thesis
proof cases
assume "b2€vbits"
with ‘bicvbits® u u2 p show 7thesis using assms by simp
next
assume "—b2€vbits"
with p u u2 ‘bi1€vbits‘ show 7thesis using assms by simp
qed
next
case (ADDRESS x3)
with p u ‘bievbits‘ show 7thesis using assms by simp
next
case (BALANCE x4)
with p u ‘biecvbits‘ show 7thesis using assms by simp
next
case THIS
with p u ‘bievbits‘ show 7thesis using assms by simp
next
case SENDER
with p u ‘biecvbits‘ show 7thesis using assms by simp
next
case VALUE
with p u ‘biecvbits‘ show 7thesis using assms by simp
next
case TRUE
with p u ‘biecvbits‘ show 7thesis using assms by simp
next
case FALSE
with p u ‘bievbits‘ show 7thesis using assms by simp
next
case (LVAL x7)
with p u ‘bilecvbits‘ show 7thesis using assms by simp
next
case (PLUS x81 x82)
with p u ‘bievbits‘ show 7thesis using assms by simp
next
case (MINUS x91 x92)
with p u ‘bievbits‘ show 7thesis using assms by simp
next
case (EQUAL x101 x102)
with p u ‘bilevbits‘ show ?thesis using assms by simp
next
case (LESS x111 x112)
with p u ‘blevbits‘ show 7thesis using assms by simp
next
case (AND x121 x122)
with p u ‘blevbits‘ show ?thesis using assms by simp
next
case (OR x131 x132)
with p u ‘blevbits‘ show ?thesis using assms by simp
next
case (NOT x131)
with p u ‘bievbits‘ show 7thesis using assms by simp
next
case (CALL x181 x182)
with p u ‘bilcvbits‘ show 7thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with p u ‘bicvbits‘ show 7thesis using assms by simp
qged
next
assume "— blE€vbits"”

129

7 Applications

with p u show ?7thesis using assms

qed
next
case (ADDRESS x3)

with p show 7?thesis using assms

next
case (BALANCE x4)

with p show 7?thesis using assms

next
case THIS

with p show ?thesis using assms

next
case SENDER

with p show 7?thesis using assms

next
case VALUE

with p show ?7thesis using assms

next
case TRUE

with p show ?7thesis using assms

next
case FALSE

with p show ?7thesis using assms

next
case (LVAL x7)

with p show ?7thesis using assms

next
case (PLUS x81 x82)

with p show ?7thesis using assms

next
case (MINUS x91 x92)

with p show ?7thesis using assms

next
case (EQUAL x101 x102)

with p show ?7thesis using assms

next
case (LESS x111 x112)

with p show ?7thesis using assms

next
case (AND x121 x122)

with p show ?7thesis using assms

next
case (OR x131 x132)

with p show ?7thesis using assms

next
case (NOT x131)

with p show 7thesis using assms

next
case (CALL x181 x182)

with p show ?7thesis using assms

next

case (ECALL x191 x192 x193 x194)
with p show ?7thesis using assms

qed
next
case m: (MINUS el e2)
show ?thesis
proof (cases "eupdate el")
case i: (INT bl v1)
with m show ?thesis
proof cases
assume "blcvbits"
show ?thesis
proof (cases "eupdate e2")

130

by

by

by

by

by

by

by

by

by

by

by

by

by

by simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

case i2: (INT b2 v2)
then show ?thesis
proof cases
let 7v="vi-v2"
assume "b2cvbits"
with ‘b1 € vbits‘ have
u_def: "eupdate (MINUS el e2) =
(let v = v1 - v2
in if 0 < v
then E.INT (max bl b2)

7.1 Constant Folding (Constant_ Folding)

(- (2 © (max b1 b2 - 1)) + (v + 2 = (max bl b2 - 1)) mod 2 ~ max bl b2)

else E.INT (max bl b2)

(2 ~ (max b1 b2 - 1) - (- v + 2 ~ (max bl b2 - 1) - 1) mod 2 ~ max bl b2 - 1))"

using i i2 eupdate.simps(11) [of el e2] by simp

show ?thesis
proof cases

let 7x="-(2"((max bl b2)-1)) + (?v+2~((max bl b2)-1)) mod 2~ (max bl b2)"

assume "?v>0"

with u_def have "eupdate (MINUS el e2) = E.INT (max bl b2) ?7x" by simp
with assms have "b=max bl b2" and "v=7x" using m by (simp,simp)
moreover from ‘blcvbits‘ have "max bl b2>0" by auto

hence "?x < 2 “(max bl b2 - 1)"

using upper_bound2[of "max bl b2" "(?v + 2 ~ (max bl b2 - 1)) mod 2 max bl b2"] by simp

moreover have "?x > -(27(max bl b2-1))" by simp

ultimately show ?thesis by simp
next

let ?x="2"((max b1 b2)-1) - (-?v+2~((max bl b2)-1)-1) mod (2~ (max bl b2)) - 1"

assume "—?7v>0"

with u_def have "eupdate (MINUS el e2) = E.INT (max bl b2) 7x" using u_def by simp
with assms have "b=max bl b2" and "v=7x" using m by (simp,simp)
moreover have "(-7v+2~(max bl b2-1)-1) mod (2"max bl b2)>0" by simp

hence "?x < 2 “(max bl b2-1)" by arith

moreover from ‘blcvbits‘ have "max bl b2>0" by auto
hence "?x > -(27(max bl b2-1))" using lower_bound2[of "max bl b2" ?v] by simp

ultimately show ?thesis by simp
qed
next
assume "b2¢vbits"

with m i i2 ‘bicvbits‘ show ?thesis using assms by simp

qed
next
case u: (UINT b2 v2)
then show ?thesis
proof cases
let 7v="vi-v2"
assume "b2cvbits"
show ?thesis
proof cases
assume "b2<b1"
with ‘bl € vbits‘ ‘b2 € vbits‘ have
u_def: "eupdate (MINUS el e2) =
(let v = vl - v2
in if 0 < v

then E.INT b1 (- (2 =~ (b1 - 1)) + (v + 2 ~ (b1

- 1)) mod 2 ~ bl)

else E.INT b1 (2 ~ (b1 - 1) - (-v +2 ~ (b1 - 1) - 1) mod 2 ~ b1 - 1))"

using i u eupdate.simps(11) [of el e2] by simp

then show ?7thesis
proof cases

let 7x="(-(27(b1-1)) + (?v+27~(b1-1)) mod (2°b1))"

assume "?7v>0"

with u_def have "eupdate (MINUS el e2) = E.INT bl 7x" by simp
with assms have "b=b1" and "v=7x" using m by (simp,simp)

moreover from ‘bicvbits‘ have "b1>0" by auto

hence "?x < 2 “(b1 - 1)" using upper_bound2[of bl] by simp

131

7 Applications

moreover have "?x > -(27(b1-1))" by simp
ultimately show ?thesis by simp
next
let 7x="2"(b1-1) - (-?7v+27(b1-1)-1) mod (2°b1) - 1"
assume "—?7v>0"
with u_def have "eupdate (MINUS el e2) = E.INT bl 7x" by simp
with assms have "b=b1" and "v=7x" using m i u by (simp,simp)
moreover have "(-7v+27(b1-1)-1) mod 2°b1>0" by simp
hence "?x < 2 “(b1-1)" by arith
moreover from ‘bicvbits‘ have "b1>0" by auto
hence "?x > -(27(b1-1))" using lower_bound2[of bl ?v] by simp
ultimately show ?thesis by simp
qed
next
assume "— b2<b1"
with m i u ‘bl€vbits‘ show 7thesis using assms by simp
qed
next
assume "b2¢vbits"
with m i u ‘bic€vbits‘ show 7thesis using assms by simp
qed
next
case (ADDRESS x3)
with m i ‘bic€vbits‘ show 7thesis using assms by simp
next
case (BALANCE x4)
with m i ‘bicvbits‘ show 7thesis using assms by simp
next
case THIS
with m i ‘bicvbits‘ show 7thesis using assms by simp
next
case SENDER
with m i ‘bicvbits‘ show 7thesis using assms by simp
next
case VALUE
with m i ‘bicvbits‘ show 7thesis using assms by simp
next
case TRUE
with m i ‘bicvbits‘ show 7thesis using assms by simp
next
case FALSE
with m i ‘bicvbits‘ show 7thesis using assms by simp
next
case (LVAL x7)
with m i ‘bicvbits‘ show 7thesis using assms by simp
next
case (PLUS x81 x82)
with m i ‘bic€vbits‘ show 7thesis using assms by simp
next
case (MINUS x91 x92)
with m i ‘bilcvbits‘ show 7thesis using assms by simp
next
case (EQUAL x101 x102)
with m i ‘bilcvbits‘ show 7thesis using assms by simp
next
case (LESS x111 x112)
with m i ‘bi€vbits‘ show ?thesis using assms by simp
next
case (AND x121 x122)
with m i ‘bi€vbits‘ show ?thesis using assms by simp
next
case (OR x131 x132)
with m i ‘bi€vbits‘ show ?thesis using assms by simp
next

132

case (NOT x131)
with m i ‘bievbits‘ show ?thesis using assms by simp
next
case (CALL x181 x182)
with m 1 ‘bievbits‘ show ?thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with m i ‘bievbits‘ show ?thesis using assms by simp
qed
next
assume "- blc€vbits"
with m i show ?thesis using assms by simp
qed
next
case u: (UINT bl v1)
show ?thesis
proof cases
assume "blcvbits"
show ?thesis
proof (cases "eupdate e2")
case i: (INT b2 v2)
then show ?thesis
proof cases
let ?7v="vi-v2"
assume "b2€vbits"
show 7thesis
proof cases
assume "b1<b2"
with ‘b1 € vbits® ‘b2 € vbits‘ have
u_def: "eupdate (MINUS el e2) =
(let v = v1 - v2
in if 0 < v

7.1 Constant Folding (Constant_ Folding)

then E.INT b2 (- (2 = (b2 - 1)) + (v + 2 ~ (b2 - 1)) mod 2 ~ b2)
else E.INT b2 (2 ~ (b2 - 1) - (v +2 ~ (b2 - 1) - 1) mod 2 ~ b2 - 1))"

using i u eupdate.simps(11) [of el e2] by simp
then show ?thesis
proof cases
let 7x="(-(27(b2-1)) + (?v+27(b2-1)) mod (2°b2))"
assume "?v>0"

with u_def have "eupdate (MINUS el e2) = E.INT b2 7x" by simp
with assms have "b=b2" and "v=7x" using m by (simp,simp)

moreover from ‘b2cvbits‘ have "b2>0" by auto

hence "7?x < 2 ~(b2 - 1)" using upper_bound2[of b2] by simp

moreover have "?x > -(27(b2-1))" by simp
ultimately show ?thesis by simp
next

let 7x="2"(b2-1) - (-?v+27(b2-1)-1) mod (27b2) - 1"

assume "—?v>0"

with u_def have "eupdate (MINUS el e2) = E.INT b2 7x" by simp
with assms have "b=b2" and "v=7x" using m i u by (simp,simp)
moreover have "(-7v+27(b2-1)-1) mod 2°b2>0" by simp

hence "?x < 2 ~(b2-1)" by arith
moreover from ‘b2c€vbits‘ have "b2>0" by auto

hence "?x > -(27(b2-1))" using lower_bound2[of b2 ?v] by simp

ultimately show ?thesis by simp
qed
next
assume "— bi<b2"

with m i u ‘bicvbits‘ show 7thesis using assms by simp

qed
next
assume "b2¢vbits"

with m i u ‘bl€vbits‘ show 7thesis using assms by simp

qed

133

7 Applications

next
case u2: (UINT b2 v2)
then show 7thesis
proof cases
assume "b2€vbits"
with ‘bicvbits‘ u u2 m show ?thesis using assms by simp
next
assume "-b2cvbits"
with m u u2 ‘bicvbits‘ show ?thesis using assms by simp
qed
next
case (ADDRESS x3)
with m u ‘bi1€vbits‘ show ?thesis using assms by simp
next
case (BALANCE x4)
with m u ‘bi€vbits‘ show ?thesis using assms by simp
next
case THIS
with m u ‘bi1€vbits‘ show ?thesis using assms by simp
next
case SENDER
with m u ‘bi€vbits‘ show ?thesis using assms by simp
next
case VALUE
with m u ‘bi€vbits‘ show ?thesis using assms by simp
next
case TRUE
with m u ‘bievbits‘ show ?thesis using assms by simp
next
case FALSE
with m u ‘bievbits‘ show ?thesis using assms by simp
next
case (LVAL x7)
with m u ‘bievbits‘ show ?thesis using assms by simp
next
case (PLUS x81 x82)
with m u ‘bievbits‘ show ?thesis using assms by simp
next
case (MINUS x91 x92)
with m u ‘bi1evbits‘ show ?thesis using assms by simp
next
case (EQUAL x101 x102)
with m u ‘bievbits‘ show ?thesis using assms by simp
next
case (LESS x111 x112)
with m u ‘bievbits‘ show ?thesis using assms by simp
next
case (AND x121 x122)
with m u ‘bievbits‘ show ?thesis using assms by simp
next
case (OR x131 x132)
with m u ‘bievbits‘ show ?thesis using assms by simp
next
case (NOT x131)
with m u ‘bievbits‘ show ?thesis using assms by simp
next
case (CALL x181 x182)
with m u ‘bievbits‘ show ?thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with m u ‘bi1evbits‘ show ?thesis using assms by simp
qged
next
assume "— bl&vbits"

134

with m u show 7thesis using assms

qed

next

case (ADDRESS x3)
with m show ?thesis using assms

next

case (BALANCE x4)
with m show ?thesis using assms

next

case THIS
with m show ?thesis using assms

next

case SENDER
with m show ?thesis using assms

next

case VALUE
with m show ?thesis using assms

next

case TRUE
with m show ?thesis using assms

next

case FALSE
with m show ?thesis using assms

next

case (LVAL x7)
with m show ?thesis using assms

next

case (PLUS x81 x82)
with m show ?thesis using assms

next

case (MINUS x91 x92)
with m show ?thesis using assms

next

case (EQUAL x101 x102)
with m show ?thesis using assms

next

case (LESS x111 x112)
with m show ?thesis using assms

next

case (AND x121 x122)
with m show ?thesis using assms

next

case (OR x131 x132)
with m show ?thesis using assms

next

case (NOT x131)
with m show ?thesis using assms

next

case (CALL x181 x182)
with m show ?thesis using assms

next

case (ECALL x191 x192 x193 x194)
with m show ?thesis using assms

qed
next
case e: (EQUAL el e2)
show ?thesis
proof (cases "eupdate el")

case i: (INT bl v1)
show ?thesis
proof cases
assume "blcvbits"
show ?thesis
proof (cases "eupdate e2")

by

by

by

by

by

by

by

by

by

by

by

by

by

by simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

7.1 Constant Folding (Constant_ Folding)

135

7 Applications

case i2: (INT b2 v2)
then show 7thesis
proof cases
assume "b2cvbits"
show 7thesis
proof cases
assume "vi=v2"
with assms show 7thesis using e i i2 ‘blevbits‘ ‘b2€vbits‘ by simp
next
assume "— vi=v2"
with assms show 7thesis using e i i2 ‘blevbits‘ ‘b2€vbits‘ by simp
qed
next
assume "b2¢vbits"
with e i i2 ‘bicvbits‘ show ?thesis using assms by simp
qed
next
case u: (UINT b2 v2)
then show 7thesis
proof cases
assume "b2cvbits"
show ?thesis
proof cases
assume "b2<b1"
then show 7thesis
proof cases
assume "vi=v2"
with assms show 7thesis using e i u ‘bl€vbits‘ ‘b2€vbits‘ ‘b2<bl‘ by simp
next
assume "— vi=v2"
with assms show 7thesis using e i u ‘bl€vbits‘ ‘b2€vbits‘ ‘b2<bl‘ by simp
qed
next
assume "— b2<b1"
with e i u ‘b1€vbits‘ show ?thesis using assms by simp
qed
next
assume "b2¢vbits"
with e i u ‘bicvbits‘ show 7thesis using assms by simp
qed
next
case (ADDRESS x3)
with e i ‘bievbits‘ show ?thesis using assms by simp
next
case (BALANCE x4)
with e i ‘bievbits‘ show ?thesis using assms by simp
next
case THIS
with e i ‘bievbits‘ show ?thesis using assms by simp
next
case SENDER
with e i ‘bievbits‘ show ?thesis using assms by simp
next
case VALUE
with e i ‘bievbits‘ show ?thesis using assms by simp
next
case TRUE
with e i ‘bievbits‘ show ?thesis using assms by simp
next
case FALSE
with e 1 ‘bievbits‘ show ?thesis using assms by simp
next
case (LVAL x7)
with e 1 ‘bievbits‘ show 7thesis using assms by simp

136

7.1 Constant Folding (Constant_ Folding)

next
case (PLUS x81 x82)
with e i ‘bicvbits‘ show 7thesis using assms by simp
next
case (MINUS x91 x92)
with e i ‘bicvbits‘ show 7thesis using assms by simp
next
case (EQUAL x101 x102)
with e i ‘bicvbits‘ show 7thesis using assms by simp
next
case (LESS x111 x112)
with e i ‘bicvbits‘ show 7thesis using assms by simp
next
case (AND x121 x122)
with e i ‘bicvbits‘ show 7thesis using assms by simp
next
case (OR x131 x132)
with e i ‘bicvbits‘ show 7thesis using assms by simp
next
case (NOT x131)
with e i ‘bicvbits‘ show 7thesis using assms by simp
next
case (CALL x181 x182)
with e i ‘bicvbits‘ show 7thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with e i ‘bicvbits‘ show 7thesis using assms by simp
qed
next
assume "— blcvbits"
with e i show ?thesis using assms by simp
qged
next
case u: (UINT bl v1)
show ?thesis
proof cases
assume "blcvbits"
show 7thesis
proof (cases "eupdate e2")
case i: (INT b2 v2)
then show ?thesis
proof cases
assume "b2c€vbits"
show 7thesis
proof cases
assume "b1<b2"
then show ?thesis
proof cases
assume "vi=v2"
with assms show ?thesis using e i u ‘bl€vbits‘ ‘b2cvbits‘ ‘bi1<b2‘ by simp
next
assume "— vi=v2"
with assms show ?thesis using e i u ‘bl€vbits‘ ‘b2c€vbits‘ ‘bi1<b2‘ by simp
qed
next
assume "— bi<b2"
with e i u ‘blc€vbits‘ show 7thesis using assms by simp
qed
next
assume "b2¢vbits"
with e i u ‘blevbits‘ show 7thesis using assms by simp
qed
next
case u2: (UINT b2 v2)

137

7 Applications

then show ?thesis
proof cases
assume "b2cvbits"
show 7thesis
proof cases
assume "vi=v2"
with assms show ?thesis using e u u2 ‘bl€vbits®
next
assume " vi=v2"
with assms show ?thesis using e u u2 ‘bl€vbits®
qed
next
assume "—b2cvbits"

‘b2€vbits‘ by simp

‘b2€vbits‘ by simp

with e u u2 ‘bievbits‘ show ?thesis using assms by simp

qed
next

case (ADDRESS x3)

with e u ‘bic€vbits®
next

case (BALANCE x4)

with e u ‘bic€vbits®
next

case THIS

with e u
next

case SENDER

with e u ‘bilc€vbits®
next

case

with e u
next

case TRUE

with e u
next

case FALSE

with e u ‘bicvbits®
next

case (LVAL x7)

with e u ‘bic€vbits®
next

case (PLUS x81 x82)

with e u ‘bic€vbits®
next

case (MINUS x91 x92)

with e u ‘bic€vbits®
next

case (EQUAL x101 x102)

with e u ‘bl1€vbits‘ show
next

case (LESS x111 x112)

with e u ‘bi€vbits®
next

case (AND x121 x122)

with e u ‘bi€vbits®
next

case (OR x131 x132)

with e u ‘bi€vbits’
next

case (NOT x131)

with e u ‘bi€vbits®
next

case (CALL x181 x182)

with e u ‘bi€vbits’
next

show ?thesis using assms

by

show ?thesis using assms

by

‘bicvbits‘ show 7thesis using assms by

show ?thesis using assms

by

VALUE

‘bl1cvbits‘ show ?thesis using assms

by

‘bicvbits‘ show 7thesis using assms by

show ?thesis using assms

by

show ?thesis using assms

by

show ?thesis using assms

by

show ?thesis using assms by

7thesis using assms

by

show ?thesis using assms

by

show ?thesis using assms

by

show ?thesis using assms by

show ?thesis using assms

by

show ?thesis using assms

by

138

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

7.1 Constant Folding (Constant_ Folding)

case (ECALL x191 x192 x193 x194)
with e u ‘bievbits‘ show ?thesis using assms by simp
qed
next
assume "- blc€vbits"
with e u show ?thesis using assms by simp
qed
next
case (ADDRESS x3)
with e show ?thesis using assms by simp
next
case (BALANCE x4)
with e show ?thesis using assms by simp
next
case THIS
with e show ?thesis using assms by simp
next
case SENDER
with e show ?thesis using assms by simp
next
case VALUE
with e show ?thesis using assms by simp
next
case TRUE
with e show ?thesis using assms by simp
next
case FALSE
with e show ?thesis using assms by simp
next
case (LVAL x7)
with e show ?thesis using assms by simp
next
case (PLUS x81 x82)
with e show ?thesis using assms by simp
next
case (MINUS x91 x92)
with e show ?thesis using assms by simp
next
case (EQUAL x101 x102)
with e show ?thesis using assms by simp
next
case (LESS x111 x112)
with e show ?thesis using assms by simp
next
case (AND x121 x122)
with e show ?thesis using assms by simp
next
case (OR x131 x132)
with e show ?thesis using assms by simp
next
case (NOT x131)
with e show ?thesis using assms by simp
next
case (CALL x181 x182)
with e show ?thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with e show 7?thesis using assms by simp
qed
next
case 1: (LESS el e2)
show 7thesis
proof (cases "eupdate el")
case i: (INT b1 v1)

139

7 Applications

show ?thesis
proof cases
assume "blcvbits"
show ?thesis
proof (cases "eupdate e2")
case i2: (INT b2 v2)
then show 7thesis
proof cases
assume "b2cvbits"
show ?thesis
proof cases
assume "vi<v2"
with assms show 7thesis using 1 i i2 ‘bl€vbits‘® ‘b2€vbits‘ by simp
next
assume "— vi<v2"
with assms show 7thesis using 1 i i2 ‘bl€vbits‘ ‘b2€vbits‘ by simp
qed
next
assume "b2¢vbits"
with 1 i i2 ‘bl€vbits‘ show ?thesis using assms by simp
qed
next
case u: (UINT b2 v2)
then show 7thesis
proof cases
assume "b2€vbits"
show ?thesis
proof cases
assume "b2<b1"
then show ?thesis
proof cases
assume "vi<v2"
with assms show ?thesis using 1 i u ‘bl€vbits‘ ‘b2€vbits‘ ‘b2<bl‘ by simp
next
assume " vi<v2"
with assms show ?thesis using 1 i u ‘bl€vbits‘ ‘b2c€vbits‘ ‘b2<bl‘ by simp
qed
next
assume "— b2<b1"
with 1 i u ‘bil€vbits‘ show 7thesis using assms by simp
qged
next
assume "b2¢vbits"
with 1 i u ‘bicvbits‘ show 7thesis using assms by simp
qed
next
case (ADDRESS x3)
with 1 i ‘bicvbits‘ show 7thesis using assms by simp
next
case (BALANCE x4)
with 1 i ‘bicvbits‘ show 7thesis using assms by simp
next
case THIS
with 1 i ‘bicvbits‘ show 7thesis using assms by simp
next
case SENDER
with 1 i ‘bievbits‘ show ?thesis using assms by simp
next
case VALUE
with 1 i ‘bievbits‘ show ?thesis using assms by simp
next
case TRUE
with 1 i ‘bievbits‘ show ?thesis using assms by simp
next

140

case FALSE

with 1 i ‘bievbits‘ show ?thesis using assms by simp

next
case (LVAL x7)

with 1 i ‘bievbits‘ show ?thesis using assms by simp

next
case (PLUS x81 x82)

with 1 i ‘bievbits‘ show ?thesis using assms by simp

next
case (MINUS x91 x92)

with 1 i ‘bievbits‘ show ?thesis using assms by simp

next
case (EQUAL x101 x102)

with 1 i ‘bicvbits‘ show 7thesis using assms by simp

next
case (LESS x111 x112)

with 1 i ‘bicvbits‘ show 7thesis using assms by simp

next
case (AND x121 x122)

with 1 i ‘bicvbits‘ show 7thesis using assms by simp

next
case (OR x131 x132)

with 1 i ‘bi€vbits‘ show 7thesis using assms by simp

next
case (NOT x131)

with 1 i ‘bi1€vbits‘ show ?thesis using assms by simp

next
case (CALL x181 x182)

with 1 i ‘bi1€vbits‘ show 7thesis using assms by simp

next
case (ECALL x191 x192 x193 x194)

with 1 i ‘bi1€vbits‘ show 7thesis using assms by simp

qged
next
assume "— blevbits"
with 1 i show ?thesis using assms by simp
qed
next
case u: (UINT b1 vi1)
show ?thesis
proof cases
assume "blecvbits"
show ?thesis
proof (cases "eupdate e2")
case i: (INT b2 v2)
then show ?thesis
proof cases
assume "b2cvbits"
show ?thesis
proof cases
assume "b1<b2"
then show ?thesis
proof cases
assume "vi<v2"

7.1 Constant Folding (Constant_ Folding)

with assms show 7thesis using 1 i u ‘bl€vbits‘ ‘b2€vbits‘ ‘b1<b2‘ by simp

next
assume " vi<v2"

with assms show 7thesis using 1 i u ‘bl€vbits‘ ‘b2€vbits‘ ‘b1<b2‘ by simp

qed
next
assume "— b1<b2"

with 1 i u ‘bicvbits‘ show 7thesis using assms by simp

qed
next

141

7 Applications

assume "b2¢vbits"
with 1 i u ‘blevbits‘ show 7thesis using assms by simp
qed
next
case u2: (UINT b2 v2)
then show 7thesis
proof cases
assume "b2c€vbits"
show ?thesis
proof cases
assume "vi<v2"
with assms show ?thesis using 1 u u2 ‘bi€vbits‘ ‘b2€vbits‘ by simp
next
assume "— vi<v2"
with assms show ?thesis using 1 u u2 ‘bi€vbits‘ ‘b2€vbits‘ by simp
qed
next
assume "—-b2cvbits"
with 1 u u2 ‘bievbits‘ show ?thesis using assms by simp
qed
next
case (ADDRESS x3)
with 1 u ‘bi1€vbits‘ show ?thesis using assms by simp
next
case (BALANCE x4)
with 1 u ‘b1€vbits‘ show ?thesis using assms by simp
next
case THIS
with 1 u ‘bi1€vbits‘ show 7thesis using assms by simp
next
case SENDER
with 1 u ‘bi1€vbits‘ show 7thesis using assms by simp
next
case VALUE
with 1 u ‘bi1€vbits‘ show ?thesis using assms by simp
next
case TRUE
with 1 u ‘bi1€vbits‘ show ?thesis using assms by simp
next
case FALSE
with 1 u ‘bi1€vbits‘ show ?thesis using assms by simp
next
case (LVAL x7)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
next
case (PLUS x81 x82)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
next
case (MINUS x91 x92)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
next
case (EQUAL x101 x102)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
next
case (LESS x111 x112)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
next
case (AND x121 x122)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
next
case (OR x131 x132)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
next
case (NOT x131)

142

with 1 u

next
case (CALL x181 x182)

with 1 u

next

case (ECALL x191 x192 x193

with 1 u ‘bi1€vbits‘ show

qed

next

‘bi1€vbits‘ show

‘bi1€vbits‘ show

assume "— ble&vbits"
with 1 u show 7thesis using assms

qged
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
qed

(ADDRESS x3)
1 show ?thesis

(BALANCE x4)
1 show ?thesis

THIS
1 show ?thesis

SENDER
1 show ?thesis

VALUE
1 show ?thesis

TRUE
1 show ?thesis

FALSE
1 show ?thesis

(LVAL x7)
1 show ?thesis

(PLUS x81 x82)
1 show ?thesis

(MINUS x91 x92)
1 show ?thesis

using

using

using

using

using

using

using

using

using

using

(EQUAL x101 x102)

1 show ?thesis

(LESS x111 x112)

1 show ?thesis

(AND x121 x122)
1 show ?thesis

(OR x131 x132)
1 show ?thesis

(NOT x131)
1 show ?thesis

(CALL x181 x182)

1 show ?thesis

using

using

using

using

using

using

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

(ECALL x191 x192 x193 x194)
1 show ?thesis using assms

x194)
7thesis using assms by simp

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

7thesis using assms by simp

7thesis using assms by simp

by simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

7.1 Constant Folding (Constant_ Folding)

143

7 Applications

next

case a: (AND el e2)

show ?thesis

proof (cases "eupdate el")
case (INT x11 x12)

with a show ?thesis using assms by
next

case (UINT x21 x22)

with a show ?thesis using assms by
next

case (ADDRESS x3)

with a show ?thesis using assms by
next

case (BALANCE x4)

with a show ?thesis using assms by
next

case THIS

with a show ?thesis using assms by
next

case SENDER

with a show ?thesis using assms by
next

case VALUE

with a show ?thesis using assms by
next

case t: TRUE

show ?thesis
proof (cases "eupdate e2")

case

(INT x11 x12)

with a t show ?thesis using

next
case
with
next
case
with
next
case
with
next
case
with
next

(UINT x21 x22)
a t show 7thesis

(ADDRESS x3)
a t show ?thesis

(BALANCE x4)
a t show ?thesis

THIS
a t show 7thesis

case SENDER

with a t show ?thesis
next

case VALUE

with a t show ?thesis
next

case TRUE

with a t show ?thesis
next

case FALSE

with a t show ?thesis
next

case (LVAL x7)

with a t show ?thesis
next

case (PLUS x81 x82)

with a t show ?thesis
next

case (MINUS x91 x92)

with a t show ?thesis
next

144

using

using

using

using

using

using

using

using

using

using

using

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

simp

simp

simp

simp

simp

simp

simp

by

by

by

by

by

by

by

by

by

by

by

by

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

case (EQUAL x101 x102)

with a t show 7thesis using assms
next

case (LESS x111 x112)

with a t show 7thesis using assms
next

case (AND x121 x122)

with a t show 7thesis using assms
next

case (OR x131 x132)

with a t show 7thesis using assms
next

case (NOT x131)

with a t show 7thesis using assms
next

case (CALL x181 x182)

with a t show 7thesis using assms
next

case (ECALL x191 x192 x193 x194)

with a t show ?7thesis using assms
qed

next

case f: FALSE
show ?thesis
proof (cases "eupdate e2")

case (INT x11 x12)

with a f show ?7thesis using assms
next

case (UINT x21 x22)

with a f show ?7thesis using assms
next

case (ADDRESS x3)

with a f show ?7thesis using assms
next

case (BALANCE x4)

with a f show ?7thesis using assms
next

case THIS

with a f show ?7thesis using assms
next

case SENDER

with a f show ?7thesis using assms
next

case VALUE

with a f show ?7thesis using assms
next

case TRUE

with a f show ?7thesis using assms
next

case FALSE

with a f show ?7thesis using assms
next

case (LVAL x7)

with a f show ?7thesis using assms
next

case (PLUS x81 x82)

with a f show 7thesis using assms
next

case (MINUS x91 x92)

with a f show 7thesis using assms
next

case (EQUAL x101 x102)

with a f show 7thesis using assms
next

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

7.1 Constant Folding (Constant_ Folding)

145

7 Applications

case (LESS x111 x112)

with a f show 7thesis using

next

case (AND x121 x122)

with a f show 7thesis using

next

case (OR x131 x132)

with a f show 7thesis using

next

case (NOT x131)

with a f show 7thesis using

next

case (CALL x181 x182)

with a f show 7thesis using

next

case (ECALL x191 x192 x193 x194)

with a f show 7thesis using assms

qed
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
qed
next

case o:

(LVAL x7)
a show 7thesis using

(PLUS x81 x82)
a show 7thesis using

(MINUS x91 x92)
a show 7thesis using

(EQUAL x101 x102)
a show 7thesis using

(LESS x111 x112)
a show 7thesis using

(AND x121 x122)
a show 7thesis using

(OR x131 x132)
a show 7thesis using

(NOT x131)
a show 7thesis using

(CALL x181 x182)
a show 7thesis using

assms

assms

assms

assms

assms

assms

assms

assms

assms

(ECALL x191 x192 x193 x194)

a show 7thesis using

(OR el e2)

show 7thesis
proof (cases "eupdate el")

case
with
next
case
with
next
case
with
next
case
with

146

(INT x11 x12)
o show ?thesis using

(UINT x21 x22)
o show ?thesis using

(ADDRESS x3)
o show ?thesis using

(BALANCE x4)
o show ?thesis using

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

next

case THIS

with o show ?thesis using assms by

next

case SENDER

with o show ?thesis using assms by

next

case VALUE

with o show ?thesis using assms by

next

case t: TRUE
show ?thesis

proof (cases "eupdate e2")

case (INT x11 x12)

with o t show ?thesis
next

case (UINT x21 x22)

with o t show ?thesis
next

case (ADDRESS x3)

with o t show ?thesis
next

case (BALANCE x4)

with o t show ?thesis
next

case THIS

with o t show ?thesis
next

case SENDER

with o t show ?thesis
next

case VALUE

with o t show ?thesis
next

case TRUE

with o t show ?thesis
next

case FALSE

with o t show ?thesis
next

case (LVAL x7)

with o t show ?thesis
next

case (PLUS x81 x82)

with o t show ?thesis
next

case (MINUS x91 x92)

with o t show ?thesis
next

case (EQUAL x101 x102)

with o t show ?thesis
next

case (LESS x111 x112)

with o t show ?thesis
next

case (AND x121 x122)

with o t show ?thesis
next

case (OR x131 x132)

with o t show ?thesis
next

case (NOT x131)

with o t show ?thesis
next

using

using

using

using

using

using

using

using

using

using

using

using

using

using

using

using

using

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

simp

simp

simp

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

7.1 Constant Folding (Constant_ Folding)

147

7 Applications

case

(CALL x181 x182)

with o t show 7thesis using assms

next

case (ECALL x191 x192 x193 x194)
with o t show 7thesis using assms

qed

next

148

case f:

FALSE

show ?thesis
proof (cases "eupdate e2")

case
with
next
case
with
next
case
with
next
case
with
next
case
with
next

(INT x11 x12)
o f show ?thesis

(UINT x21 x22)
o f show ?thesis

(ADDRESS x3)
o f show ?thesis

(BALANCE x4)
o f show 7thesis

THIS
o f show 7thesis

case SENDER

with
next
case
with
next
case
with
next

o f show 7thesis

VALUE
o f show 7thesis

TRUE
o f show 7thesis

case FALSE

with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next

o f show 7thesis

(LVAL x7)
o f show ?thesis

(PLUS x81 x82)
o f show 7thesis

(MINUS x91 x92)
o f show 7thesis

(EQUAL x101 x102)
o f show ?thesis

(LESS x111 x112)
o f show 7thesis

(AND x121 x122)
o f show 7thesis

(OR x131 x132)
o f show 7thesis

(NOT x131)
o f show 7thesis

(CALL x181 x182)
o f show ?thesis

using

using

using

using

using

using

using

using

using

using

using

using

using

using

using

using

using

using

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

case (ECALL x191 x192 x193 x194)

with o f show ?thesis using assms by simp

qed
next

case (LVAL x7)

with o show ?thesis using assms by
next

case (PLUS x81 x82)

with o show ?thesis using assms by
next

case (MINUS x91 x92)

with o show ?thesis using assms by
next

case (EQUAL x101 x102)

with o show ?thesis using assms by
next

case (LESS x111 x112)

with o show ?thesis using assms by
next

case (AND x121 x122)

with o show ?thesis using assms by
next

case (OR x131 x132)

with o show ?thesis using assms by
next

case (NOT x131)

with o show ?thesis using assms by
next

case (CALL x181 x182)

with o show ?thesis using assms by
next

case (ECALL x191 x192 x193 x194)

with o show ?thesis using assms by
qed

next

case o: (NOT el)
show 7thesis
proof (cases "eupdate e1l")

case (INT x11 x12)

with o show ?thesis using assms by
next

case (UINT x21 x22)

with o show ?thesis using assms by
next

case (ADDRESS x3)

with o show ?thesis using assms by
next

case (BALANCE x4)

with o show ?thesis using assms by
next

case THIS

with o show ?thesis using assms by
next

case SENDER

with o show ?thesis using assms by
next

case VALUE

with o show ?thesis using assms by
next

case t: TRUE

with o show ?thesis using assms by
next

case f: FALSE

with o show ?thesis using assms by

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

7.1 Constant Folding (Constant_ Folding)

149

7 Applications

next
case (LVAL x7)
with o show ?thesis using assms by simp
next
case (PLUS x81 x82)
with o show ?thesis using assms by simp
next
case (MINUS x91 x92)
with o show ?thesis using assms by simp
next
case (EQUAL x101 x102)
with o show ?thesis using assms by simp
next
case (LESS x111 x112)
with o show ?thesis using assms by simp
next
case (AND x121 x122)
with o show ?thesis using assms by simp
next
case (OR x131 x132)
with o show ?thesis using assms by simp
next
case (NOT x131)
with o show ?thesis using assms by simp
next
case (CALL x181 x182)
with o show ?thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with o show ?thesis using assms by simp
qed
next
case (CALL x181 x182)
with assms show ?7thesis by simp
next
case (ECALL x191 x192 x193 x194)
with assms show ?7thesis by simp
qed

lemma update_bounds_uint:
assumes "eupdate ex = UINT b v" and "b&vbits"
shows "v < 2°b A v > 0"
proof (cases ex)
case (INT b’ v’)
with assms show ?thesis
proof cases
assume "b’cvbits"
show ?thesis
proof cases
assume "v’>0"
with INT show ?thesis using assms ‘b’cvbits‘ by simp
next
assume "— v’>0"
with INT show ?thesis using assms ‘b’cvbits‘ by simp
qed
next
assume "— b’cvbits"
with INT show ?thesis using assms by simp
qed
next
case (UINT b’ v’)
then show ?thesis
proof cases
assume "b’cvbits”

150

7.1 Constant Folding (Constant_ Folding)

with UINT show ?thesis using assms by auto
next
assume "— b’cvbits"
with UINT show ?thesis using assms by auto
qed
next
case (ADDRESS x3)
with assms show ?7thesis by simp
next
case (BALANCE x4)
with assms show ?7thesis by simp
next
case THIS
with assms show ?thesis by simp
next
case SENDER
with assms show ?thesis by simp
next
case VALUE
with assms show ?thesis by simp
next
case TRUE
with assms show ?thesis by simp
next
case FALSE
with assms show ?thesis by simp
next
case (LVAL x7)
with assms show ?thesis by simp
next
case p: (PLUS el e2)
show 7thesis
proof (cases "eupdate el")
case i: (INT b1 v1)
with p show ?thesis
proof cases
assume "blcvbits"
show 7thesis
proof (cases "eupdate e2")
case i2: (INT b2 v2)
then show ?thesis
proof cases
let ?v="vi+v2"
assume "b2€vbits"
show ?thesis
proof cases
assume "?v>0"
with assms show 7thesis using p i i2 ‘bl€vbits‘ ‘b2€vbits‘ by simp
next
assume "—?7v>0"
with assms show 7thesis using p i i2 ‘bl€vbits‘ ‘b2€vbits‘ by simp
qed
next
assume "b2¢vbits"
with p i i2 ‘bi€vbits‘ show ?thesis using assms by simp
qged
next
case u: (UINT b2 v2)
then show ?thesis
proof cases
let 7v="vi+v2"
assume "b2€vbits"
show ?thesis
proof cases

151

7 Applications

assume "b2<b1"
then show 7thesis
proof cases
assume "?7v>0"
with assms show ?thesis using p i u ‘bl€vbits‘ ‘b2€vbits‘ ‘b2<bl‘ by simp
next
assume "—?v>0"
with assms show ?thesis using p i u ‘bl€vbits‘ ‘b2€vbits‘ ‘b2<bl‘ by simp
qed
next
assume "— b2<b1"
with p i u ‘bicvbits‘ show 7thesis using assms by simp
qed
next
assume "b2¢vbits"
with p i u ‘bicvbits‘ show 7thesis using assms by simp
qed
next
case (ADDRESS x3)
with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case (BALANCE x4)
with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case THIS
with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case SENDER
with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case VALUE
with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case TRUE
with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case FALSE
with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case (LVAL x7)
with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case (PLUS x81 x82)
with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case (MINUS x91 x92)
with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case (EQUAL x101 x102)
with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case (LESS x111 x112)
with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case (AND x121 x122)
with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case (OR x131 x132)
with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case (NOT x131)
with p i ‘bi1€vbits‘ show 7thesis using assms by simp
next
case (CALL x181 x182)

152

7.1 Constant Folding (Constant_ Folding)

with p i ‘bicvbits‘ show 7thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with p i ‘biecvbits‘ show 7thesis using assms by simp
qed
next
assume "— blcvbits"
with p i show 7thesis using assms by simp
qed
next
case u: (UINT bl v1)
with p show ?thesis
proof cases
assume "blevbits"
show ?thesis
proof (cases "eupdate e2")
case i: (INT b2 v2)
then show 7thesis
proof cases
let 7v="vi+v2"
assume "b2cvbits"
show ?thesis
proof cases
assume "b1<b2"
then show 7thesis
proof cases
assume "?v>0"
with assms show ?thesis using p i u ‘blevbits‘ ‘b2€vbits‘ ‘b1<b2‘ by simp
next
assume "—?v>0"
with assms show ?thesis using p i u ‘blevbits‘ ‘b2€vbits‘ ‘b1<b2‘ by simp
qed
next
assume "— bi<b2"
with p i u ‘bicvbits‘ show 7thesis using assms by simp
qed
next
assume "b2¢vbits"
with p i u ‘bicvbits‘ show 7thesis using assms by simp
qed
next
case u2: (UINT b2 v2)
then show 7thesis
proof cases
let ?x="((vl + v2) mod (2~ (max bl b2)))"
assume "b2€vbits"
with ‘bicvbits‘ u u2 have "eupdate (PLUS el e2) = UINT (max bl b2) ?x" by simp
with assms have "b=max bl b2" and "v=7x" using p by (simp,simp)
moreover from ‘bi€vbits‘ have "max bl b2>0" by auto
hence "?x < 2 “(max bl b2)" by simp
moreover have "?x > 0" by simp
ultimately show ?thesis by simp
next
assume "-b2cvbits"
with p u u2 ‘bi€vbits‘ show ?thesis using assms by simp
qged
next
case (ADDRESS x3)
with p u ‘bicvbits‘ show 7thesis using assms by simp
next
case (BALANCE x4)
with p u ‘bi1€vbits‘ show 7thesis using assms by simp
next
case THIS

153

7 Applications

with p u ‘bicvbits‘ show 7thesis using assms by simp
next
case SENDER
with p u ‘bicvbits‘ show 7thesis using assms by simp
next
case VALUE
with p u ‘biecvbits‘ show 7thesis using assms by simp
next
case TRUE
with p u ‘biecvbits‘ show 7thesis using assms by simp
next
case FALSE
with p u ‘bievbits‘ show 7thesis using assms by simp
next
case (LVAL x7)
with p u ‘biecvbits‘ show 7thesis using assms by simp
next
case (PLUS x81 x82)
with p u ‘bievbits‘ show 7thesis using assms by simp
next
case (MINUS x91 x92)
with p u ‘biecvbits‘ show 7thesis using assms by simp
next
case (EQUAL x101 x102)
with p u ‘biecvbits‘ show 7thesis using assms by simp
next
case (LESS x111 x112)
with p u ‘biecvbits‘ show 7thesis using assms by simp
next
case (AND x121 x122)
with p u ‘bievbits‘ show 7thesis using assms by simp
next
case (OR x131 x132)
with p u ‘bilecvbits‘ show 7thesis using assms by simp
next
case (NOT x131)
with p u ‘bievbits‘ show 7thesis using assms by simp
next
case (CALL x181 x182)
with p u ‘bievbits‘ show 7thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with p u ‘bilevbits‘ show ?thesis using assms by simp
ged
next
assume "— blEvbits"”
with p u show ?thesis using assms by simp
qed
next
case (ADDRESS x3)
with p show ?thesis using assms by simp
next
case (BALANCE x4)
with p show ?thesis using assms by simp
next
case THIS
with p show ?thesis using assms by simp
next
case SENDER
with p show ?thesis using assms by simp
next
case VALUE
with p show ?thesis using assms by simp
next

154

case TRUE
with p show ?thesis using assms by simp
next
case FALSE
with p show ?thesis using assms by simp
next
case (LVAL x7)
with p show ?thesis using assms by simp
next
case (PLUS x81 x82)
with p show ?thesis using assms by simp
next
case (MINUS x91 x92)
with p show ?thesis using assms by simp
next
case (EQUAL x101 x102)
with p show ?thesis using assms by simp
next
case (LESS x111 x112)
with p show ?thesis using assms by simp
next
case (AND x121 x122)
with p show ?thesis using assms by simp
next
case (OR x131 x132)
with p show ?thesis using assms by simp
next
case (NOT x131)
with p show ?thesis using assms by simp
next
case (CALL x181 x182)
with p show ?thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with p show ?thesis using assms by simp
qed
next
case m: (MINUS el e2)
show ?thesis
proof (cases "eupdate el")
case i: (INT bl v1)
with m show ?thesis
proof cases
assume "blevbits"
show ?thesis
proof (cases "eupdate e2")
case i2: (INT b2 v2)
then show 7thesis
proof cases
let ?v="vi-v2"
assume "b2c€vbits"
show ?thesis
proof cases
assume "?v>0"

7.1 Constant Folding (Constant_ Folding)

with assms show 7thesis using m i i2 ‘blevbits‘® ‘b2c€vbits‘ by simp

next
assume "—?7v>0"

with assms show 7thesis using m i i2 ‘bl€vbits‘ ‘b2€vbits‘ by simp

qed
next
assume "b2¢vbits"

with m i i2 ‘bicvbits‘ show ?thesis using assms by simp

qed
next

155

7 Applications

case u: (UINT b2 v2)
then show 7thesis
proof cases
let ?v="vi-v2"
assume "b2€vbits"
show ?thesis
proof cases
assume "b2<b1"
show ?thesis
proof cases
assume "7v>0"
with assms show ?thesis using m i u ‘bl€vbits‘ ‘b2c€vbits‘ ‘b2<bl‘ by simp
next
assume "—?7v>0"
with assms show ?thesis using m i u ‘bl€vbits‘ ‘b2c€vbits‘ ‘b2<bl‘ by simp
qed
next
assume "— b2<b1l"
with m i u ‘bl€vbits‘ show 7thesis using assms by simp
qed
next
assume "b2¢vbits"
with m i u ‘bi€vbits‘ show ?thesis using assms by simp
qed
next
case (ADDRESS x3)
with m i ‘bicvbits‘ show 7thesis using assms by simp
next
case (BALANCE x4)
with m i ‘bicvbits‘ show 7thesis using assms by simp
next
case THIS
with m i ‘bicvbits‘ show 7thesis using assms by simp
next
case SENDER
with m i ‘bicvbits‘ show 7thesis using assms by simp
next
case VALUE
with m i ‘bicvbits‘ show 7thesis using assms by simp
next
case TRUE
with m i ‘bicvbits‘ show 7thesis using assms by simp
next
case FALSE
with m i ‘bicvbits‘ show 7thesis using assms by simp
next
case (LVAL x7)
with m i ‘bic€vbits‘ show 7thesis using assms by simp
next
case (PLUS x81 x82)
with m i ‘bilcvbits‘ show 7thesis using assms by simp
next
case (MINUS x91 x92)
with m i ‘bilcvbits‘ show 7thesis using assms by simp
next
case (EQUAL x101 x102)
with m i ‘bi€vbits‘ show ?thesis using assms by simp
next
case (LESS x111 x112)
with m i ‘bi€vbits‘ show ?thesis using assms by simp
next
case (AND x121 x122)
with m i ‘bi€vbits‘ show ?thesis using assms by simp
next

156

7.1 Constant Folding (Constant_ Folding)

case (OR x131 x132)
with m i ‘bievbits‘ show ?thesis using assms by simp
next
case (NOT x131)
with m 1 ‘bievbits‘ show ?thesis using assms by simp
next
case (CALL x181 x182)
with m i ‘bievbits‘ show ?thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with m i ‘bievbits‘ show ?thesis using assms by simp
qed
next
assume "— bl€vbits"
with m i show ?thesis using assms by simp
qed
next
case u: (UINT bl v1)
with m show ?thesis
proof cases
assume "blcvbits"
show ?thesis
proof (cases "eupdate e2")
case i: (INT b2 v2)
then show ?thesis
proof cases
let ?7v="vi-v2"
assume "b2€vbits"
show 7thesis
proof cases
assume "b1<b2"
show ?thesis
proof cases
assume "?7v>0"

with assms show ?thesis using m i u ‘bl€vbits‘ ‘b2€vbits‘ ‘bi<b2‘ by simp

next
assume "—?7v>0"

with assms show ?thesis using m i u ‘bl€vbits‘ ‘b2€vbits‘ ‘bi<b2‘ by simp

qed
next
assume "— bi<b2"
with m i u ‘bicvbits‘ show 7thesis using assms by simp
qed
next
assume "b2¢vbits"
with m i u ‘blevbits‘ show 7thesis using assms by simp
qged
next
case u2: (UINT b2 v2)
then show ?thesis
proof cases
let ?x="((vl - v2) mod (2~ (max bl b2)))"
assume "b2€vbits"

with ‘bicvbits‘ u u2 have "eupdate (MINUS el e2) = UINT (max bl b2) 7x" by simp
with assms have "b=max bl b2" and "v=7x" using m by (simp,simp)

moreover from ‘bicvbits‘ have "max bl b2>0" by auto
hence "?x < 2 “(max b1l b2)" by simp
moreover have "?x > 0" by simp
ultimately show ?thesis by simp
next
assume "—b2€vbits"
with m u u2 ‘bicvbits‘ show ?thesis using assms by simp
qed
next

157

7 Applications

case (ADDRESS x3)

with m u ‘bi1evbits‘ show ?thesis using
next

case (BALANCE x4)

with m u ‘bi1evbits‘ show ?thesis using
next

case THIS

with m u ‘bi1evbits‘ show ?thesis using
next

case SENDER

with m u ‘bi1evbits‘ show ?thesis using
next

case VALUE

with m u ‘bi1evbits‘ show ?thesis using
next

case TRUE

with m u ‘blevbits‘ show ?thesis using
next

case FALSE

with m u ‘bl1€vbits‘ show ?thesis using
next

case (LVAL x7)

with m u ‘bi€vbits‘ show 7thesis using
next

case (PLUS x81 x82)

with m u ‘bi€vbits‘ show 7thesis using
next

case (MINUS x91 x92)

with m u ‘bicvbits‘ show 7thesis using
next

case (EQUAL x101 x102)

with m u ‘bicvbits‘ show 7thesis using
next

case (LESS x111 x112)

with m u ‘bicvbits‘ show 7thesis using
next

case (AND x121 x122)

with m u ‘bicvbits‘ show 7thesis using
next

case (OR x131 x132)

with m u ‘bi€vbits‘ show 7thesis using
next

case (NOT x131)

with m u ‘bi€vbits‘ show 7thesis using
next

case (CALL x181 x182)

with m u ‘bi€vbits‘ show 7thesis using
next

case (ECALL x191 x192 x193 x194)

with m u ‘bi€vbits‘ show 7thesis using
qed

next

assume "— blcvbits"

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

with m u show ?thesis using assms by simp

qed
next

case (ADDRESS x3)

with m show ?thesis using assms by simp
next

case (BALANCE x4)

with m show ?thesis using assms by simp
next

case THIS

with m show ?thesis using assms by simp

158

by

by

by

by

by

by

by

by

by

by

by

by

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

next
case SENDER
with m show ?thesis using assms by simp
next
case VALUE
with m show ?thesis using assms by simp
next
case TRUE
with m show ?thesis using assms by simp
next
case FALSE
with m show ?thesis using assms by simp
next
case (LVAL x7)
with m show ?thesis using assms by simp
next
case (PLUS x81 x82)
with m show ?thesis using assms by simp
next
case (MINUS x91 x92)
with m show ?thesis using assms by simp
next
case (EQUAL x101 x102)
with m show ?thesis using assms by simp
next
case (LESS x111 x112)
with m show ?thesis using assms by simp
next
case (AND x121 x122)
with m show ?thesis using assms by simp
next
case (OR x131 x132)
with m show ?thesis using assms by simp
next
case (NOT x131)
with m show ?thesis using assms by simp
next
case (CALL x181 x182)
with m show ?thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with m show ?thesis using assms by simp
qed
next
case e: (EQUAL el e2)
show 7thesis
proof (cases "eupdate el")
case i: (INT bl v1)
show ?thesis
proof cases
assume "blcvbits"
show ?thesis
proof (cases "eupdate e2")
case i2: (INT b2 v2)
then show 7thesis
proof cases
assume "b2cvbits"
show ?thesis
proof cases
assume "vi=v2"

7.1 Constant Folding (Constant_ Folding)

with assms show 7thesis using e i i2 ‘blevbits‘® ‘b2€vbits‘ by simp

next
assume "— vi=v2"

with assms show 7thesis using e i i2 ‘blevbits‘® ‘b2€vbits‘ by simp

159

7 Applications

qed
next
assume "b2¢vbits"
with e i i2 ‘bievbits‘ show ?thesis using assms by simp
qed
next
case u: (UINT b2 v2)
then show 7thesis
proof cases
assume "b2cvbits"
show 7thesis
proof cases
assume "b2<b1"
then show 7thesis
proof cases
assume "vi=v2"
with assms show ?thesis using e i u ‘bl€vbits‘ ‘b2€vbits‘ ‘b2<bl‘ by simp
next
assume "— vi=v2"
with assms show ?thesis using e i u ‘bl€vbits‘ ‘b2€vbits‘ ‘b2<bl‘ by simp
qed
next
assume "— b2<b1"
with e i u ‘bicvbits‘ show 7thesis using assms by simp
qed
next
assume "b2¢vbits"
with e i u ‘blevbits‘ show 7thesis using assms by simp
qged
next
case (ADDRESS x3)
with e i ‘bi1€vbits‘ show 7thesis using assms by simp
next
case (BALANCE x4)
with e i ‘bicvbits‘ show ?thesis using assms by simp
next
case THIS
with e i ‘bi1€vbits‘ show 7thesis using assms by simp
next
case SENDER
with e i ‘bi€vbits‘ show 7thesis using assms by simp
next
case VALUE
with e i ‘bicvbits‘ show 7thesis using assms by simp
next
case TRUE
with e i ‘bicvbits‘ show 7thesis using assms by simp
next
case FALSE
with e i ‘bicvbits‘ show 7thesis using assms by simp
next
case (LVAL x7)
with e i ‘bicvbits‘ show 7thesis using assms by simp
next
case (PLUS x81 x82)
with e i ‘bicvbits‘ show 7thesis using assms by simp
next
case (MINUS x91 x92)
with e i ‘bicvbits‘ show 7thesis using assms by simp
next
case (EQUAL x101 x102)
with e i ‘bicvbits‘ show 7thesis using assms by simp
next
case (LESS x111 x112)

160

7.1 Constant Folding (Constant_ Folding)

with e i ‘bievbits‘ show ?thesis using assms by simp
next
case (AND x121 x122)
with e i ‘bievbits‘ show ?thesis using assms by simp
next
case (OR x131 x132)
with e i ‘bievbits‘ show ?thesis using assms by simp
next
case (NOT x131)
with e i ‘bievbits‘ show ?thesis using assms by simp
next
case (CALL x181 x182)
with e i ‘bievbits‘ show ?thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with e i ‘bievbits‘ show ?thesis using assms by simp
qed
next
assume "— ble&vbits"
with e i show ?thesis using assms by simp
qed
next
case u: (UINT bl v1)
show ?thesis
proof cases
assume "blcvbits"
show ?thesis
proof (cases "eupdate e2")
case i: (INT b2 v2)
then show 7thesis
proof cases
let ?v="vi+v2"
assume "b2cvbits"
show ?thesis
proof cases
assume "b1<b2"
then show 7thesis
proof cases
assume "vi=v2"
with assms show 7thesis using e i u ‘bl€vbits‘ ‘b2€vbits‘ ‘b1<b2‘ by simp
next
assume "— vi=v2"
with assms show 7thesis using e i u ‘bl€vbits‘ ‘b2€vbits‘ ‘b1<b2‘ by simp
qed
next
assume "— bi<b2"
with e i u ‘bicvbits‘ show 7thesis using assms by simp
qed
next
assume "b2¢vbits"
with e i u ‘bicvbits‘ show 7thesis using assms by simp
qed
next
case u2: (UINT b2 v2)
then show 7thesis
proof cases
assume "b2cvbits"
show ?thesis
proof cases
assume "vi=v2"
with assms show 7thesis using e u u2 ‘bicvbits‘ ‘b2€vbits‘ by simp
next
assume "— vi=v2"
with assms show 7thesis using e u u2 ‘blevbits® ‘b2c€vbits‘ by simp

161

7 Applications

qed
next
assume "—-b2c€vbits"
with e u u2 ‘bievbits‘ show ?thesis using assms by simp
qed
next
case (ADDRESS x3)
with e u ‘bievbits‘ show ?thesis using assms by simp
next
case (BALANCE x4)
with e u ‘bievbits‘ show ?thesis using assms by simp
next
case THIS
with e u ‘bicvbits‘ show 7thesis using assms by simp
next
case SENDER
with e u ‘bicvbits‘ show 7thesis using assms by simp
next
case VALUE
with e u ‘bicvbits‘ show 7thesis using assms by simp
next
case TRUE
with e u ‘bi1c€vbits‘ show ?thesis using assms by simp
next
case FALSE
with e u ‘b1€vbits‘ show ?thesis using assms by simp
next
case (LVAL x7)
with e u ‘bi1€vbits‘ show 7thesis using assms by simp
next
case (PLUS x81 x82)
with e u ‘bi1€vbits‘ show 7thesis using assms by simp
next
case (MINUS x91 x92)
with e u ‘bi1€vbits‘ show ?thesis using assms by simp
next
case (EQUAL x101 x102)
with e u ‘bi1€vbits‘ show ?thesis using assms by simp
next
case (LESS x111 x112)
with e u ‘b1€vbits‘ show 7thesis using assms by simp
next
case (AND x121 x122)
with e u ‘bicvbits‘ show 7thesis using assms by simp
next
case (OR x131 x132)
with e u ‘bicvbits‘ show 7thesis using assms by simp
next
case (NOT x131)
with e u ‘bicvbits‘ show 7thesis using assms by simp
next
case (CALL x181 x182)
with e u ‘bicvbits‘ show 7thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with e u ‘bicvbits‘ show 7thesis using assms by simp
qged
next
assume "— blcvbits"
with e u show ?thesis using assms by simp
qed
next
case (ADDRESS x3)
with e show 7?thesis using assms by simp

162

next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
qed
next

case 1:

(BALANCE x4)
e show ?thesis using assms

THIS
e show ?thesis using assms

SENDER
e show ?thesis using assms

VALUE
e show ?thesis using assms

TRUE
e show ?thesis using assms

FALSE
e show ?thesis using assms

(LVAL x7)
e show ?thesis using assms

(PLUS x81 x82)
e show ?thesis using assms

(MINUS x91 x92)
e show ?thesis using assms

(EQUAL x101 x102)
e show ?thesis using assms

(LESS x111 x112)
e show ?thesis using assms

(AND x121 x122)
e show ?thesis using assms

(OR x131 x132)
e show ?thesis using assms

(NOT x131)
e show ?thesis using assms

(CALL x181 x182)
e show ?thesis using assms

(ECALL x191 x192 x193 x194)
e show ?thesis using assms

(LESS el e2)

show 7thesis
proof (cases "eupdate el")

case

i: (INT b1 vi1)

show ?thesis
proof cases
assume "blevbits"
show ?thesis
proof (cases "eupdate e2")
case i2: (INT b2 v2)
then show ?thesis
proof cases

assume "b2cvbits"
show ?thesis

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

7.1 Constant Folding (Constant_ Folding)

163

7 Applications

proof cases
assume "vi<v2"
with assms show ?thesis using 1 i i2 ‘bil€vbits‘ ‘b2€vbits‘ by simp
next
assume " vi<v2"
with assms show ?thesis using 1 i i2 ‘bil€vbits‘ ‘b2€vbits‘ by simp
qed
next
assume "b2¢vbits"
with 1 i i2 ‘bievbits‘ show ?thesis using assms by simp
qed
next
case u: (UINT b2 v2)
then show 7thesis
proof cases
assume "b2cvbits"
show 7thesis
proof cases
assume "b2<b1"
then show ?thesis
proof cases
assume "vi<v2"
with assms show ?thesis using 1 i u ‘bl€vbits‘ ‘b2€vbits‘ ‘b2<bl‘ by simp
next
assume "— vi<v2"
with assms show ?thesis using 1 i u ‘bl€vbits‘ ‘b2€vbits‘ ‘b2<bl‘ by simp
qed
next
assume "— b2<b1"
with 1 i u ‘bicvbits‘ show 7thesis using assms by simp
qed
next
assume "b2¢vbits"
with 1 i u ‘blevbits‘ show 7thesis using assms by simp
qged
next
case (ADDRESS x3)
with 1 i ‘bi1€vbits‘ show ?thesis using assms by simp
next
case (BALANCE x4)
with 1 i ‘bi1€vbits‘ show ?thesis using assms by simp
next
case THIS
with 1 i ‘bicvbits‘ show 7thesis using assms by simp
next
case SENDER
with 1 i ‘bicvbits‘ show 7thesis using assms by simp
next
case VALUE
with 1 i ‘bicvbits‘ show 7thesis using assms by simp
next
case TRUE
with 1 i ‘bicvbits‘ show 7thesis using assms by simp
next
case FALSE
with 1 i ‘bicvbits‘ show 7thesis using assms by simp
next
case (LVAL x7)
with 1 i ‘bicvbits‘ show 7thesis using assms by simp
next
case (PLUS x81 x82)
with 1 i ‘bicvbits‘ show 7thesis using assms by simp
next
case (MINUS x91 x92)

164

7.1 Constant Folding (Constant_ Folding)

with 1 i ‘bievbits‘ show ?thesis using assms by simp
next
case (EQUAL x101 x102)
with 1 i ‘bievbits‘ show ?thesis using assms by simp
next
case (LESS x111 x112)
with 1 i ‘bievbits‘ show ?thesis using assms by simp
next
case (AND x121 x122)
with 1 i ‘bievbits‘ show ?thesis using assms by simp
next
case (OR x131 x132)
with 1 i ‘bievbits‘ show ?thesis using assms by simp
next
case (NOT x131)
with 1 i ‘bievbits‘ show ?thesis using assms by simp
next
case (CALL x181 x182)
with 1 i ‘bievbits‘ show ?thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with 1 i ‘bievbits‘ show ?thesis using assms by simp
ged
next
assume "— blcvbits"
with 1 i show ?thesis using assms by simp
qed
next
case u: (UINT bl v1)
show ?thesis
proof cases
assume "blcvbits"
show ?thesis
proof (cases "eupdate e2")
case i: (INT b2 v2)
then show 7thesis
proof cases
let ?v="vi+v2"
assume "b2cvbits"
show ?thesis
proof cases
assume "b1<b2"
then show 7thesis
proof cases
assume "vi<v2"
with assms show 7thesis using 1 i u ‘bl€vbits‘ ‘b2€vbits‘ ‘b1<b2‘ by simp
next
assume "— vi<v2"
with assms show 7thesis using 1 i u ‘bl€vbits‘ ‘b2€vbits‘ ‘b1<b2‘ by simp
qed
next
assume "— bi<b2"
with 1 i u ‘bicvbits‘ show 7thesis using assms by simp
qed
next
assume "b2¢vbits"
with 1 i u ‘bl€vbits‘ show 7thesis using assms by simp
qed
next
case u2: (UINT b2 v2)
then show 7thesis
proof cases
assume "b2cvbits"
show ?thesis

165

7 Applications

proof cases
assume "vi<v2"
with assms show ?thesis using 1 u u2 ‘bil€vbits‘ ‘b2€vbits‘ by simp
next
assume " vi<v2"
with assms show ?thesis using 1 u u2 ‘bic€vbits‘ ‘b2€vbits‘ by simp
qed
next
assume "—-b2cvbits"
with 1 u u2 ‘bievbits‘ show ?thesis using assms by simp
qed
next
case (ADDRESS x3)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
next
case (BALANCE x4)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
next
case THIS
with 1 u ‘bi€vbits‘ show 7thesis using assms by simp
next
case SENDER
with 1 u ‘bi1€vbits‘ show ?thesis using assms by simp
next
case VALUE
with 1 u ‘b1€vbits‘ show ?thesis using assms by simp
next
case TRUE
with 1 u ‘bi1€vbits‘ show 7thesis using assms by simp
next
case FALSE
with 1 u ‘bi1€vbits‘ show 7thesis using assms by simp
next
case (LVAL x7)
with 1 u ‘bi1€vbits‘ show ?thesis using assms by simp
next
case (PLUS x81 x82)
with 1 u ‘bi1€vbits‘ show ?thesis using assms by simp
next
case (MINUS x91 x92)
with 1 u ‘bi1€vbits‘ show ?thesis using assms by simp
next
case (EQUAL x101 x102)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
next
case (LESS x111 x112)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
next
case (AND x121 x122)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
next
case (OR x131 x132)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
next
case (NOT x131)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
next
case (CALL x181 x182)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with 1 u ‘bicvbits‘ show 7thesis using assms by simp
qged
next

166

assume "— blcvbits"
with 1 u show 7thesis using assms

qed
next

case (ADDRESS x3)

with 1 show ?thesis using assms by
next

case (BALANCE x4)

with 1 show ?thesis using assms by
next

case THIS

with 1 show ?thesis using assms by
next

case SENDER

with 1 show ?thesis using assms by
next

case VALUE

with 1 show ?thesis using assms by
next

case TRUE

with 1 show ?thesis using assms by
next

case FALSE

with 1 show ?thesis using assms by
next

case (LVAL x7)

with 1 show ?thesis using assms by
next

case (PLUS x81 x82)

with 1 show ?thesis using assms by
next

case (MINUS x91 x92)

with 1 show ?thesis using assms by
next

case (EQUAL x101 x102)

with 1 show ?thesis using assms by
next

case (LESS x111 x112)

with 1 show ?thesis using assms by
next

case (AND x121 x122)

with 1 show ?thesis using assms by
next

case (OR x131 x132)

with 1 show ?thesis using assms by
next

case (NOT x131)

with 1 show ?thesis using assms by
next

case (CALL x181 x182)

with 1 show ?thesis using assms by
next

case (ECALL x191 x192 x193 x194)

with 1 show ?thesis using assms by
qed

next

case a: (AND el e2)
show 7thesis
proof (cases "eupdate el")

case (INT x11 x12)

with a show ?thesis using assms by
next

case (UINT x21 x22)

with a show ?thesis using assms by

by simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

7.1 Constant Folding (Constant_ Folding)

167

7 Applications

next

case (ADDRESS x3)

with a
next

show ?thesis using

case (BALANCE x4)

with a
next

show ?thesis using

case THIS

with a
next

show ?thesis using

case SENDER

with a
next

show ?thesis using

case VALUE

with a
next
case t:

show ?thesis using

TRUE

show ?thesis
proof (cases "eupdate e2")

case

(INT x11 x12)

with a t show ?thesis using

next
case
with
next
case
with
next
case
with
next
case
with
next

(UINT x21 x22)
a t show 7thesis

(ADDRESS x3)
a t show ?thesis

(BALANCE x4)
a t show ?thesis

THIS
a t show 7thesis

case SENDER

with a t show ?thesis
next

case VALUE

with a t show ?thesis
next

case TRUE

with a t show ?thesis
next

case FALSE

with a t show ?thesis
next

case (LVAL x7)

with a t show ?thesis
next

case (PLUS x81 x82)

with a t show ?thesis
next

case (MINUS x91 x92)

with a t show ?thesis
next

case (EQUAL x101 x102)

with a t show ?thesis
next

case (LESS x111 x112)

with a t show ?thesis
next

case (AND x121 x122)

with a t show ?thesis
next

168

using

using

using

using

using

using

using

using

using

using

using

using

using

using

assms by

assms by

assms by

assms by

assms by

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

simp

simp

simp

simp

simp

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

case (OR x131 x132)

with a t show 7thesis using assms
next

case (NOT x131)

with a t show 7thesis using assms
next

case (CALL x181 x182)

with a t show 7thesis using assms
next

case (ECALL x191 x192 x193 x194)

with a t show 7thesis using assms
qged

next

case f: FALSE
show ?thesis
proof (cases "eupdate e2")

case (INT x11 x12)

with a f show ?7thesis using assms
next

case (UINT x21 x22)

with a f show ?7thesis using assms
next

case (ADDRESS x3)

with a f show ?7thesis using assms
next

case (BALANCE x4)

with a f show ?7thesis using assms
next

case THIS

with a f show ?7thesis using assms
next

case SENDER

with a f show ?7thesis using assms
next

case VALUE

with a f show ?7thesis using assms
next

case TRUE

with a f show ?7thesis using assms
next

case FALSE

with a f show ?7thesis using assms
next

case (LVAL x7)

with a f show ?7thesis using assms
next

case (PLUS x81 x82)

with a f show ?7thesis using assms
next

case (MINUS x91 x92)

with a f show ?7thesis using assms
next

case (EQUAL x101 x102)

with a f show ?7thesis using assms
next

case (LESS x111 x112)

with a f show 7thesis using assms
next

case (AND x121 x122)

with a f show 7thesis using assms
next

case (OR x131 x132)

with a f show 7thesis using assms
next

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

7.1 Constant Folding (Constant_ Folding)

169

7 Applications

case (NOT x131)
with a f show 7thesis using assms by simp
next
case (CALL x181 x182)
with a f show 7thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with a f show 7thesis using assms by simp
qed
next
case (LVAL x7)
with a show ?thesis using assms by simp
next
case (PLUS x81 x82)
with a show ?thesis using assms by simp
next
case (MINUS x91 x92)
with a show ?thesis using assms by simp
next
case (EQUAL x101 x102)
with a show ?thesis using assms by simp
next
case (LESS x111 x112)
with a show ?thesis using assms by simp
next
case (AND x121 x122)
with a show ?thesis using assms by simp
next
case (OR x131 x132)
with a show ?thesis using assms by simp
next
case (NOT x131)
with a show ?thesis using assms by simp
next
case (CALL x181 x182)
with a show ?thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with a show ?thesis using assms by simp
qed
next
case o: (OR el e2)
show 7thesis
proof (cases "eupdate e1l")
case (INT x11 x12)
with o show ?thesis using assms by simp
next
case (UINT x21 x22)
with o show ?thesis using assms by simp
next
case (ADDRESS x3)
with o show ?thesis using assms by simp
next
case (BALANCE x4)
with o show ?thesis using assms by simp
next
case THIS
with o show ?thesis using assms by simp
next
case SENDER
with o show ?thesis using assms by simp
next
case VALUE
with o show ?thesis using assms by simp

170

next

case t: TRUE
show ?thesis

proof (cases "eupdate e2")

case (INT x11 x12)

with o t show ?thesis
next

case (UINT x21 x22)

with o t show ?thesis
next

case (ADDRESS x3)

with o t show ?thesis
next

case (BALANCE x4)

with o t show ?thesis
next

case THIS

with o t show ?thesis
next

case SENDER

with o t show ?thesis
next

case VALUE

with o t show ?thesis
next

case TRUE

with o t show ?thesis
next

case FALSE

with o t show ?thesis
next

case (LVAL x7)

with o t show ?thesis
next

case (PLUS x81 x82)

with o t show ?thesis
next

case (MINUS x91 x92)

with o t show ?thesis
next

case (EQUAL x101 x102)

with o t show ?thesis
next

case (LESS x111 x112)

with o t show ?thesis
next

case (AND x121 x122)

with o t show ?thesis
next

case (OR x131 x132)

with o t show ?thesis
next

case (NOT x131)

with o t show ?thesis
next

case (CALL x181 x182)

with o t show ?thesis
next

using

using

using

using

using

using

using

using

using

using

using

using

using

using

using

using

using

using

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

case (ECALL x191 x192 x193 x194)
with o t show 7thesis using assms

qed

next

case f: FALSE
show ?thesis

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

7.1 Constant Folding (Constant_ Folding)

171

7 Applications

proof (cases "eupdate e2")

case (INT x11 x12)

with o f show ?thesis
next

case (UINT x21 x22)

with o f show ?thesis
next

case (ADDRESS x3)

with o f show ?thesis
next

case (BALANCE x4)

with o f show ?thesis
next

case THIS

with o f show ?thesis
next

case SENDER

with o f show ?thesis
next

case VALUE

with o f show ?thesis
next

case TRUE

with o f show ?thesis
next

case FALSE

with o f show ?thesis
next

case (LVAL x7)

with o f show ?thesis
next

case (PLUS x81 x82)

with o f show ?thesis
next

case (MINUS x91 x92)

with o f show ?thesis
next

case (EQUAL x101 x102)

with o f show ?thesis
next

case (LESS x111 x112)

with o f show ?thesis
next

case (AND x121 x122)

with o f show ?thesis
next

case (OR x131 x132)

with o f show ?thesis
next

case (NOT x131)

with o f show ?thesis
next

case (CALL x181 x182)

with o f show ?thesis
next

using

using

using

using

using

using

using

using

using

using

using

using

using

using

using

using

using

using

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

case (ECALL x191 x192 x193 x194)
with o f show 7thesis using assms

qed

next

case (LVAL x7)

with o show ?thesis using assms by

next

case (PLUS x81 x82)

with o show ?thesis using assms by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
qed
next

case o:

(MINUS x91 x92)
o show ?thesis using

(EQUAL x101 x102)
o show ?thesis using

(LESS x111 x112)
o show ?thesis using

(AND x121 x122)
o show ?thesis using

(OR x131 x132)
o show ?thesis using

(NOT x131)
o show ?thesis using

(CALL x181 x182)
o show ?thesis using

assms

assms

assms

assms

assms

assms

assms

(ECALL x191 x192 x193 x194)

o show ?thesis using

(NOT x)

show ?thesis
proof (cases "eupdate x")

case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with

(INT x11 x12)
o show ?thesis using

(UINT x21 x22)
o show ?thesis using

(ADDRESS x3)
o show ?thesis using

(BALANCE x4)
o show ?thesis using

THIS
o show ?thesis using

SENDER
o show ?thesis using

VALUE
o show ?thesis using

t: TRUE
o show ?thesis using

f: FALSE
o show ?thesis using

(LVAL x7)
o show ?thesis using

(PLUS x81 x82)
o show ?thesis using

(MINUS x91 x92)
o show ?thesis using

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

assms

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

7.1 Constant Folding (Constant_ Folding)

173

7 Applications

next
case (EQUAL x101 x102)
with o show ?thesis using assms by simp
next
case (LESS x111 x112)
with o show ?thesis using assms by simp
next
case (AND x121 x122)
with o show ?thesis using assms by simp
next
case (OR x131 x132)
with o show ?thesis using assms by simp
next
case (NOT x131)
with o show ?thesis using assms by simp
next
case (CALL x181 x182)
with o show ?thesis using assms by simp
next
case (ECALL x191 x192 x193 x194)
with o show ?thesis using assms by simp
qed
next
case (CALL x181 x182)
with assms show ?thesis by simp
next
case (ECALL x191 x192 x193 x194)
with assms show ?thesis by simp
qged

lemma no_gas:

assumes "— gas st > 0"

shows "expr ex ep env cd st = Exception Gas"
proof (cases ex)

case (INT x11 x12)

with assms show ?7thesis by simp
next

case (UINT x21 x22)

with assms show ?thesis by simp
next

case (ADDRESS x3)

with assms show ?7thesis by simp
next

case (BALANCE x4)

with assms show ?thesis by simp
next

case THIS

with assms show ?thesis by simp
next

case SENDER

with assms show ?thesis by simp
next

case VALUE

with assms show ?thesis by simp
next

case TRUE

with assms show ?thesis by simp
next

case FALSE

with assms show ?thesis by simp
next

case (LVAL x10)

with assms show ?thesis by simp
next

174

case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
qed

lemma

(PLUS x111 x112)
assms show 7thesis

(MINUS x121 x122)
assms show 7thesis

(EQUAL x131 x132)
assms show 7thesis

(LESS x141 x142)
assms show 7thesis

(AND x151 x152)
assms show ?thesis

(OR x161 x162)
assms show ?thesis

(NOT x17)
assms show ?thesis

(CALL x181 x182)
assms show ?thesis

by

by

by

by

by

by

by

by

simp

simp

simp

simp

simp

simp

simp

simp

(ECALL x191 x192 x193 x194)
assms show 7thesis by simp

1lift_eq:

assumes "expr el ep env cd st =
and "Ast’ rv. expr el ep env cd st = Normal (rv, st’) —> expr e2 ep env cd st’= expr e2’ ep env

cd st’"

shows "lift expr f el e2 ep env cd st=1ift expr f el’ e2’ ep env cd st"
proof (cases "expr el ep env cd st")

case s1: (n a st’)

then show ?7thesis
proof (cases a)
case f1:(Pair a b)
then show 7thesis
proof (cases a)

case k1:(KValue x1)
then show ?thesis

proof (cases b)
case v1l: (Value x1)
then show 7thesis
proof (cases "expr e2 ep env cd st’")

case s2: (n a’ st’’)
then show ?thesis
proof (cases a’)

case f2:(Pair a’ b’)

then show ?thesis

proof (cases a’)

case
with
next
case
with
next
case
with
next
case
with
qed

(KValue x17)
s1 f1 k1 v1 assms(1)

(KCDptr x2)
s1 f1 k1 v1 assms(1)

(KMemptr x27)
s1 f1 k1 v1 assms(1)

(KStoptr x3°)
s1 f1 k1 v1 assms(1)

assms (2)

assms (2)

assms (2)

assms (2)

show

show

show

show

expr el’ ep env cd st"

?thesis

?thesis

?thesis

?thesis

7.1 Constant Folding (Constant_ Folding)

by

by

by

by

auto

auto

auto

auto

175

7 Applications

qed
next

case (e e)
then show ?thesis using k1 sl vl assms(1) assms(2) f1 by auto

qed

next
case (Calldata x2)
then show 7thesis using k1 sl assms(1) f1 by auto

next
case (Memory x2)
then show 7thesis using k1 sl assms(1) f1 by auto

next
case (Storage x3)
then show 7thesis using k1 sl assms(1) f1 by auto

qed

next
case (KCDptr x2)
then show ?thesis using s! assms(1) f1 by fastforce

next
case (KMemptr x2)
then show ?thesis using s1 assms(1) f1 by fastforce

next
case (KStoptr x3)
then show ?thesis using s1 assms(1) f1 by fastforce

qed
qed
next
case (e e)
then show 7thesis using assms(1) by simp

= expr (f i) ep env cd st)

ssel tp loc (map f ix) ep env cd st"

qed
lemma ssel_eq_ssel:
"(\i st. i € set ix =—> expr i ep env cd st

— ssel tp loc ix ep env cd st
proof (induction ix arbitrary: tp loc ep env cd st)

case Nil
then show 7case by simp

next
case cl:
then show 7case
proof (cases tp)
case tpl: (STArray al tp)
then show 7thesis
proof (cases "expr i ep env cd st")
(n a st’)

(Cons i ix)

case sli:
then show ?thesis

proof (cases a)
case f1: (Pair a b)

then show ?thesis

proof (cases a)
case k1: (KValue v)

then show ?thesis

proof (cases b)
case v1: (Value t)

then show ?thesis
proof (cases "less t (TUInt 256) v (ShowL;n: al)")

case None
with v1 k1 tpl sl cl.prems f1 show 7thesis by simp

next
case s2: (Some a)

then show ?thesis

proof (cases a)
case pl: (Pair a b)

then show ?thesis

176

7.1 Constant Folding (Constant_ Folding)

proof (cases b)
case (TSInt x1)

with s2 p1 v1 k1 tpl s1 cl.prems f1 show 7thesis by simp
next

case (TUInt x2)

with s2 p1 v1 k1 tpl s1 cl.prems f1 show 7thesis by simp
next

case bl: TBool

show ?thesis

proof cases
assume "a = ShowLp,o; True"
from c1.IH[OF c1.prems] have

"ssel tp (hash loc v) ix ep env cd st’ = ssel tp (hash loc v) (map f ix) ep env cd

st’"
by simp
with mp s2 bl p1 vl k1 tpl sl cl.prems f1 show 7thesis by simp
next
assume "— a = ShowLypoo; True"
with s2 p1 v1 k1 tpl s1 cl.prems f1 show ?thesis by simp
qed
next
case TAddr
with s2 p1 v1 k1 tpl s1 cl.prems f1 show 7thesis by simp
qed
qed
qed
next
case (Calldata x2)
with k1 tpl s1 cl.prems f1 show ?thesis by simp
next
case (Memory x2)
with k1 tpl s1 cl.prems f1 show ?thesis by simp
next
case (Storage x3)
with k1 tpl s1 cl.prems f1 show ?thesis by simp
qed
next
case (KCDptr x2)
with tpl s1 cl.prems f1 show 7thesis by simp
next
case (KMemptr x2)
with tpl s1 cl.prems f1 show 7thesis by simp
next
case (KStoptr x3)
with tpl s1 cl.prems f1 show 7thesis by simp
qed
ged
next
case (e e)
with tpl c1.prems show ?7thesis by simp
qed
next

case tpl: (STMap _ t)
then show ?thesis
proof (cases "expr i ep env cd st")
case s1: (n a s)
then show ?thesis
proof (cases a)
case f1: (Pair a b)
then show 7thesis
proof (cases a)
case k1: (KValue v)
from c1.IH[OF c1.prems] have

"ssel tp (hash loc v) ix ep env cd st = ssel tp (hash loc v) (map f ix) ep env cd st" by

177

7 Applications

simp
with k1 tpl s1 c1 f1 show ?thesis by simp
next
case (KCDptr x2)
with tpl s1 cl.prems f1 show 7thesis by simp
next
case (KMemptr x2)
with tpl s1 cl.prems f1 show 7thesis by simp
next
case (KStoptr x3)
with tpl s1 cl.prems f1 show 7thesis by simp
qed
qed
next
case (e e)
with tpl cl.prems show ?7thesis by simp
qed
next
case (STValue x2)
then show ?thesis by simp
qed
qed

lemma msel_eq_msel:
"(N\i st. i € set ix = expr i ep env cd st = expr (f i) ep env cd st) —
msel ¢ tp loc ix ep env cd st = msel ¢ tp loc (map f ix) ep env cd st"
proof (induction ix arbitrary: c tp loc ep env cd st)
case Nil
then show 7case by simp
next
case c1: (Cons i ix)
then show ?case
proof (cases tp)
case tpl: (MTArray al tp)
then show ?thesis
proof (cases ix)
case Nil
thus ?7thesis using tpl cl.prems by auto
next
case c2: (Cons a list)
then show ?thesis
proof (cases "expr i ep env cd st")
case s1: (n a st’)
then show ?thesis
proof (cases a)
case f1: (Pair a b)
then show ?thesis
proof (cases a)
case k1: (KValue v)
then show ?thesis
proof (cases b)
case v1: (Value t)
then show ?thesis
proof (cases "less t (TUInt 256) v (ShowL;n: al)")
case None
with v1 k1 tpl s1 cl.prems f1 show ?thesis using c2 by simp
next
case s2: (Some a)
then show 7thesis
proof (cases a)
case p1l: (Pair a b)
then show 7thesis
proof (cases b)
case (TSInt x1)

178

7.1 Constant Folding (Constant_ Folding)

with s2 p1 v1 k1 tpl s1 cl.prems f1 show ?thesis using c2 by simp
next
case (TUInt x2)
with s2 p1 v1 k1 tpl s1 cl.prems f1 show ?thesis using c2 by simp
next
case bl: TBool
show ?thesis
proof cases
assume "a = ShowLyp,o; True"”
then show ?thesis
proof (cases c)
case True
then show 7thesis
proof (cases "accessStore (hash loc v) (memory st’)")
case None
with s2 bl p1 vl k1 tpl s1 cl.prems f1 True show ?thesis using c2 by simp
next
case s3: (Some a)
then show ?thesis
proof (cases a)
case (MValue x1)
with s2 s3 bl p1 vl k1 tpl sl cl.prems f1 True show ?thesis using c2 by
simp
next
case mp: (MPointer 1)
from c1.IH[OF c1.prems]
have "msel ¢ tp 1 ix ep env cd st’ = msel ¢ tp 1 (map f ix) ep env cd
st’" by simp
with mp s2 s3 bl p1 v1 k1 tpl sl cl.prems fl1 True show 7thesis using c2
by simp
qed
ged
next
case False
then show ?thesis
proof (cases "accessStore (hash loc v) cd")
case None
with s2 bl p1 vl k1 tpl sl cl.prems f1 False show ?thesis using c2 by simp
next
case s3: (Some a)
then show 7thesis
proof (cases a)
case (MValue x1)
with s2 s3 bl p1 vl k1 tpl s1 cl.prems fl1 False show 7thesis using c2 by
simp
next
case mp: (MPointer 1)
from c1.IH[OF ci.prems]
have "msel ¢ tp 1 ix ep env cd st’ = msel ¢ tp 1 (map f ix) ep env cd
st’" by simp
with mp s2 s3 bl pl vl k1 tpl sl cl.prems f1 False show 7thesis using c2
by simp
qged
qged
qed
next
assume "— a = ShowLp,o; True"
with s2 p1 v1 k1 tpl s1 cl.prems f1 show 7thesis using c2 by simp
qed
next
case TAddr
with s2 p1 v1 k1 tpl s1 cl.prems f1 show ?thesis using c2 by simp
qed
qed

179

7 Applications

qed
next
case (Calldata x2)
with k1 tpl s1 cl.prems f1 show ?7thesis using c2 by simp
next
case (Memory x2)
with k1 tpl s1 cl.prems f1 show ?7thesis using c2 by simp
next
case (Storage x3)
with k1 tpl s1 cl.prems f1 show 7thesis using c2 by simp
qed
next
case (KCDptr x2)
with tpl s1 cl.prems f1 show ?7thesis using c2 by simp
next
case (KMemptr x2)
with tpl s1 cl.prems f1 show 7thesis using c2 by simp
next
case (KStoptr x3)
with tpl s1 cl.prems f1 show 7thesis using c2 by simp
qed
qed
next
case (e e)
with tpl cl1.prems show 7thesis using c2 by simp
ged
qed
next
case (MTValue x2)
then show ?thesis by simp
qed
qged

lemma ref_eq:

assumes "/\e st. e € set ex —> expr e ep env cd st = expr (f e) ep env cd st"
shows "rexp (Ref i ex) ep env cd st=rexp (Ref i (map f ex)) ep env cd st"
proof (cases "fmlookup (denvalue env) i'")
case None
then show ?thesis by simp
next
case s1: (Some a)
then show 7thesis
proof (cases a)
case pl: (Pair tp b)
then show ?thesis
proof (cases b)
case k1: (Stackloc 1)
then show ?thesis
proof (cases "accessStore 1 (stack st)")
case None
with s1 p1 k1 show 7thesis by simp
next
case s2: (Some a’)
then show 7thesis
proof (cases a’)
case (KValue _)
with s1 s2 p1 k1 show 7thesis by simp
next
case cp: (KCDptr cp)
then show 7thesis
proof (cases tp)
case (Value x1)

with mp s1 s2 p1 k1 show ?thesis by simp
next

180

7.1 Constant Folding (Constant_ Folding)

case mt: (Calldata ct)
from msel_eq_msel have
"msel False ct cp ex ep env cd st=msel False ct cp (map f ex) ep env cd st" using assms
by blast
thus ?thesis using s1 s2 pl k1 mt cp by simp
next
case mt: (Memory mt)
from msel_eq_msel have
"msel True mt cp ex ep env cd st=msel True mt cp (map f ex) ep env cd st" using assms by
blast
thus ?thesis using s1 s2 pl ki1 mt cp by simp
next
case (Storage x3)
with cp s1 s2 p1 k1 show 7thesis by simp
qed
next
case mp: (KMemptr mp)
then show ?thesis
proof (cases tp)
case (Value x1)
with mp s1 s2 p1 k1 show ?thesis by simp
next
case mt: (Calldata ct)
from msel_eq_msel have
"msel True ct mp ex ep env cd st=msel True ct mp (map f ex) ep env cd st" using assms by
blast
thus ?thesis using s! s2 pl ki1 mt mp by simp
next
case mt: (Memory mt)
from msel_eq_msel have
"msel True mt mp ex ep env cd st=msel True mt mp (map f ex) ep env cd st" using assms by
blast
thus ?thesis using s! s2 pl k1 mt mp by simp
next
case (Storage x3)
with mp s1 s2 p1 k1 show ?thesis by simp
qed
next
case sp: (KStoptr sp)
then show ?thesis
proof (cases tp)
case (Value x1)
then show 7thesis using s1 s2 pl k1 sp by simp
next
case (Calldata x2)
then show 7thesis using s1 s2 pl k1 sp by simp
next
case (Memory x2)
then show 7thesis using s1 s2 pl k1 sp by simp
next
case st: (Storage stp)
from ssel_eq_ssel have
"ssel stp sp ex ep env cd st=ssel stp sp (map f ex) ep env cd st" using assms by blast
thus ?thesis using s1 s2 pl k1 st sp by simp
qed
qged
qged
next
case sl:(Storeloc sl)
then show ?thesis
proof (cases tp)
case (Value x1)
then show 7thesis using s1 pl sl by simp
next

181

7 Applications

case (Calldata x2)
then show 7thesis using s1 pl sl by simp
next
case (Memory x2)
then show 7thesis using s1 pl sl by simp
next
case st: (Storage stp)
from ssel_eq_ssel have
"ssel stp sl ex ep env cd st=ssel stp sl (map f ex) ep env cd st" using assms by blast
thus 7thesis using s1 sl pl st by simp
qed
qged
qed
qed

The following theorem proves that the update function preserves the semantics of expressions.

theorem update_correctness:
"Ast 1b 1lv. expr ex ep env cd st = expr (eupdate ex) ep env cd st"
"Ast. rexp 1lv ep env cd st = rexp (lupdate 1lv) ep env cd st"
proof (induction ex and 1v)
case (Id x)
then show ?case by simp
next
case (Ref d ix)
then show ?case using ref_eq[where f="eupdate"] by simp
next
case (INT b v)
then show ?case
proof (cases "gas st > 0")
case True
then show ?thesis
proof cases
assume "becvbits"
show 7thesis
proof cases
let ?m_def = "(-(27(b-1)) + (v+27(b-1)) mod (27b))"
assume "v > 0"

from ‘bevbits‘ True have
"expr (E.INT b v) ep env cd st = Normal ((KValue (createSInt b v), Value (TSInt b)), st)" by

simp
also have "createSInt b v = createSInt b 7m_def" using ‘bevbits‘ ‘v > 0° by auto
also from ‘v > 0° ‘bevbits‘ True have
"Normal ((KValue (createSInt b ?m_def), Value (TSInt b)),st) = expr (eupdate (E.INT b v)) ep
env cd st
by simp
finally show "expr (E.INT b v) ep env cd st = expr (eupdate (E.INT b v)) ep env cd st" by simp
next
let ?m_def = "(2~(b-1) - (-v+2~(b-1)-1) mod (2°b) - 1)"
assume "— v > 0"
from ‘bevbits‘ True have
"expr (E.INT b v) ep env cd st = Normal ((KValue (createSInt b v), Value (TSInt b)), st)" by
simp

also have "createSInt b v = createSInt b 7m_def" using ‘bevbits‘ ‘-~ v > 0° by auto
also from ‘= v > 0¢ ‘bevbits‘ True have
"Normal ((KValue (createSInt b 7m_def), Value (TSInt b)),st) =expr (eupdate (E.INT b v)) ep
env cd st"
by simp
finally show "expr (E.INT b v) ep env cd st = expr (eupdate (E.INT b v)) ep env cd st" by simp
qged
next
assume "— be&vbits”
thus ?thesis by auto

182

7.1 Constant Folding (Constant_ Folding)

qed
next
case False
then show 7thesis using no_gas by simp
qed
next
case (UINT x1 x2)
then show 7case by simp
next
case (ADDRESS x)
then show 7case by simp
next
case (BALANCE x)
then show 7case by simp
next
case THIS
then show ?case by simp
next
case SENDER
then show ?case by simp
next
case VALUE
then show 7case by simp
next
case TRUE
then show 7case by simp
next
case FALSE
then show 7case by simp
next
case (LVAL x)
then show 7case by simp
next
case p: (PLUS el e2)
show 7case
proof (cases "eupdate el")
case i: (INT b1 v1)
with p.IH have exprl: "expr el ep env cd st = expr (E.INT bl v1) ep env cd st" by simp
then show ?thesis
proof (cases "gas st > 0")
case True
then show ?thesis
proof (cases)
assume "bl € vbits"
with exprl True
have "expr el ep env cd st=Normal ((KValue (createSInt bl v1), Value (TSInt b1)),st)" by simp
moreover from i ‘bl € vbits°®
have "v1 < 27(b1-1)" and "vi1 > -(27(b1-1))" using update_bounds_int by auto
moreover from ‘b1 € vbits‘ have "0 < bi" by auto
ultimately have ri1: "expr el ep env cd st = Normal ((KValue (ShowL;n: v1), Value (TSInt
b1)),st)"
using createSInt_id[of vl bl] by simp
thus ?thesis
proof (cases "eupdate e2")
case i2: (INT b2 v2)
with p.IH have expr2: "expr e2 ep env cd st = expr (E.INT b2 v2) ep env cd st" by simp
then show 7thesis
proof (cases)
let ?v="v1 + v2"
assume "b2 € vbits"
with expr2 True
have "expr e2 ep env cd st=Normal ((KValue (createSInt b2 v2), Value (TSInt b2)),st)" by
simp
moreover from i2 ‘b2 € vbits‘

183

7 Applications

have "v2 < 27(b2-1)" and "v2 > -(27(b2-1))" using update_bounds_int by auto
moreover from ‘b2 € vbits‘ have "0 < b2" by auto
ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowL;n: v2), Value (TSInt
b2)),st)"
using createSInt_id[of v2 b2] by simp
thus ?thesis
proof (cases)
let ?x="- (2 =~ (max bl b2 - 1)) + (?v + 2 ~ (max bl b2 - 1)) mod 2 ~ max bl b2"
assume "7v>0"
hence "createSInt (max bl b2) ?v = (ShowL;n: 7x)" by simp
moreover have "add (TSInt bl) (TSInt b2) (ShowL;n: v1) (ShowL;n: v2)
= Some (createSInt (max bl b2) ?v, TSInt (max bl b2))"
using Read_ShowL_id add_def olift.simps(1)[of "(+)" bl b2] by simp
ultimately have "expr (PLUS el e2) ep env cd st
= Normal ((KValue (ShowLin: ?x), Value (TSInt (max bl b2))),st)" using rl r2 True by
simp
moreover have "expr (eupdate (PLUS el e2)) ep env cd st

= Normal ((KValue (ShowL;n: 7x), Value (TSInt (max bl b2))),st)"
proof -

from ‘b1 € vbits‘ ‘b2 € vbits‘ ‘7v>0°
have "eupdate (PLUS el e2) = E.INT (max bl b2) ?x" using i i2 by simp
moreover have "expr (E.INT (max bl b2) 7x) ep env cd st
= Normal ((KValue (ShowL;,: 7x), Value (TSInt (max bl b2))),st)"
proof -
from ‘b1 € vbits‘ ‘b2 € vbits‘ have "max bl b2 € vbits" using vbits_max by simp
with True have "expr (E.INT (max bl b2) ?x) ep env cd st
= Normal ((KValue (createSInt (max bl b2) 7x), Value (TSInt (max bl b2))),st)" by
simp
moreover from ‘0 < b1°
have "?x < 2 ~ (max bl b2 - 1)" using upper_bound3 by simp
moreover from ‘0 < b1‘ have "O < max bl b2" using max_def by simp
ultimately show ?thesis using createSInt_id[of 7x "max bl b2"] by simp
qed
ultimately show ?7thesis by simp
ged
ultimately show ?thesis by simp
next
let ?x="2"(max bl b2 -1) - (-?v+2~(max bl b2-1)-1) mod (2"max bl b2) - 1"
assume "— ?v>0"
hence "createSInt (max bl b2) ?v = (ShowLin: 7x)" by simp
moreover have "add (TSInt b1) (TSInt b2) (ShowL;n: v1) (ShowL;n: v2)
= Some (createSInt (max bl b2) ?v, TSInt (max bl b2))"
using Read_ShowL_id add_def olift.simps(1)[of "(+)" bl b2] by simp
ultimately have "expr (PLUS el e2) ep env cd st
= Normal ((KValue (ShowL;n: ?7x), Value (TSInt (max bl b2))),st)" using True rl1 r2 by
simp
moreover have "expr (eupdate (PLUS el e2)) ep env cd st

= Normal ((KValue (ShowL;n: 7x), Value (TSInt (max bl b2))),st)"
proof -
from ‘bl € vbits‘ ‘b2 € vbits‘ ‘—?7v>0°¢
have "eupdate (PLUS el e2) = E.INT (max bl b2) ?7x" using i i2 by simp
moreover have "expr (E.INT (max bl b2) 7x) ep env cd st
= Normal ((KValue (ShowL;n: ?7x), Value (TSInt (max bl b2))),st)"
proof -
from ‘b1 € vbits‘ ‘b2 € vbits‘ have "max bl b2 € vbits" using vbits_max by simp
with True have "expr (E.INT (max bl b2) ?x) ep env cd st
= Normal ((KValue (createSInt (max bl b2) ?7x), Value (TSInt (max bl b2))),st)" by
simp
moreover from ‘0 < b1°
have "7?x > - (2 ~ (max bl b2 - 1))" using lower_bound2[of "max bl b2" ?7v] by simp
moreover from ‘b1 > 0° have "2 (max bl b2 -1) > (0::nat)" by simp
hence "2"(max bl b2 -1) - (-7v+2~(max bl b2-1)-1) mod (27max bl b2) - 1 < 2 ~ (max
b1 b2 - 1)"

by (smt (verit, best) Euclidean_Division.pos_mod_sign not_exp_less_eq_0_int)

184

7.1 Constant Folding (Constant_ Folding)

moreover from ‘0 < b1‘ have "0 < max bl b2" using max_def by simp
ultimately show ?thesis using createSInt_id[of ?x "max bl b2"] by simp
qed
ultimately show ?thesis by simp
qed
ultimately show ?thesis by simp
qed
next
assume "— b2 € vbits"
with p i i2 show 7thesis by simp
qed
next
case u2: (UINT b2 v2)
with p.IH have expr2: "expr e2 ep env cd st = expr (UINT b2 v2) ep env cd st" by simp
then show ?thesis
proof (cases)
let 7v="v1 + v2"
assume "b2 € vbits"
with expr2 True
have "expr e2 ep env cd st=Normal ((KValue (createUInt b2 v2), Value (TUInt b2)),st)" by

simp
moreover from u2 ‘b2 € vbits
have "v2 < 27p2" and "v2 > 0" using update_bounds_uint by auto
moreover from ‘b2 € vbits‘ have "0 < b2" by auto
ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowL;n: v2), Value (TUInt
b2)),st)"

using createUInt_id[of v2 b2] by simp
thus 7thesis
proof (cases)
assume "b2<b1"
thus ?thesis
proof (cases)
let 7x="- (2 ~ (b1 - 1)) + (?v + 2 ~ (b1 - 1)) mod 2 ~ b1"
assume "?v>0"
hence "createSInt bl 7?v = (ShowL;n: 7x)" using ‘b2<bl‘ by auto
moreover have "add (TSInt bl) (TUInt b2) (ShowL;n: v1) (ShowL;n: v2)
= Some (createSInt bl ?v, TSInt bil)"
using Read_ShowL_id add_def olift.simps(3)[of "(+)" bl b2] ‘b2<b1l‘ by simp
ultimately have "expr (PLUS el e2) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt bl)),st)" using r1 r2 True by simp
moreover have "expr (eupdate (PLUS el e2)) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt b1)),st)"
proof -
from ‘bl € vbits‘ ‘b2 € vbits‘ ‘?v>0°‘ ‘b2<bil‘
have "eupdate (PLUS el e2) = E.INT bl ?x" using i u2 by simp
moreover have "expr (E.INT bl ?7x) ep env cd st
= Normal ((KValue (ShowL;n: ?x), Value (TSInt b1)),st)"
proof -
from ‘b1 € vbits‘ True have "expr (E.INT bl ?x) ep env cd st
= Normal ((KValue (createSInt bl 7x), Value (TSInt b1)),st)" by simp
moreover from ‘0 < b1‘ have "?x < 2 = (bl - 1)" using upper_bound2 by simp
ultimately show ?thesis using createSInt_id[of 7x "b1"] ‘0 < b1‘ by simp
qed
ultimately show ?thesis by simp
qed
ultimately show ?thesis by simp
next
let 7x="2"(b1 -1) - (-?7v+2~(b1-1)-1) mod (2°b1) - 1"
assume "— ?v>0"
hence "createSInt bl ?v = (ShowL;n: 7x)" by simp
moreover have "add (TSInt bl) (TUInt b2) (ShowL;n: v1) (ShowL;n: v2)
= Some (createSInt bl ?v, TSInt b1)"
using Read_ShowL_id add_def olift.simps(3)[of "(+)" bl b2] ‘b2<bl‘ by simp
ultimately have "expr (PLUS el e2) ep env cd st

185

7 Applications

= Normal ((KValue (ShowL;n: ?7x), Value (TSInt bl)),st)" using r1 r2 True by simp
moreover have "expr (eupdate (PLUS el e2)) ep env cd st
= Normal ((KValue (ShowL;,; ?7x), Value (TSInt b1)),st)"
proof -
from ‘bl € vbits‘ ‘b2 € vbits‘ ‘—?v>0° ‘b2<bl‘
have "eupdate (PLUS el e2) = E.INT bl ?x" using i u2 by simp
moreover have "expr (E.INT bl ?x) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt b1)),st)"
proof -
from ‘bl € vbits‘ True have "expr (E.INT bl 7x) ep env cd st
= Normal ((KValue (createSInt bl 7x), Value (TSInt b1)),st)" by simp
moreover from ‘0 < b1‘ have "?x > - (2 = (b1 - 1))" using upper_bound2 by simp
moreover have "27(b1-1) - (-?v+27(b1-1)-1) mod (27b1) - 1 <2 =~ (b1 - 1)"
by (smt (verit, best) Euclidean_Division.pos_mod_sign zero_less_power)
ultimately show ?thesis using createSInt_id[of 7x b1l] ‘O < bl1‘ by simp
qed
ultimately show ?thesis by simp
qed
ultimately show ?thesis by simp
qged
next
assume "— b2 < b1"
with p i u2 show ?thesis by simp
qed
next
assume "— b2 € vbits"
with p i u2 show 7thesis by simp
qed
next
case (ADDRESS _)
with p i show ?thesis by simp
next
case (BALANCE _)
with p i show ?thesis by simp
next
case THIS
with p i show ?thesis by simp
next
case SENDER
with p i show ?thesis by simp
next
case VALUE
with p i show ?thesis by simp
next
case TRUE
with p i show ?thesis by simp
next
case FALSE
with p i show ?thesis by simp
next
case (LVAL _)
with p i show ?thesis by simp
next
case (PLUS _ _)
with p i show ?thesis by simp
next
case (MINUS _ _)
with p i show ?thesis by simp
next
case (EQUAL _ _)
with p i show ?thesis by simp
next
case (LESS _ _)
with p i show ?thesis by simp

186

7.1 Constant Folding (Constant_ Folding)

next
case (AND _ _)
with p i show ?thesis by simp
next
case (OR _ _)
with p i show ?thesis by simp
next
case (NOT _)
with p i show ?thesis by simp
next
case (CALL x181 x182)
with p i show ?thesis by simp
next
case (ECALL x191 x192 x193 x194)
with p i show ?thesis by simp
qed
next
assume "— bl € vbits"
with p i show ?thesis by simp
ged
next
case False
then show ?thesis using no_gas by simp
qed
next
case u: (UINT bl v1)
with p.IH have exprl: "expr el ep env cd st = expr (UINT bl v1) ep env cd st" by simp
then show 7thesis
proof (cases "gas st > 0")
case True
then show ?thesis
proof (cases)
assume "bl € vbits"
with exprl True
have "expr el ep env cd st=Normal ((KValue (createUlnt bl v1), Value (TUInt b1)),st)" by simp
moreover from u ‘bl € vbits‘
have "v1 < 2°b1" and "vi > 0" using update_bounds_uint by auto
moreover from ‘bl € vbits‘ have "0 < bl" by auto
ultimately have ri1: "expr el ep env cd st = Normal ((KValue (ShowL;n: v1), Value (TUInt
b1)),st)"
by simp
thus ?thesis
proof (cases "eupdate e2")
case u2: (UINT b2 v2)
with p.IH have expr2: "expr e2 ep env cd st = expr (UINT b2 v2) ep env cd st" by simp
then show 7thesis
proof (cases)
let ?v="v1 + v2"
let ?x="?7v mod 2 ~ max bl b2"
assume "b2 € vbits"
with expr2 True
have "expr e2 ep env cd st=Normal ((KValue (createUlnt b2 v2), Value (TUInt b2)),st)" by

simp
moreover from u2 ‘b2 € vbits‘
have "v2 < 27p2" and "v2 > 0" using update_bounds_uint by auto
moreover from ‘b2 € vbits‘ have "0 < b2" by auto
ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowL;n: v2), Value (TUInt
b2)),st)"

by simp
moreover have "add (TUInt b1l) (TUInt b2) (ShowL;n: v1) (ShowL;n: v2)
= Some (createUInt (max bl b2) ?v, TUInt (max bl b2))"
using Read_ShowL_id add_def olift.simps(2)[of "(+)" bl b2] by simp
ultimately have "expr (PLUS el e2) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TUInt (max bl b2))),st)" using rl True by simp

187

7 Applications

moreover have "expr (eupdate (PLUS el e2)) ep env cd st

= Normal ((KValue (ShowL;n,: 7x), Value (TUInt (max bl b2))),st)"
proof -
from ‘b1 € vbits‘ ‘b2 € vbits®
have "eupdate (PLUS el e2) = UINT (max bl b2) 7x" using u u2 by simp
moreover have "expr (UINT (max bl b2) 7x) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TUInt (max bl b2))),st)"
proof -
from ‘b1 € vbits® ‘b2 € vbits‘ have "max bl b2 € vbits" using vbits_max by simp
with True have "expr (UINT (max bl b2) ?x) ep env cd st
= Normal ((KValue (createUInt (max bl b2) 7x), Value (TUInt (max bl b2))),st)" by
simp
moreover from ‘0 < b1°¢
have "?x < 2 = (max bl b2)" by simp
moreover from ‘0 < b1‘ have "0 < max bl b2" using max_def by simp
ultimately show ?thesis by simp
qed
ultimately show ?thesis by simp
qed
ultimately show ?thesis by simp
next
assume "— b2 € vbits"
with p u u2 show ?thesis by simp
qed
next
case i2: (INT b2 v2)
with p.IH have expr2: "expr e2 ep env cd st = expr (E.INT b2 v2) ep env cd st" by simp
then show 7thesis
proof (cases)
let ?v="v1 + v2"
assume "b2 € vbits"
with expr2 True
have "expr e2 ep env cd st=Normal ((KValue (createSInt b2 v2), Value (TSInt b2)),st)" by
simp
moreover from i2 ‘b2 € vbits‘
have "v2 < 27(b2-1)" and "v2 > -(27(b2-1))" using update_bounds_int by auto
moreover from ‘b2 € vbits‘ have "0 < b2" by auto
ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowL;n: v2), Value (TSInt
b2)),st)"
using createSInt_id[of v2 b2] by simp
thus ?thesis
proof (cases)
assume "b1<b2"
thus ?thesis
proof (cases)
let 7x="- (2 =~ (b2 - 1)) + (?v + 2 ~ (b2 - 1)) mod 2 ~ b2"
assume "?v>0"
hence "createSInt b2 ?v = (ShowL;n: 7x)" using ‘bi<b2‘ by auto
moreover have "add (TUInt bl) (TSInt b2) (ShowL;n: v1) (ShowL;n: v2)
= Some (createSInt b2 ?v, TSInt b2)"
using Read_ShowL_id add_def olift.simps(4)[of "(+)" bl b2] ‘bi<b2‘ by simp
ultimately have "expr (PLUS el e2) ep env cd st
= Normal ((KValue (ShowL;,: ?x), Value (TSInt b2)),st)" using rl r2 True by simp
moreover have "expr (eupdate (PLUS el e2)) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt b2)),st)"
proof -
from ‘bl € vbits‘ ‘b2 € vbits‘ ‘?v>0°‘ ‘bi1<b2¢
have "eupdate (PLUS el e2) = E.INT b2 7x" using u i2 by simp
moreover have "expr (E.INT b2 ?x) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt b2)),st)"
proof -
from ‘b2 € vbits‘ True have "expr (E.INT b2 ?x) ep env cd st
= Normal ((KValue (createSInt b2 ?x), Value (TSInt b2)),st)" by simp
moreover from ‘0 < b2° have "?x < 2 ~ (b2 - 1)" using upper_bound2 by simp

188

7.1 Constant Folding (Constant_ Folding)

ultimately show ?thesis using createSInt_id[of ?x "b2"] ‘0 < b2‘ by simp
qed
ultimately show ?thesis by simp
qed
ultimately show ?7thesis by simp
next
let 7x="2"(b2 -1) - (-?v+27(b2-1)-1) mod (27b2) - 1"
assume "— ?v>0"
hence "createSInt b2 ?v = (ShowL;n: 7x)" by simp
moreover have "add (TUInt bl) (TSInt b2) (ShowL;n: v1) (ShowL;n: v2)
= Some (createSInt b2 ?v, TSInt b2)"
using Read_ShowL_id add_def olift.simps(4)[of "(+)" bl b2] ‘bi<b2‘ by simp
ultimately have "expr (PLUS el e2) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt b2)),st)" using r1 r2 True by simp
moreover have "expr (eupdate (PLUS el e2)) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt b2)),st)"
proof -
from ‘bl € vbits‘ ‘b2 € vbits‘ ‘—?v>0°‘ ‘bi<b2¢
have "eupdate (PLUS el e2) = E.INT b2 7x" using u i2 by simp
moreover have "expr (E.INT b2 ?x) ep env cd st
= Normal ((KValue (ShowL;,: ?7x), Value (TSInt b2)),st)"
proof -
from ‘b2 € vbits‘ True have "expr (E.INT b2 7x) ep env cd st
= Normal ((KValue (createSInt b2 7x), Value (TSInt b2)),st)" by simp

moreover from ‘0 < b2° have "?x > - (2 ~ (b2 - 1))" using upper_bound2 by simp

moreover have "27(b2-1) - (-?v+27(b2-1)-1) mod (2°b2) - 1 < 2 ~ (b2 - 1)"
by (smt (verit, best) Euclidean_Division.pos_mod_sign zero_less_power)
ultimately show ?thesis using createSInt_id[of ?x b2] ‘0 < b2‘ by simp
qged
ultimately show ?thesis by simp
qed
ultimately show ?thesis by simp
qed
next
assume "— bl < b2"
with p u i2 show 7thesis by simp
qed
next
assume "— b2 € vbits"
with p u i2 show 7thesis by simp
qged
next
case (ADDRESS _)
with p u show ?thesis by simp
next
case (BALANCE _)
with p u show ?thesis by simp
next
case THIS
with p u show ?thesis by simp
next
case SENDER
with p u show ?thesis by simp
next
case VALUE
with p u show ?thesis by simp
next
case TRUE
with p u show ?thesis by simp
next
case FALSE
with p u show ?thesis by simp
next
case (LVAL _)

189

7 Applications

with p u show ?thesis by simp
next

case (PLUS _ _)

with p u show ?thesis by simp
next

case (MINUS _ _)

with p u show ?thesis by simp
next

case (EQUAL _ _)

with p u show ?thesis by simp
next

case (LESS _ _)

with p u show ?thesis by simp
next

case (AND _ _)

with p u show ?thesis by simp
next

case (OR _ _)

with p u show ?thesis by simp
next

case (NOT _)

with p u show ?thesis by simp
next

case (CALL x181 x182)

with p u show ?thesis by simp
next

case (ECALL x191 x192 x193 x194)

with p u show ?thesis by simp
qged

next

assume "— bl € vbits"

with p u show ?thesis by simp
qged
next
case False
then show ?thesis
qed
next
case (ADDRESS x3)
with p show ?thesis
next
case (BALANCE x4)
with p show ?thesis
next
case THIS
with p show
next
case SENDER
with p show
next
case VALUE
with p show
next
case TRUE
with p show
next
case FALSE
with p show
next
case (LVAL x7)
with p show ?thesis
next
case (PLUS x81 x82)
with p show ?thesis

using no_gas by simp

by simp
using 1lift_eqlof el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
?thesis

by simp

7thesis by simp

7thesis by simp

7thesis by simp

7thesis by simp
using 1ift_eqlof el ep env cd st "eupdate el" e2 "eupdate e2"] by auto

using 1ift_eqlof el ep env cd st "eupdate el" e2 "eupdate e2"] by auto

190

7.1 Constant Folding (Constant_ Folding)

next
case (MINUS x91 x92)
with p show ?thesis using lift_eq[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case (EQUAL x101 x102)
with p show ?thesis using lift_eq[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case (LESS x111 x112)
with p show ?thesis using lift_eq[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case (AND x121 x122)
with p show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case (OR x131 x132)
with p show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case (NOT x131)
with p show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case (CALL x181 x182)
with p show ?thesis using lift_eq[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case (ECALL x191 x192 x193 x194)
with p show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
qed
next
case m: (MINUS el e2)
show 7case
proof (cases "eupdate el")
case i: (INT bl v1)
with m.IH have exprl: "expr el ep env cd st = expr (E.INT bl vl) ep env cd st" by simp
then show ?thesis
proof (cases "gas st > 0")
case True
show 7thesis
proof (cases)
assume "bl € vbits"
with exprl True
have "expr el ep env cd st=Normal ((KValue (createSInt bl v1), Value (TSInt b1)),st)" by simp
moreover from i ‘bl € vbits®
have "vi1 < 27(b1-1)" and "vi > -(27(b1-1))" using update_bounds_int by auto
moreover from ‘bl € vbits‘ have "0 < b1l" by auto
ultimately have ri1: "expr el ep env cd st = Normal ((KValue (ShowL;n: v1), Value (TSInt
b1)),st)"
using createSInt_id[of vl bl] by simp
thus ?thesis
proof (cases "eupdate e2")
case i2: (INT b2 v2)
with m.IH have expr2: "expr e2 ep env cd st = expr (E.INT b2 v2) ep env cd st" by simp
then show 7thesis
proof (cases)
let 7v="v1 - v2"
assume "b2 € vbits"
with expr2 True
have "expr e2 ep env cd st=Normal ((KValue (createSInt b2 v2), Value (TSInt b2)),st)" by

simp
moreover from i2 ‘b2 € vbits‘
have "v2 < 27(b2-1)" and "v2 > -(27(b2-1))" using update_bounds_int by auto
moreover from ‘b2 € vbits‘ have "0 < b2" by auto
ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowL;n: v2), Value (TSInt
b2)),st)"

using createSInt_id[of v2 b2] by simp

from ‘bl € vbits‘ ‘b2 € vbits‘ have

191

7 Applications

u_def: "eupdate (MINUS el e2) =
(let v = v1 - v2
in if 0 < v
then E.INT (max bl b2)
(- (2 ©~ (max b1 b2 - 1)) + (v + 2 ~ (max bl b2 - 1)) mod 2 ~ max bl b2)
else E.INT (max bl b2)
(2 ~ (max b1 b2 - 1) - (- v + 2 ~ (max bl b2 - 1) - 1) mod 2 ~ max bl b2 - 1))"
using i i2 eupdate.simps(11) [of el e2] by simp

show ?thesis
proof (cases)
let 7x="- (2 =~ (max bl b2 - 1)) + (?v + 2 ~ (max bl b2 - 1)) mod 2 ~ max bl b2"
assume "?7v>0"
hence "createSInt (max bl b2) 7v = (ShowLin: 7x)" by simp
moreover have "sub (TSInt b1) (TSInt b2) (ShowL;,: v1) (ShowL;n: v2)
= Some (createSInt (max bl b2) ?v, TSInt (max bl b2))"
using Read_ShowL_id sub_def olift.simps(1)[of "(-)" bl b2] by simp
ultimately have "expr (MINUS el e2) ep env cd st
= Normal ((KValue (ShowL;n: ?x), Value (TSInt (max bl b2))),st)" using rl r2 True by

simp
moreover have "expr (eupdate (MINUS el e2)) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt (max bl b2))),st)"
proof -
from u_def have "eupdate (MINUS el e2) = E.INT (max bl b2) 7x" using ‘?v>0‘ by simp
moreover have "expr (E.INT (max bl b2) 7x) ep env cd st
= Normal ((KValue (ShowL;,: 7x), Value (TSInt (max bl b2))),st)"
proof -
from ‘b1 € vbits‘ ‘b2 € vbits‘ have "max bl b2 € vbits" using vbits_max by simp
with True have "expr (E.INT (max bl b2) ?x) ep env cd st
= Normal ((KValue (createSInt (max bl b2) 7x), Value (TSInt (max bl b2))),st)" by
simp
moreover from ‘0 < b1°
have "?x < 2 ~ (max bl b2 - 1)" using upper_bound2 by simp
moreover from ‘0 < b1‘ have "O < max bl b2" using max_def by simp
ultimately show ?thesis using createSInt_id[of 7x "max bl b2"] by simp
qed
ultimately show ?7thesis by simp
ged
ultimately show ?thesis by simp
next
let ?x="2"(max bl b2 -1) - (-?v+2~(max bl b2-1)-1) mod (2"max bl b2) - 1"
assume "— ?v>0"
hence "createSInt (max bl b2) ?v = (ShowLin: 7x)" by simp
moreover have "sub (TSInt bl) (TSInt b2) (ShowLin: v1) (ShowLin¢ v2)
= Some (createSInt (max bl b2) ?v, TSInt (max bl b2))"
using Read_ShowL_id sub_def olift.simps(1)[of "(-)" bl b2] by simp
ultimately have "expr (MINUS el e2) ep env cd st
= Normal ((KValue (ShowLi;n: ?x), Value (TSInt (max bl b2))),st)" using rl r2 True by
simp
moreover have "expr (eupdate (MINUS el e2)) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt (max bl b2))),st)"
proof -
from u_def have "eupdate (MINUS el e2) = E.INT (max bl b2) 7x" using ‘- 7v>0‘ by
simp
moreover have "expr (E.INT (max bl b2) 7x) ep env cd st
= Normal ((KValue (ShowL;n: ?7x), Value (TSInt (max bl b2))),st)"
proof -
from ‘b1 € vbits® ‘b2 € vbits‘ have "max bl b2 € vbits" using vbits_max by simp
with True have "expr (E.INT (max bl b2) ?x) ep env cd st
= Normal ((KValue (createSInt (max bl b2) ?7x), Value (TSInt (max bl b2))),st)" by
simp

moreover from ‘0 < b1°
have "?x > - (2 = (max bl b2 - 1))" using lower_bound2[of "max bl b2" ?v] by simp

moreover from ‘b1 > 0° have "2 (max bl b2 -1) > (0::nat)" by simp

192

7.1 Constant Folding (Constant_ Folding)

hence "27(max bl b2 -1) - (-?v+2~(max bl b2-1)-1) mod (2"max bl b2) - 1 < 2 ~ (max
b1 b2 - 1"
by (smt (verit, best) Euclidean_Division.pos_mod_sign not_exp_less_eq_0_int)
moreover from ‘0 < b1‘ have "0 < max bl b2" using max_def by simp
ultimately show ?thesis using createSInt_id[of ?x "max bl b2"] by simp
qed
ultimately show ?thesis by simp
qed
ultimately show ?thesis by simp

qed
next

assume "— b2 € vbits"

with m i i2 show 7thesis by simp
qed

next

case u: (UINT b2 v2)
with m.IH have expr2: "expr e2 ep env cd st = expr (UINT b2 v2) ep env cd st" by simp
then show 7thesis
proof (cases)

let 7v="v1 - v2"

assume "b2 € vbits"

with expr2 True

have "expr e2 ep env cd st=Normal ((KValue (createUlnt b2 v2), Value (TUInt b2)),st)" by

simp
moreover from u ‘b2 € vbits
have "v2 < 27p2" and "v2 > 0" using update_bounds_uint by auto
moreover from ‘b2 € vbits‘ have "0 < b2" by auto
ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowL;n: v2), Value (TUInt
b2)),st)"

using createUInt_id[of v2 b2] by simp
thus ?thesis
proof (cases)
assume "b2<b1"
with ‘b1 € vbits® ‘b2 € vbits‘ have
u_def: "eupdate (MINUS el e2) =
(let v = vl - v2
in if 0 < v
then E.INT b1 (- (2 ~ (b1 - 1)) + (v + 2~ (b1 - 1)) mod 2 ~ b1)
else E.INT b1 (2 ~ (b1 - 1) - (-v+2 "~ (b1 - 1) - 1) mod 2 ~ bl - 1))"
using i u eupdate.simps(11) [of el e2] by simp
show ?thesis
proof (cases)
let 7x="- (2 =~ (b1 - 1)) + (?v + 2 ~ (b1 - 1)) mod 2 ~ b1"
assume "?v>0"
hence "createSInt bl ?v = (ShowL;n: 7x)" using ‘b2<bl‘ by auto
moreover have "sub (TSInt bl) (TUInt b2) (ShowL;n: v1) (ShowL;n: v2)
= Some (createSInt bl ?v, TSInt b1)"
using Read_ShowL_id sub_def olift.simps(3)[of "(-)" bl b2] ‘b2<bl‘ by simp
ultimately have "expr (MINUS el e2) ep env cd st
= Normal ((KValue (ShowL;,: ?x), Value (TSInt b1)),st)" using rl r2 True by simp
moreover have "expr (eupdate (MINUS el e2)) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt b1)),st)"
proof -
from u_def have "eupdate (MINUS el e2) = E.INT bl ?x" using ‘?v>0‘ by simp
moreover have "expr (E.INT bl ?7x) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt b1)),st)"
proof -
from ‘b1 € vbits‘ True have "expr (E.INT bl ?x) ep env cd st
= Normal ((KValue (createSInt bl 7x), Value (TSInt b1)),st)" by simp
moreover from ‘0 < b1‘ have "?x < 2 = (bl - 1)" using upper_bound2 by simp
ultimately show ?thesis using createSInt_id[of 7x "b1"] ‘0 < b1‘ by simp
qed
ultimately show ?thesis by simp
qed

193

7 Applications

ultimately show ?thesis by simp

next

let 7x="2"(b1 -1) - (-?v+2~(b1-1)-1) mod (2°b1) - 1"
assume "— ?v>0"
hence "createSInt bl 7?v = (ShowL;n: 7x)" by simp
moreover have "sub (TSInt b1) (TUInt b2) (ShowL;,: v1) (ShowL;n; v2)
= Some (createSInt bl ?v, TSInt bil)"
using Read_ShowL_id sub_def olift.simps(3)[of "(-)" bl b2] ‘b2<bl‘ by simp
ultimately have "expr (MINUS el e2) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt bl)),st)" using r1 r2 True by simp
moreover have "expr (eupdate (MINUS el e2)) ep env cd st
= Normal ((KValue (ShowL;,; ?7x), Value (TSInt b1)),st)"
proof -
from u_def have "eupdate (MINUS el e2) = E.INT bl ?x" using ‘- ?v>0‘ by simp
moreover have "expr (E.INT bl ?x) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt b1)),st)"
proof -
from ‘b1 € vbits‘ True have "expr (E.INT bl 7x) ep env cd st
= Normal ((KValue (createSInt bl ?7x), Value (TSInt b1l)),st)" by simp
moreover from ‘0 < b1 have "?x > - (2 ~ (b1 - 1))" using upper_bound2 by simp
moreover have "27(b1-1) - (-?v+2~(b1-1)-1) mod (2°b1) - 1 <2 =~ (b1 - 1)"
by (smt (verit, best) Euclidean_Division.pos_mod_sign zero_less_power)
ultimately show ?thesis using createSInt_id[of 7x b1l] ‘O < bl1‘ by simp
qed
ultimately show ?thesis by simp
qged
ultimately show ?thesis by simp

qed
next

assume "— b2 < b1"

with m i u show ?7thesis by simp
qed

next

assume "— b2 € vbits"
with m i u show ?thesis by simp

qed
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next

194

(ADDRESS _)
m i show ?thesis by simp

(BALANCE _)
m i show ?thesis by simp

THIS
m i show ?thesis by simp

SENDER
m i show ?thesis by simp

VALUE
m i show ?thesis by simp

TRUE
m i show ?thesis by simp

FALSE
m i show ?thesis by simp

(LVAL _)
m i show ?thesis by simp

(PLUS _)
m i show ?thesis by simp

case (MINUS _ _)

with m i show ?7thesis
next

case (EQUAL _ _)

with m i show ?7thesis
next

case (LESS _ _)

with m i show ?thesis
next

case (AND _ _)

with m i show ?7thesis
next

case (OR _ _)

with m i show ?7thesis
next

case (NOT _)

with m i show ?7thesis
next

case (CALL x181 x182)

with m i show ?7thesis
next

by

by

by

by

by

by

by

case (ECALL x191 x192 x193

with m i show ?7thesis
qed
next
assume "— bl € vbits"

by

simp

simp

simp

simp

simp

simp

simp

x194)
simp

with m i show ?thesis by simp

qed
next
case False

then show 7thesis using no_gas by simp

qged
next
case u: (UINT b1 vi)

with m.IH have exprl: "expr el ep env cd st

then show ?thesis
proof (cases "gas st > 0")
case True
show ?thesis
proof (cases)
assume "bl € vbits"
with exprl True

7.1 Constant Folding (Constant_ Folding)

expr (UINT bl v1) ep env cd st" by simp

have "expr el ep env cd st=Normal ((KValue (createUInt bl v1), Value (TUInt b1)),st)" by simp
moreover from u ‘bl € vbits
have "vi < 2°b1" and "vi > 0" using update_bounds_uint by auto

moreover from ‘b1 € vbits‘ have "0 < bi" by auto

ultimately have ri: "expr el ep env cd st = Normal ((KValue (ShowL;n: v1), Value (TUInt

b1)),st)"
by simp
thus ?thesis

proof (cases "eupdate e2")

case u2: (UINT b2 v2)

with m.IH have expr2: "expr e2 ep env cd st

then show ?thesis
proof (cases)
let ?v="v1 - v2"

let ?x="7v mod 2 ~ max bl b2"

assume "b2 € vbits"

with expr2 True

expr (UINT b2 v2) ep env cd st" by simp

have "expr e2 ep env cd st=Normal ((KValue (createUInt b2 v2), Value (TUInt b2)),st)" by

simp

moreover from u2 ‘b2 € vbits®

have "v2 < 27b2" and "v2 > 0" using update_bounds_uint by auto

moreover from ‘b2 € vbits‘ have "0 < b2" by auto

195

7 Applications

ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowL;n: v2), Value (TUInt

b2)),st)"
by simp
moreover have "sub (TUInt bl) (TUInt b2) (ShowL;n: v1) (ShowL;n: v2)
= Some (createUInt (max bl b2) ?v, TUInt (max bl b2))"
using Read_ShowL_id sub_def olift.simps(2)[of "(-)" bl b2] by simp
ultimately have "expr (MINUS el e2) ep env cd st
= Normal ((KValue (ShowLi;n: ?7x), Value (TUInt (max bl b2))),st)" using rl1 True by simp
moreover have "expr (eupdate (MINUS el e2)) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TUInt (max bl b2))),st)"
proof -
from ‘b1 € vbits® ‘b2 € vbits®
have "eupdate (MINUS el e2) = UINT (max bl b2) 7x" using u u2 by simp
moreover have "expr (UINT (max bl b2) 7x) ep env cd st
= Normal ((KValue (ShowL;,: 7x), Value (TUInt (max bl b2))),st)"
proof -
from ‘b1 € vbits‘ ‘b2 € vbits‘ have "max bl b2 € vbits" using vbits_max by simp
with True have "expr (UINT (max bl b2) 7x) ep env cd st
= Normal ((KValue (createUInt (max bl b2) ?x), Value (TUInt (max bl b2))),st)" by
simp
moreover from ‘0 < b1°¢
have "?x < 2 = (max bl b2)" by simp
moreover from ‘0 < b1‘ have "0 < max bl b2" using max_def by simp
ultimately show ?7thesis by simp
qed
ultimately show ?thesis by simp
qed
ultimately show ?thesis by simp
next
assume "— b2 € vbits"
with m u u2 show 7thesis by simp
qged
next
case i: (INT b2 v2)
with m.IH have expr2: "expr e2 ep env cd st = expr (E.INT b2 v2) ep env cd st" by simp
then show 7thesis
proof (cases)
let ?7v="vi - v2"
assume "b2 € vbits"
with expr2 True
have "expr e2 ep env cd st=Normal ((KValue (createSInt b2 v2), Value (TSInt b2)),st)" by
simp
moreover from i ‘b2 € vbits®
have "v2 < 27(b2-1)" and "v2 > -(27(b2-1))" using update_bounds_int by auto
moreover from ‘b2 € vbits‘ have "0 < b2" by auto
ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowLin: v2), Value (TSInt
b2)),st)"

using createSInt_id[of v2 b2] by simp
thus 7thesis
proof (cases)
assume "b1<b2"
with ‘b1 € vbits® ‘b2 € vbits‘ have
u_def: "eupdate (MINUS el e2) =
(let v = vl - v2
in if 0 < v
then E.INT b2 (- (2 = (b2 - 1)) + (v + 2 ~ (b2 - 1)) mod 2 ~ b2)
else E.INT b2 (2 =~ (b2 - 1) - (-v +2 ~ (b2 - 1) - 1) mod 2 ~ b2 - 1))"
using u i by simp
show ?thesis
proof (cases)
let 7x="- (2 =~ (b2 - 1)) + (?v + 2 = (b2 - 1)) mod 2 ~ b2"
assume "?v>0"
hence "createSInt b2 ?v = (ShowL;,: 7x)" using ‘b1<b2‘ by auto
moreover have "sub (TUInt bl) (TSInt b2) (ShowL;n: v1) (ShowL;n: v2)

196

7.1 Constant Folding (Constant_ Folding)

= Some (createSInt b2 ?v, TSInt b2)"
using Read_ShowL_id sub_def olift.simps(4)[of "(-)" bl b2] ‘b1<b2‘ by simp
ultimately have "expr (MINUS el e2) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt b2)),st)" using r1 r2 True by simp
moreover have "expr (eupdate (MINUS el e2)) ep env cd st
= Normal ((KValue (ShowL;,; ?7x), Value (TSInt b2)),st)"
proof -
from u_def have "eupdate (MINUS el e2) = E.INT b2 7x" using ‘7v>0‘ by simp
moreover have "expr (E.INT b2 ?x) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt b2)),st)"
proof -
from ‘b2 € vbits‘ True have "expr (E.INT b2 7x) ep env cd st
= Normal ((KValue (createSInt b2 ?7x), Value (TSInt b2)),st)" by simp
moreover from ‘0 < b2° have "?x < 2 ~ (b2 - 1)" using upper_bound2 by simp
ultimately show ?thesis using createSInt_id[of 7x "b2"] ‘O < b2‘ by simp
qed
ultimately show ?thesis by simp
qed
ultimately show ?thesis by simp
next
let ?x="2"(b2 -1) - (-?v+27(b2-1)-1) mod (27b2) - 1"
assume "— ?7v>0"
hence "createSInt b2 7v = (ShowLin: ?7x)" by simp
moreover have "sub (TUInt bl) (TSInt b2) (ShowL;n: v1) (ShowL;n: v2)
= Some (createSInt b2 ?v, TSInt b2)"
using Read_ShowL_id sub_def olift.simps(4)[of "(-)" bl b2] ‘bi<b2‘ by simp
ultimately have "expr (MINUS el e2) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt b2)),st)" using r1 r2 True by simp
moreover have "expr (eupdate (MINUS el e2)) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt b2)),st)"
proof -
from u_def have "eupdate (MINUS el e2) = E.INT b2 ?x" using ‘- ?v>0‘ by simp
moreover have "expr (E.INT b2 ?7x) ep env cd st
= Normal ((KValue (ShowL;n: 7x), Value (TSInt b2)),st)"
proof -
from ‘b2 € vbits‘ True have "expr (E.INT b2 7x) ep env cd st
= Normal ((KValue (createSInt b2 7x), Value (TSInt b2)),st)" by simp
moreover from ‘0 < b2° have "?x > - (2 ~ (b2 - 1))" using upper_bound2 by simp
moreover have "27(b2-1) - (-?v+27(b2-1)-1) mod (27°b2) - 1 <2 =~ (b2 - 1)"
by (smt (verit, best) Euclidean_Division.pos_mod_sign zero_less_power)
ultimately show ?thesis using createSInt_id[of 7x b2] ‘O < b2‘ by simp
qed
ultimately show ?thesis by simp
qged
ultimately show ?thesis by simp
qed
next
assume "— bl < b2"
with m u i show 7thesis by simp
qed
next
assume "— b2 € vbits"
with m u i show ?thesis by simp
qed
next
case (ADDRESS _)
with m u show ?thesis by simp
next
case (BALANCE _)
with m u show ?thesis by simp
next
case THIS
with m u show ?thesis by simp
next

197

7 Applications

case SENDER
with m u show ?thesis by simp
next
case VALUE
with m u show ?thesis by simp
next
case TRUE
with m u show ?thesis by simp
next
case FALSE
with m u show ?thesis by simp
next
case (LVAL _)
with m u show ?thesis by simp
next
case (PLUS _ _)
with m u show ?thesis by simp
next
case (MINUS _ _)
with m u show ?thesis by simp
next
case (EQUAL _ _)
with m u show ?thesis by simp
next
case (LESS _ _)
with m u show ?thesis by simp
next
case (AND _ _)
with m u show ?thesis by simp
next
case (OR _ _)
with m u show ?thesis by simp
next
case (NOT _)
with m u show ?thesis by simp
next
case (CALL x181 x182)
with m u show ?thesis by simp
next
case (ECALL x191 x192 x193 x194)
with m u show ?thesis by simp
qed
next
assume "— bl € vbits"
with m u show ?thesis by simp
qed
next
case False
then show 7thesis using no_gas by simp
qed
next
case (ADDRESS x3)
with m show ?7thesis by simp
next
case (BALANCE x4)
with m show ?thesis using lift_eq[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case THIS
with m show ?7thesis by simp
next
case SENDER
with m show ?7thesis by simp
next
case VALUE

198

7.1 Constant Folding (Constant_ Folding)

with m show ?thesis by simp
next
case TRUE
with m show ?thesis by simp
next
case FALSE
with m show ?thesis by simp
next
case (LVAL x7)
with m show ?thesis using lift_eq[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case (PLUS x81 x82)
with m show ?thesis using lift_eq[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case (MINUS x91 x92)
with m show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case (EQUAL x101 x102)
with m show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case (LESS x111 x112)
with m show ?thesis using lift_eq[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case (AND x121 x122)
with m show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case (OR x131 x132)
with m show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case (NOT x131)
with m show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case (CALL x181 x182)
with m show ?thesis using lift_eq[of el ep env cd st "eupdate el" e2 "eupdate e2"] by simp
next
case (ECALL x191 x192 x193 x194)
with m show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by simp
qed
next
case e: (EQUAL el e2)
show 7case
proof (cases "eupdate el")
case i: (INT bl v1)
with e.IH have exprl: "expr el ep env cd st = expr (E.INT bl v1) ep env cd st" by simp
then show ?thesis
proof (cases "gas st > 0")
case True
then show ?thesis
proof (cases)
assume "bl € vbits"
with exprl True
have "expr el ep env cd st=Normal ((KValue (createSInt bl v1), Value (TSInt b1)),st)" by simp
moreover from i ‘bl € vbits°
have "vi < 27(b1-1)" and "vi1 > -(27(b1-1))" using update_bounds_int by auto
moreover from ‘b1 € vbits‘ have "0 < bi" by auto
ultimately have ri1: "expr el ep env cd st = Normal ((KValue (ShowL;n: v1), Value (TSInt
b1)),st)"
using createSInt_id[of vl bl] by simp
thus 7thesis
proof (cases "eupdate e2")
case i2: (INT b2 v2)
with e.IH have expr2: "expr e2 ep env cd st = expr (E.INT b2 v2) ep env cd st" by simp
then show ?thesis
proof (cases)

199

7 Applications

assume "b2 € vbits"
with expr2 True
have "expr e2 ep env cd st=Normal ((KValue (createSInt b2 v2), Value (TSInt b2)),st)" by

simp
moreover from i2 ‘b2 € vbits‘
have "v2 < 27(b2-1)" and "v2 > -(27(b2-1))" using update_bounds_int by auto
moreover from ‘b2 € vbits‘ have "0 < b2" by auto
ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowL;n: v2), Value (TSInt
b2)),st)"
using createSInt_id[of v2 b2] by simp
with r1 True have "expr (EQUAL el e2) ep env cd st=
Normal ((KValue (createBool ((ReadL;n:; (ShowL;n: v1))=((ReadL;n: (ShowL;n,: v2))))), Value
TBool) ,st)"
using equal_def plift.simps(1)[of "(=)"] by simp
hence "expr (EQUAL el e2) ep env cd st=Normal ((KValue (createBool (v1=v2)), Value
TBool) ,st)"
using Read_ShowL_id by simp
with ‘b1 € vbits‘ ‘b2 € vbits‘ True show ?thesis using i i2 by simp
next
assume "— b2 € vbits"
with e i i2 show 7thesis by simp
qed
next
case u: (UINT b2 v2)
with e.IH have expr2: "expr e2 ep env cd st = expr (UINT b2 v2) ep env cd st" by simp
then show ?thesis
proof (cases)
assume "b2 € vbits"
with expr2 True
have "expr e2 ep env cd st=Normal ((KValue (createUInt b2 v2), Value (TUInt b2)),st)" by
simp
moreover from u ‘b2 € vbits®
have "v2 < 2°b2" and "v2 > 0" using update_bounds_uint by auto
moreover from ‘b2 € vbits‘ have "0 < b2" by auto
ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowL;n: v2), Value (TUInt
b2)),st)"
using createUInt_id[of v2 b2] by simp
thus ?thesis
proof (cases)
assume "b2<b1"
with r1 r2 True have "expr (EQUAL el e2) ep env cd st=
Normal ((KValue (createBool ((ReadL;,: (ShowL;n: v1))=((ReadL;n: (ShowL;n: v2))))), Value
TBool) ,st)"
using equal_def plift.simps(3)[of "(=)"] by simp
hence "expr (EQUAL el e2) ep env cd st=Normal ((KValue (createBool (v1=v2)), Value
TBool) ,st)"

using Read_ShowL_id by simp
with ‘b1 € vbits® ‘b2 € vbits‘ ‘b2<bl‘ True show ?thesis using i u by simp
next
assume "— b2 < b1"
with e i u show ?7thesis by simp
qed
next
assume "— b2 € vbits"
with e i u show ?7thesis by simp
qged
next
case (ADDRESS _)
with e i show ?thesis by simp
next
case (BALANCE _)
with e i show ?thesis by simp
next
case THIS

200

with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
qged
next
assume

e i show ?thesis

SENDER
e i show ?thesis

VALUE
e i show 7thesis

TRUE
e i show ?thesis

FALSE
e i show ?thesis

(LVAL _)
e i show ?thesis

(PLUS _)
e i show 7thesis

(MINUS _ _)
e i show 7thesis

(EQUAL _)
e i show ?thesis

(LESS _)
e i show 7thesis

(AND _)
e i show ?thesis

(0R _ _)

e i show ?thesis

(NOT _)
e i show ?thesis

(CALL x181 x182)
e i show ?thesis

by

by

by

by

by

by

by

by

by

by

by

by

by

by

(ECALL x191 x192 x193

e i show 7?thesis

"= bl € vbits"

by

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

x194)
simp

with e i show ?thesis by simp

qged
next
case Fals

then show ?thesis using no_gas by simp

qed
next

e

case u: (UINT b1 vi1)

with e.IH have exprl: "expr el ep env cd st

then show

?thesis

proof (cases "gas st > 0")

case True

then show ?thesis
proof (cases)

assume

"bl € vbits"

with expr1l True
have "expr el ep env cd st=Normal ((KValue (createUInt bl v1), Value (TUInt b1)),st)" by simp

moreover from u

‘bl € vbitsf

7.1 Constant Folding (Constant_ Folding)

expr (UINT bl v1) ep env cd st" by simp

201

7 Applications

have "v1 < 2°b1" and "vi > 0" using update_bounds_uint by auto
moreover from ‘b1 € vbits‘ have "0 < bi" by auto
ultimately have ri: "expr el ep env cd st = Normal ((KValue (ShowL;n: v1), Value (TUInt
b1)),st)"
by simp
thus ?thesis
proof (cases "eupdate e2")
case u2: (UINT b2 v2)
with e.IH have expr2: "expr e2 ep env cd st = expr (UINT b2 v2) ep env cd st" by simp
then show 7thesis
proof (cases)
assume "b2 € vbits"
with expr2 True
have "expr e2 ep env cd st=Normal ((KValue (createUlnt b2 v2), Value (TUInt b2)),st)" by

simp
moreover from u2 ‘b2 € vbits®
have "v2 < 27bp2" and "v2 > 0" using update_bounds_uint by auto
moreover from ‘b2 € vbits‘ have "0 < b2" by auto
ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowL;n: v2), Value (TUInt
b2)),st)"
by simp
with r1 True have "expr (EQUAL el e2) ep env cd st=
Normal ((KValue (createBool ((ReadL;n: (ShowL;n: v1))=((ReadL;n: (ShowL;n,: v2))))), Value
TBool),st)"
using equal_def plift.simps(2)[of "(=)"] by simp
hence "expr (EQUAL el e2) ep env cd st=Normal ((KValue (createBool (v1=v2)), Value
TBool),st)"
using Read_ShowL_id by simp
with ‘b1 € vbits‘ ‘b2 € vbits‘ show 7thesis using u u2 True by simp
next
assume "— b2 € vbits"
with e u u2 show ?thesis by simp
qed
next
case i: (INT b2 v2)
with e.IH have expr2: "expr e2 ep env cd st = expr (E.INT b2 v2) ep env cd st" by simp
then show 7thesis
proof (cases)
let 7v="v1 + v2"
assume "b2 € vbits"
with expr2 True
have "expr e2 ep env cd st=Normal ((KValue (createSInt b2 v2), Value (TSInt b2)),st)" by
simp
moreover from i ‘b2 € vbits®
have "v2 < 27(b2-1)" and "v2 > -(27(b2-1))" using update_bounds_int by auto
moreover from ‘b2 € vbits‘ have "0 < b2" by auto
ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowL;n: v2), Value (TSInt
b2)),st)"
using createSInt_id[of v2 b2] by simp
thus ?thesis
proof (cases)
assume "b1<b2"
with r1 r2 True have "expr (EQUAL el e2) ep env cd st=
Normal ((KValue (createBool ((ReadL;,: (ShowL;n: v1))=((ReadL;n: (ShowL;n: v2))))), Value
TBool) ,st)"
using equal_def plift.simps(4)[of "(=)"] by simp
hence "expr (EQUAL el e2) ep env cd st=Normal ((KValue (createBool (v1=v2)), Value
TBool) ,st)"

using Read_ShowL_id by simp
with ‘b1 € vbits® ‘b2 € vbits‘ ‘bi<b2‘ True show ?thesis using u i by simp
next
assume "— bl < b2"
with e u i show ?7thesis by simp
qed

202

next
assume "— b2 € vbits"
with e u i show ?thesis by simp
qed
next
case (ADDRESS _)
with e u show ?thesis by simp
next
case (BALANCE _)
with e u show ?thesis by simp
next
case THIS
with e u show ?thesis by simp
next
case SENDER
with e u show ?thesis by simp
next
case VALUE
with e u show ?thesis by simp
next
case TRUE
with e u show ?thesis by simp
next
case FALSE
with e u show ?thesis by simp
next
case (LVAL _)
with e u show ?thesis by simp
next
case (PLUS _ _)
with e u show ?thesis by simp
next
case (MINUS _ _)
with e u show ?thesis by simp
next
case (EQUAL _ _)
with e u show ?thesis by simp
next
case (LESS _ _)
with e u show ?thesis by simp
next
case (AND _ _)
with e u show ?thesis by simp
next
case (OR _ _)
with e u show ?thesis by simp
next
case (NOT _)
with e u show ?thesis by simp
next
case (CALL x181 x182)
with e u show ?thesis by simp
next
case (ECALL x191 x192 x193 x194)
with e u show ?thesis by simp
qged
next
assume "— bl € vbits"
with e u show ?thesis by simp
qged
next
case False
then show ?thesis using no_gas by simp
qed

7.1 Constant Folding (Constant_ Folding)

203

7 Applications

next

case (ADDRESS x3)

with e show
next

?thesis

case (BALANCE x4)

with e show
next

case THIS

with e show
next

case SENDER

with e show
next

case VALUE

with e show
next

case TRUE

with e show
next

case FALSE

with e show
next

?thesis

?thesis

?thesis

?thesis

?thesis

?thesis

case (LVAL x7)

with e show
next

?thesis

case (PLUS x81 x82)

with e show
next

?thesis

case (MINUS x91 x92)

with e show
next

?thesis

by simp

using lift_eq[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto

by simp

by simp

by simp

by simp

by simp

using

using

using

case (EQUAL x101 x102)
with e show ?thesis using

next

case (LESS x111 x112)

with e show ?thesis using

next

case (AND x121 x122)
with e show ?thesis using

next

case (OR x131 x132)
with e show ?thesis using

next

case (NOT x131)
with e show ?thesis using

next

case (CALL x181 x182)

with e show ?thesis using

next

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

case (ECALL x191 x192 x193 x194)
with e show ?thesis using lift_eql[of

qed
next

case 1:

show ?case

(LESS el e2)

proof (cases "eupdate el")
case i: (INT bl v1)

with 1.IH have exprl: "expr el ep env

then show 7thesis
proof (cases "gas st > 0")

case True

then show ?thesis
proof (cases)

assume

204

"bl € vbits"

el

el

el

el

el

el

el

el

el

el

cd

ep

ep

ep

ep

ep

ep

ep

ep

ep

ep

st

env

env

env

env

env

env

env

env

env

env

= expr (E.

cd

cd

cd

cd

cd

cd

cd

cd

cd

cd

st

st

st

st

st

st

st

st

st

st

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

INT bl v1) ep env cd st" by simp

el

el

el

el

el

el

el

el

el

el

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

62”_7

62”]

62”]

62”]

62”]

62”]

62”]

62”]

62”]

62”]

by

by

by

by

by

by

by

by

by

by

auto

auto

auto

auto

auto

auto

auto

auto

simp

simp

7.1 Constant Folding (Constant_ Folding)

with exprl True
have "expr el ep env cd st=Normal ((KValue (createSInt bl v1), Value (TSInt b1)),st)" by simp
moreover from i ‘bl € vbits‘
have "vi1 < 27(b1-1)" and "vi > -(27(b1-1))" using update_bounds_int by auto
moreover from ‘b1 € vbits‘ have "0 < bi" by auto
ultimately have ri: "expr el ep env cd st = Normal ((KValue (ShowL;n: v1), Value (TSInt
b1)),st)"
using createSInt_id[of vl bl] by simp
thus ?thesis
proof (cases "eupdate e2")
case i2: (INT b2 v2)
with 1.IH have expr2: "expr e2 ep env cd st = expr (E.INT b2 v2) ep env cd st" by simp
then show 7thesis
proof (cases)
assume "b2 € vbits"
with expr2 True
have "expr e2 ep env cd st=Normal ((KValue (createSInt b2 v2), Value (TSInt b2)),st)" by

simp
moreover from i2 ‘b2 € vbits®
have "v2 < 27(b2-1)" and "v2 > -(27(b2-1))" using update_bounds_int by auto
moreover from ‘b2 € vbits‘ have "0 < b2" by auto
ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowL;n: v2), Value (TSInt
b2)),st)"
using createSInt_id[of v2 b2] by simp
with r1 True have "expr (LESS el e2) ep env cd st=
Normal ((KValue (createBool ((ReadL;,: (ShowL;n: v1))<((ReadL;,: (ShowLin: v2))))), Value
TBool),st)"
using less_def plift.simps(1)[of "(<)"] by simp
hence "expr (LESS el e2) ep env cd st=Normal ((KValue (createBool (vi<v2)), Value
TBool) ,st)"
using Read_ShowL_id by simp
with ‘b1 € vbits‘ ‘b2 € vbits‘ show 7thesis using i i2 True by simp
next
assume "— b2 € vbits"
with 1 i i2 show ?thesis by simp
qed
next
case u: (UINT b2 v2)
with 1.IH have expr2: "expr e2 ep env cd st = expr (UINT b2 v2) ep env cd st" by simp
then show 7thesis
proof (cases)
assume "b2 € vbits"
with expr2 True
have "expr e2 ep env cd st=Normal ((KValue (createUlnt b2 v2), Value (TUInt b2)),st)" by
simp
moreover from u ‘b2 € vbits®
have "v2 < 27b2" and "v2 > 0" using update_bounds_uint by auto
moreover from ‘b2 € vbits‘ have "0 < b2" by auto
ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowL;n: v2), Value (TUInt
b2)),st)"
using createUInt_id[of v2 b2] by simp
thus ?thesis
proof (cases)
assume "b2<b1"
with r1 r2 True have "expr (LESS el e2) ep env cd st=
Normal ((KValue (createBool ((ReadL;,: (ShowL;n: v1))<((ReadL;n: (ShowL;n: v2))))), Value
TBool) ,st)"
using less_def plift.simps(3)[of "(<)"] by simp
hence "expr (LESS el e2) ep env cd st=Normal ((KValue (createBool (vi<v2)), Value
TBool) ,st)"

using Read_ShowL_id by simp
with ‘b1 € vbits® ‘b2 € vbits‘ ‘b2<bl1‘ show 7thesis using i u True by simp
next
assume "— b2 < b1"

205

7 Applications

with 1 i u show ?7thesis by simp
qed
next
assume "— b2 € vbits"
with 1 i u show ?7thesis by simp
qed
next
case (ADDRESS _)
with 1 i show ?thesis by simp
next
case (BALANCE _)
with 1 i show ?thesis by simp
next
case THIS
with 1 i show ?thesis by simp
next
case SENDER
with 1 i show ?thesis by simp
next
case VALUE
with 1 i show ?thesis by simp
next
case TRUE
with 1 i show ?thesis by simp
next
case FALSE
with 1 i show ?thesis by simp
next
case (LVAL _)
with 1 i show ?thesis by simp
next
case (PLUS _ _)
with 1 i show ?thesis by simp
next
case (MINUS _ _)
with 1 i show ?thesis by simp
next
case (EQUAL _ _)
with 1 i show ?thesis by simp
next
case (LESS _ _)
with 1 i show ?thesis by simp
next
case (AND _ _)
with 1 i show ?thesis by simp
next
case (OR _ _)
with 1 i show ?thesis by simp
next
case (NOT _)
with 1 i show ?thesis by simp
next
case (CALL x181 x182)
with 1 i show ?thesis by simp
next
case (ECALL x191 x192 x193 x194)
with 1 i show ?thesis by simp
qed
next
assume "— bl € vbits"
with 1 i show ?thesis by simp
qed
next
case False

206

7.1 Constant Folding (Constant_ Folding)

then show ?thesis using no_gas by simp
qed
next
case u: (UINT bl v1)
with 1.IH have exprl: "expr el ep env cd st = expr (UINT bl v1) ep env cd st" by simp
then show ?thesis
proof (cases "gas st > 0")
case True
then show ?thesis
proof (cases)
assume "bl € vbits"
with exprl True
have "expr el ep env cd st=Normal ((KValue (createUInt bl v1), Value (TUInt b1)),st)" by simp
moreover from u ‘bl € vbits
have "vi1 < 27b1" and "vli > 0" using update_bounds_uint by auto
moreover from ‘bl € vbits‘ have "0 < bl" by auto
ultimately have ri1: "expr el ep env cd st = Normal ((KValue (ShowL;n: v1), Value (TUInt
b1)),st)"
by simp
thus ?thesis
proof (cases "eupdate e2")
case u2: (UINT b2 v2)
with 1.IH have expr2: "expr e2 ep env cd st = expr (UINT b2 v2) ep env cd st" by simp
then show ?thesis
proof (cases)
assume "b2 € vbits"
with expr2 True
have "expr e2 ep env cd st=Normal ((KValue (createUlnt b2 v2), Value (TUInt b2)),st)" by

simp
moreover from u2 ‘b2 € vbits®
have "v2 < 27p2" and "v2 > 0" using update_bounds_uint by auto
moreover from ‘b2 € vbits‘ have "0 < b2" by auto
ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowL;,: v2), Value (TUInt
b2)),st)"

by simp
with r1 True have "expr (LESS el e2) ep env cd st=Normal ((KValue (createBool ((ReadL;nt
(ShowLint v1))<((ReadL;n+ (ShowLin: v2))))), Value TBool),st)" using less_def plift.simps(2)[of "(<)"]
by simp
hence "expr (LESS el e2) ep env cd st=Normal ((KValue (createBool (v1<v2)), Value
TBool),st)" using Read_ShowL_id by simp
with ‘b1 € vbits‘ ‘b2 € vbits‘ show 7thesis using u u2 True by simp
next
assume "— b2 € vbits"
with 1 u u2 show ?thesis by simp
qed
next
case i: (INT b2 v2)
with 1.IH have expr2: "expr e2 ep env cd st = expr (E.INT b2 v2) ep env cd st" by simp
then show ?thesis
proof (cases)
let ?v="v1 + v2"
assume "b2 € vbits"
with expr2 True
have "expr e2 ep env cd st=Normal ((KValue (createSInt b2 v2), Value (TSInt b2)),st)" by

simp
moreover from i ‘b2 € vbits*
have "v2 < 27(b2-1)" and "v2 > -(27(b2-1))" using update_bounds_int by auto
moreover from ‘b2 € vbits‘ have "0 < b2" by auto
ultimately have r2: "expr e2 ep env cd st = Normal ((KValue (ShowL;n: v2), Value (TSInt
b2)),st)"

using createSInt_id[of v2 b2] by simp
thus ?thesis
proof (cases)

assume "b1<b2"

207

7 Applications

with r1 r2 True have "expr (LESS el e2) ep env cd st=
Normal ((KValue (createBool ((ReadLin: (ShowL;n: v1))<((ReadL;n: (ShowL;n: v2))))), Value
TBool),st)"
using less_def plift.simps(4)[of "(<)"] by simp
hence "expr (LESS el e2) ep env cd st=Normal ((KValue (createBool (v1<v2)), Value
TBool) ,st)"
using Read_ShowL_id by simp
with ‘b1 € vbits® ‘b2 € vbits‘ ‘bi<b2‘ show 7thesis using u i True by simp
next
assume "— bl < b2"
with 1 u i show 7thesis by simp
qed
next
assume "— b2 € vbits"
with 1 u i show ?7thesis by simp
qed
next
case (ADDRESS _)
with 1 u show ?thesis by simp
next
case (BALANCE _)
with 1 u show ?thesis by simp
next
case THIS
with 1 u show ?thesis by simp
next
case SENDER
with 1 u show ?thesis by simp
next
case VALUE
with 1 u show ?thesis by simp
next
case TRUE
with 1 u show ?thesis by simp
next
case FALSE
with 1 u show ?thesis by simp
next
case (LVAL _)
with 1 u show ?thesis by simp
next
case (PLUS _ _)
with 1 u show ?thesis by simp
next
case (MINUS _ _)
with 1 u show ?thesis by simp
next
case (EQUAL _ _)
with 1 u show ?thesis by simp
next
case (LESS _ _)
with 1 u show ?thesis by simp
next
case (AND _ _)
with 1 u show ?thesis by simp
next
case (OR _ _)
with 1 u show ?thesis by simp
next
case (NOT _)
with 1 u show ?thesis by simp
next
case (CALL x181 x182)
with 1 u show ?thesis by simp

208

next
case (ECALL x191 x192 x193 x194)
with 1 u show ?thesis by simp
qed
next

assume "— bl € vbits"

with 1 u show ?thesis by simp
qed

next

case False
then show ?thesis

qged
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
qed

(ADDRESS x3)
1 show ?thesis

(BALANCE x4)
1 show ?thesis

THIS
1 show ?thesis

SENDER
1 show ?thesis

VALUE
1 show ?thesis

TRUE
1 show ?thesis

FALSE
1 show ?thesis

(LVAL x7)
1 show ?thesis

(PLUS x81 x82)
1 show ?thesis

(MINUS x91 x92)
1 show ?thesis

using no_gas by simp

by simp

7.1 Constant Folding (Constant_ Folding)

using lift_eqlof el ep env cd st "eupdate el" e2 "eupdate e2"] by auto

by simp

by simp

by simp

by simp

by simp

using

using

using

(EQUAL x101 x102)

1 show ?thesis

(LESS x111 x112)

1 show ?thesis

(AND x121 x122)
1 show ?thesis

(OR x131 x132)
1 show ?thesis

(NOT x131)
1 show ?thesis

(CALL x181 x182)

1 show ?thesis

using

using

using

using

using

using

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

(ECALL x191 x192 x193 x194)
1 show ?thesis using lift_eql[of

el

el

el

el

el

el

el

el

el

el

ep

ep

ep

ep

ep

ep

ep

ep

ep

ep

env

env

env

env

env

env

env

env

env

env

cd

cd

cd

cd

cd

cd

cd

cd

cd

cd

st

st

st

st

st

st

st

st

st

st

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

el

el

el

el

el

el

el

el

el

el

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

62”]

62”]

62”]

62”]

62”]

62”]

62”]

62”]

62”]

62”]

by

by

by

by

by

by

by

by

by

by

auto

auto

auto

auto

auto

auto

auto

auto

simp

simp

209

7 Applications

next
case a: (AND el e2)
show 7case
proof (cases "eupdate el")
case (INT x11 x12)
with a show ?thesis by simp
next
case (UINT x21 x22)
with a show ?thesis by simp
next
case (ADDRESS x3)
with a show ?thesis by simp
next
case (BALANCE x4)
with a show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next
case THIS
with a show ?thesis by simp
next
case SENDER
with a show ?thesis by simp
next
case VALUE
with a show ?thesis by simp
next
case t: TRUE
show ?thesis
proof (cases "eupdate e2")
case (INT x11 x12)
with a t show ?thesis by simp
next
case (UINT x21 x22)
with a t show ?7thesis by simp
next
case (ADDRESS x3)
with a t show ?7thesis by simp
next
case (BALANCE x4)
with a t show ?7thesis by simp
next
case THIS
with a t show ?thesis by simp
next
case SENDER
with a t show ?7thesis by simp
next
case VALUE
with a t show ?thesis by simp
next
case TRUE
with a t show ?7thesis by simp
next
case FALSE
with a t show ?thesis by simp
next
case (LVAL x7)
with a t show ?7thesis by simp
next
case (PLUS x81 x82)
with a t show ?7thesis by simp
next
case (MINUS x91 x92)
with a t show ?7thesis by simp
next

210

case (EQUAL x101 x102)

with a t show 7thesis by
next

case (LESS x111 x112)

with a t show 7thesis by
next

case (AND x121 x122)

with a t show 7thesis by
next

case (OR x131 x132)

with a t show 7thesis by
next

case (NOT x131)

with a t show 7thesis by
next

case (CALL x181 x182)

with a t show 7thesis by
next

case (ECALL x191 x192 x193

with a t show 7thesis by
qed

next

case f: FALSE
show ?thesis
proof (cases "eupdate e2")

case (INT b v)

with a f show ?thesis by
next

case (UINT b v)

with a f show ?thesis by
next

case (ADDRESS x3)

with a f show ?thesis by
next

case (BALANCE x4)

with a f show 7thesis by
next

case THIS

with a f show 7thesis by
next

case SENDER

with a f show 7thesis by
next

case VALUE

with a f show 7thesis by
next

case TRUE

with a f show 7thesis by
next

case FALSE

with a f show 7thesis by
next

case (LVAL x7)

with a f show 7thesis by
next

case (PLUS x81 x82)

with a f show 7thesis by
next

case (MINUS x91 x92)

with a f show 7thesis by
next

case (EQUAL x101 x102)

with a f show 7thesis by
next

simp

simp

simp

simp

simp

simp

x194)
simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

7.1 Constant Folding (Constant_ Folding)

211

7 Applications

case (LESS x111 x112)
with a f show ?thesis by simp

next

case (AND x121 x122)
with a f show 7thesis by simp

next

case (OR x131 x132)
with a f show ?7thesis by simp

next

case (NOT x131)
with a f show 7thesis by simp

next

case (CALL x181 x182)
with a f show 7thesis by simp

next

case (ECALL x191 x192 x193 x194)

with

qed
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
next
case
with
qed
next
case o:

(LVAL x7)
a show 7thesis using

p: (PLUS x81 x82)
a show 7thesis using

(MINUS x91 x92)
a show 7thesis using

(EQUAL x101 x102)
a show 7thesis using

(LESS x111 x112)
a show 7thesis using

(AND x121 x122)
a show 7thesis using

(OR x131 x132)
a show 7thesis using

(NOT x131)
a show 7thesis using

(CALL x181 x182)
a show 7thesis using

a f show 7thesis by simp

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

lift_eq[of

(ECALL x191 x192 x193 x194)

a show 7thesis using

(OR el e2)

show 7case
proof (cases "eupdate el")

case
with
next
case
with
next
case
with
next
case
with

212

(INT x11 x12)

lift_eq[of

o show ?thesis by simp

(UINT x21 x22)

o show ?thesis by simp

(ADDRESS x3)

o show ?thesis by simp

(BALANCE x4)

el

el

el

el

el

el

el

el

el

el

ep

ep

ep

ep

ep

ep

ep

ep

ep

ep

env

env

env

env

env

env

env

env

env

env

cd

cd

cd

cd

cd

cd

cd

cd

cd

cd

st

st

st

st

st

st

st

st

st

st

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

el

el

el

el

el

el

el

el

el

el

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

"eupdate

62”_7

62”_7

62”]

62”]

62”]

62”]

62”]

62”]

62”]

62”]

by

by

by

by

by

by

by

by

by

by

auto

auto

auto

auto

auto

auto

auto

auto

simp

simp

o show ?thesis using lift_eq[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto

next
case THIS
with o show ?thesis by simp
next
case SENDER
with o show ?thesis by simp
next
case VALUE
with o show ?thesis by simp
next
case t: TRUE
show ?thesis
proof (cases "eupdate e2")
case (INT x11 x12)
with o t show ?thesis by
next
case (UINT x21 x22)
with o t show ?thesis by
next
case (ADDRESS x3)
with o t show ?thesis by
next
case (BALANCE x4)
with o t show ?thesis by
next
case THIS
with o t show ?thesis by
next
case SENDER
with o t show ?thesis by
next
case VALUE
with o t show ?thesis by
next
case TRUE
with o t show 7thesis by
next
case FALSE
with o t show 7thesis by
next
case (LVAL x7)
with o t show 7thesis by
next
case (PLUS x81 x82)
with o t show 7thesis by
next
case (MINUS x91 x92)
with o t show 7thesis by
next
case (EQUAL x101 x102)
with o t show 7thesis by
next
case (LESS x111 x112)
with o t show 7thesis by
next
case (AND x121 x122)
with o t show 7thesis by
next
case (OR x131 x132)
with o t show 7thesis by
next
case (NOT x131)
with o t show 7thesis by
next

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

7.1 Constant Folding (Constant_ Folding)

213

7 Applications

case (CALL x181 x182)

with o t show 7thesis by
next

case (ECALL x191 x192 x193

with o t show 7thesis by
qed

next

case f: FALSE
show ?thesis
proof (cases "eupdate e2")

case (INT b v)

with o f show ?thesis by
next

case (UINT b v)

with o f show ?thesis by
next

case (ADDRESS x3)

with o f show ?thesis by
next

case (BALANCE x4)

with o f show ?thesis by
next

case THIS

with o f show ?thesis by
next

case SENDER

with o f show ?thesis by
next

case VALUE

with o f show ?thesis by
next

case TRUE

with o f show ?thesis by
next

case FALSE

with o f show 7thesis by
next

case (LVAL x7)

with o f show 7thesis by
next

case (PLUS x81 x82)

with o f show 7thesis by
next

case (MINUS x91 x92)

with o f show 7thesis by
next

case (EQUAL x101 x102)

with o f show 7thesis by
next

case (LESS x111 x112)

with o f show 7thesis by
next

case (AND x121 x122)

with o f show 7thesis by
next

case (OR x131 x132)

with o f show 7thesis by
next

case (NOT x131)

with o f show 7thesis by
next

case (CALL x181 x182)

with o f show 7thesis by
next

214

simp

x194)
simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

simp

7.1 Constant Folding (Constant_ Folding)

case (ECALL x191 x192 x193 x194)
with o f show ?thesis by simp

qed
next

case (LVAL x7)

with o show ?thesis using lift_eq[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next

case p: (PLUS x81 x82)

with o show ?thesis using lift_eq[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next

case (MINUS x91 x92)

with o show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next

case (EQUAL x101 x102)

with o show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next

case (LESS x111 x112)

with o show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next

case (AND x121 x122)

with o show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next

case (OR x131 x132)

with o show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next

case (NOT x131)

with o show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by auto
next

case (CALL x181 x182)

with o show ?thesis using lift_eq[of el ep env cd st "eupdate el" e2 "eupdate e2"] by simp
next

case (ECALL x191 x192 x193 x194)

with o show ?thesis using lift_eql[of el ep env cd st "eupdate el" e2 "eupdate e2"] by simp
qed

next

case o: (NOT e)
show 7case
proof (cases "eupdate e")

case (INT x11 x12)

with o show ?thesis by simp
next

case (UINT x21 x22)

with o show ?thesis by simp
next

case (ADDRESS x3)

with o show ?thesis by simp
next

case (BALANCE x4)

with o show ?thesis by simp
next

case THIS

with o show ?thesis by simp
next

case SENDER

with o show ?thesis by simp
next

case VALUE

with o show ?thesis by simp
next

case t: TRUE

with o show ?thesis by simp
next

case f: FALSE

with o show ?thesis by simp

215

7 Applications

next
case (LVAL x7)
with o show ?thesis by simp
next
case p: (PLUS x81 x82)
with o show ?thesis by simp
next
case (MINUS x91 x92)
with o show ?thesis by simp
next
case (EQUAL x101 x102)
with o show ?thesis by simp
next
case (LESS x111 x112)
with o show ?thesis by simp
next
case (AND x121 x122)
with o show ?thesis by simp
next
case (OR x131 x132)
with o show ?thesis by simp
next
case (NOT x131)
with o show ?thesis by simp
next
case (CALL x181 x182)
with o show ?thesis by simp
next
case (ECALL x191 x192 x193 x194)
with o show ?thesis by simp
qed
next
case (CALL x181 x182)
show 7case by simp
next
case (ECALL x191 x192 x193 x194)
show 7case by simp
qed

end

7.2 Reentrancy (Reentrancy)

In the following we use our semantics to verify a contract implementing a simple token. The contract is defined
by definition victim and consist of one state variable and two methods:

e The state variable "balance" is a mapping which assigns a balance to each address.
e Method "deposit" allows to send money to the contract which is then added to the sender’s balance.

e Method "withdraw" allows to withdraw the callers balance.

We then verify that the following invariant (defined by INV) is preserved by both methods: The difference
between

e the contracts own account-balance and
e the sum of all the balances kept in the contracts state variable is larger than a certain threshold.
There are two things to note here: First, Solidity implicitly triggers the call of a so-called fallback method
whenever we transfer money to a contract. In particular if another contract calls "withdraw", this triggers an

implict call to the callee’s fallback method. This functionality was exploited in the infamous DAO attack which
we demonstrate it in terms of an example later on. Since we do not know all potential contracts which call

216

7.2 Reentrancy (Reentrancy)

"withdraw", we need to verify our invariant for all possible Solidity programs. Thus, the core result here is a
lemma which shows that the invariant is preserved by every Solidity program which is not executed in the context
of our own contract. For our own methods we show that the invariant holds after executing it. Since our own
program as well as the unknown program may depend on each other both properties are encoded in a single
lemma (secure) which is then proved by induction over all statements. The final result is then given in terms of
two corollaries for the corresponding methods of our contract.

The second thing to note is that we were not able to verify that the difference is indeed constant. During
verification it turned out that this is not the case since in the fallback method a contract could just send us
additional money withouth calling "deposit". In such a case the difference would change. In particular it would
grow. However, we were able to verify that the difference does never shrink which is what we actually want to
ensure.

theory Reentrancy
imports Solidity_Evaluator
begin

7.2.1 Example of Re-entrancy

value "eval 1000

stmt

(comp
(EXTERNAL (ADDRESS (STR ’’Victim’’)) (STR ’’deposit’’) [] (UINT 256 10))
(EXTERNAL (ADDRESS (STR ’’Victim’’)) (STR ’’withdraw’’) [] (UINT 256 0)))

(STR ’’Attacker’’)

(STR J)J))

(STR J)OJ :)

[(STR ’’Victim’’, STR ’’100’’), (STR ’’Attacker’’, STR ’’100°’)]

[
(STR ’’Attacker’’,
1,
ITE
(LESS (BALANCE THIS) (UINT 256 125))
(EXTERNAL (ADDRESS (STR ’’Victim’’)) (STR ’’withdraw’’) [] (UINT 256 0))
SKIP),
(STR ’’Victim’’,
[
(STR ’’balance’’, Var (STMap TAddr (STValue (TUInt 256)))),
(STR ’’deposit’’, Method ([], ASSIGN (Ref (STR ’’balance’’) [SENDER]) VALUE, None)),
(STR ’’withdraw’’, Method ([],
ITE
(LESS (UINT 256 0) (LVAL (Ref (STR ’’balance’’) [SENDER])))
(comp
(TRANSFER SENDER (LVAL (Ref (STR ’’balance’’) [SENDER])))
(ASSIGN (Ref (STR ’’balance’’) [SENDER]) (UINT 256 0)))
SKIP
, Nomne))],
SKIP)
]
[n

7.2.2 Definition of Contract

abbreviation myrexp::L
where "myrexp = Ref (STR ’’balance’’) [SENDER]"

abbreviation mylval::E
where "mylval = LVAL myrexp"

abbreviation assign::S
where "assign = ASSIGN (Ref (STR ’’balance’’) [SENDER]) (UINT 256 0)"

abbreviation transfer::S
where "transfer = TRANSFER SENDER (LVAL (Id (STR ’’bal’’)))"

217

7 Applications

abbreviation comp::S
where "comp = COMP assign transfer"

abbreviation keep::S
where "keep = BLOCK ((STR ’’bal’’, Value (TUInt 256)), Some mylval) comp"

abbreviation deposit::S
where "deposit = ASSIGN (Ref (STR ’’balance’’) [SENDER]) (PLUS (LVAL (Ref (STR ’’balance’’)
[SENDER])) VALUE)"

definition victim::"(Identifier, Member) fmap"
where "victim = fmap_of_list [
(STR ’’balance’’, Var (STMap TAddr (STValue (TUInt 256)))),
(STR ’’deposit’’, Method ([], deposit, Nome)),
(STR ’’withdraw’’, Method ([], keep, None))]"

7.2.3 Definition of Invariant

abbreviation "SUMM s =). (ad,x)/fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x. ReadL;n: X"

abbreviation "POS s = Vad x. fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x —> ReadLn: x
2 Oll

abbreviation "INV st s val bal =
fmlookup (storage st) (STR ’’Victim’’) = Some s A ReadL;,: (accessBalance (accounts st) (STR
’?Victim’’)) - val > bal A bal > 0"

definition frame_def: '"frame bal st = (ds. INV st s (SUMM s) bal A POS s)"

7.2.4 Verification

lemma conj3: "P = @ = R = P A (@ AN R)" by simp

lemma fmfinite: "finite ({(ad, x). fmlookup y ad = Some x})"
proof -
have "{(ad, x). fmlookup y ad = Some x} C dom (fmlookup y) X ran (fmlookup y)"
proof
fix x assume "x € {(ad, x). fmlookup y ad = Some x}"
then have "fmlookup y (fst x) = Some (snd x)" by auto
then have "fst x € dom (fmlookup y)" and "snd x € ran (fmlookup y)" using Map.ranI by
(blast,metis)
then show "x € dom (fmlookup y) X ran (fmlookup y)" by (simp add: mem_Times_iff)
qed
thus ?thesis by (simp add: finite_ran finite_subset)
qed

lemma fmlookup_finite:
fixes £ :: "’a = ’a"
and y :: "(’a, ’b) fmap"
assumes "inj_on (A(ad, x). (f ad, x)) {(ad, x). (fmlookup y o f) ad = Some x}"
shows "finite {(ad, x). (fmlookup y o f) ad = Some x}"
proof (cases rule: inj_on_finite[OF assms(1), of "{(ad, x)/ad x. (fmlookup y) ad = Some x}"])
case 1
then show 7case by auto
next
case 2
then have *: "finite {(ad, x) |ad x. fmlookup y ad = Some x}" using fmfinite[of y] by simp
show 7case using finite_image_set[OF *, of "A(ad, x). (ad, x)"] by simp
qged

lemma balance_inj: "inj_on (A(ad, x). (ad + (STR ’’.’’ + STR ’’balance’’),x)) {(ad, x). (fmlookup y o

f) ad = Some x}"
proof

218

7.2 Reentrancy (Reentrancy)

fix v v’ assume asmi: "v € {(ad, x). (fmlookup y o f) ad = Some x}" and asm2: "v’ € {(ad, x).
(fmlookup y o f) ad = Some x}"

and *:"(case v of (ad, x) = (ad + (STR ’’.’’ + STR ’’balance’’),x)) = (case v’ of (ad, x) = (ad +
(STR ’’.’’ + STR ’’balance’’),x))"

then obtain ad ad’ x x’ where **: "v = (ad,x)" and ***: "v’=(ad’,x’)" by auto

moreover from * *x *x*x have "ad + (STR ’’.’’ + STR ’’balance’’) = ad’ + (STR ’’.’’ + STR
’’balance’’)" by simp

with * *x have "ad = ad’" using String_Cancel[of ad "STR ’’.’’ + STR ’’balance’’" ad’] by simp

moreover from asml asm2 ** *** have "(fmlookup y o f) ad = Some x" and "(fmlookup y o f) ad’ =
Some x’" by auto

with calculation(3) have "x=x’" by simp

ultimately show "v=v’" by simp
qed

lemma transfer_ frame:
assumes "Accounts.transfer ad adv v (accounts st) = Some acc"
and "frame bal st"
and "ad # STR ’’Victim’’"

shows "frame bal (st(accounts := acc|))"
proof (cases "adv = STR ’’Victim’’")

case True

define st’ where "st’ = st(accounts := acc, stack := emptyStore, memory := emptyStore|"

from True assms(2) transfer_mono[OF assms(1)] have "(ds. fmlookup (storage st) (STR ’’Victim’’) =
Some s A ReadL;,: (accessBalance acc (STR ’’Victim’’)) - (SUMM s) > bal A bal > 0)" by (auto simp
add: frame_def)

then have "(ds. fmlookup (storage st’) (STR ’’Victim’’) = Some s A ReadL;,: (accessBalance (accounts
st’) (STR ’’Victim’’)) - (SUMM s) > bal A bal > 0)" by (auto simp add: st’_def)

then show 7thesis using assms(2) by (auto simp add:st’_def frame_def)
next

case False

define st’ where "st’ = st(accounts := acc, stack := emptyStore, memory := emptyStore|"

from False assms(2) assms(3) transfer_eq[OF assms(1)] have "(ds. fmlookup (storage st) (STR
’’Victim’’) = Some s A ReadL;,; (accessBalance acc (STR ’’Victim’’)) - (SUMM s) > bal A bal > 0)"
by (auto simp add:frame_def)

then have "(ds. fmlookup (storage st’) (STR ’’Victim’’) = Some s A ReadL;,: (accessBalance (accounts
st’) (STR ’’Victim’’)) - (SUMM s) > bal A bal > 0)" by (auto simp add: st’_def)

then show 7thesis using assms(2) by (auto simp add:st’_def frame_def)
qed

lemma decl_frame:
assumes "frame bal st"
and "decl al a2 a3 cp cd mem ¢ env st = Normal (rv, st’)"
shows "frame bal st’"
proof (cases a2)
case (Value t)
then show 7thesis
proof (cases a3)
case None
with Value show 7thesis using assms by (auto simp add:frame_def)
next
case (Some a)
show ?thesis
proof (cases a)
case (Pair a b)
then show ?thesis
proof (cases a)
case (KValue v)
then show 7thesis
proof (cases b)
case v2: (Value t’)
show 7thesis
proof (cases "Valuetypes.convert t’ t v")
case None
with Some Pair KValue Value v2 show ?thesis using assms by simp

219

7 Applications

next
case s2: (Some a)
show ?thesis
proof (cases a)
case p2: (Pair a b)
with Some Pair KValue Value v2 s2 show 7thesis using assms by (auto simp add:frame_def)
qed
qed
next
case (Calldata x2)
with Some Pair KValue Value show 7thesis using assms by simp
next
case (Memory x3)
with Some Pair KValue Value show ?thesis using assms by simp
next
case (Storage x4)
with Some Pair KValue Value show ?thesis using assms by simp
qed
next
case (KCDptr x2)
with Some Pair Value show 7thesis using assms by simp
next
case (KMemptr x3)
with Some Pair Value show 7thesis using assms by simp
next
case (KStoptr x4)
with Some Pair Value show 7thesis using assms by simp
qed
qed
qed
next
case (Calldata x2)
then show ?7thesis
proof (cases cp)
case True
then show ?thesis
proof (cases x2)
case (MTArray x t)
then show ?thesis
proof (cases a3)
case None
with Calldata show ?thesis using assms by simp
next
case (Some a)
show ?thesis
proof (cases a)
case (Pair a b)
then show 7thesis
proof (cases a)
case (KValue x1)
with Calldata Some Pair show ?thesis using assms by simp
next
case (KCDptr p)
define 1 where "1 = ShowL,q: (toploc c)"
obtain ¢’ where c_def: "dx. (x, c¢’) = allocate c" by simp
show ?thesis
proof (cases "cpm2m p 1 x t cd c’")
case None

with Calldata MTArray Some Pair KCDptr 1_def c_def True show 7thesis using assms by
simp
next
case s2: (Some a)

with Calldata MTArray Some Pair KCDptr 1_def c_def True show 7thesis using assms by
(auto simp add:frame_def)

220

7.2 Reentrancy (Reentrancy)

qed
next
case (KMemptr p)
define 1 where "1 = ShowL,q: (toploc c)"
obtain ¢’ where c_def: "dx. (x, c¢’) = allocate c" by simp
show ?thesis
proof (cases "cpm2m p 1 x t mem c’")
case None
with Calldata MTArray Some Pair KMemptr 1_def c_def True show ?thesis using assms by
simp
next
case s2: (Some a)
with Calldata MTArray Some Pair KMemptr 1_def c_def True show ?thesis using assms by
(auto simp add:frame_def)
qed
next
case (KStoptr x4)
with Calldata Some Pair show ?thesis using assms by simp
qed
qed
qed
next
case (MTValue x2)
with Calldata show 7thesis using assms by simp
qed
next
case False
with Calldata show ?thesis using assms by simp
qed
next
case (Memory x3)
then show 7thesis
proof (cases x3)
case (MTArray x t)
then show ?thesis
proof (cases a3)
case None
with Memory MTArray None show ?thesis using assms by (auto simp add:frame_def simp add:Let_def)
next
case (Some a)
then show ?thesis
proof (cases a)
case (Pair a b)
then show 7thesis
proof (cases a)
case (KValue x1)
with Memory MTArray Some Pair show ?thesis using assms by simp
next
case (KCDptr p)
define m 1 where "m = memory st" and "1 = ShowLy.+ (toploc m)"
obtain m’ where m’_def: "dx. (x, m’) = allocate m" by simp
then show ?thesis
proof (cases "cpm2m p 1 x t cd m’")
case None
with Memory MTArray Some Pair KCDptr m_def 1_def m’_def show 7thesis using assms by simp
next
case s2: (Some a)
with Memory MTArray Some Pair KCDptr m_def 1_def m’_def show 7thesis using assms by (auto
simp add:frame_def)
qed
next
case (KMemptr p)
then show ?thesis
proof (cases cp)

221

7 Applications

case True
define m 1 where "m = memory st" and "1 = ShowL,,.: (toploc m)"
obtain m’ where m’_def: "dx. (x, m’) = allocate m" by simp
then show ?thesis
proof (cases "cpm2m p 1 x t mem m’")
case None
with Memory MTArray Some Pair KMemptr True m_def 1_def m’_def show ?thesis using assms
by simp
next
case s2: (Some a)
with Memory MTArray Some Pair KMemptr True m_def 1_def m’_def show 7thesis using assms
by (auto simp add:frame_def)
qed
next
case False
with Memory MTArray Some Pair KMemptr show 7thesis using assms by (auto simp
add: frame_def)
qed
next
case (KStoptr p)
then show ?thesis
proof (cases b)
case (Value x1)
with Memory MTArray Some Pair KStoptr show ?thesis using assms by simp
next
case (Calldata x2)
with Memory MTArray Some Pair KStoptr show ?thesis using assms by simp
next
case m2: (Memory x3)
with Memory MTArray Some Pair KStoptr show ?thesis using assms by simp
next
case (Storage x4)
then show ?thesis
proof (cases x4)
case (STArray x’ t’)
define m 1 where "m = memory st" and "1 = ShowL,,.: (toploc m)"
obtain m’ where m’_def: "3Jx. (x, m’) = allocate m" by simp
from assms(2) Memory MTArray Some Pair KStoptr Storage STArray m_def 1_def m’_def
obtain s where *: "fmlookup (storage st) (address env) = Some s" using Let_def by (auto
simp add: Let_def split:option.split_asm)
then show ?thesis
proof (cases "cps2m p 1 x’ t’ s m’")
case None
with Memory MTArray Some Pair KStoptr Storage STArray m_def 1_def m’_def * show
?thesis using assms by simp
next
case s2: (Some a)
with Memory MTArray Some Pair KStoptr Storage STArray m_def 1_def m’_def * show
7thesis using assms by (auto simp add:frame_def)
ged
next
case (STMap x21 x22)
with Memory MTArray Some Pair KStoptr Storage show 7thesis using assms by simp
next
case (STValue x3)
with Memory MTArray Some Pair KStoptr Storage show 7thesis using assms by simp
qed
qed
qged
qged
qed
next
case (MTValue x2)
with Memory show ?thesis using assms by simp

222

7.2 Reentrancy (Reentrancy)

qed
next
case (Storage x4)
then show ?thesis
proof (cases x4)
case (STArray x t)
then show ?thesis
proof (cases a3)
case None
with Storage STArray show 7thesis using assms by simp
next
case (Some a)
then show 7thesis
proof (cases a)
case (Pair a b)
then show ?thesis
proof (cases a)
case (KValue x1)
with Storage STArray Some Pair show 7thesis using assms by simp
next
case (KCDptr x2)
with Storage STArray Some Pair show 7thesis using assms by simp
next
case (KMemptr x3)
with Storage STArray Some Pair show 7thesis using assms by simp
next
case (KStoptr x4)
with Storage STArray Some Pair show 7thesis using assms by (auto simp add:frame_def)
qged
qed
qed
next
case (STMap t t’)
then show ?thesis
proof (cases a3)
case None
with Storage STMap show ?thesis using assms by simp
next
case (Some a)
then show 7thesis
proof (cases a)
case (Pair a b)
then show ?thesis
proof (cases a)
case (KValue x1)
with Storage STMap Some Pair show ?thesis using assms by simp
next
case (KCDptr x2)
with Storage STMap Some Pair show ?thesis using assms by simp
next
case (KMemptr x3)
with Storage STMap Some Pair show ?thesis using assms by simp
next
case (KStoptr x4)
with Storage STMap Some Pair show ?thesis using assms by (auto simp add:frame_def)
qged
qged
qed
next
case (STValue x3)
with Storage show 7thesis using assms by simp
qed
qed

223

7 Applications

context statement_with_gas
begin

lemma secureassign:
assumes "stmt assign ep env cd st = Normal((), st’)"
and "fmlookup (storage st) (STR ’’Victim’’) = Some s"
and "address env = (STR ’’Victim’’)"
and "fmlookup (denvalue env) (STR ’’balance’’) = Some (Storage (STMap TAddr (STValue (TUInt
256))), Storeloc STR ’’balance’’)"
and "accessStore x (stack st) = Some (KValue (accessStorage (TUInt 256) (sender env + (STR ’’.°’
+ STR ’’balance’’)) s))"
and "ReadL;,: (accessBalance (accounts st) (STR ’’Victim’’)) - (SUMM s) > bal"
and "POS s"
obtains s’
where "fmlookup (storage st’) (STR ’’Victim’’) = Some s’"
and "ReadL;,: (accessBalance (accounts st’) (STR ’’Victim’’)) - (SUMM s’ + ReadL;,: (accessStorage
(TUInt 256) (sender env + (STR ’’.°’’ + STR ’’balance’’)) s)) > bal"
and "accessStore x (stack st’) = Some (KValue (accessStorage (TUInt 256) (sender env + (STR ’’.7°
+ STR ’’balance’’)) s))"
and "P0OS s’"
proof -
define st’’ where "st’’ = st(gas := gas st - costs assign ep env cd st|)"
define st’’’ where "st’’’ = st’’(gas := gas st’’ - costs. (UINT 256 0) ep env cd st’’|"
define st’’’’ where "st’’’’ = st’’’(gas := gas st’’’ - costs. SENDER ep env cd st’’’)"

from assms(1) have cl: "gas st > costs assign ep env cd st" by (auto split:if_split_asm)
have c2: "gas st’’ > costs. (UINT 256 0) ep env cd st’’"
proof (rule ccontr)
assume "- costs. (UINT 256 0) ep env cd st’’ < gas st’’"
with c1 show False using assms(1) st’’_def st’’’_def by auto
qed
hence *:"expr (UINT 256 0) ep env cd st’’ = Normal ((KValue (createUInt 256 0),Value (TUInt 256)),
st’’’)" using expr.simps(2)[of 256 0 ep env cd "st(gas := gas st - costs assign ep env cd st|)"]
st’’_def st’’’_def by simp
moreover have "gas st’’’ > costs. SENDER ep env cd st’’’"
proof (rule ccontr)
assume "— costs. SENDER ep env cd st’’’ < gas st’’’"
with c1 c¢2 show False using assms(1,4) st’’_def st’’’_def by auto
qed
with assms(4) have x**:"lexp (Ref (STR ’’balance’’) [SENDER]) ep env cd st’’’ = Normal ((LStoreloc
((sender env) + (STR ’’.°’ + STR ’’balance’’)), Storage (STValue (TUInt 256))), st’’’’)" using
st’’’’_def by simp
moreover have "Valuetypes.convert (TUInt 256) (TUInt 256) (ShowLin: 0) = Some (ShowL;n: O, TUInt
256)" by simp
moreover from * ** st’’_def assms(1) obtain s’’ where ***: "fmlookup (storage st’’’’) (address env)
= Some s’’" by (auto split:if_split_asm option.split_asm)
ultimately have **#*:"st’ = st’’’’(storage := fmupd (STR ’’Victim’’) (fmupd ((sender env) + (STR
77,22 + STR ’’balance’’)) (ShowLin: 0) s’’) (storage st)))" using cl st’’_def st’’’_def st’’’’_def
assms(1,3) by auto
moreover define s’ where s’_def: "s’ = (fmupd ((sender env) + (STR ’’.°’ + STR ’’balance’’))
(ShowL;pnt 0) s’°)"
ultimately have "fmlookup (storage st’) (STR ’’Victim’’) = Some s’"
and ***x*:"fmlookup s’ ((sender env) + (STR ’’.’’ + STR ’’balance’’)) = Some (ShowL;nt
0)" by simp_all
moreover have "SUMM s’ + ReadL;n: (accessStorage (TUInt 256) (sender env + (STR °’.’’ + STR
’’balance’’)) s) = SUMM s"
proof -
have s1: "SUMM s = (3 (ad,x)|fmlookup s (ad + (STR ’’.°’ + STR ’’balance’’)) = Some x A ad
sender env. ReadL;n: x) + ReadL;n: (accessStorage (TUInt 256) (sender emnv + (STR ’’.’’ + STR
’’balance’’)) s)"
proof (cases "fmlookup s (sender env + (STR ’’.°’ + STR ’’balance’’)) = None")
case True
then have "accessStorage (TUInt 256) (sender env + (STR ’’.’’ + STR ’’balance’’)) s = ShowL;,: 0"

224

7.2 Reentrancy (Reentrancy)

by simp
moreover have "{(ad,x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x} = {(ad,x).
fmlookup s (ad + (STR ’’.°’ + STR ’’balance’’)) = Some x A ad # sender env}"
proof
show "{(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x} C {(ad, x). fmlookup
s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad # sender env}"
proof
fix x
assume "x € {(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x}"
then show "x € {(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad #
sender env}" using True by auto
qed
next
show "{(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x N ad # sender env} C
{(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x }"
proof
fix x
assume "x € {(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad #
sender env}"
then show "x € {(ad, x). fmlookup s (ad + (STR ’’.°’ + STR ’’balance’’)) = Some x}" using
True by auto
qed
ged
then have "SUMM s = (0 (ad,x) |fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad #
sender env. ReadL;n: x)" by simp
ultimately show ?thesis using Read_ShowL_id by simp
next
case False
then obtain val where val_def: "fmlookup s (sender env + (STR ’’.°’ + STR ’’balance’’)) = Some
val" by auto

have "inj_on (A(ad, x). (ad + (STR ’’.°’ + STR ’’balance’’), x)) {(ad, x). (fmlookup s o (Aad. ad
+ (STR ’’.°’ + STR ’’balance’’))) ad = Some x}" using balance_inj by simp
then have "finite {(ad, x). (fmlookup s o (Aad. ad + (STR ’’.’’ + STR ’’balance’’))) ad = Some
x}" using fmlookup_finite[of "MAad. (ad + (STR ’’.’’ + STR ’’balance’’))" s] by simp
then have sumi: "finite ({(ad,x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad
sender env})" using finite_subset[of "{(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) =
Some x A ad # sender env}" "{(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x}"] by
auto
moreover have sum2: "(sender env,val) ¢ {(ad,x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’))
= Some x A ad # sender env}" by simp
moreover from sum!l x1 val_def have "insert (sender env,val) {(ad, x). fmlookup s (ad + (STR
’2.27 + STR ’’balance’’)) = Some x A ad # sender env} = {(ad, x). fmlookup s (ad + (STR ’’.’’ + STR
?’balance’’)) = Some x}" by auto
ultimately show ?thesis using sum.insert[0OF suml sum2, of "A(ad,x). ReadL;,: x"] val_def by simp
qed
moreover have s2: "SUMM s’ = (. (ad,x)|fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x
A ad # sender env. ReadLn: x)"
proof -
have "inj_on (A(ad, x). (ad + (STR ’’.°’ + STR ’’balance’’), x)) {(ad, x). (fmlookup s’ o (Aad.
ad + (STR ’’.’’ + STR ’’balance’’))) ad = Some x}" using balance_inj by simp
then have "finite {(ad, x). (fmlookup s’ o (Aad. ad + (STR ’’.’’ + STR ’’balance’’))) ad = Some
x}" using fmlookup_finite[of "Aad. (ad + (STR ’’.’’ + STR ’’balance’’))" s’] by simp
then have suml: "finite ({(ad,x). fmlookup s’ (ad + (STR ’’.°’ + STR ’’balance’’)) = Some x A ad
sender env})" using finite_subset[of "{(ad, x). fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) =
Some x A ad # sender env}" "{(ad, x). fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x}"] by
auto
moreover have sum2: "(sender env,ShowL;,: 0) ¢ {(ad,x). fmlookup s’ (ad + (STR ’’.’’ + STR
’’balance’’)) = Some x N ad # sender env}" by simp
moreover from x***x* have "insert (sender env,ShowL;,: 0) {(ad, x). fmlookup s’ (ad + (STR
72,27 + STR ’’balance’’)) = Some x A ad # sender env} = {(ad, x). fmlookup s’ (ad + (STR ’’.’’ + STR
’’balance’’)) = Some x}" by auto
ultimately show ?thesis using sum.insert[OF suml sum2, of "A(ad,x). ReadL;n: x"] Read_ShowL_id
by simp

225

7 Applications

qed
moreover have s3: "(} (ad,x)[fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad #
sender env. ReadL;n; x)
=(>_ (ad,x) |fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad # sender
env. ReadL;n: x)"
proof -
have "{(ad,x). fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad # sender env} =
{(ad,x). fmlookup s (ad + (STR ’’.°’ + STR ’’balance’’)) = Some x A ad # sender env}"
proof
show "{(ad, x). fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x N ad # sender env}
C {(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad # sender env}"
proof
fix xx
assume "xx € {(ad, x). fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad #
sender env}"
then obtain ad x where "xx = (ad,x)" and "fmlookup s’ (ad + (STR ’’.°’ + STR ’’balance’’))
= Some x" and "ad # sender env" by auto
moreover have "s’’=s" using assms(2,3) s’_def *** st’’’’_def st’’’_def st’’_def by simp
moreover from ‘ad # sender env‘ have "ad + (STR ’’.’’ + STR ’’balance’’) # (sender env) +
(STR °’.’’ + STR ’’balance’’)" using String Cancel[where c="(STR ’’.’’ + STR ’’balance’’)"] by auto
ultimately show "xx € {(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A
ad # sender env}" using s’_def by simp
qged
next
show "{(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad # sender env}
C {(ad, x). fmlookup s’ (ad + (STR ’’.°’ + STR ’’balance’’)) = Some x A ad # sender env}"
proof
fix xx
assume "xx € {(ad, x). fmlookup s (ad + (STR ’’.°’ + STR ’’balance’’)) = Some x A ad #
sender env}"
then obtain ad x where "xx = (ad,x)" and "fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) =
Some x" and "ad # sender env" by auto
moreover have "s’’=s" using assms(2,3) s’_def *** st’’’’_def st’’’_def st’’_def by simp
moreover from ‘ad # sender env‘ have "ad + (STR ’’.’’ + STR ’’balance’’) # (sender env) +
(STR °’.’’ + STR ’’balance’’)" using String Cancel[where c="(STR ’’.’’ + STR ’’balance’’)"] by auto
ultimately show "xx € {(ad, x). fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A
ad # sender env}" using s’_def by simp
qged
qged
thus ?thesis by simp
qed
ultimately have "SUMM s’ = SUMM s - ReadL;,: (accessStorage (TUInt 256) (sender env + (STR ’’.°7 +
STR ’’balance’’)) s) "
proof -
from s2 have "SUMM s’ = () (ad,x)|fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad
sender env. ReadL;n: x)" by simp

also from s3 have "... = (0 (ad,x)/fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad
sender env. ReadL;,: x)" by simp
also from s1 have "... = SUMM s - ReadL;n,: (accessStorage (TUInt 256) (sender env + (STR ’’.°’ +

STR ’’balance’’)) s) " by simp
finally show ?thesis .
qed
then show ?thesis by simp
qed
moreover have "P0S s’"
proof (rule allI[OF allIl])

fix x xa
show "fmlookup s’ (x + (STR ’’.’’ + STR ’’balance’’)) = Some xa — 0 < ([xa]::int)"
proof

assume al: "fmlookup s’ (x + (STR ’’.’’ + STR ’’balance’’)) = Some xa"
show "0 < ([xa]::int)"
proof (cases "x = sender env")

case True

then show ?thesis using s’_def al using Read_ShowL_id by auto

226

7.2 Reentrancy (Reentrancy)

next
case False
moreover have "s’’=s" using assms(2,3) s’_def *** st’’’’_def st’’’_def st’’_def by simp
ultimately have "fmlookup s (x + (STR ’’.°’ + STR ’’balance’’)) = Some xa" using s’_def al
String Cancel by (auto split:if_split_asm)
then show ?thesis using assms(7) by simp
qged
qed
qed
moreover have "ReadL;,: (accessBalance (accounts st’) (STR ’’Victim’’)) = ReadL;,: (accessBalance
(accounts st) (STR ’’Victim’’))" using **** st’’_def st’’’_def st’’’’_def by simp
moreover from assms(5) have "accessStore x (stack st’) = Some (KValue (accessStorage (TUInt 256)
(sender env + (STR ’’.°’ + STR ’’balance’’)) s))"using **** st’’_def st’’’_def st’’’’_def by simp
ultimately show ?thesis using assms(6) that by simp
qed

lemma securesender:
assumes "expr SENDER ep env cd st = Normal((KValue v,t), st’)"
and "fmlookup (storage st) (STR ’’Victim’’) = Some s"
and "ReadL;,: (accessBalance (accounts st) (STR ’’Victim’’)) - SUMM s > bal A POS s"
obtains s’ where
"v = sender env"
and "t = Value TAddr"
and "fmlookup (storage st’) (STR ’’Victim’’) = Some s’"
and "ReadL;,: (accessBalance (accounts st’) (STR ’’Victim’’)) - SUMM s’ > bal A POS s’"
using assms by (auto split:if_split_asm)

lemma securessel:
assumes "ssel type loc [] ep env cd st = Normal (x, st’)"
and "fmlookup (storage st) (STR ’’Victim’’) = Some s"
and "ReadL;,: (accessBalance (accounts st) (STR ’’Victim’’)) - SUMM s > bal A POS s"
obtains s’ where
"x = (loc, type)"
and "fmlookup (storage st’) (STR ’’Victim’’) = Some s’"
and "ReadL;,: (accessBalance (accounts st’) (STR ’’Victim’’)) - SUMM s’ > bal A POS s’"
using assms by auto

lemma securessel2:
assumes "ssel (STMap TAddr (STValue (TUInt 256))) (STR ’’balance’’) [SENDER] ep env cd st = Normal
((loc, type), st’)"
and "fmlookup (storage st) (STR ’’Victim’’) = Some s"
and "ReadL;,: (accessBalance (accounts st) (STR ’’Victim’’)) - SUMM s > bal A POS s"
obtains s’ where
"loc = sender env + (STR ’’.’’ + STR ’’balance’’)"
and "type = STValue (TUInt 256)"
and "fmlookup (storage st’) (STR ’’Victim’’) = Some s’"
and "ReadL;,: (accessBalance (accounts st’) (STR ’’Victim’’)) - SUMM s’ > bal A POS s’"
proof -
from assms(1) obtain v t st’’ st’’’ x
where *: "expr SENDER ep env cd st = Normal ((KValue v, t), st’’)"
and **: "ssel (STValue (TUInt 256)) (hash (STR ’’balance’’) v) [] ep env cd st’’ = Normal
(x,8t??°)"
and "st’ = st’’’"
by (auto split:if_split_asm)
moreover obtain s’’ where "v =sender env"
and "t = Value TAddr"
and ***:"fmlookup (storage st’’) (STR ’’Victim’’) = Some s’’"
and ****: "ReadL;,; (accessBalance (accounts st’’) (STR ’’Victim’’)) - SUMM s’’ > bal A POS s’’"
using securesender [OF * assms(2,3)] by auto
moreover obtain s’’’ where "x = (hash (STR ’’balance’’) v, STValue (TUInt 256))"
and "fmlookup (storage st’’’) (STR ’’Victim’’) = Some s’’’"
and "ReadL;,: (accessBalance (accounts st’’’) (STR ’’Victim’’)) - SUMM s’’’ > bal A P0OS s’’’"
using securessel [OF ** *** *x*¥x] by auto

227

7 Applications

ultimately show ?thesis using assms(1) that by simp
qed

lemma securerexp:
assumes "rexp myrexp e, env cd st = Normal ((v, t), st’)"

and "fmlookup (denvalue env) (STR ’’balance’’) = Some (Storage (STMap TAddr (STValue (TUInt
256))), Storeloc STR ’’balance’’)"

and "fmlookup (storage st) (STR ’’Victim’’) = Some s"
and "ReadL;,; (accessBalance (accounts st) (STR ’’Victim’’)) - SUMM s > bal A POS s"
and "address env = STR ’’Victim’’"
obtains s’ where
"fmlookup (storage st’) (address env) = Some s’"
and "v = KValue (accessStorage (TUInt 256) (sender env + (STR ’’.’’ + STR ’’balance’’)) s’)"
and "t = Value (TUInt 256)"

and "ReadL;,; (accessBalance (accounts st’) (STR ’’Victim’’)) - SUMM s’ > bal A POS s’"
proof -

from assms(1,2) obtain 1’ t’’ st’’ s
where *: "ssel (STMap TAddr (STValue (TUInt 256))) (STR ’’balance’’) [SENDER] e, env cd st = Normal
((1’, STvalue t’’), st’’)"
and "fmlookup (storage st’’) (address env) = Some s"
and "v = KValue (accessStorage t’’ 1’ s)"
and "t = Value t’’" and "st’=st’’"
by (simp split:if_split_asm option.split_asm)
moreover obtain s’’ where
"fmlookup (storage st’’) (STR ’’Victim’’) = Some s’’"
and "ReadL;,: (accessBalance (accounts st’’) (STR ’’Victim’’)) - SUMM s’’ > bal A POS s’’"

and "l’=sender env + (STR ’’.’’ + STR ’’balance’’)" and "t’’ = TUInt 256" using securessel2[0F *
assms(3,4)] by blast

ultimately show ?thesis using assms(1,5) that by auto
qed

lemma securelval:
assumes "expr mylval ep env cd st = Normal((v,t), st’)"

and "fmlookup (denvalue env) (STR ’’balance’’) = Some (Storage (STMap TAddr (STValue (TUInt
256))), Storeloc STR ’’balance’’)"

and "fmlookup (storage st) (STR ’’Victim’’) = Some s"

and "ReadL;,: (accessBalance (accounts st) (STR ’’Victim’’)) - SUMM s > bal A bal > 0 A P0OS s"
and "address env = STR ’’Victim’’"

obtains s’ where "fmlookup (storage st’) (STR ’’Victim’’) = Some s’"
and "v = KValue (accessStorage (TUInt 256) (sender env + (STR ’’.’’ + STR ’’balance’’)) s’)"
and "t = Value (TUInt 256)"

and "ReadL;,: (accessBalance (accounts st’) (STR ’’Victim’’)) - SUMM s’ > bal A bal > 0 A POS
s)"

proof -
define st’’ where "st’’ = st(gas := gas st - costs. mylval ep env cd st|"
with assms(3,4) have *: "fmlookup (storage st’’) (STR ’’Victim’’) = Some s"

and **: "ReadL;,: (accessBalance (accounts st’’) (STR ’’Victim’’)) - SUMM s > bal A P0OS s" by
simp+

from assms(1) st’’_def obtain v’ t’ st’’’ where ***: "rexp myrexp ep env cd st’’ = Normal ((v, t),
St”’)"

and "v’ = v"
and "t’ = t"
and "gt’’’ = gt’"
by (simp split:if_split_asm)

with securerexp[0F *** assms(2) * **] show ?7thesis using assms(1,4,5) that by auto
qed

lemma plus_frame:

assumes "expr (PLUS (LVAL (Ref (STR ’’balance’’) [SENDER])) VALUE) ep env cd st = Normal (kv, st’)"
and "ReadL;,: (accessStorage (TUInt 256) (sender env + (STR ’’.°’ + STR ’’balance’’)) s) +
ReadL;,: (svalue env) < 2°256"

and "ReadL;,: (accessStorage (TUInt 256) (sender env + (STR ’’.’° + STR ’’balance’’)) s) +

228

7.2 Reentrancy (Reentrancy)

ReadL;n: (svalue env) > 0"
and "fmlookup (storage st) (STR ’’Victim’’) = Some s"
and "ReadL;,; (accessBalance (accounts st) (STR ’’Victim’’)) - SUMM s > bal"
and "fmlookup (denvalue env) (STR ’’balance’’) = Some (Storage (STMap TAddr (STValue (TUInt
256))), Storeloc STR ’’balance’’)"
and "address env = (STR ’’Victim’’)"
shows "kv = (KValue (ShowL;n: (ReadL;,: (accessStorage (TUInt 256) (sender env + (STR ’’.’’ + STR
’’balance’’)) s) + ReadL;,: (svalue env))), Value (TUInt 256))"
and "fmlookup (storage st’) (STR ’’Victim’’) = Some s"
and "ReadL;,: (accessBalance (accounts st’) (STR ’’Victim’’)) = ReadL;,: (accessBalance (accounts
st) (STR ’’Victim’’))"
proof -
define st0 where "st0 = st(gas := gas st - costs. (PLUS (LVAL (Ref (STR ’’balance’’) [SENDER]))
VALUE) ep env cd st))"
define st1 where "st1 = stO(gas := gas stO - costs. (LVAL (Ref (STR ’’balance’’) [SENDER])) ep env cd
sto)"
define st2 where "st2 = stl(gas := gas stl - costs. SENDER ep env cd st1|)"

define st3 where "st3 = st2(gas := gas st2 - costs. VALUE ep env cd st2)"
from assms(1) obtain v1 t1 v2 t2 st’’ st’’’ st’’’’ v t where
*: "expr (LVAL (Ref (STR ’’balance’’) [SENDER])) ep env cd stO = Normal ((KValue v1, Value t1),
st’)"
and #**: "expr VALUE ep env cd st’’ = Normal ((KValue v2, Value t2), st’’’)"
and ***: "add t1 t2 vl v2 = Some (v,t)"
and **#**x: "expr (PLUS (LVAL (Ref (STR ’’balance’’) [SENDER])) VALUE) ep env cd st = Normal ((KValue
v, Value t), st’’’’)"
using st0_def by (auto simp del: expr.simps simp add:expr.simps(11) split:if_split_asm
result.split_asm Stackvalue.split_asm Type.split_asm option.split_asm)

moreover have "expr (LVAL (Ref (STR ’’balance’’) [SENDER])) ep env cd stO = Normal ((KValue
(accessStorage (TUInt 256) (sender env + (STR ’’.’° + STR ’’balance’’)) s), Value (TUInt 256)), st’’)"
and "st’’ = st2"
proof -
from * obtain 1’ t’ s’’ where **x**: "ssel (STMap TAddr (STValue (TUInt 256))) (STR ’’balance’’)
[SENDER] ep env cd stl = Normal ((1’, STValue t’), st’’)"
and ******: "fmlookup (storage st’’) (address env) = Some s’’" and "vl = (accessStorage t’ 1’
s’’)" and "t’ = t1"
using st0_def stl_def assms(4,6) by (auto simp del: accessStorage.simps ssel.simps
split:if_split_asm option.split_asm STypes.split_asm result.split_asm)
moreover from ***** have "expr SENDER ep env cd stl = Normal ((KValue (sender env), Value TAddr),
st2)" using st2_def by (simp split:if_split_asm)
with *x**x have "st’’ = st2" and "1’ = sender env + (STR ’’.’’ + STR ’’balance’’)" and "t’ =
TUInt 256" by auto
moreover from x*x*xx*x ‘st’’ = st2‘ have "s’’=s" using st0_def stl_def st2_def assms(4,7) by auto
ultimately show "expr (LVAL (Ref (STR ’’balance’’) [SENDER])) ep env cd stO = Normal ((KValue
(accessStorage (TUInt 256) (sender env + (STR ’’.’° + STR ’’balance’’)) s), Value (TUInt 256)), st’’)"
and "st’’ = st2" using * by (auto split:if_split_asm)
qed

moreover from ** ‘st’’ = st2‘ have "expr VALUE ep env cd st2 = Normal ((KValue (svalue env), Value
(TUInt 256)), st3)" and "st’’’ = st3" using stl_def st3_def by (auto split:if_split_asm)
moreover have "add (TUInt 256) (TUInt 256) (accessStorage (TUInt 256) (sender env + (STR °’.°’ + STR
?’balance’’)) s) (svalue env) = Some (ShowL;n: (ReadL;n: (accessStorage (TUInt 256) (sender env + (STR
’2,22 + STR ’’balance’’)) s) + ReadL;,: (svalue env)), TUInt 256)" (is "?LHS = 7RHS")
proof -
have "?LHS = Some (createUInt 256 ([(accessStorage (TUInt 256) (sender env + (STR ’’.’’ + STR
?’balance’’)) s)]+ [(svalue env)]|), TUInt 256)" using add_def olift.simps(2)[of "(+)" 256 256] by simp
with assms(2,3) show "?7LHS = 7RHS" by simp
qed
ultimately have "v= (ShowL;,: (ReadL;,: (accessStorage (TUInt 256) (sender env + (STR ’’.’’ + STR
’’balance’’)) s) + ReadL;n: (svalue env)))" and "t = TUInt 256" and "st’ = st3" using st0_def assms(1)
by (auto split:if_split_asm)
with assms(1) *#** have "kv = (KValue (ShowL;,: (ReadL;,: (accessStorage (TUInt 256) (sender env +
(STR ’’.’’> + STR ’’balance’’)) s) + ReadL;n: (svalue env))), Value (TUInt 256))" using stO_def by simp

229

7 Applications

moreover from assms(4) stO_def stl_def st2_def st3_def ‘st’ = st3‘ have "fmlookup (storage st’)
(STR ’’Victim’’) = Some s" by simp

moreover from assms(5) stO_def stl_def st2 def st3_def ‘st’ = st3‘ have "ReadL;,: (accessBalance
(accounts st’) (STR ’’Victim’’)) - SUMM s > bal" by simp

moreover have "ReadL;,: (accessBalance (accounts st’) (STR ’’Victim’’)) = ReadL;,: (accessBalance
(accounts st) (STR ’’Victim’’))" using st0_def stl_def st2_def st3_def ‘st’ = st3‘ by simp

ultimately show "kv = (KValue (ShowL;,: (ReadL;,: (accessStorage (TUInt 256) (sender env + (STR ’’.°’
+ STR ’’balance’’)) s) + ReadL;,: (svalue env))), Value (TUInt 256))"

and "fmlookup (storage st’) (STR ’’Victim’’) = Some s"

and "ReadL;,: (accessBalance (accounts st’) (STR ’’Victim’’)) = ReadL;,: (accessBalance (accounts st)
(STR ’’Victim’’))" by auto
qed

lemma deposit_frame:
assumes "stmt deposit ep env cd st = Normal ((), st’)"
and "fmlookup (storage st) (STR ’’Victim’’) = Some s"
and "address env = (STR ’’Victim’’)"
and "fmlookup (denvalue env) (STR ’’balance’’) = Some (Storage (STMap TAddr (STValue (TUInt
256))), Storeloc STR ’’balance’’)"
and "ReadL;,: (accessBalance (accounts st) (STR ’’Victim’’)) - SUMM s > bal + ReadL;,: (svalue
env)"
and "ReadL;,: (accessStorage (TUInt 256) (sender env + (STR ’’.°’ + STR ’’balance’’)) s) +
ReadL;,: (svalue env) < 2°256"
and "ReadL;,: (accessStorage (TUInt 256) (sender env + (STR ’’.°’ + STR ’’balance’’)) s) +
ReadL;n: (svalue env) > 0"
and "POS s"
obtains s’
where "fmlookup (storage st’) (STR ’’Victim’’) = Some s’"
and "ReadL;,: (accessBalance (accounts st’) (STR ’’Victim’’)) - SUMM s’ > bal"
and "P0OS s’"
proof -
define st0 where "st0 = st(gas := gas st - costs deposit ep env cd st|"

from assms(1) stO_def obtain kv st’’ where *: "expr (PLUS (LVAL (Ref (STR ’’balance’’) [SENDER]))
VALUE) ep env cd stO = Normal (kv, st’’)" by (auto simp del: expr.simps split:if_split_asm
result.split_asm)
moreover have "fmlookup (storage st0) (STR ’’Victim’’) = Some s" using stO_def assms(2) by simp
moreover from assms(5) have "ReadL;,: (accessBalance (accounts st0) (STR ’’Victim’’)) - SUMM s >
bal + ReadL;n: (svalue env)" using stO_def by simp
ultimately have **: "kv = (KValue |([accessStorage (TUInt 256) (sender env + (STR ’’.’’ + STR
’’balance’’)) s]|::int) + [svalue env]||, Value (TUInt 256))"
and st’’_s:"fmlookup (storage st’’) STR ’’Victim’’ = Some s"
and ac: "ReadL;,: (accessBalance (accounts st’’) (STR ’’Victim’’)) = ReadL;,: (accessBalance
(accounts st0) (STR ’’Victim’’))"
using plus_frame[OF _ assms(6,7) _ _ assms(4,3), of ep cd st0 kv st’’] by auto

define v where "v= ([accessStorage (TUInt 256) (sender env + (STR ’’.’’ + STR ’’balance’’)) s]::int)
+ [svalue env]"
moreover from * ** assms(1) stO_def obtain rl st’’’ where ***: "lexp (Ref (STR ’’balance’’)
[SENDER]) ep env cd st’’ = Normal (rl, st’’’)" by (auto simp del:expr.simps lexp.simps
accessStorage.simps split:if_split_asm result.split_asm)
moreover from x*xx assms have "rl = (LStoreloc ((sender env) + (STR ’’.’’ + STR ’’balance’’)),
Storage (STValue (TUInt 256)))" and st’’’_def: "st’’’ = st’’(gas := gas st’’ - costs. SENDER ep env cd
st’ ;D n
proof -
from *#* assms(4) obtain 1’ t’ where
"fmlookup (denvalue env) (STR ’’balance’’) = Some (Storage (STMap TAddr (STValue (TUInt 256))),
Storeloc (STR ’’balance’’))"
and *:"ssel (STMap TAddr (STValue (TUInt 256))) (STR ’’balance’’) [SENDER] ep env cd st’’ =
Normal ((1’,t’), st’’’)"
and "rl = (LStoreloc 1’, Storage t’)"
by (auto simp del: ssel.simps split:if_split_asm option.split_asm result.split_asm)

230

7.2 Reentrancy (Reentrancy)

moreover from * have "ssel (STMap TAddr (STValue (TUInt 256))) (STR ’’balance’’) [SENDER] ep env
cd st’’ = Normal ((((sender env) + (STR °’.’’ + STR ’’balance’’)), STValue (TUInt 256)), st’’(gas :=
gas st’’ - costs. SENDER ep env cd st’’))" by (simp split:if_split_asm)
ultimately show "rl = (LStoreloc ((sender env) + (STR ’’.°’’ + STR ’’balance’’)), Storage (STValue
(TUInt 256)))" and st’’’_def: "st’’’ = st’’(gas := gas st’’ - costs. SENDER ep env cd st’’))" by auto
qed
moreover have "Valuetypes.convert (TUInt 256) (TUInt 256) (ShowL;n: v) = Some (ShowL;n: v, TUInt
256)" by simp

moreover from st’’_s st’’’_def have s’’’_s: "fmlookup (storage st’’’) (STR ’’Victim’’) = Some s" by
simp
ultimately have ****:"st’ = st’’’(storage := fmupd (STR ’’Victim’’) (fmupd ((sender emv) + (STR ’’.’’
+ STR ’’balance’’)) (ShowL;n: v) s) (storage st’’’)|)"
using assms(1) * ** stO_def assms(3) by (auto simp del:expr.simps lexp.simps accessStorage.simps
split:if_split_asm)

moreover define s’ where "s’ = (fmupd ((sender env) + (STR ’’.°’ + STR ’’balance’’)) (ShowLin: V)
S) "
ultimately have "fmlookup (storage st’) (STR ’’Victim’’) = Some s’"
and *****:"fmlookup s’ ((sender env) + (STR ’’.’’ + STR ’’balance’’)) = Some (ShowLint
v)" by simp_all

moreover have "SUMM s’ = SUMM s + [svalue env]"
proof -
have s1: "SUMM s = (3 (ad,x)/fmlookup s (ad + (STR ’’.°’ + STR ’’balance’’)) = Some x A ad
sender env. ReadL;n,: x) + ReadL;,: (accessStorage (TUInt 256) (sender env + (STR ’’.’’ + STR
’’balance’’)) s)"
proof (cases "fmlookup s (sender env + (STR ’’.°’ + STR ’’balance’’)) = None")
case True
then have "accessStorage (TUInt 256) (sender env + (STR ’’.’’ + STR ’’balance’’)) s = ShowLin: 0"
by simp
moreover have "{(ad,x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x} = {(ad,x).
fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad # sender env}"
proof
show "{(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x} C {(ad, x). fmlookup
s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad # sender env}"
proof
fix x
assume "x € {(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x}"
then show "x € {(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad #
sender env}" using True by auto
qed
next
show "{(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad # sender env} C
{(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x }"
proof
fix x
assume "x € {(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad #
sender envl}"
then show "x € {(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x}" using
True by auto
qed
ged
then have "SUMM s = (O (ad,x)|fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad #
sender env. ReadLin: x)" by simp
ultimately show ?thesis using Read_ShowL_id by simp
next
case False
then obtain val where val_def: "fmlookup s (sender env + (STR ’’.’°’ + STR ’’balance’’)) = Some
val" by auto

have "inj_on (A(ad, x). (ad + (STR ’’.’’ + STR ’’balance’’), x)) {(ad, x). (fmlookup s o (Aad. ad

+ (STR ’’.°’ + STR ’’balance’’))) ad = Some x}" using balance_inj by simp
then have "finite {(ad, x). (fmlookup s o (Aad. ad + (STR ’’.’’ + STR ’’balance’’))) ad = Some

231

7 Applications

x}" using fmlookup_finite[of "Mad. (ad + (STR ’’.’’ + STR ’’balance’’))" s] by simp
then have suml: "finite ({(ad,x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad
sender env})" using finite_subset[of "{(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) =
Some x A ad # sender env}" "{(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x}"] by
auto
moreover have sum2: "(sender env,val) ¢ {(ad,x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’))
= Some x A ad # sender env}" by simp
moreover from suml x1 val_def have "insert (sender env,val) {(ad, x). fmlookup s (ad + (STR
77,27 + STR ’’balance’’)) = Some x A ad # sender env} = {(ad, x). fmlookup s (ad + (STR ’’.’’ + STR
’’balance’’)) = Some x}" by auto
ultimately show ?thesis using sum.insert[0OF suml sum2, of "A(ad,x). ReadL;,: x"] val_def by simp
qged
moreover have s2: "SUMM s’ = () (ad,x)|fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x
A ad # sender env. ReadL;,: x) + v"
proof -
have "inj_on (A(ad, x). (ad + (STR ’’.°’ + STR ’’balance’’), x)) {(ad, x). (fmlookup s’ o (Aad.
ad + (STR ’’.°’ + STR ’’balance’’))) ad = Some x}" using balance_inj by simp
then have "finite {(ad, x). (fmlookup s’ o (Aad. ad + (STR ’’.’’ + STR ’’balance’’))) ad = Some
x}" using fmlookup_finite[of "Aad. (ad + (STR ’’.’’ + STR ’’balance’’))" s’] by simp
then have sumi: "finite ({(ad,x). fmlookup s’ (ad + (STR ’’.°’ + STR ’’balance’’)) = Some x A ad
sender env})" using finite_subset[of "{(ad, x). fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) =
Some x A ad # sender env}" "{(ad, x). fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x}"] by
auto
moreover have sum2: "(sender env,ShowL;,: v) ¢ {(ad,x). fmlookup s’ (ad + (STR ’’.’’ + STR
’’balance’’)) = Some x A ad # sender env}" by simp
moreover from x***** have "insert (sender env,ShowL;,: v) {(ad, x). fmlookup s’ (ad + (STR
?7.72 + STR ’’balance’’)) = Some x A ad # sender env} = {(ad, x). fmlookup s’ (ad + (STR ’’.’’ + STR
’’balance’’)) = Some x}" by auto
ultimately show ?thesis using sum.insert[0OF suml sum2, of "A(ad,x). ReadL;,: x"] Read_ShowL_id
by simp
qed
moreover have s3: "(} (ad,x)[fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad #
sender env. ReadL;,: X)
=3 (ad,x) |fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad # sender
env. ReadL;n: x)"
proof -
have "{(ad,x). fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad # sender env} =
{(ad,x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad # sender env}"
proof
show "{(ad, x). fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad # sender env}
C {(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad # sender env}"
proof
fix xx
assume "xx € {(ad, x). fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad #
sender env}"
then obtain ad x where "xx = (ad,x)" and "fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’))
= Some x" and "ad # sender env" by auto
then have "fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x" using s’_def
String Cancel[of ad "(STR ’’.°’’ + STR ’’balance’’)" "sender env"] by (simp split:if_split_asm)
with ‘ad # sender env‘ ‘xx = (ad,x)‘ show "xx € {(ad, x). fmlookup s (ad + (STR ’’.°’ + STR
’’balance’’)) = Some x A ad # sender env}" by simp
qed
next
show "{(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad # sender env}
C {(ad, x). fmlookup s’ (ad + (STR ’’.°’ + STR ’’balance’’)) = Some x A ad # sender envl}"
proof
fix xx
assume "xx € {(ad, x). fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x N ad #
sender env}"
then obtain ad x where "xx = (ad,x)" and "fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) =
Some x" and "ad # sender env" by auto
then have "fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x" using s’_def
String_Cancel[of ad "(STR ’’.°’ + STR ’’balance’’)" "sender env"] by (auto split:if_split_asm)
with ‘ad # sender env‘ ‘xx = (ad,x)‘ show "xx € {(ad, x). fmlookup s’ (ad + (STR ’’.°’ +

232

7.2 Reentrancy (Reentrancy)

STR ’’balance’’)) = Some x A ad # sender env}" by simp
qed
qed
thus ?thesis by simp
qed
moreover from s’_def v_def have "ReadL;,: (accessStorage (TUInt 256) (sender env + (STR ’’.°7 +
STR ’’balance’’)) s’) = ReadL;,: (accessStorage (TUInt 256) (sender env + (STR ’’.°’ + STR ’’balance’’))
s) + [svalue env|" using Read_ShowL_id by (simp split:option.split_asm)
ultimately have "SUMM s’ = SUMM s + [svalue env]"
proof -
from s2 have "SUMM s’ = (3 (ad,x)|fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad
sender env. ReadL;,: x) + v" by simp

also from s3 have "... = (3 (ad,x)/fmlookup s (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x A ad
sender env. ReadL;n,: x) + v" by simp
also from s1 have "... = SUMM s - ReadL;n: (accessStorage (TUInt 256) (sender env + (STR ’’.°’ +

STR ’’balance’’)) s) + v" by simp
finally show ?thesis using v_def by simp
qed
then show ?7thesis by simp
qed
moreover have "PgS s’"
proof (rule allI[OF allI])
fix ad xa
show "fmlookup s’ (ad + (STR °’.’’ + STR ’’balance’’)) = Some xa — 0 < ([xa]::int)"
proof
assume al: "fmlookup s’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some xa"
show "0 < ([xa]::int)"
proof (cases "ad = sender env")
case True
then show 7thesis using s’_def assms(7) Read_ShowL_id al v_def by auto
next
case False
then show 7thesis using s’_def assms(7,8) using Read_ShowL_id al v_def by (auto
split:if_split_asm)
ged
qed
qed
moreover have "ReadL,;,: (accessBalance (accounts st’) (STR ’’Victim’’)) = ReadL;,: (accessBalance
(accounts st) (STR ’’Victim’’))" using **** ac stO_def st’’’_def by simp
ultimately show ?thesis using that assms(5) by simp
qged

lemma secure:

"address evl # (STR ’’Victim’’) A fmlookup epl (STR ’’Victim’’) = Some (victim, SKIP) —
(Vrvl stl’ bal. frame bal stl A msel c1 tl1 11 xel epl evl cdl stl = Normal (rvl, stl’) — frame bal
st1’)"

"address ev2 # (STR ’’Victim’’) A fmlookup ep2 (STR ’’Victim’’) = Some (victim, SKIP) —
(Vrv2 st2’ bal. frame bal st2 A ssel t2 12 xe2 ep2 ev2 cd2 st2 = Normal (rv2, st2’) —> frame bal
st27)"

"address ev5 # (STR ’’Victim’’) A fmlookup ep5 (STR ’’Victim’’) = Some (victim, SKIP) —>
(Vrv3 st5’ bal. frame bal st5 A lexp 15 ep5 evb cd5 stb5 = Normal (rv3, st5’) — frame bal st5’)"

"address ev4 # (STR ’’Victim’’) A fmlookup ep4 (STR ’’Victim’’) = Some (victim, SKIP) —
(Vrv4 st4’ bal. frame bal st4 N expr e4 ep4 ev4d cd4 st4 = Normal (rv4, st4’) — frame bal st4’)"

"address lev # (STR ’’Victim’’) A fmlookup lep (STR ’’Victim’’) = Some (victim, SKIP) — (Vev
cd st st’ bal. load lcp lis 1xs lep levO lcdO 1st0O lev lcd 1st = Normal ((ev, cd, st), st’) — (frame
bal 1st0 — frame bal st) A (frame bal lst — frame bal st’) A address levO = address ev A sender
levO = sender ev A svalue lev0 = svalue ev)"

"address ev3 # (STR ’’Victim’’) A fmlookup ep3 (STR ’’Victim’’) = Some (victim, SKIP) —
(Vrv3 st3’ bal. frame bal st3 A rexp 13 ep3 ev3 cd3 st3 = Normal (rv3, st3’) — frame bal st3’)"

"(fmlookup ep6 (STR ’’Victim’’) = Some (victim, SKIP) —

(Vst6’. stmt s6 ep6 ev6 cd6 st6 = Normal((), st6’) —
((address ev6 # (STR ’’Victim’’) — (Vbal. frame bal st6 —> frame bal st6’))
A (address ev6 = (STR ’’Victim’’) —

233

7 Applications

(Vs val bal x. s6 = transfer
A INV st6 s (SUMM s + ReadL;,: val) bal A POS s
A fmlookup (denvalue ev6) (STR ’’bal’’) = Some (Value (TUInt 256), Stackloc x)
A accessStore x (stack st6) = Some (KValue val)
A sender ev6 # address ev6
— (ds’. fmlookup (storage st6’) (STR ’’Victim’’) = Some s’
A ReadL;,: (accessBalance (accounts st6’) (STR ’’Victim’’)) - (SUMM s’) > bal A bal
> 0 A POS s7)) A
(Vs bal x. s6 = comp
A INV st6 s (SUMM s) bal A POS s
A fmlookup (denvalue ev6) (STR ’’bal’’) = Some (Value (TUInt 256), Stackloc x)
A fmlookup (denvalue ev6) (STR ’’balance’’) = Some (Storage (STMap TAddr (STValue (TUInt
256))), Storeloc STR ’’balance’’)
A accessStore x (stack st6) = Some (KValue (accessStorage (TUInt 256) (sender ev6 + (STR
’2>.22 + STR ’’balance’’)) s))
A sender ev6 # address ev6
— (3s’. fmlookup (storage st6’) (STR ’’Victim’’) = Some s’
A ReadL;,: (accessBalance (accounts st6’) (STR ’’Victim’’)) - (SUMM s’) > bal A bal
> 0 A POS 57)) A
(Vs bal. s6 = keep
A INV st6 s (SUMM s) bal A POS s
A fmlookup (denvalue ev6) (STR ’’balance’’) = Some (Storage (STMap TAddr (STValue (TUInt
256))), Storeloc STR ’’balance’’)
A sender ev6 # address ev6
— (ds’. fmlookup (storage st6’) (STR ’’Victim’’) = Some s’
A ReadL;,: (accessBalance (accounts st6’) (STR ’’Victim’’)) - (SUMM s’) > bal A bal
> 0 A POS s’))
)"
proof (induct rule: msel_ssel_lexp_expr_load_rexp_stmt.induct
[where 7P1.0="Acl t1 11 xel epl evl cdl stl. address evl # (STR ’’Victim’’) A fmlookup epl (STR
?’Victim’’) = Some (victim, SKIP) — (Vrvl stl’ bal. frame bal stl A msel cl tl1 11 xel epl evl cdl
stl = Normal (rvl, stl1’) — frame bal st1’)"
and ?7P2.0=")\t2 12 xe2 ep2 ev2 cd2 st2. address ev2 # (STR ’’Victim’’) A fmlookup ep2 (STR
?’Victim’’) = Some (victim, SKIP) — (Vrv2 st2’ bal. frame bal st2 A ssel t2 12 xe2 ep2 ev2 cd2 st2 =
Normal (rv2, st2’) — frame bal st2’)"
and 7P3.0="A15 ep5 ev5 cd5 st5. address ev6 # (STR ’’Victim’’) A fmlookup ep5 (STR ’’Victim’’) =
Some (victim, SKIP) — (Vrv5 st5’ bal. frame bal st5 A lexp 15 ep5 ev5 cd5 stb5 = Normal (rv5, st5’)
— frame bal st5’)"
and ?P4.0=")\e4 ep4 ev4 cd4 st4. address ev4d # (STR ’’Victim’’) A fmlookup ep4 (STR ’’Victim’’) =
Some (victim, SKIP) — (Vrv4 st4’ bal. frame bal st4 N expr e4 ep4 ev4d cd4 st4 = Normal (rv4, st4’)
— frame bal st4’)"
and ?P5.0="Alcp lis 1lxs lep levO lcdO 1stO lev lcd lst. address lev # (STR ’’Victim’’) A fmlookup
lep (STR ’’Victim’’) = Some (victim, SKIP) — (Vev cd st st’ bal. load lcp lis 1xs lep levO 1cd0 1stO
lev lcd 1st = Normal ((ev, cd, st), st’) — (frame bal 1st0 — frame bal st) A (frame bal lst —
frame bal st’) A address lev0 = address ev A sender levO = sender ev A svalue lev0 = svalue ev)"
and 7P6.0="A13 ep3 ev3 cd3 st3. address ev3 # (STR ’’Victim’’) A fmlookup ep3 (STR ’’Victim’’) =
Some (victim, SKIP) — (Vrv3 st3’ bal. frame bal st3 A rexp 13 ep3 ev3 cd3 st3 = Normal (rv3, st3’)
— frame bal st3’)"
and ?7P7.0="\s6 ep6 ev6 cd6 st6.
(fmlookup ep6 (STR ’’Victim’’) = Some (victim, SKIP) —>
(Vst6’. stmt s6 ep6 ev6 cd6 st6 = Normal((), st6’) —>
((address ev6 # (STR ’’Victim’’) — (Vbal. frame bal st6 —> frame bal st6’))
A (address ev6 = (STR ’’Victim’’) —
(Vs val bal x. s6 = transfer
A INV st6 s (SUMM s + ReadL;,: val) bal A POS s
A fmlookup (denvalue ev6) (STR ’’bal’’) = Some (Value (TUInt 256), Stackloc x)
A accessStore x (stack st6) = Some (KValue val)
A sender ev6 # address ev6
— (ds’. fmlookup (storage st6’) (STR ’’Victim’’) = Some s’
A ReadL;,: (accessBalance (accounts st6’) (STR ’’Victim’’)) - (SUMM s’) > bal A bal
> 0 A POS s?)) A
(Vs bal x. s6 = comp
A INV st6 s (SUMM s) bal A POS s
A fmlookup (denvalue ev6) (STR ’’bal’’) = Some (Value (TUInt 256), Stackloc x)

234

7.2 Reentrancy (Reentrancy)

A fmlookup (denvalue ev6) (STR ’’balance’’) = Some (Storage (STMap TAddr (STValue (TUInt
256))), Storeloc STR ’’balance’’)
A accessStore x (stack st6) = Some (KValue (accessStorage (TUInt 256) (sender ev6 + (STR
72,27 + STR ’’balance’’)) s))
A sender ev6 # address ev6
— (ds’. fmlookup (storage st6’) (STR ’’Victim’’) = Some s’
A ReadL;,: (accessBalance (accounts st6’) (STR ’’Victim’’)) - (SUMM s’) > bal A bal
> 0 A POS s7)) A
(Vs bal. s6 = keep
A INV st6 s (SUMM s) bal A POS s
A fmlookup (denvalue ev6) (STR ’’balance’’) = Some (Storage (STMap TAddr (STValue (TUInt
256))), Storeloc STR ’’balance’’)
A sender ev6 # address ev6
— (3s’. fmlookup (storage st6’) (STR ’’Victim’’) = Some s’
A ReadL;,; (accessBalance (accounts st6’) (STR ’’Victim’’)) - (SUMM s’) > bal A bal
> 0 A POS s7))
)"
D
case (1 uu uv uw ux uy uz st)
then show ?case by simp
next
case (2 va vb vc vd ve vf vg st)
then show 7case by simp

next
case (3 vh al t loc x e, env cd st)
show 7case (is "_ — ?RHS")
proof
assume asm: "address env # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show 7RHS

proof (rule allI[OF allI[OF allI[OF impI]]1])
fix rvl and st’ and bal
assume *: "frame bal st A msel vh (MTArray al t) loc [x] e, env cd st = Normal (rvil, st’)"
moreover from * obtain v4 t4 st4’ where **: "expr x e, env cd st = Normal ((v4, t4), st4’)" by
(auto split: result.split_asm)
moreover from * ** have "frame bal st4’" using 3(1) asm by (auto split:if_split_asm)
ultimately show "frame bal st’" by (simp split:Stackvalue.split_asm Type.split_asm if_split_asm)
qed
qed
next
case (4 mm al t loc x y ys ep env cd st)
show 7case (is "_ — ?RHS")
proof
assume asm: "address env # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show 7RHS
proof (rule allI[OF allI[OF allI[OF impI]]])
fix rvli and st’ and bal
assume *: "frame bal st A msel mm (MTArray al t) loc (x # y # ys) e, env cd st = Normal (rvi,
st))H
moreover from * obtain v4 t4 st’’ where **: "expr x e, env cd st = Normal ((KValue v4, Value
t4), st’’)" by (auto split: result.split_asm Stackvalue.split_asm Type.split_asm)
moreover from * **x have f1: "frame bal st’’" using 4(1) asm by (auto split:if_split_asm)
moreover from * #** have ***: "Valuetypes.less t4 (TUInt 256) v4 |al| = Some ([True], TBool)" by
(auto split: result.split_asm Stackvalue.split_asm Type.split_asm if_split_asm)
moreover from * *x *x* obtain vb st’’’ where ***x: "(applyf (Ast. if mm then memory st else cd)
st’’) = Normal (vb, st’’’)"
and f2: "frame bal st’’’" using f1 by (simp split:Stackvalue.split_asm Type.split_asm
if_split_asm)
moreover from * ** x** **xx* obtain 11 where ****x: "accessStore (hash loc v4) vb = Some
(MPointer 11)"
by (simp split: Type.split_asm if_split_asm option.split_asm Memoryvalue.split_asm)
moreover from * ** ¥k skx* xkkx* obtain 11° st’’’’ where **x**x: "msel mm t 11 (y # ys) e, env
cd st’’’ = Normal (11’, st’’’’)"
by (simp split: Type.split_asm if_split_asm option.split_asm Memoryvalue.split_asm)
ultimately have "st’ = st’’’’" by simp

235

7 Applications

moreover have x1: "Vrvl’ st1’ bal. (frame bal st’’’) A local.msel mm t 11 (y # ys) e, env cd
st’’’ = Normal (rvl’, stl1’) —— frame bal st1’" using 4(2) [OF ** _ _ _ #x* _ *¥xx*] **¥*x asm apply
safe by auto
ultimately show "frame bal st’" using f2 ***x** by blast
qed
qed
next
case (5 tp loc vi vj vk st)
then show ?case by simp
next
case (6 vl vm vn vo vp vq vr St)
then show 7case by simp

next
case (7 al t loc x xs e, env cd st)
show ?case (is "_ — ?7RHS")
proof
assume asm: "address env # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show ?RHS

proof (rule allI[OF allI[OF allI[OF impI]]])

fix rvl and st’ and bal

assume *: "frame bal st A ssel (STArray al t) loc (x # xs) e, env cd st = Normal (rvi, st’)"

moreover from * obtain v4 t4 st4’ where **: "expr x e, env cd st = Normal ((KValue v4, Value
t4), st4’)" by (auto split: result.split_asm Stackvalue.split_asm Type.split_asm)

moreover from * ** have f1: "frame bal st4’" using 7(1) asm by (auto split:if_split_asm)

moreover from * #** have ***: "Valuetypes.less t4 (TUInt 256) v4 |al| = Some ([True], TBool)" by
(auto split: result.split_asm Stackvalue.split_asm Type.split_asm if_split_asm)

moreover from * ** *** obtain 11’ st’’’ where ****: "ssel t (hash loc v4) xs e, env
cd st4’ = Normal (11’, st’’’)" by (simp split: Type.split_asm if_split_asm option.split_asm
Memoryvalue.split_asm)

ultimately have "st’ = st’’’" by simp

moreover have "Vrv’ st2’ bal. (frame bal st4’) A ssel t (hash loc v4) xs e, env cd st4’ =

Normal (rv’, st2’) — frame bal st2’" using 7(2)[0F ** _ _ _ ***] asm apply safe by auto
ultimately show "frame bal st’" using f1 **** by blast
qed
qed
next
case (8 vs t loc x xs ep env cd st)
show 7case (is "_ — ?RHS")
proof
assume asm: "address env # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show 7RHS

proof (rule allI[OF allI[OF allI[OF impI]]])
fix rvli and st’ and bal
assume *: "frame bal st A ssel (STMap vs t) loc (x # xs) e, env cd st = Normal (rvi, st’)"
moreover from * obtain v4 t4 st4’ where **: "expr x e, env cd st = Normal ((KValue v4, t4),
st4’)" by (auto split: result.split_asm Stackvalue.split_asm)
moreover from * ** have ***: "frame bal st4’" using 8(1) asm by (auto split:if_split_asm)
moreover from * ** *** obtain 11’ st’’’ where #*#**:"ssel t (hash loc v4) xs e, env cd st4’ =
Normal (11°, st’’’)" by simp
moreover from x**x* *¥x* have "frame bal st’’’" using 8(2) [OF **,0f "KValue v4" t4 v4] asm by
blast
ultimately show "frame bal st’" by (simp split:Stackvalue.split_asm)
qed
qed
next
case (9 i vt e vu st)
then show 7case by (auto split:option.split_asm result.split_asm Denvalue.split_asm)
next
case (10 i r e, e cd st)

show ?case (is "_ — 7RHS")

proof
assume asm: "address e # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show ?RHS

proof (rule allI[OF allI[OF allI[OF impI]1])

236

7.2 Reentrancy (Reentrancy)

fix rvl and st’ and bal
assume *: "frame bal st A lexp (Ref i r) e, e cd st = Normal (rvl, st’)"
show "frame bal st’"
proof (cases "fmlookup (denvalue e) i")
case None
with * show ?thesis by simp
next
case (Some a)
then show ?thesis
proof (cases a)
case (Pair tp b)
then show ?thesis
proof (cases b)
case (Stackloc 1°)
then show ?thesis
proof (cases "accessStore 1’ (stack st)")
case None
with * show ?thesis using Some Pair Stackloc by simp
next
case s2: (Some k)
then show 7thesis
proof (cases k)
case (KValue x1)
with * show ?thesis using Some Pair Stackloc s2 by simp
next
case (KCDptr x2)
with * show ?thesis using Some Pair Stackloc s2 by simp
next
case (KMemptr 1°7)
then show 7thesis
proof (cases tp)
case (Value x1)
with * show 7thesis using Some Pair Stackloc s2 KMemptr by simp
next
case (Calldata x2)
with * show 7thesis using Some Pair Stackloc s2 KMemptr by simp
next
case (Memory x3)
with * Some Pair Stackloc KMemptr s2 obtain 11’ t1’ where "msel True x3 1°’ r e, e
cd st = Normal ((11’, t1’), st’)" by (auto split: result.split_asm)
with * 10(1) [OF Some Pair Stackloc _ _ KMemptr, of "Some k" st x3] show ?thesis us-
ing s2 Memory asm by auto
next
case (Storage x4)
with * show 7thesis using Some Pair Stackloc s2 KMemptr by simp
qed
next
case (KStoptr 1°7)
then show ?thesis
proof (cases tp)
case (Value x1)
with * show 7thesis using Some Pair Stackloc s2 KStoptr by simp
next
case (Calldata x2)
with * show 7thesis using Some Pair Stackloc s2 KStoptr by simp
next
case (Memory x3)
with * show 7thesis using Some Pair Stackloc s2 KStoptr by simp
next
case (Storage x4)
with * Some Pair Stackloc KStoptr s2 obtain 11’ t1’ where "ssel x4 1°’ r e, e cd st
= Normal ((11’, t1’), st’)" by (auto split: result.split_asm)
with * 10(2) [OF Some Pair Stackloc _ _ KStoptr, of "Some k" st x4] show ?thesis us-
ing s2 Storage asm by auto

237

7 Applications

qed
qed
qed
next
case (Storeloc 1°’)
then show ?thesis
proof (cases tp)
case (Value x1)
with * show ?thesis using Some Pair Storeloc by simp
next
case (Calldata x2)
with * show ?thesis using Some Pair Storeloc by simp
next
case (Memory x3)
with * show ?thesis using Some Pair Storeloc by simp
next
case (Storage x4)
with * Some Pair Storeloc obtain 11’ t1’ where "ssel x4 1°’ r e, e cd st = Normal ((11°,
t1’), st’)" by (auto split: result.split_asm)
with * 10(3) [OF Some Pair Storeloc Storage] asm show 7thesis by auto
qed
qed
qged
qed
qed
qed
next
case (11 b x e, e cd st)
then show ?case by (simp add:frame_def)
next
case (12 b x e, e cd st)
then show ?case by (simp add:frame_def)
next
case (13 ad e, e cd st)
then show ?case by (simp add:frame_def)

next
case (14 ad e, e cd st)
show 7case (is "_ — ?RHS")
proof
assume asm: "address e # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show 7RHS

proof (rule allI[OF allI[OF allI[OF impI]]])
fix rvli and st’ and bal
assume *: "frame bal st A expr (BALANCE ad) e, e cd st = Normal (rv1l, st’)"
moreover from * obtain adv st’’ where **:"expr ad e, e cd (st(gas:=gas st - (costs.
(BALANCE ad) ep e cd st)])) = Normal ((KValue adv, Value TAddr),st’’)" by (auto split:if_split_asm
result.split_asm Stackvalue.split_asm Types.split_asm Type.split_asm)
with * *x have "frame bal st’’" using 14(1) asm by (auto simp add:frame_def split:if_split_asm)
moreover from * ** have "st’ = st’’" by (simp split:if_split_asm)
ultimately show "frame bal st’" by simp
qed
qed
next
case (15 e, e cd st)
then show 7case by (simp add:frame_def)
next
case (16 e, e cd st)
then show 7case by (simp add:frame_def)
next
case (17 e, e cd st)
then show 7case by (simp add:frame_def)
next
case (18 e, e cd st)
then show 7case by (simp add:frame_def)

238

7.2 Reentrancy (Reentrancy)

next
case (19 e, e cd st)
then show ?case by (simp add:frame_def)

next
case (20 x e, e cd st)
show ?case (is "_ — ?7RHS")
proof
assume asm: "address e # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show ?RHS

proof (rule allI[OF allI[OF allI[OF impI]]])
fix rvli and st’ and bal
assume *: "frame bal st A expr (NOT x) e, e cd st = Normal (rvl, st’)"
then have f1: "frame bal (st(gas:=gas st - (costs. (NOT x) e, e cd st))))" by (simp
add: frame_def)
moreover from * obtain v t st’’ where **: "expr x e, e cd (st(gas:=gas st - (costs. (NOT x) e,
e cd st)))) = Normal ((KValue v, Value t), st’’)"
by (auto split:if_split_asm result.split_asm prod.split_asm Stackvalue.split_asm
Type.split_asm)
moreover from * **x have **x: "frame bal st’’" using 20(1) asm by (auto simp add:frame_def
split:if_split_asm)
show "frame bal st’"
proof (cases "v = ShowLpoo: True")
case True
with * #*x **x obtain x st’’’ where "expr FALSE e, e cd st’’ = Normal (x, st’’’)"
and "frame bal st’’’" by (auto simp add:frame_def split:if_split_asm)
with * ** *** True show 7thesis by (auto split: if_split_asm)
next
case False
with * ** *** obtain x st’’’ where "expr TRUE e, e cd st’’ = Normal (x, st’’’)"
and "frame bal st’’’" by (auto simp add:frame_def split:if_split_asm)
with * *x *** False show 7thesis by (auto split: if_split_asm)

ged
qed
qed
next
case (21 el e2 e, e cd st)
show ?case (is "_ — 7RHS")
proof
assume asm: "address e # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show ?RHS

proof (rule allI[OF allI[OF allI[OF impI]1])
fix rvl and st’ and bal
assume *: "frame bal st A expr (PLUS el e2) e, e cd st = Normal (rv1l, st’)"
moreover from * obtain v1 t1 st’’ where **: "expr el e, e cd (st(gas:=gas st - (costs. (PLUS
el e2) e, e cd st)])) = Normal ((KValue v1, Value t1), st’’)"
by (auto split:if_split_asm result.split_asm prod.split_asm Stackvalue.split_asm
Type.split_asm)
moreover from * **x have **x: "frame bal st’’" using 21(1) asm by (auto simp add:frame_def
split:if_split_asm)
moreover from * ** *** obtain v2 t2 st’’’ where ****: "expr e2 e, e cd st’’ = Normal ((KValue
v2, Value t2), st’’’)"
by (auto split:if_split_asm result.split_asm prod.split_asm Stackvalue.split_asm
Type.split_asm)
moreover from * *x *x* **x* have "frame bal st’’’" using 21(2) [OF _ **] asm by (auto
split:if_split_asm)
moreover from * ** *xxx obtain v t where "add t1 t2 vl v2 = Some (v, t)" by (auto
split:if_split_asm option.split_asm)
ultimately show "frame bal st’" by (auto split:if_split_asm)

qed
qed
next
case (22 el e2 e, e cd st)
show ?case (is "_ — 7RHS")
proof

239

7 Applications

assume asm: "address e # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show ?RHS
proof (rule allI[OF allI[OF allI[OF impI]]])
fix rvl and st’ and bal
assume *: "frame bal st A expr (MINUS el e2) e, e cd st = Normal (rvi, st’)"
moreover from * obtain v1 t1 st’’ where **: "expr el e, e cd (st(gas:=gas st - (costs. (MINUS
el e2) e, e cd st)])) = Normal ((KValue v1, Value t1), st’’)"
by (auto split:if_split_asm result.split_asm prod.split_asm Stackvalue.split_asm
Type.split_asm)
moreover from * **x have **x: "frame bal st’’" using 22(1) asm by (auto simp add:frame_def
split:if_split_asm)
moreover from * ** *** obtain v2 t2 st’’’ where #***: "expr e2 e, e cd st’’ = Normal ((KValue
v2, Value t2), st’’’)"
by (auto split:if_split_asm result.split_asm prod.split_asm Stackvalue.split_asm
Type.split_asm)
moreover from #* ** *x* xx+* have "frame bal st’’’" using 22(2) [OF _ **] asm by (auto
split:if_split_asm)
moreover from * ** **** obtain v t where "sub t1 t2 vl v2 = Some (v, t)" by (auto
split:if_split_asm option.split_asm)
ultimately show "frame bal st’" by (auto split:if_split_asm)

qed

qed

next

case (23 el e2 e, e cd st)

show ?case (is "_ — 7RHS")

proof
assume asm: "address e # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show ?RHS

proof (rule allI[OF allI[OF allI[OF impI]1])
fix rvl and st’ and bal
assume *: "frame bal st A expr (LESS el e2) e, e cd st = Normal (rvl, st’)"
moreover from * obtain v1 t1 st’’ where **: "expr el e, e cd (st(gas:=gas st - (costs. (LESS
el e2) e, e cd st)])) = Normal ((KValue v1, Value t1), st’’)"
by (auto split:if_split_asm result.split_asm prod.split_asm Stackvalue.split_asm
Type.split_asm)
moreover from * **x have ***: "frame bal st’’" using 23(1) asm by (auto simp add:frame_def
split:if_split_asm)
moreover from * ** *x* obtain v2 t2 st’’’ where ****: "expr e2 e, e cd st’’ = Normal ((KValue
v2, Value t2), st’’’)"
by (auto split:if_split_asm result.split_asm prod.split_asm Stackvalue.split_asm
Type.split_asm)
moreover from * *x *x* **x* have "frame bal st’’’" using 23(2) [OF _ **] asm by (auto
split:if_split_asm)
moreover from * *x xx*xx obtain v t where "Valuetypes.less t1 t2 vl v2 = Some (v, t)" by (auto
split:if_split_asm option.split_asm)
ultimately show "frame bal st’" by (auto split:if_split_asm)

qed

qed

next

case (24 el e2 e, e cd st)

show ?case (is "_ — 7RHS")

proof
assume asm: "address e # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show ?RHS

proof (rule allI[OF allI[OF allI[OF impI]1])

fix rvl and st’ and bal

assume *: "frame bal st A expr (EQUAL el e2) e, e cd st = Normal (rvl, st’)"

moreover from * obtain v1 t1 st’’ where **: "expr el e, e cd (st(gas:=gas st - (costs. (EQUAL
el e2) e, e cd st)))) = Normal ((KValue vi, Value t1), st’’)"

by (auto split:if_split_asm result.split_asm prod.split_asm Stackvalue.split_asm

Type.split_asm)

moreover from * ** have ***: "frame bal st’’" using 24(1) asm by (auto simp add:frame_def
split:if_split_asm)

moreover from * ** x** obtain v2 t2 st’’’ where *¥*x: "expr e2 e, e cd st’’ = Normal ((KValue

240

7.2 Reentrancy (Reentrancy)

v2, Value t2), st’’’)"
by (auto split:if_split_asm result.split_asm prod.split_asm Stackvalue.split_asm

Type.split_asm)

moreover from * ** *x* *x+* have "frame bal st’’’" using 24(2) [OF _ **] asm by (auto
split:if_split_asm)

moreover from * *x x*x*x obtain v t where "Valuetypes.equal t1 t2 vi1 v2 = Some (v, t)" by (auto
split:if_split_asm option.split_asm)

ultimately show "frame bal st’" by (auto split:if_split_asm)

qed

qed

next

case (25 el e2 e, e cd st)

show ?case (is "_ — 7RHS")

proof
assume asm: "address e # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show 7RHS

proof (rule allI[OF allI[OF allI[OF impI]1])
fix rvl and st’ and bal
assume *: "frame bal st A expr (AND el e2) e, e cd st = Normal (rvil, st’)"
moreover from * obtain vl t1 st’’ where **: "expr el e, e cd (st(gas:=gas st - (costs. (AND el
e2) e, e cd st))) = Normal ((KValue vl, Value t1), st’’)"
by (auto split:if_split_asm result.split_asm prod.split_asm Stackvalue.split_asm
Type.split_asm)
moreover from * ** have ***: "frame bal st’’" using 25(1) asm by (auto simp add:frame_def
split:if_split_asm)
moreover from * ** *x* obtain v2 t2 st’’’ where ****: "expr e2 e, e cd st’’ = Normal ((KValue
v2, Value t2), st’’’)"
by (auto split:if_split_asm result.split_asm prod.split_asm Stackvalue.split_asm
Type.split_asm)
moreover from * ** *x* *x*¥*x have "frame bal st’’’" using 25(2) [OF _ #*] asm by (auto
split:if_split_asm)
moreover from * ** *x** obtain v t where "Valuetypes.vtand t1 t2 vl v2 = Some (v, t)" by (auto
split:if_split_asm option.split_asm)
ultimately show "frame bal st’" by (auto split:if_split_asm)

qged

qed

next

case (26 el e2 e, e cd st)

show ?case (is "_ —— 7RHS")

proof
assume asm: "address e # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show ?RHS

proof (rule allI[OF allI[OF allI[OF impI]]1])

fix rvl and st’ and bal

assume *: "frame bal st A expr (OR el e2) e, e cd st = Normal (rvi, st’)"

moreover from * obtain vl t1 st’’ where **: "expr el e, e cd (st(gas:=gas st - (costs. (OR el
e2) ep, e cd st)|)) = Normal ((KValue v1, Value t1), st’’)"

by (auto split:if_split_asm result.split_asm prod.split_asm Stackvalue.split_asm

Type.split_asm)

moreover from * ** have ***: "frame bal st’’" using 26(1) asm by (auto simp add:frame_def
split:if_split_asm)

moreover from * ** x** obtain v2 t2 st’’’ where *¥*x: "expr e2 e, e cd st’’ = Normal ((KValue
v2, Value t2), st’’’)"

by (auto split:if_split_asm result.split_asm prod.split_asm Stackvalue.split_asm

Type.split_asm)

moreover from * *x *x* **x* have "frame bal st’’’" using 26(2) [OF _ **] asm by (auto
split:if_split_asm)

moreover from * ** *x** obtain v t where "Valuetypes.vtor t1 t2 vl v2 = Some (v, t)" by (auto
split:if_split_asm option.split_asm)

ultimately show "frame bal st’" by (auto split:if_split_asm)

qed
qed
next
case (27 i e, e cd st)

241

7 Applications

show ?case using 27(1) [of "(O" "st(gas:=gas st - (costs. (LVAL i) e, e cd st)|)"] apply safe by
(auto simp add:frame_def split:if_split_asm)

next
case (28 i xe e, e cd st)
show ?case (is "_ — 7RHS")
proof
assume asm: "address e # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show ?RHS

proof (rule allI[OF allI[OF allI[OF impI]]])
fix rvl and st’ and bal
assume *: "frame bal st A expr (CALL i xe) e, e cd st = Normal (rvi, st’)"
moreover from * have al: "(applyf (costs. (CALL i xe) e, e cd) >= (\g. assert Gas (Ast. gas st
< g) (modify (Ast. st(gas := gas st - g)))))) st = Normal ((), st(gas := gas st - costs. (CALL i xe)
ep e cd st)))" by auto
moreover from * obtain ct bla where **: "fmlookup e, (address e) = Some (ct, bla)"
by (auto split:if_split_asm option.split_asm)
moreover from * ** obtain fp f x where ***: "fmlookup ct i = Some (Method (fp, f, Some x))"
by (auto split:if_split_asm option.split_asm Member.split_asm)
moreover define e’ where "e’ = ffold_init ct (emptyEnv (address e) (sender e) (svalue e)) (fmdom
ct)"
moreover from * *x *xx* obtain e’’ cd’ st’’ st’’’ where **x*: "load False fp xe e, e’ emptyStore
(st(gas:=gas st - (costs. (CALL i xe) e, e cd st), stack:=emptyStore|)) e cd (st(gas:=gas st - (costs.
(CALL i xe) e, e cd st)|)) = Normal ((e’’, cd’, st’’), st’’’)"
using e’_def by (auto split:if_split_asm result.split_asm)
moreover from * **x* have f1: "frame bal st’’" and ad: "address e’ = address e’’"
using asm 28(1) [OF _ ** _ *** _ _ _ _ e’_def, of _ "st(gas := gas st - costs. (CALL i xe) e,
e cd st)" bla "(fp, f, Some x)" fp "(f, Some x)" f "Some x" x "st(gas := gas st - costs. (CALL i xe)
ep e cd st, stack := emptyStore|)" "st(gas := gas st - costs. (CALL i xe) e, e cd st|)"] by (auto simp
add:frame_def split:if_split_asm result.split_asm)
moreover from e’_def have ad2: "address e = address e’" using ffold_init_ad_same[of ct
"(emptyEnv (address e) (sender e) (svalue e))" "(fmdom ct)" e’] by simp
moreover from * ** x¥* *kx* e’_def obtain st’’’’ where ****x: "stmt f e, e’’ cd’ st’’ = Normal
(0, st’??’)" by (auto split:if_split_asm result.split_asm)
moreover from f1 ad ad2 asm ***** have f2:"frame bal st’’’’"
using 28(2) [OF al ** _ *** _ _ _ _ e’_def _ **¥*, of bla "(fp, f, Some x)" "(f, Some x)" f
"Some x" x e’’ "(cd’, st’’)" "cd’" "st’’" st’’’ st’’’ "()" st’’] by (simp add:frame_def)
moreover from * *x ¥k skx* xkkx* f1 f2 e’_def obtain rv st’’’’’ where *¥*x**: "expr x e, e’’
cd’ st’’’’ = Normal (rv, st’’’’’)" by (auto split:if_split_asm result.split_asm)
ultimately have "st’ = st’’’’’(stack:=stack st’’’, memory := memory st’’’)" apply safe by auto
moreover from f1 f2 ad ad2 asm al *¥*** **x*** have "Vrv4d st4’ bal.
frame bal st’’’’ A
local.expr x e, €’’ cd’ st’’’’ = Normal (rv4, st4’) —
frame bal st4’" using e’_def asm 28(3) [OF al ** _ *** _ _ _ _ e’_def _ *¥xx _ _ _ _
bla "(fp, f, Some x)" " (f, Some x)" "Some x" x "(cd’, st’’)" st’’ st’’’ st’’’ "()"] apply safe by auto
with *xx+xx f2 have "frame bal st’’’’’" by blast
ultimately show "frame bal st’" by (simp add:frame_def)

*kkkk, of

qed

qed

next

case (29 ad i xe val e, e cd st)

show ?case (is "_ — 7RHS")

proof
assume asm: "address e # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show ?RHS

proof (rule allI[OF allI[OF allI[OF impI]1])

fix rvl and st’ and bal

assume *: "frame bal st A expr (ECALL ad i xe val) e, e cd st = Normal (rvi, st’)"

moreover from * have al: "(applyf (costs. (ECALL ad i xe val) e, e cd) >= ()\g. assert Gas
(Ast. gas st < g) (modify (Ast. st(gas := gas st - g)))))) st = Normal ((), st(gas := gas st - costs.
(ECALL ad i xe val) ep e cd st)))" by auto

moreover from * obtain adv st’’ where **: "expr ad e, e cd (st(gas:=gas st - (costs. (ECALL ad
i xe val) e, e cd st)|)) = Normal ((KValue adv, Value TAddr), st’’)"

by (auto split:if_split_asm result.split_asm Stackvalue.split_asm Type.split_asm

Types.split_asm)

242

7.2 Reentrancy (Reentrancy)

moreover from * **x have f1: "frame bal st’’"using asm 29(1) by (auto simp add:frame_def
split:if_split_asm)
moreover from * *x obtain ct bla where ***: "fmlookup e, adv = Some (ct, bla)"
by (auto split:if_split_asm option.split_asm)
moreover from * ** *x* obtain fp f x where ****: "fmlookup ct i = Some (Method (fp, f, Some
x))"
by (auto split:if_split_asm option.split_asm Member.split_asm)
moreover from * *x *x** **kx* obtain v t st’’’ where *¥*x*: "expr val e, e cd st’’ = Normal
((KValue v, Value t), st’’’)" by (auto split:if_split_asm result.split_asm Stackvalue.split_asm
Type.split_asm)
moreover from f1 **x** asm have f2: "frame bal st’’’" and f3: "frame bal (st’’’(stack :=
emptyStore, memory := emptyStore|))" using asm 29(2) [OF al #* _ _ _ _ #*¥* _ **x+] by (auto simp
add: frame_def)
moreover define e’ where "e’ = ffold_init ct (emptyEnv adv (address e) v) (fmdom ct)"
moreover from * *x kx* kkx* *kx*x*x obtain e’’ cd’ st’’’’ st’’’’’ where ***x*¥x: "load True fp
xe ep e’ emptyStore (st’’’(stack:=emptyStore, memory:=emptyStore|)) e cd st’’’ = Normal ((e’’, cd’,
st’?’?), st?’?’)"
using e’_def by (auto split:if_split_asm result.split_asm option.split_asm)
moreover have "(Vev cda st st’ bal.
local.load True fp xe e, e’ emptyStore (st’’’(stack := emptyStore, memory := emptyStore|)) e cd
st’’’ = Normal ((ev, cda, st), st’) —
(frame bal (st’’’(stack := emptyStore, memory := emptyStore|)) — frame bal st) A
(frame bal st’’’ — frame bal st’) A address e’ = address ev A sender e’ = sender ev A svalue
e’ = svalue ev)"

using 29(3) [OF al ** _ _ _ _ #%xx _ *k¥x _ _ _ _ **x%*% _ _ _ e’_def, of "KValue adv" "Value
TAddr" TAddr bla "(fp, f, Some x)" fp "(f, Some x)" f "Some x" x "KValue v" "Value t" t "st’’’(stack :=
emptyStore, memory := emptyStore|)" st’’’] asm #*x**** by simp
then have "frame bal st’’’’ A frame bal st’’’’’ A address e’ = address e’’" using *x*x*x*x f2 f3
by blast

then have f4: "frame bal st’’’’" and adl: "address e’ = address e’’" by auto
moreover from * *k *x¥x fkkkk kkkxk kkkk*xx e’ def obtain acc where **x*x*x*xx: "Accounts.transfer
(address e) adv v (accounts st’’’’) = Some acc" by (auto split:if_split_asm option.split_asm)
then have ***x*x: "Accounts.transfer (address e) adv v (accounts st’’’’) = Some acc" by (auto
split:if_split_asm option.split_asm)
moreover from f4 have f5: "frame bal (st’’’’(accounts := acc|))" using transfer_frame[OF *¥****]
asm by simp
moreover from e’_def have ad2: "adv = address e’" using ffold_init_ad_same[of ct "(emptyEnv adv
(address e) v)" "(fmdom ct)" e’] by simp
moreover from * kk kkk kokkk kkkkk dokkkkk skokkkkkk kkkkkk obtain st’’’’’’ where xkxkkkkkxk: "stmt f
ep e’’ cd’ (st’’’’(accounts := acc|)) = Normal ((), st’?’’’?)"
using e’_def by (auto simp del: transfer.simps split:if_split_asm result.split_asm)
moreover have "adv # STR ’’Victim’’"
proof (rule ccontr)
assume "— adv # STR ’’Victim’’"
with asm ** *x* x*xx* show False using victim_def fmap_of_list_SomeD[of "[(STR ’’balance’’, Var
(STMap TAddr (STValue (TUInt 256)))), (STR ’’deposit’’, Method ([], deposit, None)), (STR ’’withdraw’’,
Method ([], keep, Nome))]"] by auto
qged
with adl ad2 have ad: "address e’’ # STR ’’Victim’’ A fmlookup e, (STR ’’Victim’’) = Some
(victim, SKIP)" using asm by simp
then have "(Vbal. frame bal (st’’’’(accounts := acc|)) —> frame bal st’’’’’’)" using 29(4) [OF ai

dok ek skl cekkkk skkkkkk _ xkkkkk, of "KValue adv" "Value TAddr" TAddr
bla "(fp, f, Some x)" "(f, Some x)" f "Some x" x "KValue v" "Value t" t e’’ "(cd’, st’’’’)" cd’ st’’’’’
st???27 """ "st’’’’(accounts := acc|)"] *¥**x¥** e’_def by auto

then have f4: "frame bal st’’’’’’" using 5 **x**xx** by auto
INOTEOVeEr from * ** kkk kkkk fokkkk khkkkkk *kkkikk skkkrdkr*x obtain rv st?’7°777 where sxkxksk*x:
"expr x e, e’’ cd’ st’’’’’’ = Normal (rv, st’’’’’’’)"
using e’_def by (auto split:if_split_asm result.split_asm)
ultimately have "st’ = st’’’’’’’(stack:=stack st’’’’’, memory := memory st’’’’’)" apply safe by
auto
moreover from ad have "Vrv4 st4’ bal.
frame bal st’’’’’’ A
local.expr x e, e’’ cd’ st’’’’’’ = Normal (rv4, st4’) —
frame bal st4’"

243

7 Applications

using e’_def 29(5) [OF al ** _ _ _ _ *¥x _ xkk¥ _ _ _ _ kkkkk _ kokkkkkk kkkkkk
*xkxkkxk, of "KValue adv" "Value TAddr" TAddr bla "(fp, f, Some x)"] by auto
then have'frame bal st’’’’’’’" using f4 *x****x** by blast

ultimately show "frame bal st’" by (simp add:frame_def)

qed

qed

next

case (30 cp ip t, pl e el e, €,’ cd’ st’ e, cd st)

show ?case (is "_ — ?RHS")

proof
assume asm: "address e, # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show ?RHS

proof (rule allI[OF allI[OF allI[OF allI[OF allI[OF impI]]]111)

fix ev and cda and sta and st’a and bal

assume *: "local.load cp ((ip, tp) # pl) (e # el) e, e,’ cd’ st’ e, cd st = Normal ((ev, cda,
sta), st’a)"

moreover from * obtain v t st’’ where **: "expr e e, e, cd st = Normal ((v,t),st’’)" by (auto
split: result.split_asm)

moreover from * ** obtain cd’’ e,’’ st’’’ where ***: "decl i, t, (Some (v,t)) cp cd (memory
st’’) cd’ e,’ st’ = Normal ((cd’’, e,’’),st’’’)" by (auto split: result.split_asm)

moreover from *** have ad: "address e,’ = address e,’’ A sender e,’ = sender e,’’ A svalue e,’
= svalue e,’’" using decl_gas_address by simp

moreover from * ** *** obtain ev’ cda’ sta’ st’a’ where ****: "local.load cp pl el e, e,’’
cd’’ st’’’ e, cd st’’= Normal ((ev’, cda’, sta’), st’a’)" by (auto split: result.split_asm)

ultimately have "ev = ev’" and "sta = sta’" and "st’a = st’a’" by simp+

from ***x*x asm have IH: "(frame bal st’’’ ——» frame bal sta’) A
(frame bal st’’ —> frame bal st’a’) A
address e, ’’ = address ev’ N sender e,’’ = sender ev’ A svalue e,’’ = svalue ev’" us-
ing 30(2) [OF ** _ _ _ #**, of st’’ "()" cd’’ e,’’ st’’’ st’’’ "()" st’’] apply safe by (auto simp
add: frame_def)
show "(frame bal st’ — frame bal sta) A (frame bal st — frame bal st’a) A address e,’ =
address ev A sender e,’ = sender ev A svalue e,’ = svalue ev"
proof (rule conj3)
show "frame bal st’ —> frame bal sta"
proof
assume "frame bal st’"
with * ** **x* have "frame bal st’’’" using decl_frame by simp
with IH have "frame bal sta’" by simp
with ‘sta = sta’‘ show "frame bal sta" by simp
qged
next
show "frame bal st —> frame bal st’a"
proof
assume "frame bal st"
with ** have "frame bal st’’" using 30(1) asm by simp
with IH have "frame bal st’a’" by simp
with ‘st’a = st’a’‘ show "frame bal st’a" by simp
qed
next
from ad IH show "address e,’ = address ev A sender e,’ = sender ev A svalue e,’ = svalue ev"
ev = ev’‘ by simp
ged
qed
qed
next
case (31 vv vw vx vy vz wa wb wc wd st)
then show 7case by simp
next
case (32 we wf wg wh wi wj wk wl wm st)
then show 7case by simp
next
case (33 wn wo e,’ cd’ st’ e, cd st)
then show 7case by simp

using ¢

244

7.2 Reentrancy (Reentrancy)

next
case (34 i e, e cd st)
show 7?case (is "_ — ?RHS")
proof
assume asm: "address e # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show ?RHS

proof (rule allI[OF allI[OF allI[OF impI]]])
fix rv3 and st3’ and bal
assume *: "frame bal st A local.rexp (L.Id i) e, e cd st = Normal (rv3, st3’)"
show "frame bal st3’"
proof (cases "fmlookup (denvalue e) i")
case None
with * show 7thesis by simp
next
case (Some a)
then show ?thesis
proof (cases a)
case (Pair tp b)
then show ?thesis
proof (cases b)
case (Stackloc 1)
then show ?thesis
proof (cases "accessStore 1 (stack st)")
case None
with * Some Pair Stackloc show 7thesis by (auto split: Type.split_asm STypes.split_asm)
next
case s2: (Some a)
with * Some Pair Stackloc s2 show ?thesis by (auto split: Type.split_asm
STypes.split_asm Stackvalue.split_asm)
qed
next
case (Storeloc x2)
with * Some Pair Storeloc show ?thesis by (auto split: Type.split_asm STypes.split_asm
option.split_asm)
qged
qed
qed
qged
qed
next
case (35 i r ep, e cd st)
show ?case (is "_ — 7RHS")
proof
assume asm: "address e # (STR ’’Victim’’) A fmlookup e, (STR ’’Victim’’) = Some (victim, SKIP)"
show ?RHS
proof (rule allI[OF allI[OF allI[OF impI]]1])
fix rv3 and st3’ and bal
assume *: "frame bal st A local.rexp (L.Ref i r) e, e cd st = Normal (rv3, st3’)"
show "frame bal st3’"
proof (cases "fmlookup (denvalue e) i")
case None
with * show 7thesis by simp
next
case (Some a)
then show ?thesis
proof (cases a)
case (Pair tp b)
then show ?thesis
proof (cases b)
case (Stackloc 1°)
then show ?thesis
proof (cases "accessStore 1’ (stack st)")
case None
with * Some Pair Stackloc show 7thesis by simp

245

7 Applications

next
case s2: (Some a)
then show ?thesis
proof (cases a)
case (KValue x1)
with * Some Pair Stackloc s2 show 7thesis by simp
next
case (KCDptr 1°°)
then show ?thesis
proof (cases tp)
case (Value x1)
with * Some Pair Stackloc s2 KCDptr show ?thesis by simp
next
case (Calldata t)
with * Some Pair Stackloc s2 KCDptr obtain 1’’’ t’ st’ where #*: "msel False t 1°’ r
ep e cd st = Normal ((1°’’,t’), st’)" by (auto split: Type.split_asm STypes.split_asm result.split_asm)
then have "Vrvi st1’ bal.
frame bal st A
local.msel False t 1°’ r e, e cd st = Normal (rvl, st1’) —
frame bal st1’" using asm 35(1) [OF Some Pair Stackloc _ s2 KCDptr Calldata] by auto
with * *x have f2: "frame bal st’" by blast
then show 7thesis
proof (cases t’)
case (MTArray x t’’)
then show 7thesis
proof (cases "accessStore 1’’’ cd")
case None
with * ** Some Pair Stackloc s2 KCDptr Calldata MTArray show 7thesis by simp
next
case s3: (Some a)
then show 7thesis
proof (cases a)
case (MValue x1)
with * ** Some Pair Stackloc s2 KCDptr Calldata MTArray s3 show ?thesis by
simp
next
case (MPointer x2)
with * ** f2 Some Pair Stackloc s2 KCDptr Calldata MTArray s3 show ?thesis by
simp
qed
qed
next
case (MTValue t’’’)
then show 7thesis
proof (cases "accessStore 1’’’ cd")
case None
with * ** Some Pair Stackloc s2 KCDptr Calldata MTValue show 7thesis by simp
next
case s3: (Some a)
then show ?thesis
proof (cases a)
case (MValue x1)
with * *x f2 Some Pair Stackloc s2 KCDptr Calldata MTValue s3 show ?thesis by
simp
next
case (MPointer x2)
with * ** Some Pair Stackloc s2 KCDptr Calldata MIValue s3 show ?thesis by
simp
qed
qed
qed
next
case (Memory x3)
with * Some Pair Stackloc s2 KCDptr show 7thesis by simp

246

7.2 Reentrancy (Reentrancy)

next
case (Storage x4)
with * Some Pair Stackloc s2 KCDptr show 7thesis by simp
qed
next
case (KMemptr 1°°)
then show 7thesis
proof (cases tp)
case (Value x1)
with * Some Pair Stackloc s2 KMemptr show ?thesis by simp
next
case (Calldata x2)
with * Some Pair Stackloc s2 KMemptr show ?thesis by simp
next
case (Memory t)
with * Some Pair Stackloc s2 KMemptr obtain 1’’’ t’ st’ where **: "msel True t 1°’ r
ep e cd st = Normal ((1°’’,t’), st’)" by (auto split: Type.split_asm STypes.split_asm result.split_asm)
then have "Vrvl st1’ bal. frame bal st A
local.msel True t 1°’ r e, e cd st = Normal (rvl, stl’) —
frame bal st1’" using asm 35(2) [OF Some Pair Stackloc _ s2 KMemptr Memory, of st] by
auto
with * ** have f2: "frame bal st’" by blast
then show 7thesis
proof (cases t’)
case (MTArray x11 x12)
then show 7thesis
proof (cases "accessStore 1’’’ (memory st’)")
case None
with * *x Some Pair Stackloc s2 KMemptr Memory MTArray show 7thesis by simp
next
case s3: (Some a)
then show ?thesis
proof (cases a)
case (MValue x1)
with * *x Some Pair Stackloc s2 KMemptr Memory MTArray s3 show ?thesis by simp
next
case (MPointer x2)
with * ** f2 Some Pair Stackloc s2 KMemptr Memory MTArray s3 show 7thesis by
simp
qed
qed
next
case (MIValue x2)
then show 7thesis
proof (cases "accessStore 1’’’ (memory st’)")
case None
with * *x Some Pair Stackloc s2 KMemptr Memory MTValue show ?thesis by simp
next
case s3: (Some a)
then show ?thesis
proof (cases a)
case (MValue x1)
with * ** f2 Some Pair Stackloc s2 KMemptr Memory MTValue s3 show 7thesis by
simp
next
case (MPointer x2)
with * ** Some Pair Stackloc s2 KMemptr Memory MTValue s3 show 7thesis by simp
qed
qed
qed
next
case (Storage x4)
with * Some Pair Stackloc s2 KMemptr show ?thesis by simp
qed

247

7 Applications

next
case (KStoptr 1°7)
then show 7thesis
proof (cases tp)
case (Value x1)
with * Some Pair Stackloc s2 KStoptr show ?thesis by simp
next
case (Calldata x2)
with * Some Pair Stackloc s2 KStoptr show ?thesis by simp
next
case (Memory x3)
with * Some Pair Stackloc s2 KStoptr show ?thesis by simp
next
case (Storage t)
with * Some Pair Stackloc s2 KStoptr obtain 1’’’ t’ st’ where **: "ssel t 1°’ r e, e
cd st = Normal ((1°’’,t’), st’)" by (auto split: Type.split_asm STypes.split_asm result.split_asm)
then have "Vrv2 st2’ bal.
frame bal st A
local.ssel t 1°’ r e, e cd st = Normal (rv2, st2’) —
frame bal st2’" using asm 35(3) [OF Some Pair Stackloc _ s2 KStoptr Storage, of st] by
auto
with * ** have "frame bal st’" by blast
with * ** Some Pair Stackloc s2 KStoptr Storage show 7thesis by (simp split:
STypes.split_asm option.split_asm)
qed
qged
qed
next
case (Storeloc 1°’)
then show ?thesis
proof (cases tp)
case (Value x1)
with * Some Pair Storeloc show 7thesis by simp
next
case (Calldata x2)
with * Some Pair Storeloc show ?7thesis by simp
next
case (Memory x3)
with * Some Pair Storeloc show ?7thesis by simp
next
case (Storage t)
with * Some Pair Storeloc obtain 1’’ t’ st’ where #*: "ssel t 1’ r e, e cd st = Normal
((1°°,t’), st’)" by (auto split: result.split_asm)
then have "Vrv2 st2’ bal.
frame bal st A
local.ssel t 1’ r e, e cd st = Normal (rv2, st2’) —
frame bal st2’" using asm 35(4) [OF Some Pair Storeloc Storage] by auto
with * ** have "frame bal st’" by blast
with * ** Some Pair Storeloc Storage show ?thesis by (simp split: STypes.split_asm
option.split_asm)
qed
qed
qged
qged
qed
qed
next
case (36 e, e cd st)
show ?case (is "7LHS — 7RHS")
proof
assume *: "fmlookup e, STR ’’Victim’’ = Some (victim, SKIP)"
show 7RHS (is "V st6’. 7RHS st6’")
proof
fix st6’

248

7.2 Reentrancy (Reentrancy)

show "?7RHS st6’" (is "?LHS —> ?7RHS")
proof
assume t0: "stmt SKIP e, e cd st = Normal ((), st6’)"
show ?RHS (is "?LHS A 7RHS")
proof
show "?LHS"
proof
assume ad: "address e # STR ’’Victim’’"
show "Vbal. frame bal st — frame bal st6’"
proof
fix bal
show '"frame bal st — frame bal st6’"
proof
assume "frame bal st"
with t0 * show "frame bal st6’" by (auto simp add: frame_def split:if_ split_asm)
qed
qed
qed
next
show "?RHS" (is "?7LHS — 7RHS")
proof
assume "address e = STR ’’Victim’’"
show ?RHS (is "7A A (?B N 7C)")
proof (rule conj3)
show 74 (is "Vs val bal x. 7LHS s val bal x")
proof (rule allI[OF allI[OF allI[OF allI]]l)
fix s val bal x
show "?7LHS s val bal x" (is "?LHS — 7RHS")
proof
assume 7LHS
then show 7RHS by simp
ged
qed
next
show 7B (is "Vs bal x. ?7LHS s bal x")
proof (rule allI[OF allI[OF allIl])

fix s bal x
show "?LHS s bal x" (is "?LHS —» ?RHS")
proof

assume ?7LHS
then show 7RHS by simp
qed
qed
next
show ?C (is "Vs bal. ?7LHS s bal")
proof (rule allI[OF allIl)

fix s bal
show "?LHS s bal" (is "?LHS — 7RHS")
proof

assume 7LHS
then show 7RHS by simp
qed
ged
qed
qed
qged
qged
qed
qed
next
case (37 1v ex e, env cd st)
show ?7case (is "?LHS — 7RHS")
proof
assume 0: "fmlookup e, STR ’’Victim’’ = Some (victim, SKIP)"

249

7 Applications

show ?RHS (is "V st6’. 7RHS st6°")
proof
fix st6’
show "?7RHS st6’" (is "?LHS —> ?7RHS")
proof
assume *: "stmt (ASSIGN lv ex) e, env cd st = Normal ((), st6’)"
show ?7RHS (is "7LHS A 7RHS")
proof
show "?LHS"
proof
assume asm: "address env # STR ’’Victim’’"
show "Vbal. frame bal st — frame bal st6’"
proof
fix bal
show "frame bal st — frame bal st6’"
proof
assume "frame bal st"
with * have a1: "(applyf (costs (ASSIGN 1v ex) e, env cd) >= ()\g. assert Gas (Ast. gas
st < g) (modify (Ast. st(gas := gas st - g))))) st =
Normal ((), st(gas:=gas st - costs (ASSIGN lv ex) e, env cd st|)"
and f1: "frame bal (st(gas:=gas st - costs (ASSIGN lv ex) e, env cd st|)" by (auto
simp add:frame_def)
moreover from * obtain kv kt st’ where **: "expr ex e, env cd (st(gas:=gas
st - costs (ASSIGN 1lv ex) e, env cd st|)) = Normal ((kv, kt), st’)" by (auto split:if_split_asm
result.split_asm)
ultimately have "Vrv4 st4’ (ev4’::Environment) bal.
frame bal (st(gas := gas st - costs (ASSIGN 1lv ex) e, env cd st])) A
local.expr ex ep env cd (st(gas := gas st - costs (ASSIGN 1lv ex) e, env cd st|) =
Normal (rv4, st4’) —
frame bal st4’" using asm 0 37(1) by simp
with f1 ** have f2: "frame bal st’" by blast
show "frame bal st6’"
proof (cases kv)
case (KValue v)
then show 7thesis
proof (cases kt)
case (Value t)
with * ** KValue obtain rv rt st’’ where #**: "lexp 1v e, env cd st’ = Normal
((rv,rt), st’’)" by (auto split:if_split_asm result.split_asm)
with KValue Value have "Vrv5 st5’ (ev5’::Environment) bal.
frame bal st’ A
local.lexp 1lv e, env cd st’ = Normal (rv5, st5’) —
frame bal st5’" using asm 0 37(2) [OF al **] by simp
with f2 *** have f3: "frame bal st’’" by blast
then show ?thesis
proof (cases rv)
case (LStackloc 17)
then show ?thesis
proof (cases rt)
case v2: (Value t’)
then show 7thesis
proof (cases "Valuetypes.convert t t’ v")
case None
with * ** x** KValue Value LStackloc v2 show ?thesis by (auto
split:if_split_asm)
next
case (Some a)
then show ?thesis
proof (cases a)
case (Pair v’ b)
with * #* *** KValue Value LStackloc v2 Some have "st6’ = st’’ (stack :=
updateStore 1’ (KValue v’) (stack st’’))" by (auto split:if_split_asm)
with 3 show ?thesis by (simp add:frame_def)
qed

250

7.2 Reentrancy (Reentrancy)

qed
next
case (Calldata x2)
with * *x *** KValue Value LStackloc show ?thesis by (auto split:if_split_asm)
next
case (Memory x3)
with * *x *** KValue Value LStackloc show ?thesis by (auto split:if_split_asm)
next
case (Storage x4)
with * *x *** KValue Value LStackloc show ?7thesis by (auto split:if_split_asm)
qed
next
case (LMemloc 1°)
then show ?thesis
proof (cases rt)
case v2: (Value t’)
with * *x *x* KValue Value LMemloc show ?7thesis by (auto split:if_split_asm)
next
case (Calldata x2)
with * ** *** KValue Value LMemloc show ?thesis by (auto split:if_split_asm)
next
case (Memory x3)
then show ?thesis
proof (cases x3)
case (MTArray x11 x12)
with * ** *** KValue Value LMemloc Memory show 7thesis by (auto
split:if_split_asm)
next
case (MTValue t’)
then show ?thesis
proof (cases "Valuetypes.convert t t’ v")
case None
with * ** *** KValue Value LMemloc Memory MTValue show 7thesis by (auto
split:if_split_asm)
next
case (Some a)
then show ?thesis
proof (cases a)
case (Pair v’ b)
with * ** *x* KValue Value LMemloc Memory MIValue Some have "st6’ = st’’
(memory := updateStore 1’ (MValue v’) (memory st’’)|)" by (auto split:if_split_asm)
with 3 show ?thesis by (simp add:frame_def)
qed
qged
qged
next
case (Storage x4)
with * #* *** KValue Value LMemloc Storage show ?thesis by (auto
split:if_split_asm)
qged
next
case (LStoreloc 1°)
then show ?thesis
proof (cases rt)
case v2: (Value x1)
with * ** *** KValue Value LStoreloc show ?thesis by (auto split:if_split_asm)
next
case (Calldata x2)
with * ** *** KValue Value LStoreloc show ?thesis by (auto split:if_split_asm)
next
case (Memory x3)
with * ** *** KValue Value LStoreloc show ?thesis by (auto split:if_split_asm)
next
case (Storage x4)

251

7 Applications

then show 7thesis
proof (cases x4)
case (STArray x11 x12)
with * *x *** KValue Value LStoreloc Storage show 7thesis by (auto
split:if_split_asm)
next
case (STMap x21 x22)
with * *x ***x KValue Value LStoreloc Storage show 7thesis by (auto
split:if_split_asm)
next
case (STValue t’)
then show ?thesis
proof (cases "Valuetypes.convert t t’ v")
case None
with * #*x #x* KValue Value LStoreloc Storage STValue show 7thesis by (auto
split:if_split_asm)
next
case (Some a)
then show ?thesis
proof (cases a)
case (Pair v’ b)
then show ?thesis
proof (cases "fmlookup (storage st’’) (address env)")
case None
with * ** *x* KValue Value LStoreloc Storage STValue Some Pair show
?thesis by (auto split:if_split_asm)
next
case s2: (Some s)
with * #*x ***x KValue Value LStoreloc Storage STValue Some Pair
have "st6’ = st’’(storage := fmupd (address env) (fmupd 1’ v’ s) (storage st’’)|)" by (auto
split:if_split_asm)
with £3 show ?thesis using asm by (simp add:frame_def)
qed
qed
qged
qged
qed
qed
next
case (Calldata x2)
with * ** KValue show ?thesis by (auto split:if_split_asm)
next
case (Memory x3)
with * ** KValue show ?thesis by (auto split:if_split_asm)
next
case (Storage x4)
with * ** KValue show ?thesis by (auto split:if_split_asm)
qed
next
case (KCDptr p)
then show ?thesis
proof (cases kt)
case (Value t)
with * *x KCDptr show ?thesis by (auto split:if_split_asm)
next
case (Calldata x2)
then show ?thesis
proof (cases x2)
case (MTArray x t)
with * ** KCDptr Calldata obtain rv rt st’’ where ***: "lexp 1lv e, env cd st’ =
Normal ((rv,rt), st’’)" by (auto split:if_split_asm result.split_asm)
with KCDptr Calldata MTArray have "Vrv5 st5’ (ev5’::Environment) bal.
frame bal st’ A
local.lexp 1lv e, env cd st’ = Normal (rv5, st5’) —

252

7.2 Reentrancy (Reentrancy)

frame bal st5’" using asm 0 37(3) [OF al **] by auto
with f2 **x have f3: "frame bal st’’" by blast
then show ?thesis
proof (cases rv)
case (LStackloc 1°)
then show 7thesis
proof (cases rt)
case (Value x1)
with * #*x *xx KCDptr Calldata MTArray LStackloc show 7thesis by (auto
split:if_split_asm)
next
case c2: (Calldata x2)
with * *x *x* KCDptr Calldata MTArray LStackloc show 7thesis by (auto
split:if_split_asm)
next
case (Memory x3)
with 3 * ** *** KCDptr Calldata MTArray LStackloc show ?thesis by (auto
simp add:frame_def split:if_split_asm)
next
case (Storage x4)
then show ?thesis
proof (cases "accessStore 1’ (stack st’’)")
case None
with * #*x #xx KCDptr Calldata MTArray LStackloc Storage show 7thesis by
(simp split:if_split_asm)
next
case (Some sv)
then show ?thesis
proof (cases sv)
case (KValue x1)
with * ** *x* KCDptr Calldata MTArray LStackloc Storage Some show
7thesis by (simp split:if_split_asm)
next
case c2: (KCDptr x2)
with * #x x**x KCDptr Calldata MTArray LStackloc Storage Some show
?thesis by (simp split:if_split_asm)
next
case (KMemptr x3)
with * #* **x KCDptr Calldata MTArray LStackloc Storage Some show
7thesis by (simp split:if_split_asm)
next
case (KStoptr p’)
then show ?thesis
proof (cases "fmlookup (storage st’’) (address env)")
case None
with * ** *xx KCDptr Calldata MTArray LStackloc Storage Some KStoptr
show 7thesis by (simp split:if_split_asm)
next
case s2: (Some s)
then show ?thesis
proof (cases "cpm2s p p’ x t cd s")
case None
with * ** *** KCDptr Calldata MTArray LStackloc Storage Some KStoptr
s2 show ?thesis by (simp split:if_split_asm)
next
case s3: (Some s’)
with * #* *** KCDptr Calldata MTArray LStackloc Storage Some KStoptr
s2 have "st6’ = st’’ (storage := fmupd (address env) s’ (storage st’’))" by (auto split:if_split_asm)
with f3 show ?thesis using asm by (simp add:frame_def)
qged
qed
qged
qed
qed

253

7 Applications

next
case (LMemloc 1°)
then show 7thesis
proof (cases "cpm2m p 1’ x t cd (memory st’’)")
case None
with * #*x **x KCDptr Calldata MTArray LMemloc show ?thesis by (auto
split:if_split_asm)
next
case (Some m)
with * #* *** KCDptr Calldata MTArray LMemloc have "st6’ = st’’ (memory :=
m)" by (auto split:if_split_asm)
with f3 show ?thesis using asm by (simp add:frame_def)
qed
next
case (LStoreloc 1°)
then show 7thesis
proof (cases "fmlookup (storage st’’) (address env)")
case None
with * *x *x* KCDptr Calldata MTArray LStoreloc show 7thesis by (auto
split:if_split_asm)
next
case (Some s)
then show 7thesis
proof (cases "cpm2s p 1’ x t cd s")
case None
with * #*x *x* KCDptr Calldata MTArray LStoreloc Some show 7thesis by (auto
split:if_split_asm)
next
case s2: (Some s’)
with * #*x #x* KCDptr Calldata MTArray LStoreloc Some s2 have "st6’ = st’’
(storage := fmupd (address env) s’ (storage st’’)|)" by (auto split:if_split_asm)
with f3 show ?thesis using asm by (simp add:frame_def)
qed
qed
qged
next
case (MTValue x2)
with * #*x KCDptr Calldata show ?thesis by (simp split:if_ split_asm)
qed
next
case (Memory x3)
with * *x KCDptr show ?thesis by (simp split:if_split_asm)
next
case (Storage x4)
with * *x KCDptr show ?thesis by (simp split:if_split_asm)
qed
next
case (KMemptr p)
then show ?thesis
proof (cases kt)
case (Value t)
with * ** KMemptr show 7thesis by (auto split:if_split_asm)
next
case (Calldata x2)
with * ** KMemptr show 7thesis by (simp split:if_split_asm)
next
case (Memory x3)
then show ?thesis
proof (cases x3)
case (MTArray x t)
with * *x KMemptr Memory obtain rv rt st’’ where ***: "lexp 1v e, env cd st’ =
Normal ((rv,rt), st’’)" by (auto split:if_split_asm result.split_asm)
with KMemptr Memory MTArray have "Vrv5 st5’ (ev5’::Environment) bal.
frame bal st’ A

254

7.2 Reentrancy (Reentrancy)

local.lexp 1lv e, env cd st’ = Normal (rv5, st5’) —
frame bal st5’" using asm 0 37(4) [OF al **] by auto
with f2 **x have f3: "frame bal st’’" by blast
then show ?thesis
proof (cases rv)
case (LStackloc 1°)
then show 7thesis
proof (cases rt)
case (Value x1)
with * *x *x* KMemptr Memory MTArray LStackloc show ?thesis by (auto
split:if_split_asm)
next
case (Calldata x2)
with * #*x *x¥x KMemptr Memory MTArray LStackloc show ?thesis by (auto
split:if_split_asm)
next
case m3: (Memory x3)
with £3 * ** *** KMemptr Memory MTArray LStackloc show 7thesis by (auto simp
add:frame_def split:if_split_asm)
next
case (Storage x4)
then show ?thesis
proof (cases "accessStore 1’ (stack st’’)")
case None
with * *x *x* KMemptr Memory MTArray LStackloc Storage show 7thesis by
(simp split:if_split_asm)
next
case (Some sv)
then show 7thesis
proof (cases sv)
case (KValue x1)
with * #*x *x* KMemptr Memory MTArray LStackloc Storage Some show ?thesis
by (simp split:if_split_asm)
next
case (KCDptr x2)
with * #x x¥*x KMemptr Memory MTArray LStackloc Storage Some show ?thesis
by (simp split:if_split_asm)
next
case m2: (KMemptr x3)
with * ** *x* KMemptr Memory MTArray LStackloc Storage Some show ?thesis
by (simp split:if_split_asm)
next
case (KStoptr p’)
then show ?thesis
proof (cases "fmlookup (storage st’’) (address env)")
case None
with * *x ***x KMemptr Memory MTArray LStackloc Storage Some KStoptr
show ?thesis by (simp split:if_split_asm)
next
case s2: (Some s)
then show 7thesis
proof (cases "cpm2s p p’ x t (memory st’’) s")
case None
with * #* *** KMemptr Memory MTArray LStackloc Storage Some KStoptr
s2 show ?thesis by (simp split:if_split_asm)
next
case s3: (Some s’)
with * *x *xx KMemptr Memory MTArray LStackloc Storage Some KStoptr
s2 have "st6’ = st’’ (storage := fmupd (address env) s’ (storage st’’))" by (auto split:if_split_asm)
with f3 show ?thesis using asm by (simp add:frame_def)
qed
qed
qed
qed

255

7 Applications

qed
next
case (LMemloc 1°)
with * #** *#** KMemptr Memory MTArray LMemloc have "st6’ = st’’ (memory :=
updateStore 1’ (MPointer p) (memory st’’))" by (auto split:if_split_asm)
with £3 show 7thesis using asm by (simp add:frame_def)
next
case (LStoreloc 1°)
then show 7thesis
proof (cases "fmlookup (storage st’’) (address env)")
case None
with * #*x **xx KMemptr Memory MTArray LStoreloc show ?thesis by (auto
split:if_split_asm)
next
case (Some s)
then show ?thesis
proof (cases "cpm2s p 1’ x t (memory st’’) s")
case None
with * *x *x* KMemptr Memory MTArray LStoreloc Some show ?thesis by (auto
split:if_split_asm)
next
case s2: (Some s’)
with * ** *** KMemptr Memory MTArray LStoreloc Some s2 have "st6’ = st’’
(storage := fmupd (address env) s’ (storage st’’)|)" by (auto split:if_split_asm)
with f3 show ?thesis using asm by (simp add:frame_def)
qged
qged
qed
next
case (MTValue x2)
with * ** KMemptr Memory show ?thesis by (simp split:if_split_asm)
qed
next
case (Storage x4)
with * ** KMemptr show 7thesis by (simp split:if_split_asm)
qed
next
case (KStoptr p)
then show ?thesis
proof (cases kt)
case (Value t)
with * ** KStoptr show 7thesis by (auto split:if_split_asm)
next
case (Calldata x2)
with * ** KStoptr show 7thesis by (simp split:if_split_asm)
next
case (Storage x3)
then show ?thesis
proof (cases x3)
case (STArray x t)
with * #*x KStoptr Storage obtain rv rt st’’ where *x**: "lexp 1v e, env cd st’ =
Normal ((rv,rt), st’’)" by (auto split:if_split_asm result.split_asm)
with KStoptr Storage STArray have "Vrvb st5’ bal.
frame bal st’ A
local.lexp 1lv e, env cd st’ = Normal (rv5, st5’) —
frame bal st5’" using asm 0 37(5) [OF al **] by auto
with f2 *¥x have f3: "frame bal st’’" by blast
then show ?thesis
proof (cases rv)
case (LStackloc 1°)
then show 7thesis
proof (cases rt)
case (Value x1)
with * *x *xx KStoptr Storage STArray LStackloc show 7thesis by (auto

256

7.2 Reentrancy (Reentrancy)

split:if_split_asm)
next
case (Calldata x2)
with * *x *x* KStoptr Storage STArray LStackloc show 7thesis by (auto
split:if_split_asm)
next
case (Memory x3)
then show ?thesis
proof (cases "accessStore 1’ (stack st’’)")
case None
with * *x ¥xx KStoptr Storage STArray LStackloc Memory show ?7thesis by
(simp split:if_split_asm)
next
case (Some sv)
then show ?thesis
proof (cases sv)
case (KValue x1)
with * #x *xx KStoptr Storage STArray LStackloc Memory Some show ?thesis
by (simp split:if_split_asm)
next
case (KCDptr x2)
with * ** *x* KStoptr Storage STArray LStackloc Memory Some show ?thesis
by (simp split:if_split_asm)
next
case (KMemptr p’)
then show ?thesis
proof (cases "fmlookup (storage st’’) (address env)")
case None
with * #x *x* KStoptr Storage STArray LStackloc Memory Some KMemptr
show ?thesis by (simp split:if_split_asm)
next
case s2: (Some s)
then show 7thesis
proof (cases "cps2m p p’ x t s (memory st’’)")
case None
with * ** *** KStoptr Storage STArray LStackloc Memory Some KMemptr
s2 show ?thesis by (simp split:if_split_asm)
next
case s3: (Some m)
with * *x *x*x KStoptr Storage STArray LStackloc Memory Some KMemptr
s2 have "st6’ = st’’ (memory := m|)" by (auto split:if_split_asm)
with 3 show ?thesis using asm by (simp add:frame_def)
qed
qed
next
case m2: (KStoptr x3)
with * #*x *xx KStoptr Storage STArray LStackloc Memory Some show ?thesis
by (simp split:if_split_asm)
qed
qged
next
case st2: (Storage x4)
with £3 * ** *** KStoptr Storage STArray LStackloc show ?thesis by (auto
simp add:frame_def split:if_split_asm)
qed
next
case (LStoreloc 1°)
then show 7thesis
proof (cases "fmlookup (storage st’’) (address env)")
case None
with * *x *xx KStoptr Storage STArray LStoreloc show 7thesis by (auto
split:if_split_asm)
next
case (Some s)

257

7 Applications

then show ?thesis
proof (cases "copy p 1° x t s")
case None
with * *x *x* KStoptr Storage STArray LStoreloc Some show 7thesis by (auto
split:if_split_asm)
next
case s2: (Some s’)
with * *x *x* KStoptr Storage STArray LStoreloc Some s2 have "st6’ = st’’
(storage := fmupd (address env) s’ (storage st’’)|)" by (auto split:if_split_asm)
with £3 show ?thesis using asm by (simp add:frame_def)
qed
qged
next
case (LMemloc 1°)
then show 7thesis
proof (cases "fmlookup (storage st’’) (address env)")
case None
with * #*x *xx KStoptr Storage STArray LMemloc show ?thesis by (auto
split:if_split_asm)
next
case (Some s)
then show ?thesis
proof (cases "cps2m p 1’ x t s (memory st’’)")
case None
with * *x *x* KStoptr Storage STArray LMemloc Some show 7thesis by (auto
split:if_split_asm)
next
case s2: (Some m)
with * *x x*x* KStoptr Storage STArray LMemloc Some s2 have "st6’ = st’’
(memory := m|)" by (auto split:if_split_asm)
with £3 show ?thesis using asm by (simp add:frame_def)
qged
qed
qed
next
case (STMap t t’)
with * #*x KStoptr Storage obtain 1’ rt st’’ where ***: "lexp 1lv e, env cd st’ =
Normal ((LStackloc 1’,rt), st’’)" by (auto split:if_split_asm result.split_asm LType.split_asm)
with KStoptr Storage STMap have "Vrv5 st5’ (evb5’::Environment) bal.
frame bal st’ A
local.lexp 1lv ep env cd st’ = Normal (rv5, st5’) —
frame bal st5’" using asm 0 37(6) [OF al **] by auto
with f2 **x have f3: "frame bal st’’" by blast
moreover from * ** xxx KStoptr Storage STMap have "st6’ = st’’ (stack :=
updateStore 1’ (KStoptr p) (stack st’’))" by (auto split:if_split_asm)
ultimately show ?thesis using asm f3 by (simp add:frame_def)
next
case (STValue x2)
with * ** KStoptr Storage show 7thesis by (simp split:if_split_asm)
qed
next
case (Memory x4)
with * ** KStoptr show 7thesis by (simp split:if_split_asm)
qed
qed
ged
qed
qed
next
show "?RHS" (is "?LHS — 7RHS")
proof
assume "address env = STR ’’Victim’’"
show 7RHS (is "?A A (7B A 7C)")
proof (rule conj3)

258

7.2 Reentrancy (Reentrancy)

show 7?4 (is "Vs val bal x. 7LHS s val bal x")
proof (rule allI[OF allI[OF allI[OF allI]]l)
fix s val bal x
show "?LHS s val bal x" (is "7?LHS — 7RHS")
proof
assume 7LHS
then show 7RHS by simp
qed
qed
next
show 7B (is "Vs bal x. ?7LHS s bal x")
proof (rule allI[OF allI[OF allIl])

fix s bal x
show "?7LHS s bal x" (is "?LHS — 7RHS")
proof

assume 7LHS
then show ?RHS by simp
qed
qed
next
show ?C (is "Vs bal. ?7LHS s bal")
proof (rule allI[OF allI])

fix s bal
show "?LHS s bal" (is "7?LHS — 7RHS")
proof

assume ?LHS
then show ?RHS by simp
qed
ged
qed
qed
qged
qged
qed
qed
next
case (38 s1 s2 e, e cd st)
show ?case (is "7LHS — 7RHS")
proof
assume 0: "fmlookup e, STR ’’Victim’’ = Some (victim, SKIP)"
show 7RHS (is "V st6’. 7RHS st6’")
proof
fix st6’
show "7RHS st6’" (is "?LHS — ?7RHS")
proof
assume *: "stmt (COMP s1 s2) e, e cd st = Normal ((), st6’)"
show ?RHS (is "7LHS A 7RHS")
proof
show "7LHS"
proof
assume asm: "address e # STR ’’Victim’’"
show "Vbal. frame bal st — frame bal st6’"
proof
fix bal
show "frame bal st — frame bal st6’"
proof
assume '"frame bal st"
with * have al: "(applyf (costs (COMP s1 s2) e, e cd) >= (Mg. assert Gas (Ast. gas st
< g) (modify (Ast. st(gas := gas st - g|))))) st =
Normal ((), st(gas:=gas st - costs (COMP s1 s2) ep, e cd st|))"
and f1: "frame bal (st(gas:=gas st - costs (COMP s1 s2) ep, e cd st|))" by (auto simp
add:frame_def)
then have "Vrv4 st4’ bal.
frame bal (st(gas := gas st - costs (COMP s1 s2) ep e cd st|)) A

259

7 Applications

stmt s1 e, e cd (st(gas := gas st - costs (COMP sl s2) ep e cd st|)) = Normal (rv4,
st4’) —
frame bal st4’" using asm 0 38(1) by (simp add:frame_def)
moreover from * obtain st’ where **: "stmt s1 e, e cd (st(gas:=gas st - costs (COMP
s1 s2) ep e cd st])) = Normal ((), st’)" by (auto split:if_split_asm result.split_asm)
ultimately have f2: "frame bal st’" using f1 by blast

have "Vrv4 st4’ bal.
frame bal st’ A
stmt s2 e, e cd st’ = Normal (rv4, st4’) —
frame bal st4’" using asm 0 38(2)[OF al **] by (simp add:frame_def)
moreover from * ** obtain st’’ where ***: "stmt s2 e, e cd st’ = Normal ((), st’’)"
by (auto split:if_split_asm result.split_asm)
ultimately have f3: "frame bal st’’" using f2 by blast

from al * ** *x* have "st6’ = st’’" by (simp split:if_split_asm)
with £3 asm show "frame bal st6’" by simp
qed
qed
qed
next
show "?RHS" (is "7LHS — ?RHS")
proof
assume ad: "address e = STR ’’Victim’’"
show ?7RHS (is "?A A 7B A 7C")
proof (rule conj3)
show ?7A (is "Vs val bal x. 7LHS s val bal x")
proof (rule allI[OF allI[OF allI[OF allI]ll)
fix s val bal x
show "?LHS s val bal x" (is "?LHS —> ?RHS")
proof
assume 7LHS
then show 7RHS by simp
qed
ged
next
show 7B (is "Vs bal x. 7LHS s bal x")
proof (rule allI[OF allI[OF allIl])

fix s bal x
show "?LHS s bal x" (is "?LHS — 7?RHS")
proof

assume ?LHS(is "7A1 A 7A2 N 7A3 N 7A4 N 7A5 N 7A6")
then have 741 and 742 and 743 and 744 and 745 and 746 by auto
with * have c1: "gas st > costs comp e, e cd st" by (auto split:if_split_asm)

with ‘?A1¢ * obtain st’’ where 00: "stmt assign e, e cd (st(gas := gas st - costs
comp e, e cd st|) = Normal((), st’’)" by (auto split:result.split_asm)

moreover from ‘?A2¢ have "fmlookup (storage (st(gas := gas st - costs comp e, e cd
st)))) (STR ’’Victim’’) = Some s" by simp

moreover from ‘7?A2¢ have "ReadL;,: (accessBalance (accounts (st(gas := gas st -

costs comp e, e cd st|))) (STR ’’Victim’’)) - (SUMM s) > bal A bal > 0" by simp
moreover from ‘7A3¢ have "P0OS s" by simp
moreover from ‘7A6° have "accessStore x (stack (st(gas := gas st - costs comp e, e
cd st)))) = Some (KValue (accessStorage (TUInt 256) (sender e + (STR ’’.’’ + STR ’’balance’’)) s))" by
simp
ultimately obtain s’’ where "fmlookup (storage st’’) (STR ’’Victim’’) = Some s’’"
and "ReadL;,:; (accessBalance (accounts st’’) (STR ’’Victim’’)) - (SUMM s’’ +
ReadL;n,: (accessStorage (TUInt 256) (sender e + (STR ’’.’’ + STR ’’balance’’)) s)) > bal A bal > 0"
and **: "accessStore x (stack st’’) = Some (KValue (accessStorage (TUInt 256)
(sender e + (STR ’’.’’ + STR ’’balance’’)) s))"
and "POS s’’"
using secureassign[0OF 00 _ ad ‘7A5°‘] that by blast
moreover from ci1 ‘7A1° * 00 obtain st’’’ where ***: "stmt transfer e, e cd st’’ =
Normal((), st’’’)" and "st6’ = st’’’" by auto

260

7.2 Reentrancy (Reentrancy)

moreover from ‘7?A1¢ 00 have x1: "stmt sl e, e cd (st(gas := gas st - costs (COMP sl
52) ep e cd st|) = Normal((), st’’)" by simp
moreover from * have x2: "(applyf (costs (COMP sl s2) e, e cd) >= ()\g. assert Gas
(Ast. gas st < g)
(modify (Ast. st(gas := gas st - g))))))
st = Normal ((), st(gas:=gas st - costs (COMP s1 s2) e, e cd st|))" by (simp split:

if_split_asm)
ultimately show "ds’. fmlookup (storage st6’) (STR ’’Victim’’) = Some s’
A ReadL;,: (accessBalance (accounts st6’) (STR ’’Victim’’)) - (SUMM s’) > bal A
bal > 0 A POS s’"
using 38(2) [OF x2 x1] ‘?7A1¢ ‘7A4°¢ ad 0 ** ‘7A6° by simp
qed
qed
next
show ?C (is "Vs bal. ?7LHS s bal")
proof (rule allI[OF allI])

fix s bal
show "?LHS s bal" (is "7LHS — 7RHS")
proof

assume ?LHS
then show ?RHS by simp
qed
ged
qed
qed
qged
qed
qed
qed
next
case (39 ex sl s2 e, e cd st)
show ?case (is "7LHS — 7RHS")
proof
assume 0: "fmlookup e, STR ’’Victim’’ = Some (victim, SKIP)"
show 7RHS (is "V st6’. 7RHS st6’")
proof
fix st6’
show "7RHS st6’" (is "?LHS — ?7RHS")
proof
assume *: "stmt (ITE ex s1 s2) e, e cd st = Normal ((), st6’)"
show ?RHS (is "7LHS A 7RHS")
proof
show "7LHS"
proof
assume asm: "address e # STR ’’Victim’’"
show "Vbal. frame bal st — frame bal st6’"
proof
fix bal
show "frame bal st — frame bal st6’"
proof
assume '"frame bal st"
with * have al: "(applyf (costs (ITE ex sl s2) e, e cd) >= ()\g. assert Gas (Ast. gas
st < g) (modify (Ast. st(gas := gas st - g)))))) st =
Normal ((), st(gas:=gas st - costs (ITE ex sl s2) e, e cd st|))"
and f1: "frame bal (st(gas:=gas st - costs (ITE ex sl s2) e, e cd st)))" by (auto simp
add:frame_def)

from * obtain b st’ where **: "expr ex e, e cd (st(gas:=gas st - costs (ITE ex sl
s2) ep e cd st|)) = Normal ((KValue b, Value TBool), st’)" by (auto split:if_split_asm result.split_asm
prod.split_asm Stackvalue.split_asm Type.split_asm Types.split_asm)
moreover from asm have "Vrv4 st4’ bal.
frame bal (st(gas := gas st - costs (ITE ex sl s2) e, e cd st]) A
expr ex e, e cd (st(gas := gas st - costs (ITE ex sl s2) e, e cd st))) = Normal (rv4,
st4’) —

261

7 Applications

frame bal st4’" using 0 39(1) [OF al] by (simp add:frame_def)
ultimately have f2: "frame bal st’" using f1 by blast

show "frame bal st6’"
proof (cases "b = ShowLpoo; True")
case True
then have "Vst6’ bal.
frame bal st’ A
local.stmt s1 e, e cd st’ = Normal ((), st6’) —
frame bal st6’" using asm 0 39(2) [OF al **, of "KValue b" "Value TBool" b TBool] by
(simp add:frame_def)
moreover from * ** True obtain st’’ where ***: "stmt sl e, e cd st’ = Normal ((),
st’’)" by (auto split:if_split_asm result.split_asm)
ultimately have "frame bal st’’" using f2 by blast
moreover from al * ** True *** have "st6’ = st’’" by (simp split:if_split_asm)
ultimately show "frame bal st6’" using asm by simp
next
case False
then have "Vst6’ bal.
frame bal st’ A
local.stmt s2 e, e cd st’ = Normal ((), st6’) —
frame bal st6’" using 0 asm 39(3) [OF al **, of "KValue b" "Value TBool" b TBool] by
(simp add:frame_def)
moreover from * ** False obtain st’’ where ***: "stmt s2 e, e cd st’ = Normal ((),
st’’)" by (auto split:if_split_asm result.split_asm)
ultimately have "frame bal st’’" using f2 by blast
moreover from al * ** False *** have "st6’ = st’’" by (simp split:if_split_asm)
ultimately show "frame bal st6’" using asm by simp
ged
qed
qed
qged
next
show "?RHS" (is "7LHS — ?7RHS")
proof
assume "address e = STR ’’Victim’’"
show ?7RHS (is "?A A (7B A 7C)")
proof (rule conj3)
show 74 (is "Vs val bal x. 7LHS s val bal x")
proof (rule allI[OF allI[OF allI[OF allI]l]l)
fix s val bal x
show "?LHS s val bal x" (is "?LHS — ?RHS")
proof
assume 7LHS
then show 7RHS by simp
qed
ged
next
show 7B (is "Vs bal x. 7LHS s bal x")
proof (rule allI[OF allI[OF allI]l)

fix s bal x
show "?LHS s bal x" (is "?LHS — 7?RHS")
proof

assume 7LHS
then show 7RHS by simp
qged
qed
next
show ?C (is "Vs bal. 7LHS s bal")
proof (rule allI[OF allI])

fix s bal
show "?LHS s bal" (is "?LHS —> 7RHS")
proof

assume ?7LHS

262

7.2 Reentrancy (Reentrancy)

then show 7RHS by simp
qed
qed
qed
qed
qed
qged
qed
qed
next
case (40 ex sO e, e cd st)
show 7case (is "?LHS — 7RHS")
proof
assume 0: "fmlookup e, STR ’’Victim’’ = Some (victim, SKIP)"
show ?RHS (is "V st6’. 7RHS st6’")
proof
fix st6’
show "7RHS st6’" (is "?LHS — ?7RHS")
proof
assume *: "stmt (WHILE ex s0) e, e cd st = Normal ((), st6’)"
show ?7RHS (is "?LHS A ?7RHS")
proof
show "?LHS"
proof
assume asm: "address e # STR ’’Victim’’"
show "Vbal. frame bal st —> frame bal st6’"
proof
fix bal
show "frame bal st — frame bal st6’"
proof
assume "frame bal st"
with * have al: "(applyf (costs (WHILE ex s0) e, e cd) >= ()\g. assert Gas (Ast. gas st
< g) (modify (Ast. st(gas := gas st - g|))))) st =
Normal ((), st(gas:=gas st - costs (WHILE ex s0) e, e cd st]))"
and f1: "frame bal (st(gas:=gas st - costs (WHILE ex sO) e, e cd st|))" by (auto simp
add:frame_def)

from * obtain b st’ where **: "expr ex e, e cd (st(gas:=gas st - costs (WHILE ex sO)
ep e cd st|)) = Normal ((KValue b, Value TBool), st’)" by (auto split:if_split_asm result.split_asm
prod.split_asm Stackvalue.split_asm Type.split_asm Types.split_asm)
moreover from asm have "Vrv4 st4’ bal.
frame bal (st(gas := gas st - costs (WHILE ex sO) e, e cd st])) A
expr ex e, e cd (st(gas := gas st - costs (WHILE ex s0) ep, e cd st|)) = Normal (rv4,
st4’) —
frame bal st4’" using 0 40(1) [OF al] by (simp add:frame_def)
ultimately have f2: "frame bal st’" using f1 by blast

show "frame bal st6’"
proof (cases "b = ShowLpoo; True")
case True
then have "Vst6’ bal.
frame bal st’ A
local.stmt sO e, e cd st’ = Normal ((), st6’) —
frame bal st6’" using 0 asm 40(2) [OF al **, of "KValue b" "Value TBool" b TBool] by
(simp add:frame_def)
moreover from * ** True obtain st’’ where ***: "stmt sO e, e cd st’ = Normal ((),
st’’)" by (auto split:if_split_asm result.split_asm)
ultimately have f3: "frame bal st’’" using f2 by blast

have "V st6’ bal.

frame bal st’’ A

local.stmt (WHILE ex sO) e, e cd st’’ = Normal ((), st6’) —>

frame bal st6’" using 0 asm 40(3) [OF al ** _ _ _ _ True ***] by (simp add:frame_def)
moreover from * ** True *** obtain st’’’ where **x*: "stmt (WHILE ex s0) e, e cd

263

7 Applications

st’’ = Normal ((), st’’’)" by (auto split:if_split_asm result.split_asm)
ultimately have "frame bal st’’’" using f3 by blast

moreover from al * ** True *** **** have "st6’ = st’’’" by (simp
split:if_split_asm)
ultimately show "frame bal st6’" using asm by simp
next
case False
then show "frame bal st6’" using * ** f1 f2 asm by (simp split:if_split_asm)
qed
qed
qed
qed
next
show "7RHS" (is "?LHS — 7RHS")
proof
assume "address e = STR ’’Victim’’"
show ?7RHS (is "?A A (7B A ?7C)")
proof (rule conj3)
show 74 (is "Vs val bal x. 7LHS s val bal x")
proof (rule allI[OF allI[OF allI[OF allI]ll)
fix s val bal x
show "?LHS s val bal x" (is "7LHS — 7RHS")
proof
assume 7LHS
then show 7RHS by simp
qed
qed
next
show 7B (is "Vs bal x. ?7LHS s bal x")
proof (rule allI[OF allI[OF allI]])

fix s bal x
show "?LHS s bal x" (is "?LHS —— 7RHS")
proof

assume ?7LHS
then show 7RHS by simp
qed
ged
next
show ?C (is "Vs bal. ?7LHS s bal")
proof (rule allI[OF allIl)

fix s bal
show "?LHS s bal" (is "?LHS —> 7RHS")
proof

assume 7LHS
then show 7RHS by simp
qged
qed
qed
qed
qed
qed
qed
qed
next
case (41 i xe e, e cd st)
show 7case (is "7?LHS — ?7RHS")
proof
assume 0: "fmlookup e, STR ’’Victim’’ = Some (victim, SKIP)"
show ?RHS (is "V st6’. 7RHS st6’")
proof
fix st’
show "?RHS st’" (is "?LHS —> ?RHS")
proof

264

7.2 Reentrancy (Reentrancy)

assume *: "stmt (INVOKE i xe) e, e cd st = Normal ((), st’)"
show ?7RHS (is "7LHS A ?7RHS")
proof
show "?LHS"
proof
assume asm: "address e # STR ’’Victim’’"
show "Vbal. frame bal st — frame bal st’"
proof
fix bal
show "frame bal st — frame bal st’"
proof
assume ff: "frame bal st
moreover from * have al: "(applyf (costs (INVOKE i xe) e, e cd) >= (\g. assert Gas
(Ast. gas st < g) (modify (Ast. st(gas := gas st - g)))))) st = Normal ((), st(gas := gas st - costs
(INVOKE i xe) e, e cd st|))" by auto
moreover from * obtain ct bla where **: "fmlookup e, (address e) = Some (ct, bla)"
by (auto split:if_split_asm option.split_asm)
moreover from * ** obtain fp f where ***: "fmlookup ct i = Some (Method (fp, f,
None)) "
by (auto split:if_split_asm option.split_asm Member.split_asm)
moreover define e’ where "e’ = ffold_init ct (emptyEnv (address e) (sender e) (svalue
e)) (fmdom ct)"
moreover from * ** *x* obtain e’’ cd’ st’’ st’’’ where ****: "load False fp xe e, e’
emptyStore (st(gas:=gas st - (costs (INVOKE i xe) e, e cd st), stack:=emptyStore|)) e cd (st(gas:=gas st
- (costs (INVOKE i xe) ep e cd st)|)) = Normal ((e’’, cd’, st’’), st’’’)"
using e’_def by (auto split:if_split_asm result.split_asm)
moreover from * **x* have f1: "frame bal st’’" and ad: "address e’ = address e’’"
using asm ff 0 41(1) [0OF al ** _ *** _ _ _ _ e’_def, of bla "(fp, f, None)" fp "(f,
None)" f None] by (auto simp add:frame_def)
moreover from e’_def have ad2: "address e = address e’" using ffold_init_ad_same[of
ct "(emptyEnv (address e) (sender e) (svalue e))" "(fmdom ct)" e’] by simp
moreover from * ** *x* *x*x* e’_def obtain st’’’’ where *****: "stmt f e, e’’ cd’
st’’ = Normal ((), st’’’’)" by (auto split:if_split_asm result.split_asm)
ultimately have "st’ = st’’’’(stack:=stack st’’’, memory := memory st’’’|)" using *
apply safe by simp
moreover from f1 ad ad2 asm ***** have f2:"frame bal st’’’’"
using 41(2) [OF a1l ** _ **x _ _ _ _ e’_def _ ***x] using 0 * by (auto simp
add:frame_def)
ultimately show "frame bal st’" by (simp add:frame_def)
qed
qed
qed
next
show "7RHS" (is "?7LHS —> 7RHS")
proof
assume "address e = STR ’’Victim’’"
show 7RHS (is "?A A (7B A ?7C)")
proof (rule conj3)
show 74 (is "Vs val bal x. 7LHS s val bal x")
proof (rule allI[OF allI[OF allI[OF allI]l]l)
fix s val bal x
show "?LHS s val bal x" (is "?LHS — 7RHS")
proof
assume 7LHS
then show 7RHS by simp
qged
qed
next
show 7B (is "Vs bal x. ?7LHS s bal x")
proof (rule allI[OF allI[OF allIl])

fix s bal x
show "?LHS s bal x" (is "?LHS — 7RHS")
proof

assume ?7LHS

265

7 Applications

then show 7RHS by simp
qed
qed
next
show ?C (is "Vs bal. 7LHS s bal")
proof (rule allI[OF allIl)

fix s bal
show "?LHS s bal" (is "?LHS — 7RHS")
proof

assume 7LHS
then show 7RHS by simp
qed
qed
qed
qed
qed
qed
qed
qed
next
case (42 ad i xe val e, e cd st)
show 7case (is "?LHS — 7RHS")
proof
assume 0: "fmlookup e, STR ’’Victim’’ = Some (victim, SKIP)"
show ?7RHS (is "V st6’. 7RHS st6’")
proof
fix st’
show "?7RHS st’" (is "7?LHS — 7RHS")
proof
assume *: "stmt (EXTERNAL ad i xe val) ep e cd st = Normal ((), st’)"
show ?7RHS (is "7LHS A 7RHS")
proof
show "?LHS"
proof
assume asm: "address e # STR ’’Victim’’"
show "Vbal. frame bal st —» frame bal st’"
proof
fix bal
show "frame bal st — frame bal st’"
proof
assume ff: "frame bal st"
moreover from * have al: "(applyf (costs (EXTERNAL ad i xe val) e, e cd) >= (\g.
assert Gas (Ast. gas st < g) (modify (Ast. st(gas := gas st - g|))))) st = Normal ((), st(gas := gas
st - costs (EXTERNAL ad i xe val) e, e cd st|))" by auto
moreover from * obtain adv st’’ where **: "expr ad e, e cd (st(gas:=gas st - (costs
(EXTERNAL ad i xe val) e, e cd st)|)) = Normal ((KValue adv, Value TAddr), st’’)"
by (auto split:if_split_asm result.split_asm Stackvalue.split_asm Type.split_asm
Types.split_asm)
moreover from * ** ff have f1: "frame bal st’’" using asm 0 42(1) by (simp
add:frame_def split:if_split_asm)
moreover from * ** obtain ct fb where ***: "fmlookup e, adv = Some (ct, fb)"
by (auto split:if_split_asm option.split_asm)
moreover from * ** *** f1 obtain v t st’’’ where ****: "expr val e, e cd st’’ =
Normal ((KValue v, Value t), st’’’)"
by (auto split:if_split_asm result.split_asm Stackvalue.split_asm Type.split_asm)
moreover from ****x f1 have "frame bal st’’’" using asm 42(2) [OF al ** _ _ _ _ ***] 0
by (simp split:if_split_asm)
then have f2: "frame bal (st’’’(stack := emptyStore, memory := emptyStore|))" by (simp
add:frame_def)
show "frame bal st’"
proof (cases "fmlookup ct i")
case None
with * #* *x**x *x*x* obtain acc where trans: "Accounts.transfer (address e) adv v
(accounts st’’’) = Some acc" by (auto split:if_split_asm option.split_asm)

266

7.2 Reentrancy (Reentrancy)

with * #*x x**x *x*x* None obtain st’’’’ where #***x: "stmt fb e, (emptyEnv adv

(address e) v) cd (st’’’(accounts := acc,stack:=emptyStore, memory:=emptyStore|)) = Normal ((), st’’’’)"
by (auto split:if_split_asm result.split_asm)
moreover have f4: "frame bal (st’’’’(stack:=stack st’’, memory := memory st’’[))"

proof (cases "adv = STR ’’Victim’’")
case True
with 0 #*** have "fb = SKIP" by simp
moreover from f2 have "frame bal (st’’’(accounts := acc,stack:=emptyStore,
memory :=emptyStore|))" using transfer_frame[OF trans] asm by (simp add:frame_def)
ultimately show ?thesis using ***x* by (auto split:if_split_asm simp
add: frame_def)

next
case False
moreover from f2 have "frame bal (st’’’(accounts := acc,stack:=emptyStore,
memory:=emptyStore|))" using transfer_ frame[OF trans] asm by (simp add:frame_def)
then have "frame bal st’’’’" using f2 0 42(5)[0F a1l ** _ _ _ *okk _ kokokk

None _ trams, of "KValue adv" "Value TAddr" TAddr fb "KValue v" "Value t" t st’’’ st’’’ st’’’] asm *¥xkx*
False by (auto simp add:frame_def)
then show 7thesis by (simp add:frame_def)
qed
ultimately show "frame bal st’" using al * ** *x*x *x**x None trans by (auto simp
add: frame_def)
next
case (Some a)
with * *x *x* *x¥xx* obtain fp f where *****: "fmlookup ct i = Some (Method (fp, f,
None))"
by (auto split:if_split_asm option.split_asm Member.split_asm)
moreover define e’ where e’_def: "e’ = ffold_init ct (emptyEnv adv (address e) v)
(fmdom ct)"
moreover from * ** **x* skkk* *kx*x obtain e’’ cd’ st’’’’ st’’’’’ where ***x*x*:
"load True fp xe e, e’ emptyStore (st’’’(stack:=emptyStore, memory:=emptyStore|)) e cd st’’’ = Normal
((e’’, cd’, st???7), st???72)"
using e’_def by (auto split:if_split_asm result.split_asm option.split_asm)
moreover from e’_def have ad2: "address e’ = adv" and send2: "sender e’ = address
e" and sval2: "svalue e’ = v" using ffold_init_ad_same[of ct "(emptyEnv adv (address e) v)" "(fmdom
ct)" e’] by auto
moreover from * ** xxx kkkkk xkkk *xkk*xx* e’ def obtain acc where trans:
"Accounts.transfer (address e) adv v (accounts st’’’’) = Some acc" by (auto split:if_split_asm
option.split_asm)
then have x***¥x: "Accounts.transfer (address e) adv v (accounts st’’’’) = Some acc"
by (auto split:if_split_asm option.split_asm)
moreover from * xx skk skkkkk kkkk kkkkkk kkkkkkk obtain st’’’’’’ where *xxxxxxx;
"stmt f e, e’’ cd’ (st’’’’(accounts := acc|)) = Normal ((), st’’?’’’)"
using e’_def by (auto split:if_split_asm result.split_asm)
moreover have f4: "frame bal st’’’’’’"
proof (cases "adv = STR ’’Victim’’")
case True
with 0 *** have ct_def: "ct = victim" by simp

moreover have
"(V (ev::Environment) cda st st’ bal.

local.load True fp xe e, e’ emptyStore (st’’’(stack := emptyStore, memory
:= emptyStore|)) e cd st’’’ = Normal ((ev, cda, st), st’) —
(frame bal (st’’’(stack := emptyStore, memory := emptyStore|)) — frame

bal st) A
(frame bal st’’’ — frame bal st’) A address e’ = address ev A sender e’
= sender ev A svalue e’ = svalue ev)"
using 0 42(3) [0F al ** _ _ _ _ ***k _ #kkx _ _ _ *kxk*x _ _ _ _ e’_def] asm by simp

with f2 *x*xx*+*x have f3: "frame bal st’’’’" and adl: "address e’ = address e’’"
and sendl: "sender e’ = sender e’’" and svall: "svalue e’ = svalue e’’" by auto

from ct_def #*x** consider (withdraw) "i = STR ’’withdraw’’" | (deposit) "i = STR

’’deposit’’" using victim_def fmap_of_list_SomeD[of "[(STR ’’balance’’, Var (STMap TAddr (STValue
(TUInt 256)))), (STR ’’deposit’’, Method ([], deposit, None)), (STR ’’withdraw’’, Method ([], keep,

267

7 Applications

None))]"] by auto
then show 7thesis
proof cases
case withdraw
moreover have "fmlookup victim (STR ’’withdraw’’) = Some (Method ([], keep,
None))" using victim_def by eval
ultimately have "f=keep" and "fp = []" using *** *x*xx* True O by auto
with s#xxxxxxx have sk xxx+¥*: "stmt keep e, e’’ cd’ (st’’’’(accounts := acc|)) =
Normal ((), st’’’’’’)" by simp
have "fmlookup (denvalue e’’) STR ’’balance’’ = Some (Storage (STMap TAddr
(STValue (TUInt 256))), Storeloc STR ’’balance’’)"
proof -
from victim_def have some: "fmlookup victim (STR ’’balance’’) = Some (Var
(STMap TAddr (STValue (TUInt 256))))" by eval
with ct_def have "fmlookup ct (STR ’’balance’’) = Some (Var (STMap TAddr
(STValue (TUInt 256))))" by simp
moreover have "STR ’’balance’’ |¢| fmdom (denvalue (emptyEnv adv (address e)
v))" by simp
moreover from ct_def some have "STR ’’balance’’ |€| fmdom ct" using fmdomI
by simp
ultimately have "fmlookup (denvalue e’) STR ’’balance’’ = Some (Storage (STMap
TAddr (STValue (TUInt 256))), Storeloc STR ’’balance’’)" using e’_def ffold_init_fmap[of ct "STR
?’palance’’" "(STMap TAddr (STValue (TUInt 256)))" "(emptyEnv adv (address e) v)" "(fmdom ct)"] by
simp
moreover have "e’’ = e’"
proof (cases "xe=[]")
case True
with #**xxx¥xx ‘fp = []‘ show 7thesis by simp
next
case False
then obtain xx xe’ where "xe = xx # xe’" using list.exhaust by auto
with #x*x*xx*x ‘fp = []° show 7thesis by simp
qed
ultimately show ?thesis by simp
qged

moreover from adl ad2 True have ad: "address e’’ = STR ’’Victim’’" by simp
moreover from ad sendl send2 asm have "sender e’’ # address e’’" by simp

moreover from f3 have f4: "frame bal (st’’’’(accounts := acc|))" using
transfer_frame [OF ******] asm by simp

then obtain s’’’’ where "fmlookup (storage (st’’’’(accounts := acc|)))
(STR ’’Victim’’) = Some s’’’’ A ReadL;n: (accessBalance (accounts (st’’’’(accounts := acc|))) (STR

?’Victim’’)) - (SUMM s’’’’) > bal A bal > 0 A POS s’’’’" by (auto simp add:frame_def)

ultimately have "(3s’. fmlookup (storage st’’’’’’) (STR ’’Victim’’) = Some s’

A ReadL;,: (accessBalance (accounts st’’’’’’) (STR ’’Victim’’)) - (SUMM s’) > bal
A bal > 0 A POS s’)"

using 0 #xkxkx*x ‘f=keep‘ 42(4) [OF al ** _ _ _ _ #kx _ skkk _ _ _ kkkk*x

_ e’_def _ *¥x*¥*x* _ _ _ trans, of "KValue adv" "Value TAddr" TAddr fb "KValue v" "Value t" t "(fp, f,
None)" "(f, None)" f None e’’ "(cd’, st’’’’)" cd’ st’?’’’ st’???? "()" "st’’’’(accounts := acc|)"] apply
safe by auto

then show ?thesis by (simp add:frame_def)

next

case deposit

moreover from f2 have "frame bal (st’’’(stack:=emptyStore,
memory:=emptyStore|))" using transfer_frame[OF ******] asm by simp

moreover have "fmlookup victim (STR ’’deposit’’) = Some (Method ([], deposit,
None))" using victim_def by eval

ultimately have "f=deposit" and "fp = []" using *** x****x True 0 by auto

with ##*xxx+* have *: "stmt deposit e, e’’ cd’ (st’’’’(accounts := acc|)) = Normal
(O, st???222)" by simp

have f4: "frame (bal + ReadL;n: v) (st’’’’(accounts := acc|))" and adl: "address
e’ = address e’’" and sendl: "sender e’ = sender e’’" and svall: "svalue e’ = svalue e’’"
proof -

268

7.2 Reentrancy (Reentrancy)

have "ReadL;,: (accessBalance acc (STR ’’Victim’’)) = ReadL;,: (accessBalance
(accounts st’’’’) (STR ’’Victim’’)) + ReadL;,: v" using transfer_add[0F ******] asm True by simp
moreover have "ReadL;,: v > 0" using transfer_vall[0OF #*****] by simp

ultimately have "frame (bal + ReadL;,: v) (st’’’’(accounts := acc|))" using £3
by (auto simp add:frame_def)
then show "frame (bal + ReadL;n: v) (st’’’’(accounts := acc|))" and "address e’
= address e’’" and "sender e’ = sender e’’" and "svalue e’ = svalue e’’" using f2 0 42(3) [OF a1l ** _ _
__ kkk _ kkkk _ kkkkk e’ _def, of "KValue adv" "Value TAddr" TAddr fb "KValue v" "Value t"]
asm ******* by (auto simp add:frame_def)
qed
moreover from svall sval2 have "v = svalue e’’" by simp
ultimately have "frame (bal + ReadL;,: (svalue e’’)) (st’’’’(accounts := acc|)"

by simp

then obtain s’’’’’ where II: "INV (st’’’’(accounts := acc|) s’’’’’ (SUMM s’’’’’)
(bal + ReadL;,: (svalue e’’))" and III:"POS s’’’’’" by (auto simp add:frame_def)

then have s’’’’’_def: "fmlookup (storage (st’’’’(accounts := accl|))) STR
?’Victim’’ = Some s’’’’’" by simp

have yyy: "fmlookup (denvalue e’’) STR ’’balance’’ = Some (Storage (STMap TAddr
(STValue (TUInt 256))), Storeloc STR ’’balance’’)"
proof -
from victim_def have some: "fmlookup victim (STR ’’balance’’) = Some (Var
(STMap TAddr (STValue (TUInt 256))))" by eval
with ct_def have "fmlookup ct (STR ’’balance’’) = Some (Var (STMap TAddr
(STValue (TUInt 256))))" by simp
moreover have "STR ’’balance’’ |¢| fmdom (denvalue (emptyEnv adv (address e)
v))" by simp
moreover from ct_def some have "STR ’’balance’’ |€| fmdom ct" using fmdomI
by simp
ultimately have "fmlookup (denvalue e’) STR ’’balance’’ = Some (Storage (STMap
TAddr (STValue (TUInt 256))), Storeloc STR ’’balance’’)" using e’_def ffold_init_fmap[of ct "STR
?’palance’’" "(STMap TAddr (STValue (TUInt 256)))" "(emptyEnv adv (address e) v)" "(fmdom ct)"] by
simp
moreover have "e’’ = e’"
proof (cases "xe=[]")
case True
with **x*xxx¥xx ‘fp = []‘ show 7thesis by simp
next
case False
then obtain xx xe’ where "xe = xx # xe’" using list.exhaust by auto
with #x*x*xx*x ‘fp = []° show 7thesis by simp
qged
ultimately show ?7thesis by simp
qged

from asm True have "address e # (STR ’’Victim’’)" by simp

then have "ReadL;,: (accessBalance (accounts st’’’’) (STR ’’Victim’’)) +
ReadL;n: v < 27256" using transfer_val2[0F *****x] True by simp

moreover from ‘address e # (STR ’’Victim’’)‘ have "ReadL;,: (accessBalance acc
(STR ’’Victim’’)) = ReadL;,: (accessBalance (accounts st’’’’) (STR ’’Victim’’)) + ReadL;,: v" using
transfer_add[OF ******] True by simp

ultimately have abc: "ReadL;,: (accessBalance (accounts (st’’’’(accounts :=
aCCD)) (STR °’’Victim’’)) < 27256" by simp

from II have "fmlookup (storage (st’’’’(accounts := acc|))) (STR ’’Victim’’) =
Some s’’’’’ A ReadL;n: (accessBalance (accounts (st’’’’(accounts := acc|))) (STR ’’Victim’’)) - (SUMM
s’’??’) > bal + ReadL;n: (svalue e’’) A bal + ReadL;,: (svalue e’’) > 0" by (auto)

moreover have "ReadL;,: (accessStorage (TUInt 256) (sender e’’ + (STR ’’.°7 +
STR ’’balance’’)) s’’’’’) + [svalue e’’] < 2 ~ 256 A

ReadL;n,: (accessStorage (TUInt 256) (sender e’’ + (STR ’’.’’ + STR

’’palance’’)) s’’’’’) + [svalue e’’] > 0"

proof (cases "fmlookup s’’’’’ (sender e’’ + (STR ’’.°’ + STR ’’balance’’)) =
None")

case True

269

7 Applications

hence "(accessStorage (TUInt 256) (sender e’’ + (STR ’’.°’ + STR ’’balance’’))
58’7272) = ShowL;nt+ 0" by simp
moreover have "([svalue e’’]::int) < 2 ~ 256"
proof -
from II have "bal + [svalue e“] + SUMM s’’’’’ < ReadL;n: (accessBalance
(accounts (st’’’’(accounts := acc|))) (STR ’’Victim’’))" by simp
moreover have "0 < SUMM s’’’’’"
using III sum_nonneg[of "{(ad,x). fmlookup s’’’’’ (ad + (STR ’’.’’ + STR
’’balance’’)) = Some x}" "A(ad,x). ReadL;,: x"] by auto
ultimately have "bal + [svalue e’’| < ReadL;,: (accessBalance (accounts
(st’’’’(accounts := acc|))) (STR ’’Victim’’))" by simp
moreover from ff have "bal>0" by (auto simp add:frame_def)
ultimately show "([svalue e’’]::int) < 2 ~ 256" using abc by simp
qed
moreover have "ReadL;,; v > 0" using transfer_vall[0OF #*****] by simp
with ‘svalue e’ = v svall have "([svalue e’’|::int) > 0" by simp
ultimately show ?thesis using Read_ShowL_id by simp
next
case False
then obtain x where x_def: "fmlookup s’’’’’ (sender e’’ + (STR ’’.’’ + STR
’’balance’’)) = Some x" by auto
moreover from II have "bal + [svalue e’’] + SUMM s’’’’’ < ReadLint
(accessBalance (accounts (st’’’’(laccounts := accl|))) (STR ’’Victim’’))" by simp
moreover have "(case (sender e’’, x) of (ad, x) = [x]) < (O (ad, x)€{(ad,
x). fmlookup s’’’’’ (ad + (STR ’’.’’ + STR ’’balance’’)) = Some x}. ReadL;n: x)"
proof (cases rule: member_le_sum[of "(sender e’’,x)" "{(ad,x). fmlookup s’’’’’
(ad + (STR ’’.’’ + STR ’’balance’’)) = Some x}" "M(ad,x). ReadL;n: x"])
case 1
then show ?case using x_def by simp
next
case (2 x)
with ITII show ?case by auto
next
case 3
have "inj_on (A(ad, x). (ad + (STR ’’.’’ + STR ’’balance’’), x)) {(ad, x).
(fmlookup s’’’’’ o (Aad. ad + (STR ’’.’’ + STR ’’balance’’))) ad = Some x}" using balance_inj by simp
then have "finite {(ad, x). (fmlookup s’’’’’ o (lAad. ad + (STR ’’.’’ + STR
’’balance’’))) ad = Some x}" using fmlookup_finite[of "Aad. (ad + (STR ’’.’’ + STR ’’balance’’))"
SJ))J}J by simp
then show 7case using finite_subset[of "{(ad, x). fmlookup s’’’’’ (ad + (STR
?2.22 + STR ’’balance’’)) = Some x}" "{(ad, x). fmlookup s’’’’’ (ad + (STR ’’.’’ + STR ’’balance’’)) =
Some x}"] by auto
qed
then have "ReadL;n: x < SUMM s’’’’’" by simp
ultimately have "bal + [svalue e’’| + ReadL;n:+ x < ReadL;,: (accessBalance
(accounts (st’’’’(accounts := acc|))) (STR ’’Victim’’))" by simp
moreover from ff have "bal>0" by (auto simp add:frame_def)
ultimately have "[svalue e’’| + ReadL;n:+ x < ReadL;,: (accessBalance (accounts
(st’’?’(accounts := acc)))) (STR ’’Victim’’))" by simp
with abc have "[svalue e’’] + ReadlL;nt x < 27256" by simp
moreover have "fmlookup s’’’’’ (sender e’ + (STR ’’.°’ + STR ’’balance’’)) =
fmlookup s’’’’’ (sender e’’ + (STR ’’.’’ + STR ’’balance’’))" using sendl by simp
ultimately have "bal + [svalue e’’| < [accessBalance (accounts (st’’’’(accounts
:= acc|))) STR ’’Victim’’] - SUMM s’’’’’" and lck: "fmlookup s’’’’’ (sender e’’ + (STR ’’.’’ + STR
’’balance’’)) = Some x" and "ReadLin: x + [svalue e’’] < 2 ~ 256" using adl ad2 True II x_def by simp+
moreover from Ick have "(accessStorage (TUInt 256) (sender e’’ + (STR ’’.°° +
STR ’’balance’’)) s’’’’’) = x" by simp
moreover have "[svalue e’’]| + ReadLint x > 0"
proof -
have "ReadL;,: v > 0" using transfer_vall[0F ****x*] by simp
with ‘svalue e’ = v‘ svall have "([svalue e’’|::int) > 0" by simp
moreover from IITI have "ReadlL;,: x > 0" using x_def by simp
ultimately show ?thesis by simp
qed

270

7.2 Reentrancy (Reentrancy)

ultimately show ?thesis using Read_ShowL_id by simp
qed
moreover have "address e’’ = STR ’’Victim’’" using adl ad2 True by simp
ultimately obtain s’’’’’’ where "fmlookup (storage st’’’’’’) (STR ’’Victim’’) =
Some s’’’’’’" and "ReadL;,: (accessBalance (accounts st’’’’’’) (STR ’’Victim’’)) - SUMM s’’’’’’ > bal"
and ”POS S)J))I)”
using deposit_frame[0OF * s’’’’’_def _ yyyl III by auto
then show 7thesis using ff by (auto simp add:frame_def)
qed
next
case False
moreover from f2 have "frame bal (st’’’(stack:=emptyStore, memory:=emptyStorel|))"
using transfer_frame[OF ******] asm by simp

then have "frame bal st’’’’" and adl: "address e’ = address e’’" using f2 0

42(3) [O0F al ** _ _ _ _ *kk _ *kkxk _ _ _ kkkkk _ _ e’ _def, of "KValue adv" "Value TAddr" TAddr fb
"KValue v" "Value t"] asm ******* by (auto simp add:frame_def)
then have f4: "frame bal (st’’’’(accounts := acc|))" using transfer_frame[OF

*x*xx*+%] asm by simp

moreover from adl ad2 have "address e’’ # STR ’’Victim’’ A fmlookup e, (STR
?’Victim’’) = Some (victim, SKIP)" using 0 False by simp
then have "Vst6’ bal.

frame bal (st’’’’(accounts := acc|)) A
local.stmt f e, e’’ cd’ (st’’’’(accounts := acc|)) = Normal ((), st6’) —
frame bal st6’" using 42(4) [OF al ** _ _ _ _ *%x _ xkk%x _ _ _ *kk¥kx _ _ _ _ e’_def
_ ®kkkkkk __ kx*kx*x] False asm by (auto simp add:frame_def)
ultimately show ?thesis using ***x**x* by blast
qed
ultimately show "frame bal st’" using al * ** *x* **** by (auto simp add:frame_def)
qed
qed
qed
qed
next
show "?RHS" (is "7LHS — ?7RHS")
proof

assume "address e = STR ’’Victim’’"
show ?7RHS (is "7?A A (?B A ?C)")
proof (rule conj3)
show 7?4 (is "Vs val bal x. 7LHS s val bal x")
proof (rule allI[OF allI[OF allI[OF allI]l]l)
fix s val bal x
show "?LHS s val bal x" (is "7?LHS — 7RHS")
proof
assume 7LHS
then show 7RHS by simp
qged
qed
next
show ?B (is "Vs bal x. ?LHS s bal x")
proof (rule allI[OF allI[OF allIl])

fix s bal x
show "?LHS s bal x" (is "?LHS — 7RHS")
proof

assume ?7LHS
then show ?RHS by simp
qed
qed
next
show ?C (is "Vs bal. ?LHS s bal")
proof (rule allI[OF allIl)

fix s bal
show "?LHS s bal" (is "?LHS —> 7RHS")
proof

271

7 Applications

assume 7LHS
then show 7RHS by simp
qed
qed
qed
qed
qed
qed
qed
qed
next
case (43 ad ex e, e cd st)
show 7case (is "?LHS — 7RHS")
proof
assume 0: "fmlookup e, STR ’’Victim’’ = Some (victim, SKIP)"
show ?RHS (is "V st6’. 7RHS st6°")
proof
fix st’
show "?7RHS st’" (is "7?LHS —> 7RHS")
proof
assume *: "stmt (TRANSFER ad ex) e, e cd st = Normal ((), st’)"
show ?7RHS (is "7LHS A 7RHS")
proof
show "?LHS"
proof
assume asm: "address e # STR ’’Victim’’"
show "Vbal. frame bal st — frame bal st’"
proof
fix bal
show "frame bal st — frame bal st’"
proof
assume ff: "frame bal st"
from * have al: "(applyf (costs (TRANSFER ad ex) e, e cd) >= (\g. assert Gas (Ast.
gas st < g) (modify (Ast. st(gas := gas st - g|))))) st = Normal ((), st(gas := gas st - costs
(TRANSFER ad ex) e, e cd st)))" by auto
from * obtain v t st’’ where **: "expr ex e, e cd (st(gas:=gas st - (costs (TRANSFER
ad ex) e, e cd st))) = Normal ((KValue v, Value t), st’’)"
by (auto split:if_split_asm result.split_asm Stackvalue.split_asm Type.split_asm)
from asm ff * ** have f1: "frame bal st’’" using 43(1) [OF a1l 0 by (simp
add: frame_def)
from * ** obtain adv st’’’ where ***: "expr ad e, e cd st’’ = Normal ((KValue adv,
Value TAddr), st’’’)"
by (auto split:if_split_asm result.split_asm Stackvalue.split_asm Type.split_asm
Types.split_asm)
from asm * *** f1 have f2: "frame bal st’’’" using asm 43(2) [OF al **] 0 by (simp
add: frame_def)
from * *x *xx* obtain acc where *****: "Accounts.transfer (address e) adv v (accounts
st’’’) = Some acc" by (auto split:if_split_asm option.split_asm)
from f2 have f3: "frame bal (st’’’(accounts := acc|))" using transfer_ frame[OF ****%]
asm by simp
show "frame bal st’"
proof (cases "fmlookup e, adv")
case None
with al * *x *xx **xxx show 7thesis using 3 by auto
next
case (Some a)
then show ?thesis
proof (cases a)
case (Pair ct f)
moreover define e’ where "e’ = ffold_init ct (emptyEnv adv (address e) v) (fmdom
ct)"
moreover from * *x *x* Some Pair **x** e’_def obtain st’’’’ where ***x*x: "stmt f
ep e’ emptyStore (st’’’(accounts := acc, stack:=emptyStore, memory:=emptyStore|)) = Normal ((), st’’’’)"
by (auto split:if_split_asm option.split_asm result.split_asm)

272

7.2 Reentrancy (Reentrancy)

moreover from e’_def have ad: "adv = address e’" using ffold_init_ad_same[of ct
"(emptyEnv adv (address e) v)" "(fmdom ct)" e’] by simp

moreover have f4: "frame bal st’’’’"
proof (cases "adv = STR ’’Victim’’")
case True
with 0 #** *x* Some Pair have "f = SKIP" using victim_def by simp
with #x*xx*x have "st’’’’= st’’’
(accounts := acc, stack := emptyStore, memory := emptyStore,
gas := gas st’’’ - costs SKIP e, e’ emptyStore (st’’’(accounts := acc, stack :=
emptyStore, memory := emptyStore|)))" by (simp split:if_split_asm)
with £3 show ?thesis by (simp add:frame_def)
next
case False
with asm ad have "Vst6’ bal.

frame bal (st’’’(accounts := accl)) A
local.stmt f e, e’ emptyStore (st’’’(accounts := acc, stack := emptyStore, memory
:= emptyStore|)) = Normal ((), st6’) —
frame bal st6’" using asm Some Pair 43(3) [0OF al ** _ _ _ **x _ _ _ _ _ ok kK
_ e’_def, where s’e = "st’’’(accounts := acc, stack:=emptyStore, memory:=emptyStore|)", of "KValue

v" "Value t" t "KValue adv" "Value TAddr" TAddr st’’’ _ f st’’’ st’’’ "()"] using 0 by (simp
add: frame_def)
with f3 **x**x** show 7thesis by blast
qed
moreover from * ** **xx Some Pair ***** sxkk*** e’ _def have st’_def: "st’ =
st’’’’(stack:=stack st’’’, memory := memory st’’’|)" by (simp split:if_split_asm)
ultimately show "frame bal st’" apply safe by (simp_all add:frame_def)
qed
ged
qed
qed
qged
next
show "?RHS" (is "?LHS — 7RHS")
proof
assume ad: "address e = STR ’’Victim’’"
show ?7RHS (is "7A N 7B A 7C")
proof (rule conj3)
show 74 (is "Vs val bal x. 7LHS s val bal x")
proof (rule allI[OF allI[OF allI[OF allI]l]l)
fix s val bal x
show "?LHS s val bal x" (is "?LHS — ?RHS")
proof
assume 7LHS (is "?7A1 A 7A2 N 7A3 N 7A4 N 7A5")
then have ?7A1 and 742 and 743 and 744 and 745 by auto
define st’’ where "st’’ = st(gas := gas st - costs transfer e, e cd st|"
define st’’’ where "st’’’ = st’’(gas := gas st’’ - costs. (LVAL (Id (STR ’’bal’’)))
ep, e cd st’’)"
define st’’’’ where "st’’’’ = st’’’(gas := gas st’’’ - costs. SENDER e, e cd st’’’|)"
from ‘741¢ * have c1: "gas st > costs transfer e, e cd st" by (auto
split:if_split_asm)
have c2: "gas st’’ > costs. (LVAL (Id (STR ’’bal’’))) e, e cd st’’"
proof (rule ccontr)
assume "- costs. (LVAL (Id (STR ’’bal’’))) ep e cd st’’ < gas st’’"
with c1 show False using ‘?A1¢ * st’’_def st’’’_def by auto
qed
with ‘744¢ ‘?A5° have 00:"expr (LVAL (Id (STR ’’bal’’))) e, e cd st’’ = Normal
((KValue val, Value (TUInt 256)), st’’’)" using st’’’_def st’’_def by simp
moreover have "gas st’’’>costs. SENDER e, e cd st’’’"
proof (rule ccontr)
assume "— costs. SENDER e, e cd st’’’ < gas st’’’"
with c1 c2 show False using ‘741°¢ ‘744° ‘7A5° * st’’_def st’’’_def by auto
qed
then have #*x:"expr SENDER e, e cd st’’’ = Normal ((KValue (sender e), Value TAddr),

273

7 Applications

st’’’’)" using st’’’’_def by simp
then obtain acc where **x:"Accounts.transfer (address e) (sender e) val (accounts
st’’’’) = Some acc"
and ****: "ReadL;,: (accessBalance acc (STR ’’Victim’’)) = ReadL;,: (accessBalance
(accounts st???’) (STR ’’Victim’’)) - (ReadL;,: val)"
proof -
from ‘7A1¢ * c1 00 ** obtain acc where acc_def: "Accounts.transfer (address e)
(sender e) val (accounts st’’’’) = Some acc" using st’’’’_def st’’’_def st’’_def by (auto split:
option.split_asm)
with ad obtain acc’ where *: "subBalance (STR ’’Victim’’) val (accounts st’’’’) =
Some acc’"
and "addBalance (sender e) val acc’ = Some acc" by (simp split:
option.split_asm)
moreover from * have "acc’ = updateBalance(STR ’’Victim’’) (ShowLin:+ (ReadLint
(accessBalance (accounts st’’’’) (STR ’’Victim’’)) - ReadL;n: val)) (accounts st’’’’)" by (simp split:
if_split_asm)
then have "ReadL;,: (accessBalance acc’ (STR ’’Victim’’)) = ReadL;,: (accessBalance
(accounts st’’’’) (STR ’’Victim’’)) - (ReadLin: val)" using Read_ShowL_id by simp
moreover from ‘?7A5¢ ad have "sender e # (STR ’’Victim’’)" by simp
ultimately have "ReadL;,: (accessBalance acc (STR ’’Victim’’)) = ReadLin:
(accessBalance (accounts st’’’’) (STR ’’Victim’’)) - (ReadL;n: val)" using addBalance_eq[of "sender
e" val acc’ acc " STR ’’Victim’’"] by simp
with acc_def show ?thesis using that by simp
qed
show ?RHS
proof (cases "fmlookup e, (sender e)")
case None
with ‘?A1¢ 00 * #* *** have "st’ = st’’’’(accounts := acc|)" using cl st’’_def by
auto
moreover from ‘?A2° have "fmlookup (storage st’’’’) (STR ’’Victim’’) = Some s"
using st’’_def st’’’_def st’’’’_def by simp
moreover from ‘?742° have "ReadL;,:; (accessBalance (accounts st’’’’) (STR
’’Victim’’)) - (SUMM s + ReadL;n: val) > bal A bal > 0" wusing st’’_def st’’’_def st’’’’_def by simp
with **x* have "ReadL;,: (accessBalance acc (STR ’’Victim’’)) - SUMM s > bal A bal
> 0" by simp
then have "ReadL;,: (accessBalance (accounts (st’’’’(accounts := acc|))) (STR
?’Victim’’)) - SUMM s > bal A bal > 0" by simp
ultimately show ?thesis using ‘?A3‘ by (simp add:frame_def)
next
case (Some a)
then show ?thesis
proof (cases a)
case (Pair ct f)
moreover define e’ where e’_def: "e’=ffold_init ct (emptyEnv (sender e) (address
e) val) (fmdom ct)"
ultimately obtain st’’’’’ where *****: "stmt f e, e’ emptyStore (st’’’’(accounts
:= acc, stack:=emptyStore, memory:=emptyStore|)) = Normal ((), st’’’’’)"
and *¥***x: "st’ = st’’’’’(stack:=stack st’’’’, memory := memory st’’’’)" us-
ing ‘7A1°¢ 00 ** *** Some * stmt.simps(8)[of SENDER "(LVAL (Id (STR ’’bal’’)))" e, e cd st] c1 st’’_def
st’’’_def st’’’’_def by (auto split: result.split_asm unit.split_asm)
from ‘7A1¢ * have x1: "(applyf (costs (TRANSFER ad ex) e, e cd) >= ()\g. assert
Gas
(\st. gas st < g)
(modify (Ast. st(gas := gas
st - g)))))
st =
Normal ((), st’’)" using st’’_def by (simp split:if_split_asm)
from 00 ‘?A1° have x2: "expr ex e, e cd st’’ = Normal ((KValue val, Value (TUInt
256)), st’’’)" by simp
have x3: "(KValue val, Value (TUInt 256)) = (KValue val, Value (TUInt 256))" by
simp
have x4: "KValue val = KValue val" by simp
have x5: "Value (TUInt 256) = Value (TUInt 256)" by simp
from #** ‘?A1° have x6: "expr ad e, e cd st’’’ = Normal ((KValue (sender e),

274

7.2 Reentrancy (Reentrancy)

Value TAddr), st’’’’)" by simp

have x7: "(KValue (sender e), Value TAddr) = (KValue (sender e), Value TAddr)" by
simp

have x8: "KValue (sender e) = KValue (sender e)" by simp

have x9: "Value TAddr = Value TAddr" by simp

have x10: "TAddr = TAddr" by simp

have x11: "applyf accounts st’’’’ = Normal (accounts st’’’’, st’’’’)" by simp

from *** have x12: "Accounts.transfer (address e) (sender e) val (accounts
st’’’’) = Some acc" by simp

from Some Pair have x13: "fmlookup e, (sender e) = Some (ct,f)" by simp

have x14: "(ct, f) = (ct, f)" by simp

from e’_def have x15: "e’ = ffold_init ct (emptyEnv (sender e) (address e) val)
(fmdom ct)" by simp

have x16: "get st’’’’ = Normal (st’’’’, st’’’’)" by simp

have x17: "modify (Ast. st(accounts := acc, stack := emptyStore, memory :=
emptyStore|)) st’’’’ = Normal ((), st’’’’(accounts := acc, stack := emptyStore, memory := emptyStorel))"
by simp

from ‘7A2¢ have "fmlookup (storage st’’’’) (STR ’’Victim’’) = Some s" using
st’’_def st’’’_def st’’’’_def by simp
moreover from ‘?42° have "ReadL;,: (accessBalance (accounts st’’’’) (STR
?’Victim’’)) - (SUMM s + ReadL;n: val) > bal A bal > 0" wusing st’’_def st’’’_def st’’’’_def by simp
with **xx have "ReadL;,; (accessBalance acc (STR ’’Victim’’)) - SUMM s > bal A
bal > 0" by simp
then have "ReadL;,: (accessBalance (accounts (st’’’’(accounts := acc,
stack:=emptyStore, memory:=emptyStore|)) (STR ’’Victim’’)) - SUMM s > bal A bal > 0" by simp
moreover from ‘?A5¢ ad have "sender e # (STR ’’Victim’’)" by simp
with e’_def have "address e’ # STR ’’Victim’’" using ffold_init_ad_same[of ct
"(emptyEnv (sender e) (address e) val)" "(fmdom ct)" e’] by simp
ultimately have "frame bal st’’’’’" using 0 ***** 43(3) [OF x1 x2 x3 x4 x5 x6 x7
x8 x9 x10 x11 x12 x13 x14 x15 x16 x17] ‘7A3‘ apply safe by (auto simp add:frame_def)
with "s*x*x*x" show 7RHS by (auto simp add:frame_def)
qed
qed
qged
qed
next
show 7B (is "Vs bal x. ?7LHS s bal x")
proof (rule allI[OF allI[OF allIl])

fix s bal x
show "?LHS s bal x" (is "?LHS —> ?RHS")
proof

assume ?7LHS
then show 7RHS by simp
qed
qed
next
show ?C (is "Vs bal. ?LHS s bal")
proof (rule allI[OF allIl)

fix s bal
show "?LHS s bal" (is "?LHS — 7RHS")
proof

assume 7LHS
then show 7RHS by simp
qed
ged
qed
qed
qged
qged
qed
qed
next
case (44 idO tp ex smt e, e, cd st)

275

7 Applications

show 7case (is "7?LHS — ?7RHS")
proof
assume 0: "fmlookup e, STR ’’Victim’’ = Some (victim, SKIP)"
show ?RHS (is "V st6’. 7RHS st6’")
proof
fix st6’
show "?7RHS st6’" (is "?LHS —> ?7RHS")
proof
assume *: "stmt (BLOCK ((id0, tp), ex) smt) e, e, cd st = Normal ((), st6’)"
show ?7RHS (is "7LHS A 7RHS")
proof
show "?LHS"
proof
assume asm: "address e, # STR ’’Victim’’"
show "Vbal. frame bal st — frame bal st6’"
proof
fix bal
show "frame bal st — frame bal st6’"
proof
assume ff: "frame bal st"
with * have al: "(applyf (costs(BLOCK ((id0O, tp), ex) smt) e, e, cd) >= ()\g. assert
Gas (Ast. gas st < g) (modify (Ast. st(gas := gas st - g|))))) st = Normal ((), st(gas := gas st -
costs (BLOCK ((id0, tp), ex) smt) e, e, cd st)))" by auto
from * ff have f1: "frame bal (st(gas := gas st - costs (BLOCK ((id0, tp), ex) smt) e,
e, cd st))" by (simp add:frame_def)

show "frame bal st6’"
proof (cases ex)
case None
with * obtain cd’ e’ st’ where **:"decl id0 tp None False cd (memory (st(gas := gas
st - costs (BLOCK ((id0, tp), ex) smt) e, e, cd st|))) cd e, (st(gas := gas st - costs (BLOCK ((idoO,
tp), ex) smt) e, e, cd st|)) = Normal ((cd’, e’), st’)" by (auto split:result.split_asm if_split_asm)
with * have f2: "frame bal st’" using decl_frame[OF f1 **] by simp
moreover from * None ** obtain st’’ where ***: "stmt smt e, e’ cd’ st’ = Normal
(O, st’?)" by (simp split:if_split_asm)
moreover from ** have ad: "address e’ = address e," using decl_gas_address by simp
moreover from *** asm f2 ad 0 have "frame bal st’’" using 44(3) [OF al None _ **, of
cd’ e’] by (simp add:frame_def)
moreover from * None ** *** have "st6’ = st’’" by (auto split:if_split_asm)
ultimately show 7thesis using f1 asm by auto
next
case (Some ex’)
with * obtain v t st’ where **:"expr ex’ e, e, cd (st(gas := gas st - costs
(BLOCK ((id0, tp), ex) smt) e, e, cd st])) = Normal ((v, t), st’)" by (auto split:result.split_asm
if_split_asm)
with * f1 Some have f2: "frame bal st’" using 44(1) [OF al Some] asm 0 by simp
moreover from Some * ** obtain cd’ e’ st’’ where ***:"decl id0 tp (Some
(v,t)) False cd (memory st’) cd e, st’ = Normal ((cd’, e’), st’’)" by (auto split:result.split_asm
if_split_asm)
with * have f3: "frame bal st’’" using decl_frame[0OF f2 #**] by simp
moreover from ** *** have ad: "address e’ = address e," using decl_gas_address by
simp
moreover from * Some ** *** obtain st’’’ where ***x: "stmt smt e, e’ cd’ st’’ =
Normal ((), st’’’)" by (simp split:if_split_asm)
moreover from x***x asm f3 ad have "frame bal st’’’" using 44(2) [OF al Some ** _ _
¥] 0 by (simp add:frame_def)
moreover from * Some ** *** **** have "st6’ = st’’’" by (auto split:if_split_asm)
ultimately show 7thesis using f1 asm by auto
qged
qed
qed
qged
next
show "?RHS" (is "7?LHS — 7RHS")

276

7.2 Reentrancy (Reentrancy)

proof
assume ad: "address e, = STR ’’Victim’’"
show ?7RHS (is "?A A (?B A ?2C)")
proof (rule conj3)
show 74 (is "Vs val bal x. 7LHS s val bal x")
proof (rule allI[OF allI[OF allI[OF allI]lll)
fix s val bal x
show "?LHS s val bal x" (is "7LHS — 7RHS")
proof
assume 7LHS
then show 7RHS by simp
qed
qed
next
show ?B (is "V s bal x. ?LHS s bal x")
proof (rule allI[OF allI[OF allIl])

fix s bal x
show "?LHS s bal x" (is "?LHS —> ?RHS")
proof

assume ?7LHS
then show ?RHS by simp
qed
ged
next
show ?C (is "Vs bal. ?LHS s bal")
proof (rule allI[OF allIl)

fix s bal
show "?LHS s bal" (is "?LHS —> 7RHS")
proof

assume ?LHS (is "7A1 A 742 AN 743 A 744 A 7A5")
then have ?7A1 and 742 and 743 and 744 and 745 by auto

define st’’ where "st’’ = st(gas := gas st - costs keep e, e, cd st|"
with ‘742¢ ‘?A3° have 00: "fmlookup (storage st’’) (STR ’’Victim’’) = Some s"
and **: "ReadL;,: (accessBalance (accounts st’’) (STR ’’Victim’’)) - (SUMM s) >
bal A bal > O A POS s" by simp+

from ‘741¢ * st’’_def obtain v t st’’’ cd’ e’ st’’’’ st’’’’’
where *#**: "expr mylval e, e, cd st’’ = Normal ((v,t), st’’’)"
and ****x: "decl (STR ’’bal’’) (Value (TUInt 256)) (Some (v, t)) False cd (memory
st’’’) cd e, st’’’ = Normal ((cd’, e’),st’?’’)"
and *****: "stmt comp e, e’ cd’ st’’’’ = Normal ((), st’’’?’)"
and "st6’ = st’’?20"
by (auto split:if_split_asm result.split_asm)

obtain s’’’ where

f1: "fmlookup (storage st’’’) (STR ’’Victim’’) = Some s’’’"

and v_def: "v = KValue (accessStorage (TUInt 256) (sender e, + (STR ’’.’’ + STR
’’balance’’)) s’’’)"

and t_def: "t = Value (TUInt 256)"

and f2: "ReadL;,: (accessBalance (accounts st’’’) (STR ’’Victim’’)) - (SUMM s’’’)
> bal A bal > 0 A POS s’’’"

using securelval [OF *** ‘7?A4° 00 ** ad] by auto

with **** obtain s’’’’ where
*kx¥kxk: "fmlookup (storage st’’’’) (STR ’’Victim’’) = Some s’’’’"
and bbal: "ReadL;,: (accessBalance (accounts st’’’’) (STR ’’Victim’’)) - (SUMM
s’’??) > bal A bal > 0 A POS s’’’’" using decl_frame frame_def by auto

from ad ‘745° have
ad2: "address e’ = STR ’’Victim’’"

and ss: "sender e’#address e’" using decl_gas_address[OF ****] by auto

then obtain x where

277

7 Applications

*x*kx%: "fmlookup (denvalue e’) (STR ’’bal’’) = Some (Value (TUInt 256), (Stackloc
x))"
and lkup: "fmlookup (denvalue e’) STR ’’balance’’ = Some (Storage (STMap TAddr
(STValue (TUInt 256))), Storeloc STR ’’balance’’)"
and "accessStore x (stack st’’’’) = Some (KValue (accessStorage (TUInt 256) (sender
e, + (STR ’’.’’ + STR ’’balance’’)) s’’’’))"
proof -
have "Valuetypes.convert (TUInt 256) (TUInt 256) (accessStorage (TUInt 256) (sender
e, + (STR ’’.°’ + STR ’’balance’’)) s’’’) = Some (accessStorage (TUInt 256) (sender e, + (STR ’’.°7 +
STR ’’balance’’)) s’’’, TUInt 256)" by simp
with ***x v_def t_def have "append (STR ’’bal’’) (Value (TUInt 256)) (KValue
(accessStorage (TUInt 256) (sender e, + (STR ’’.’’ + STR ’’balance’’)) s’’’)) cd e, st’’’ = Normal
((cd’, e’),st’’’’)" by simp
with f1 v_def t_def have st’’’’_def: "st’’’’ = st’’’(stack := push v (stack
st?’’)|)" and "e’ = updateEnv (STR ’’bal’’) t (Stackloc (ShowL,.: (toploc (stack st’’’)))) e," by auto
moreover from x***x*x*x f1 st’’’’_def have "Some (KValue (accessStorage (TUInt 256)
(sender e, + (STR ’’.’’ + STR ’’balance’’)) s’’’)) = Some (KValue (accessStorage (TUInt 256) (sender e,
+ (STR ’’.°’ + STR ’’balance’’)) s’’’’))" by simp
ultimately show ?thesis using t_def v_def ‘7A4°‘ that by simp
qed
with decl_gas_address #*** have sck: "accessStore x (stack st’’’’) = Some (KValue
(accessStorage (TUInt 256) (sender e’ + (STR ’’.°’ + STR ’’balance’’)) s’’’’))" by simp

from * have al: "(applyf (costs(BLOCK ((id0, tp), ex) smt) e, e, cd) >= ()\g. assert
Gas (Ast. gas st < g) (modify (Ast. st(gas := gas st - g|))))) st = Normal ((), st(gas := gas st -
costs (BLOCK ((id0, tp), ex) smt) e, e, cd st)))" by auto
from ‘741°¢ have a2: "ex = Some (LVAL (Ref STR ’’balance’’ [SENDER]))" by simp
from ‘7A1°¢ *** have a3: "local.expr (LVAL (Ref STR ’’balance’’ [SENDER])) e, e, cd
(st(gas := gas st - costs (BLOCK ((id0, tp), ex) smt) e, e, cd st|) =
Normal ((v, t), st’’’)" using st’’_def by simp
from ‘7A1°¢ **x*x have a4: "decl id0O tp (Some (v, t)) False cd (memory st’’’) cd e,
st’’’ = Normal ((cd’, e’), st’’’’)" by simp
from ‘7A1¢ **x*xx* ‘st6’ = st’’’’’‘ have ab5: "local.stmt smt e, e’ cd’ st’’’’ = Normal
(O, st6’)" by simp
show "(ds’. fmlookup (storage st6’) STR ’’Victim’’ = Some s’ A
ReadL;,; (accessBalance (accounts st6’) (STR ’’Victim’’)) - (SUMM s’) > bal A
bal > 0 A POS s’)"
using 44(2) [OF al a2 a3 _ _ a4, of cd’ e’] 0 ab ad2 ‘7A1° #***x** bbal **¥*** lkup
sck ‘?A4° ss apply safe by auto
qed
ged
qed
qed
qged
qged
qed
qed
qed

corollary finalil:
assumes "fmlookup ep (STR ’’Victim’’) = Some (victim, SKIP)"
and "stmt (EXTERNAL (ADDRESS (STR ’’Victim’’)) (STR ’’withdraw’’) [] val) ep env cd st =
Normal((), st’)"
and "address env #* (STR ’’Victim’’)"
and "frame bal st"
shows "frame bal st’"
using assms secure(7) [of ep "(EXTERNAL (ADDRESS (STR ’’Victim’’)) (STR ’’withdraw’’) [] val)" env cd
st] by simp

corollary final2:
assumes "fmlookup ep (STR ’’Victim’’) = Some (victim, SKIP)"
and "stmt (EXTERNAL (ADDRESS (STR ’’Victim’’)) (STR ’’deposit’’) [] val) ep env cd st =
Normal((), st’)"
and "address env # (STR ’’Victim’’)"

278

7.2 Reentrancy (Reentrancy)

and "frame bal st"
shows "frame bal st’"
using assms secure(7) [of ep "(EXTERNAL (ADDRESS (STR ’’Victim’’)) (STR ’’deposit’’) [] val)" env cd
st] by simp

end

end

279

Bibliography

[1]

2]

The Bitcon market capitalisation. URL https://coinmarketcap.com/currencies/bitcoin/. Last checked on
2021-05-04.

D. Marmsoler and A. D. Brucker. A denotational semantics of Solidity in Isabelle/HOL. In R. Calinescu
and C. Pasareanu, editors, Software Engineering and Formal Methods (SEFM), Lecture Notes in Computer
Science. Springer-Verlag, Heidelberg, 2021. ISBN 3-540-25109-X. URL https://www.brucker.ch/bibliography/
abstract /marmsoler.ea-solidity-semantics-2021.

D. Marmsoler and A. D. Brucker. Conformance testing of formal semantics using grammar-based fuzzing.
In L. Kovacs and K. Meinke, editors, TAP 2022: Tests And Proofs, Lecture Notes in Computer Science.
Springer-Verlag, Heidelberg, 2022. ISBN 978-3-642-38915-3. URL https://www.brucker.ch/bibliography/
abstract/marmsoler.ea-conformance-2022.

Online. Solidity documentation. https://solidity.readthedocs.io/en/latest.

D. Perez and B. Livshits. Smart contract vulnerabilities: Vulnerable does not imply exploited. In 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association, Aug. 2021. URL https://www.
usenix.org/conference/usenixsecurity21 /presentation /perez.

G. Wood et al. Ethereum: A secure decentralised generalised transaction ledger, 2022. Berlin Version 3078285
— 2022-07-13. |https://ethereum.github.io/yellowpaper /paper.pdf.

281

https://coinmarketcap.com/currencies/bitcoin/
https://www.brucker.ch/bibliography/abstract/marmsoler.ea-solidity-semantics-2021
https://www.brucker.ch/bibliography/abstract/marmsoler.ea-solidity-semantics-2021
https://www.brucker.ch/bibliography/abstract/marmsoler.ea-conformance-2022
https://www.brucker.ch/bibliography/abstract/marmsoler.ea-conformance-2022
https://solidity.readthedocs.io/en/latest
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://ethereum.github.io/yellowpaper/paper.pdf

	1 Introduction
	2 Preliminaries
	2.1 Converting Types to Strings and Back Again (ReadShow)
	Bool
	Natural Numbers
	Integer

	2.2 State Monad with Exceptions (StateMonad)
	2.2.1 Fundamental Definitions
	2.2.2 The Monad Laws
	2.2.3 Basic Conguruence Rules
	2.2.4 Other functions
	2.2.5 Some basic examples

	3 Types and Accounts
	3.1 Value Types (Valuetypes)

	4 Stores and Environment
	4.1 Storage (Storage)
	4.1.1 General Store
	4.1.2 Stack
	4.1.3 Storage
	Definition
	Example
	Access storage
	Copy from storage to storage

	4.1.4 Memory and Calldata
	Definition
	Example
	Initialization
	Definition
	Example
	Copy from memory to memory
	Definition
	Example

	4.1.5 Copy from storage to memory
	Definition
	Example

	4.1.6 Copy from memory to storage
	Definition
	Example

	4.2 Environment and State (Environment)
	4.2.1 Environment
	4.2.2 State
	4.2.3 Declarations

	5 Expressions and Statements
	5.1 Statements (Statements)
	5.1.1 Syntax
	Expressions
	Statements

	5.1.2 Contracts
	5.1.3 Semantics
	5.1.4 Gas Consumption
	5.1.5 Termination
	5.1.6 A minimal cost model

	5.2 The Main Entry Point (Solidity_Main)

	6 A Solidity Evaluation System
	6.1 Towards a Setup for Symbolic Evaluation of Solidity (Solidity_Symbex)
	6.2 Solidty Evaluator and Code Generator Setup (Solidity_Evaluator)
	6.2.1 Code Generator Setup and Local Tests
	Utils
	Valuetypes
	Load: Accounts
	Load: Store
	Load: Memory
	Storage
	Environment

	6.2.2 Test Setup
	6.2.3 The Final Code Export
	6.2.4 Demonstrating the Symbolic Execution of Solidity

	6.3 Generating an Exectuable of the Evaluator (Compile_Evaluator)

	7 Applications
	7.1 Constant Folding (Constant_Folding)
	7.2 Reentrancy (Reentrancy)
	7.2.1 Example of Re-entrancy
	7.2.2 Definition of Contract
	7.2.3 Definition of Invariant
	7.2.4 Verification

