Formalizing (Web) Standards
An Application of Test and Proof

Achim D. Brucker and Michael Herzberg

{a.brucker, msherzbergll@sheffield.ac.uk

A & Security
Department of Computer Science, The University of Sheffield, Sheffield, UK
https://logicalhacking.com/

International Conference on Tests & Proofs 2018
June 27,2018 Toulouse, France

callbacklonter.

\

{* Logicaljifacking *}

What is the Document Object Model (DOM)?

e

N

RN

The
R /s Of

\
\\

University

Sheffield.

<!DOCTYPE html> DOCTYPE: html
<html class=e> HTML class=e

<head>

<title>Aliens?</title> HEAD

</head> | TITLE

<body>Why yes.</body> Ltext: Aliens?
</html> BODY

Ltext: Why yes.
HTML DOM

(© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0)

Why yes.

Rendering

Page 3of 18

Outline

The Document Object Model (DOM)

The Benefits of a Formal Standard

A Formal Model of the DOM

Using the Formal Model to Benefit the Standard

Conclusion and Future Work

2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 2 of 18

|
Why is the DOM important?

Short answer:

= The DOM is the core data structure used by web browsers

Long(er) answer:

= If the DOM implementation is
= insecure
= incorrect
the whole browser is insecure/incorrect
= Many web security mechanism (e.g., CSP) are defined in terms of access to the DOM:
= we can formalize aspects of Web security without formalizing JavaScript
= we can compare novel security/component concepts emerging in browsers

= Many implementations available (for managing tree-structured documents), e.g.,

= libxml2 (C, bindings for various languages) = Edge (e.g. Microsoft Edge Browser)
= Xerces (Java, C++, Perl) = Gecko (e.g. Mozilla Firefox)

= Saxon XLST (Java, JavaScript, NET) ® KHTML (e.g. KDE Konqueror)

* PHPGt DOM (PHP) = WebkKit, fork of KHTML (e.g.. Safari)
= Domino (Nodejs) * Chrome, fork of KHTML

(© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 4 of 18

1 —
The 0fficial Standard

DOM £ wac / web-platform-tests
Living Standard — Last Updated 16 April 2018
ng Stal d P d 16 Ap < Code Issues 679 Pull requests 486 Insights
Participate:
GitHub whatwgldom (new issue, open issues) Branch:master» | web-platform-tests / dom /
IRC: #whatwg on Freenode
Commits: 1] comenic nuiis not the correct orgin for createDocument()
GitHub whatwa/dom/commits.
Snapshot as of this commit
domstandard
@domstandar i abort Implement AbortController and AbortSignal
Tests:
‘web-plotformtests dom/ (engoing work) s collections Fix our named property DOM proxy code to handie dele
Translations (non-normative): . events Test self event in workers
- . lists support ping, rel, referrerPolicy, relList, hreflang, type and
B nodes nulis not the correct origin for createDocument()
Abstract
i ranges Make Range:intersectsNode() to follow the spec
DOM defines a plafform-neutral model for events, aborting activities, and node trees. i traversal Remove generate_tests from Nodelterator.html (#10380)
&) OWNERS Remove zcorpan from OWNERS files
) commonjs Merge pull request #2231 from ayg/range-detach
Table of Contents : ¢ v
) constants.js Rename directories to match their /ir counterpart, with th
Goals
1 Infrastructure 5) historical html Add a test for the removal of Event: getPreventDefaul. (4
11Trees .
12 Ordured sets B jects. htmi DOM and AbortSignal
1.3 Selectors [interfaces.html Implement AbortController and AbortSignal
1.4 Namespaces

(© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 5 of 18

__|
Formalizing insertBefore

[CEReactions] Node Node node, Node? child); I

definition insert_before :: "(_) object_ptr
= (_) node_ptr
= node_ptr option

The insertBefore(node, child) method, when invoked, must return the 2 "
= (_, unit) dom_prog

result of pre-inserting node into context object before child.

where
"insert_before ptr node child = do {
ensure_pre_insertion_validity node ptr child;
reference_child «(if Some node = child
then next_sibling node
else return child);
owner_document <-get_owner_document ptr;
adopt_node owner_document node;
insert_node ptr node reference_child

To pre-insert a node into a parent before a child, run these steps:
1. Ensure pre-insertion validity of node into parent before child.
2. Let reference child be child.
3. If reference child is node, set it to node’s next sibling.

4. Adopt node into parent’s node document.

5. Insert node into parent before reference child.

6. Return node.

(© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 6 of 18

1 ——
The Official Standard

EReactions] Node Node node, Node? child);

test (function() {
var a = document.createElement(’div’);
var b = document.createElement (’div’);
var ¢ = document.createElement (’div’);
assert_throws (’NotFoundError’, () => {
a.insertBefore(b, c);

The insertBefore(node, child) method, when invoked, must return the
result of pre-inserting node into context object before child.

198
To pre-insert a node into a parent before a child, run these steps:
1. Ensure pre-insertion validity of node into parent before child. o : S:ii;:i;:::2;::;:Zi::i;:z:;:jiz:iz:z i :
2. Let reference child be child. ’nodeymustythrow,ayNotFoundError.)
3. If reference child is node, set it to node’s next sibling.
4. Adopt node into parent’s node document.
5. Insert node into parent before reference child.
6. Return node.

© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 5 of 18

The Benefits of a Formal Standard

API Extraction

tion Test
2l EXecu[,On

o Gener

Verification
(Proof)

Code Generation (Implementation)

© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 7 of 18

The Benefits of a Formal Standard

API Extraction

eneratio”

x Case G

Test
E)‘ecm/on
Tes!

Verification
(Proof)
Code Generation (Implementation)

(© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 7 of 18

|
A Simple Functional Tree Datatype?

The node tree seems like it can be modeled by a simple functional tree datatype, with ...

> ...Document as roots
»* ...Element as intermediate nodes DRCHEE RU- Docunent
HTML class=e Element
2 ...CharacterData as leaves . Elomont

L TITLE L Element

text: Aliens? CharacterData
BODY Element
l text: Why yes. l CharacterData
© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 8 of 18

The Benefits of a Formal Standard

API Extraction

Code Generation (Implementation)

© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 7 of 18

A Simple Functional Tree Datatype?

The node tree seems like it can be modeled by a simple functional tree datatype, with ...

= ...Document as roots

- ...Element as intermediate nodes k: DOCTYPE: htnl PR

™ HTML class=e Element
« ...CharacterData as leaves

HEAD Element
NO because l_TITLE l_Elemen\:
n ') text: Aliens? CharacterData
«* ...functions such as getParent T e
= APl is pointer-heavy: L oo g e CharacterData

[CEReactions] Node R4 (Node node, Node? child); |

© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 8 of 18

__|
Node Tree Properties

__|
Node Tree Properties

Starting with a map as heap, we need to ensure that the heap is actually a tree, meaning ...

(© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 18 (© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 18

nodes have maximal one parent
...our graph is acyclic
all pointers are actually in the heap (no NullPointerExceptions) .
...the pointer lists are distinct A ..

Starting with a map as heap, we need to ensure that the heap is actually a tree, meaning ...

nodes have maximal one parent
our graph is acyclic

.all pointers are actually in the heap (no NullPointerExceptions)

the pointer lists are distinct

In the standard, all these properties are implicit!

[
A Formal Model in Isabelle/HOL

[
A Formal Model in Isabelle/HOL

Highlights of our formal model:

nE e oam

"

Logical definition:

record (_) Element = Node +

State-Exception-Monad to allow imperative function definitions tag_type :: tag_type
Way of modeling object-orientation in higher-order logic child_nodes :: "(_) node_ptr list"
H tati ith int d object: attrs :: attrs
€ap-representation with pointers and objects shadow_root_opt :: "’shadow_root_ptr shadow_root_ptr option"

Formal model is executable and OO-extendable

definition "get_attribute ptr k = do {m <-get_M ptr attrs; return (m k)}"

© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 18 (© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 110f 18

Recall insertBefore

[CEReactions] Node

IRTTIE (Node node, Node? c

d);

The insertBefore(node, child) method, when invoked, must return the
result of pre-inserting node into context object before child.

To pre-insert a node into a parent before a child, run these steps:
1. Ensure pre-insertion validity of node into parent before child.
2. Let reference child be child.
3. If reference child is node, set it to node’s next sibling.
4. Adopt node into parent’s node document.
5. Insert node into parent before reference child.

6. Return node.

Question:

definition insert_before :: "(_) object_ptr
= (_) node_ptr
= node_ptr option
= (_, unit) dom_prog"
where
"insert_before ptr node child = do {
ensure_pre_insertion_validity node ptr child;
reference_child <« (if Some node = child
then next_sibling node
else return child);
owner_document <—get_owner_document ptr;
adopt_node owner_document node;
insert_node ptr node reference_child

3

Does insertBefore preserves distinctness of child nodes?

© 2018 LogicalHacking.com.

Example Proof

insertBefore preserves distinctness of child nodes

Public (CC BY-NC-ND 4.0) Page 12 of 18

lemma insert_before_children_remain_distinct:
assumes wellformed: "heap_is_wellformed h"

and parent_known: "/\parent. h |-get_parent new_child — r Some parent ==-is_known_ptr parent"

and known: "is_known_ptr ptr"

and insert_before: ‘113\ |-insert_before ptr new_child child_opt —p '\115!‘
shows "/\ptr children. is_known_ptr ptr ==>h2 |-get_child_nodes ptr —r children ==distinct children"

proof -
obtain ...

h’: "h |- adopt_node owner_document new_child —p h’" and
h2: "h’ |insert_node ptr new_child reference_child —yj h2"

b;

by

Y ...
have "/\ptr children. is_known_ptr ptr =—=h’ |-get_child_nodes ptr —r children =—=distinct children"

moreover have "/\ptr children. is_known_ptr ptr =—=h’ |-get_child_nodes ptr —r children"

"—> new_child ¢#set children"
by

ultimately show “/\ptr children. is_known_ptr ptr ==h2 |-get_child_nodes ptr — r children"

"== distinct children"

by ...
qed

© 2018 LogicalHacking.com.

Public (CC BY-NC-ND 4.0) Page 13 of 18

Example Proof

insertBefore preserves distinctness of child nodes

lemma insert_before_children_remain_distinct:
assumes wellformed: "heap_is_wellformed h"
and parent_known: "/\parent. h |-get_parent new_child — r Some parent =—=is_known_ptr parent"
and known: "is_known_ptr ptr"
and insert_before: "h |—insert_before ptr new_child child_opt —p h2"
shows "Aptr children. is_known_ptr ptr =—=h2 |-get_child_nodes ptr — r children ==distinct children"
proof -
obtain ...
h’: "h |- adopt_node owner_document new_child —p h’" and
h2: "h’ |-insert_node ptr new_child reference_child —yp h2"

by ...
have "/\ptr children. is_known_ptr ptr ==h’ |-get_child_nodes ptr — r children ==distinct children"
by ...
moreover have "/Aptr children. is_known_ptr ptr ==h’ |-get_child_nodes ptr —ry children"
"= new_child ¢set children"
by ...
ultimately show "/\ptr children. is_known_ptr ptr ==>h2 |-get_child_nodes ptr —r children"
"= distinct children"
by ...
qed

© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0)

Example Proof

insertBefore preserves distinctness of child nodes

Page 13 of 18

lemma insert_before_children_remain_distinct:
assumes wellformed: "heap_is_wellformed h"
and parent_known: "/\parent. h |-get_parent new_child — r Some parent ==-is_known_ptr parent"
and known: "is_known_ptr ptr"
and insert_before: "h |-insert_before ptr new_child child_opt —p h2"
shows "/\ptr children. is_known_ptr ptr —>h2 |-get_child_nodes ptr —r children —distinct children"

proof -
obtain ... _
h’: "h |-adopt_node owner_document new_child —p '\h’j‘ and
h2: "\h’j |~ insert_node ptr new_child reference_child —p h2"
by ...
have "/\ptr children. is_known_ptr ptr =—=h’ |-get_child_nodes ptr —r children =—=distinct children"
by

moreover have "/\ptr children. is_known_ptr ptr ==h’ |-get_child_nodes ptr — r children"
"=—> new_child ¢set children"
by ...
ultimately show "/\ptr children. is_known_ptr ptr ==h2 |-get_child_nodes ptr — r children"
"= distinct children"

© 2018 LogicalHacking.com.

Public (CC BY-NC-ND 4.0)

Page 13 of 18

__|
Example Proof

insertBefore preserves distinctness of child nodes

lemma insert_before_children_remain_distinct:
assumes wellformed: "heap_is_wellformed h"

and parent_known: "/\parent. h |-get_parent new_child — r Some parent —=is_known_ptr parent"
and known: "is_known_ptr ptr"

and insert_before: "h |-insert_before ptr new_child child_opt —p h2"
shows "/\ptr children. is_known_ptr ptr =—=h2 |-get_child_nodes ptr —r children ==distinct children"

proof -
obtain ...
h’: "h |-adopt_node owner_document new_child —p h’" and
h2: "h’ |-insert_node ptr new_child reference_child —p h2"
by
have ", ptr children. is_known_ptr ptr =—=h’ |-get_child_nodes ptr — r children —=distinct children/
by ...

moreover have "Aptr children. is_known_ptr ptr ==>h’ |-get_child_nodes ptr —r children"
"— new_child ¢set children"
by ...
ultimately show "/\ptr children. is_known_ptr ptr ==>h2 |-get_child_nodes ptr —r children"
"= distinct children"
by ...
qed

(© 2018 LogicalHacking.com.

Public (CC BY-NC-ND 4.0) Page 13 of 18

|
Example Proof

insertBefore preserves distinctness of child nodes

lemma insert_before_children_remain_distinct:
assumes wellformed: "heap_is_wellformed h"

and parent_known: "/\parent. h |-get_parent new_child — r Some parent ==-is_known_ptr parent"
and known: "is_known_ptr ptr"

and insert_before: "h |-insert_before ptr new_child child_opt —p h2"
shows "/\ptr children. is_known_ptr ptr ==h2 |-get_child_nodes ptr —r children ==distinct children"

proof -
obtain ...
h’: "h |- adopt_node owner_document new_child —p h’" and
h2: "h’ |insert_node ptr new_child reference_child —yj h2"
by ...
have "/\ptr children. is_known_ptr ptr =—=h’ |-get_child_nodes ptr —r children =—=distinct children"
by

moreover have "/\ptr children. is_known_ptr ptr =—=h’ |-get_child_nodes ptr —r children"
"—> new_child ¢#set children"

w

by ...
qed

(© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 13 of 18

__|
Example Proof

insertBefore preserves distinctness of child nodes

lemma insert_before_children_remain_distinct:
assumes wellformed: "heap_is_wellformed h"

and parent_known: "/\parent. h |-get_parent new_child — r Some parent =—=is_known_ptr parent"
and known: "is_known_ptr ptr"

and insert_before: "h |—insert_before ptr new_child child_opt —p h2"
shows "Aptr children. is_known_ptr ptr =—=h2 |-get_child_nodes ptr — r children ==distinct children"

proof -
obtain ...
h’: "h |- adopt_node owner_document new_child —p h’" and
h2: "h’ |-insert_node ptr new_child reference_child —yp h2"
by ...
have "/\ptr children. is_known_ptr ptr ==h’ |-get_child_nodes ptr — r children ==distinct children"
by ...

moreogeﬁrihiav?e?“(
"= new_child ¢set children
by ...
ultimately show "/Aptr children. is_known_ptr ptr =—>h2 |-get_child_nodes ptr — r children"
"= distinct children"
by ...
qed

(© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 13 of 18

Tests: Our Formal Model Complies with the Standard

Compliance test (JavaScript) from the official

The same test formalized in HOL, using a state-
suite on Github.

exception-monad.

test (function() { lemma "test (do {

var a = document.createElement (’div’); a <—document.createElement(’’div’’);

var b document .createElement (’div’); b «document.createElement (’’div’’);

var ¢ = document.createElement (’div’); ¢ «—document.createElement (’’div’’);

assert_throws (’NotFoundError’, () => { assert_throws (NotFoundError,
a.insertBefore(b, c); a.insertBefore(b, c))

98 }) Node_insertBefore_heap"

by code_simp

},’Calling insertBefore with,a reference’ +
’child whose parent is not, the context’ +
’nodemust throw,a,NotFoundError.’)

(* ’Calling insertBefore with a reference
child uhose parent is not the contewt
node must throw a NotFoundError.’ %)

© 2018 LogicalHacking.com.

Public (CC BY-NC-ND 4.0) Page 14 of 18

__| |
And Proofs: Generalizing Test Cases Showing Properties in Isabelle Using Test and Proof

Interactive Proofs

= able to show generic properties
= interactive proof (e.g.using induction)
= only small software stack needs to be trusted

lemma insert_before_reference_child_not_in_children:
assumes "h |-get_parent child —r gome parent"
and "ptr #parent”
and "—‘is_character_data_ptr_kind ptr"
and "p |- get_ancestors ptr —r ancestors"
and "cast node ¢ set ancestors”

shows "h |- insert_before ptr node (Some child) — e NotFoundError'
proof -

Symbolic Execution (code_simp)
" able to show grounded properties

have "p ensure_pre_insertion_validity node ptr (Some child) — e NotFoundError"
using assms unfolding insert_before_def ensure_pre_insertion_validity_def
by auto (simp | rule bind_returns_error_I2)+
then show 7thesis
unfolding insert_before_def by auto
qed

= fully automatic, can be slow for large examples
= only small software stack needs to be trusted

Code Execution (eval)

" able to show grounded properties

= fully automatic, fast
= large software stack needs to be trusted

(© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 15 of 18 (© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0)

Page 16 of 18

1 — eea——
Conclusion and Future Work

Tests:

= Generation of test cases using HOL-TestGen to H
= improve the compliance test suite Thank yOU for your attention!

= compare different implementations wrt their compliance to the standard Any questions or remarks’)
Proofs:
= Formalizing an emerging component model (Shadow DOM)
= Formalizing DOM security policies (e.g.. Same Origin, CSP)
= Comparing the Shadow DOM to existing security policies (e.g.. Same Origin, CSP)

Contact: Dr. Achim D. Bruc g s sheffield.ac.uk
Departr

Regent Court
211 Portobello St
Sheffield S1 4DP, UK

© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 17 of 18

__| __|
Bibliography Document Classification and License Information

@ Achim D. Brucker and Michael Herzberg
A formal semantics of the core bom in Isabelle/HoL.

@ Achim D. Brucker and Michael Herzberg (© 2018 LogicalHacking.com, Achim D. Brucker and Michael Herzberg {a.brucker, msherzbergll@sheffield.ac.uk.

Formalizing (web) standards: An application of test and proof. = This presentation is classified as Public (CC BY-NC-ND 40);
Except where otherwise noted, this presentation is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International Public License (CC BY-NC-ND 4.0).

(© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 19 of 18 (© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 20 of 18

