
Formalizing (Web) Standards
An Application of Test and Proof

Achim D. Brucker and Michael Herzberg
{a.brucker, msherzberg1}@she�eld.ac.uk

Software Assurance & Security Research
Department of Computer Science, The University of She�eld, She�eld, UK

https://logicalhacking.com/

International Conference on Tests & Proofs 2018
June 27, 2018 Toulouse, France

Outline

1 The Document Object Model (DOM)

2 The Bene�ts of a Formal Standard

3 A Formal Model of the DOM

4 Using the Formal Model to Bene�t the Standard

5 Conclusion and Future Work

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 2 of 18

What is the Document Object Model (DOM)?

<!DOCTYPE html>
<html class=e>
<head>
<title>Aliens?</title>

</head>
<body>Why yes.</body>

</html>

DOCTYPE: html
HTML class=e

HEAD
TITLE

text: Aliens?
BODY

text: Why yes.

Why yes.

HTML DOM Rendering

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 3 of 18

Why is the DOM important?

Short answer:
The DOM is the core data structure used by web browsers

Long(er) answer:
If the DOM implementation is

insecure
incorrect

the whole browser is insecure/incorrect
Many web security mechanism (e.g., CSP) are de�ned in terms of access to the DOM:

we can formalize aspects of Web security without formalizing JavaScript
we can compare novel security/component concepts emerging in browsers

Many implementations available (for managing tree-structured documents), e.g.,

libxml2 (C, bindings for various languages)

Xerces (Java, C++, Perl)

Saxon XLST (Java, JavaScript, .NET)

PHP.Gt DOM (PHP)

Domino (Node.js)

Edge (e.g., Microsoft Edge Browser)

Gecko (e.g., Mozilla Firefox)

KHTML (e.g., KDE Konqueror)

WebKit, fork of KHTML (e.g., Safari)

Chrome, fork of KHTML

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 4 of 18

The Official Standard

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 5 of 18

The Official Standard

test(function () {
var a = document.createElement(’div’);
var b = document.createElement(’div’);
var c = document.createElement(’div’);
assert_throws(’NotFoundError ’, () => {

a.insertBefore(b, c);
});

},’Calling␣insertBefore␣with␣a␣reference ’ +
’child␣whose␣parent␣is␣not␣the␣context ’ +
’node␣must␣throw␣a␣NotFoundError.’)

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 5 of 18

Formalizing insertBefore

definition insert_before :: "(_) object_ptr
ñ (_) node_ptr
ñ node_ptr option
ñ (_, unit) dom_prog"

where
"insert_before ptr node child = do {
ensure_pre_insertion_validity node ptr child;
reference_child Ð(if Some node = child
then next_sibling node
else return child);

owner_document Ðget_owner_document ptr;
adopt_node owner_document node;
insert_node ptr node reference_child

}"

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 6 of 18

The Benefits of a Formal Standard

Standard
(informal or semi-formal)

Compliance
Test Suite

Implementations
(products)

Reference
Implementations

Formalization
(formal standard)

Verification
(Proof)

Code Generation (Implementation)

Test Case Generation

Test Execution

Test Execution

Symbolic Test Execution

API Extraction

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 7 of 18

The Benefits of a Formal Standard

Standard
(informal or semi-formal)

Compliance
Test Suite

Implementations
(products)

Reference
Implementations

Formalization
(formal standard)

Compliance?

Coverage?

Compliance?

Consistency?

Verification
(Proof)

Code Generation (Implementation)

Test Case Generation

Test Execution

Test Execution

Symbolic Test Execution

API Extraction

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 7 of 18

The Benefits of a Formal Standard

Standard
(informal or semi-formal)

Compliance
Test Suite

Implementations
(products)

Reference
Implementations

Formalization
(formal standard)

Compliance?

Coverage?

Compliance?

Consistency?

Verification
(Proof)

Code Generation (Implementation)

Test Case Generation

Test Execution

Test Execution

Symbolic Test Execution

API Extraction

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 7 of 18

A Simple Functional Tree Datatype?

The node tree seems like it can be modeled by a simple functional tree datatype, with . . .

. . .Document as roots

. . .Element as intermediate nodes

. . .CharacterData as leaves

No, because . . .

. . . functions such as getParent
API is pointer-heavy:

DOCTYPE: html

HTML class=e

HEAD

TITLE

text: Aliens?

BODY

text: Why yes.

Document

Element

Element

Element

CharacterData

Element

CharacterData

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 8 of 18

A Simple Functional Tree Datatype?

The node tree seems like it can be modeled by a simple functional tree datatype, with . . .

. . .Document as roots

. . .Element as intermediate nodes

. . .CharacterData as leaves

No, because . . .

. . . functions such as getParent
API is pointer-heavy:

DOCTYPE: html

HTML class=e

HEAD

TITLE

text: Aliens?

BODY

text: Why yes.

Document

Element

Element

Element

CharacterData

Element

CharacterData

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 8 of 18

Node Tree Properties

Starting with a map as heap, we need to ensure that the heap is actually a tree, meaning . . .

1 . . . nodes have maximal one parent

2 . . . our graph is acyclic

3 . . . all pointers are actually in the heap (no NullPointerExceptions)
4 . . . the pointer lists are distinct

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 18

Node Tree Properties

Starting with a map as heap, we need to ensure that the heap is actually a tree, meaning . . .

1 . . . nodes have maximal one parent

2 . . . our graph is acyclic

3 . . . all pointers are actually in the heap (no NullPointerExceptions)
4 . . . the pointer lists are distinct

In the standard, all these properties are implicit!

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 18

A Formal Model in Isabelle/HOL

Highlights of our formal model:

State-Exception-Monad to allow imperative function de�nitions

Way of modeling object-orientation in higher-order logic

Heap-representation with pointers and objects

Formal model is executable and OO-extendable

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 18

A Formal Model in Isabelle/HOL

Logical de�nition:

record (_) Element = Node +
tag_type :: tag_type
child_nodes :: "(_) node_ptr list"
attrs :: attrs
shadow_root_opt :: "’shadow_root_ptr shadow_root_ptr option"

definition "get_attribute ptr k = do {m Ðget_M ptr attrs; return (m k)}"

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 11 of 18

Recall insertBefore

definition insert_before :: "(_) object_ptr
ñ (_) node_ptr
ñ node_ptr option
ñ (_, unit) dom_prog"

where
"insert_before ptr node child = do {
ensure_pre_insertion_validity node ptr child;
reference_child Ð(if Some node = child
then next_sibling node
else return child);

owner_document Ðget_owner_document ptr;
adopt_node owner_document node;
insert_node ptr node reference_child

}"

Question:
Does insertBefore preserves distinctness of child nodes?

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 12 of 18

Example Proof
insertBefore preserves distinctness of child nodes

lemma insert_before_children_remain_distinct:
assumes wellformed: "heap_is_wellformed h"

and parent_known: "
Ź
parent. h $get_parent new_child Ñ r Some parent ùñis_known_ptr parent"

and known: "is_known_ptr ptr"
and insert_before: "h $insert_before ptr new_child child_opt Ñ h h2"

shows "
Ź
ptr children. is_known_ptr ptr ùñh2 $get_child_nodes ptr Ñ r children ùñdistinct children"

proof -
obtain ...

h’: "h $ adopt_node owner_document new_child Ñ h h’" and
h2: "h’ $insert_node ptr new_child reference_child Ñ h h2"

by ...
have "

Ź
ptr children. is_known_ptr ptr ùñh’ $get_child_nodes ptr Ñ r children ùñdistinct children"

by ...
moreover have "

Ź
ptr children. is_known_ptr ptr ùñh’ $get_child_nodes ptr Ñ r children"

"ùñ new_child Rset children"
by ...

ultimately show "
Ź
ptr children. is_known_ptr ptr ùñh2 $get_child_nodes ptr Ñ r children"

"ùñ distinct children"
by ...

qed

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 13 of 18

Example Proof
insertBefore preserves distinctness of child nodes

lemma insert_before_children_remain_distinct:
assumes wellformed: "heap_is_wellformed h"

and parent_known: "
Ź
parent. h $get_parent new_child Ñ r Some parent ùñis_known_ptr parent"

and known: "is_known_ptr ptr"
and insert_before: "h $insert_before ptr new_child child_opt Ñ h h2"

shows "
Ź
ptr children. is_known_ptr ptr ùñh2 $get_child_nodes ptr Ñ r children ùñdistinct children"

proof -
obtain ...

h’: "h $ adopt_node owner_document new_child Ñ h h’" and
h2: "h’ $insert_node ptr new_child reference_child Ñ h h2"

by ...
have "

Ź
ptr children. is_known_ptr ptr ùñh’ $get_child_nodes ptr Ñ r children ùñdistinct children"

by ...
moreover have "

Ź
ptr children. is_known_ptr ptr ùñh’ $get_child_nodes ptr Ñ r children"

"ùñ new_child Rset children"
by ...

ultimately show "
Ź
ptr children. is_known_ptr ptr ùñh2 $get_child_nodes ptr Ñ r children"

"ùñ distinct children"
by ...

qed

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 13 of 18

Example Proof
insertBefore preserves distinctness of child nodes

lemma insert_before_children_remain_distinct:
assumes wellformed: "heap_is_wellformed h"

and parent_known: "
Ź
parent. h $get_parent new_child Ñ r Some parent ùñis_known_ptr parent"

and known: "is_known_ptr ptr"
and insert_before: "h $insert_before ptr new_child child_opt Ñ h h2"

shows "
Ź
ptr children. is_known_ptr ptr ùñh2 $get_child_nodes ptr Ñ r children ùñdistinct children"

proof -
obtain ...

h’: "h $ adopt_node owner_document new_child Ñ h h’" and
h2: "h’ $insert_node ptr new_child reference_child Ñ h h2"

by ...
have "

Ź
ptr children. is_known_ptr ptr ùñh’ $get_child_nodes ptr Ñ r children ùñdistinct children"

by ...
moreover have "

Ź
ptr children. is_known_ptr ptr ùñh’ $get_child_nodes ptr Ñ r children"

"ùñ new_child Rset children"
by ...

ultimately show "
Ź
ptr children. is_known_ptr ptr ùñh2 $get_child_nodes ptr Ñ r children"

"ùñ distinct children"
by ...

qed

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 13 of 18

Example Proof
insertBefore preserves distinctness of child nodes

lemma insert_before_children_remain_distinct:
assumes wellformed: "heap_is_wellformed h"

and parent_known: "
Ź
parent. h $get_parent new_child Ñ r Some parent ùñis_known_ptr parent"

and known: "is_known_ptr ptr"
and insert_before: "h $insert_before ptr new_child child_opt Ñ h h2"

shows "
Ź
ptr children. is_known_ptr ptr ùñh2 $get_child_nodes ptr Ñ r children ùñdistinct children"

proof -
obtain ...

h’: "h $ adopt_node owner_document new_child Ñ h h’" and
h2: "h’ $insert_node ptr new_child reference_child Ñ h h2"

by ...
have "

Ź
ptr children. is_known_ptr ptr ùñh’ $get_child_nodes ptr Ñ r children ùñdistinct children"

by ...
moreover have "

Ź
ptr children. is_known_ptr ptr ùñh’ $get_child_nodes ptr Ñ r children"

"ùñ new_child Rset children"
by ...

ultimately show "
Ź
ptr children. is_known_ptr ptr ùñh2 $get_child_nodes ptr Ñ r children"

"ùñ distinct children"
by ...

qed

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 13 of 18

Example Proof
insertBefore preserves distinctness of child nodes

lemma insert_before_children_remain_distinct:
assumes wellformed: "heap_is_wellformed h"

and parent_known: "
Ź
parent. h $get_parent new_child Ñ r Some parent ùñis_known_ptr parent"

and known: "is_known_ptr ptr"
and insert_before: "h $insert_before ptr new_child child_opt Ñ h h2"

shows "
Ź
ptr children. is_known_ptr ptr ùñh2 $get_child_nodes ptr Ñ r children ùñdistinct children"

proof -
obtain ...

h’: "h $ adopt_node owner_document new_child Ñ h h’" and
h2: "h’ $insert_node ptr new_child reference_child Ñ h h2"

by ...
have "

Ź
ptr children. is_known_ptr ptr ùñh’ $get_child_nodes ptr Ñ r children ùñdistinct children"

by ...
moreover have "

Ź
ptr children. is_known_ptr ptr ùñh’ $get_child_nodes ptr Ñ r children"

"ùñ new_child Rset children"
by ...

ultimately show "
Ź
ptr children. is_known_ptr ptr ùñh2 $get_child_nodes ptr Ñ r children"

"ùñ distinct children"
by ...

qed

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 13 of 18

Example Proof
insertBefore preserves distinctness of child nodes

lemma insert_before_children_remain_distinct:
assumes wellformed: "heap_is_wellformed h"

and parent_known: "
Ź
parent. h $get_parent new_child Ñ r Some parent ùñis_known_ptr parent"

and known: "is_known_ptr ptr"
and insert_before: "h $insert_before ptr new_child child_opt Ñ h h2"

shows "
Ź
ptr children. is_known_ptr ptr ùñh2 $get_child_nodes ptr Ñ r children ùñdistinct children"

proof -
obtain ...

h’: "h $ adopt_node owner_document new_child Ñ h h’" and
h2: "h’ $insert_node ptr new_child reference_child Ñ h h2"

by ...
have "

Ź
ptr children. is_known_ptr ptr ùñh’ $get_child_nodes ptr Ñ r children ùñdistinct children"

by ...
moreover have "

Ź
ptr children. is_known_ptr ptr ùñh’ $get_child_nodes ptr Ñ r children"

"ùñ new_child Rset children"
by ...

ultimately show "
Ź
ptr children. is_known_ptr ptr ùñh2 $get_child_nodes ptr Ñ r children"

"ùñ distinct children"
by ...

qed

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 13 of 18

Tests: Our Formal Model Complies with the Standard

Compliance test (JavaScript) from the o�cial
suite on Github.

test(function () {
var a = document.createElement(’div’);
var b = document.createElement(’div’);
var c = document.createElement(’div’);
assert_throws(’NotFoundError ’, () => {

a.insertBefore(b, c);
});

},’Calling␣insertBefore␣with␣a␣reference ’ +
’child␣whose␣parent␣is␣not␣the␣context ’ +
’node␣must␣throw␣a␣NotFoundError.’)

The same test formalized inHOL, using a state-
exception-monad.

lemma "test (do {
a Ðdocument.createElement(’’div’’);
b Ðdocument.createElement(’’div’’);
c Ðdocument.createElement(’’div’’);
assert_throws(NotFoundError,
a.insertBefore(b, c))

}) Node_insertBefore_heap"
by code_simp

(* ’Calling insertBefore with a reference
child whose parent is not the context
node must throw a NotFoundError.’ *)

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 14 of 18

And Proofs: Generalizing Test Cases

lemma insert_before_reference_child_not_in_children:
assumes "h $get_parent child Ñ r Some parent"

and "ptr ‰parent"
and " is_character_data_ptr_kind ptr"
and "h $ get_ancestors ptr Ñ r ancestors"
and "cast node R set ancestors"

shows "h $ insert_before ptr node (Some child) Ñ e NotFoundError"
proof -

have "h $ ensure_pre_insertion_validity node ptr (Some child) Ñ e NotFoundError"
using assms unfolding insert_before_def ensure_pre_insertion_validity_def
by auto (simp | rule bind_returns_error_I2)+

then show ?thesis
unfolding insert_before_def by auto

qed

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 15 of 18

Showing Properties in Isabelle Using Test and Proof

Interactive Proofs

able to show generic properties

interactive proof (e.g.using induction)

only small software stack needs to be trusted

Symbolic Execution (code_simp)

able to show grounded properties

fully automatic, can be slow for large examples

only small software stack needs to be trusted

Code Execution (eval)

able to show grounded properties

fully automatic, fast

large software stack needs to be trusted

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 16 of 18

Conclusion and Future Work

Tests:
Generation of test cases using HOL-TestGen to

improve the compliance test suite
compare di�erent implementations wrt their compliance to the standard

Proofs:
Formalizing an emerging component model (Shadow DOM)

Formalizing DOM security policies (e.g., Same Origin, CSP)

Comparing the Shadow DOM to existing security policies (e.g., Same Origin, CSP)

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 17 of 18

Thank you for your attention!
Any questions or remarks?

Contact: Dr. Achim D. Brucker and Michael Herzberg
Department of Computer Science

University of She�eld
Regent Court

211 Portobello St.
She�eld S1 4DP, UK

� {a.brucker, msherzberg1}@she�eld.ac.uk
� https://www.mherzberg.de

Bibliography

Achim D. Brucker and Michael Herzberg.

A formal semantics of the core DOM in Isabelle/HOL.
In Pierre-Antoine Champin, Fabien L. Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis, editors, The 2018 Web
Conference Companion (WWW), pages 741–749. ACM Press, 2018.

Achim D. Brucker and Michael Herzberg.

Formalizing (web) standards: An application of test and proof.
In Cathrine Dubois and Burkhart Wol�, editors, TAP 2018: Tests And Proofs, number 10889 in Lecture Notes in Computer
Science, pages 1–8. Springer-Verlag, 2018.

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 19 of 18

Document Classification and License Information

c© 2018 LogicalHacking.com, Achim D. Brucker and Michael Herzberg {a.brucker, msherzberg1}@she�eld.ac.uk.

This presentation is classi�ed as Public (CC BY-NC-ND 4.0):
Except where otherwise noted, this presentation is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International Public License (CC BY-NC-ND 4.0).

c© 2018 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 20 of 18

