
Why is software always crashing?
Are we lazy or just not clever enough to code?

Achim D. Brucker
a.brucker@she�eld.ac.uk https://www.brucker.ch/

Software Assurance & Security Research
Department of Computer Science, The University of She�eld, She�eld, UK

https://logicalhacking.com/

May 16, 2018

https://www.brucker.uk/
mailto:"Achim D. Brucker" <a.brucker@sheffield.ac.uk>
https://www.brucker.ch/
https://logicalhacking.com/

We build software since over 50 years

and still do not get it right.

Why?

We build software since over 50 years
and still do not get it right.

Why?

We build software since over 50 years
and still do not get it right.

Why?

A small example: what triangle do I have?
Our program

Given: The length of three lines

Answer: Do the three lines form a triangle?

> testTriangle (1 ,2 ,3);
val it = Error: triangle

> testTriangle (2 ,2 ,2);
val it = Equilateral : triangle

> testTriangle (1 ,2 ,2);
val it = Isosceles : triangle

> testTriangle (2 ,4 ,5);
val it = Scalene : triangle

c© 2018 LogicalHacking.com. Public (CC BY-ND 4.0) Page 5 of 14

https://logicalhacking.com
https://creativecommons.org/licenses/by-nd/4.0/

A small example what triangle do I have?
Is our program correct?

We tested 4 di�erent inputs . . .

The program has 3 inputs, each can take

264

“ 11844167441073170915511616

di�erent values

Assume we can test 110001000 per second
it takes 5841942 to test them all!

But we have three nputs:

32
64

“ 111790118415771738158311711520187218611

4121518166516781211159212751841110910961961

combinations

c© 2018 LogicalHacking.com. Public (CC BY-ND 4.0) Page 6 of 14

https://logicalhacking.com
https://creativecommons.org/licenses/by-nd/4.0/

A small example what triangle do I have?
Is our program correct?

We tested 4 di�erent inputs . . .

The program has 3 inputs, each can take

264 “ 11844167441073170915511616

di�erent values

Assume we can test 110001000 per second
it takes 5841942 to test them all!

But we have three nputs:

32
64

“ 111790118415771738158311711520187218611

4121518166516781211159212751841110910961961

combinations

c© 2018 LogicalHacking.com. Public (CC BY-ND 4.0) Page 6 of 14

https://logicalhacking.com
https://creativecommons.org/licenses/by-nd/4.0/

A small example what triangle do I have?
Is our program correct?

We tested 4 di�erent inputs . . .

The program has 3 inputs, each can take

264 “ 11844167441073170915511616

di�erent values

Assume we can test 110001000 per second
it takes 5841942 to test them all!

But we have three nputs:

32
64

“ 111790118415771738158311711520187218611

4121518166516781211159212751841110910961961

combinations

c© 2018 LogicalHacking.com. Public (CC BY-ND 4.0) Page 6 of 14

https://logicalhacking.com
https://creativecommons.org/licenses/by-nd/4.0/

A small example what triangle do I have?
Is our program correct?

We tested 4 di�erent inputs . . .

The program has 3 inputs, each can take

264 “ 11844167441073170915511616

di�erent values

Assume we can test 110001000 per second
it takes 5841942 to test them all!

But we have three nputs:

32
64

“ 111790118415771738158311711520187218611

4121518166516781211159212751841110910961961

combinationsc© 2018 LogicalHacking.com. Public (CC BY-ND 4.0) Page 6 of 14

https://logicalhacking.com
https://creativecommons.org/licenses/by-nd/4.0/

A small example what triangle do I have?
Let’s have a look at our program

datatype triangle = Equilateral | Scalene | Isosceles | Error

fun isTriangle (x:int , y:int , z:int)
= ((z < (x+y)) andalso (x < (x+z)) andalso (y < (x+z)))

fun testTriangle (x:int , y:int , z:int)
= if isTriangle (x,y,z) then

if x=y then if y=z then Equilateral
else Isosceles

else if y=z then Isosceles
else if x=z

then Isosceles
else Scalene

else Error

c© 2018 LogicalHacking.com. Public (CC BY-ND 4.0) Page 7 of 14

https://logicalhacking.com
https://creativecommons.org/licenses/by-nd/4.0/

A small example what triangle do I have?
Let’s have a look at our program

datatype triangle = Equilateral | Scalene | Isosceles | Error

fun isTriangle (x:int , y:int , z:int)
= ((z < (x+y)) andalso (x < (x+z)) andalso (y < (x+z)))

fun testTriangle (x:int , y:int , z:int)
= if isTriangle (x,y,z) then

if x=y then if y=z then Equilateral
else Isosceles

else if y=z then Isosceles
else if x=z

then Isosceles
else Scalene

else Error

21 tes
ts are

su�c
ient, t

o cover
all br

anch
es . . .

c© 2018 LogicalHacking.com. Public (CC BY-ND 4.0) Page 7 of 14

https://logicalhacking.com
https://creativecommons.org/licenses/by-nd/4.0/

Can 21 tests convince you that the
program is correct?

Can we do better?

We can prove the correctness mathematically!

c© 2018 LogicalHacking.com. Public (CC BY-ND 4.0) Page 9 of 14

https://logicalhacking.com
https://creativecommons.org/licenses/by-nd/4.0/

Can we do better?

We can prove the correctness mathematically!

Veri�
catio

n can
show

the c
orrec

tness
(for a

ll pos
sible

input
s)!

c© 2018 LogicalHacking.com. Public (CC BY-ND 4.0) Page 9 of 14

https://logicalhacking.com
https://creativecommons.org/licenses/by-nd/4.0/

Ensuring correctness, security, and safety

(Inductive) Veri�cation Testing

Formal (mathematical)
proof

Can show absence of
all failures relative to
speci�cation

Execution of test cases

Can show failures on
real system

c© 2018 LogicalHacking.com. Public (CC BY-ND 4.0) Page 10 of 14

https://logicalhacking.com
https://creativecommons.org/licenses/by-nd/4.0/

Is testing a “poor man’s verification?”
Or: Why should I test if I verified my program (and vice versa)

Fully formally veri�ed

Total number of �ights: 0

Fully tested

Total number of �ights: 1 000

c© 2018 LogicalHacking.com. Public (CC BY-ND 4.0) Page 11 of 14

https://logicalhacking.com
https://creativecommons.org/licenses/by-nd/4.0/

My vision

Combining testing and veri�cation to ensure the security, safety,
reliability, and correctness of (software) systems.

c© 2018 LogicalHacking.com. Public (CC BY-ND 4.0) Page 12 of 14

https://logicalhacking.com
https://creativecommons.org/licenses/by-nd/4.0/

Any questions or remarks?

Contact: Dr. Achim D. Brucker
Department of Computer Science

University of She�eld
Regent Court

211 Portobello St.
She�eld S1 4DP, UK

� a.brucker@she�eld.ac.uk
8 @adbrucker
° https://de.linkedin.com/in/adbrucker/
� https://www.brucker.ch/
� https://logicalhacking.com/blog/

mailto:a.brucker@sheffield.ac.uk
https://twitter.com/in/adbrucker/
https://de.linkedin.com/in/adbrucker/
https://www.brucker.ch/
https://logicalhacking.com/blog/
https://logicalhacking.com

Document Classification and License Information

c© 2018 LogicalHacking.com, A.D. Brucker.

This presentation is classi�ed as Public (CC BY-ND 4.0):
Except where otherwise noted, this presentation is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International Public License (CC BY-ND 4.0).

c© 2018 LogicalHacking.com. Public (CC BY-ND 4.0) Page 14 of 14

https://logicalhacking.com
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://logicalhacking.com
https://creativecommons.org/licenses/by-nd/4.0/

	Motivation
	Combining Testing and Verification

