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We build software since over 50 years

and still do not get it right.

Why?
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A small example: what triangle do I have?
Our program

Given: The length of three lines

Answer: Do the three lines form a triangle?

> testTriangle (1 ,2 ,3);
val it = Error: triangle

> testTriangle (2 ,2 ,2);
val it = Equilateral : triangle

> testTriangle (1 ,2 ,2);
val it = Isosceles : triangle

> testTriangle (2 ,4 ,5);
val it = Scalene : triangle
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A small example what triangle do I have?
Is our program correct?

We tested 4 di�erent inputs . . .

The program has 3 inputs, each can take

264

“ 11844167441073170915511616

di�erent values

Assume we can test 110001000 per second
it takes 5841942 to test them all!

But we have three nputs:

32
64

“ 111790118415771738158311711520187218611

4121518166516781211159212751841110910961961

combinations
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A small example what triangle do I have?
Let’s have a look at our program

datatype triangle = Equilateral | Scalene | Isosceles | Error

fun isTriangle (x:int , y:int , z:int)
= ( (z < (x+y)) andalso (x < (x+z)) andalso (y < (x+z)))

fun testTriangle (x:int , y:int , z:int)
= if isTriangle (x,y,z) then

if x=y then if y=z then Equilateral
else Isosceles

else if y=z then Isosceles
else if x=z

then Isosceles
else Scalene

else Error
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21 tes
ts are

su�c
ient, t

o cover
all br

anch
es . . .
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Can 21 tests convince you that the
program is correct?



Can we do better?

We can prove the correctness mathematically!
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Can we do better?

We can prove the correctness mathematically!

Veri�
catio

n can
show

the c
orrec

tness
(for a

ll pos
sible

input
s)!
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Ensuring correctness, security, and safety

(Inductive) Veri�cation Testing

Formal (mathematical)
proof

Can show absence of
all failures relative to
speci�cation

Execution of test cases

Can show failures on
real system
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Is testing a “poor man’s verification?”
Or: Why should I test if I verified my program (and vice versa)

Fully formally veri�ed

Total number of �ights: 0

Fully tested

Total number of �ights: 1 000
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My vision

Combining testing and veri�cation to ensure the security, safety,
reliability, and correctness of (software) systems.
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Any questions or remarks?

Contact: Dr. Achim D. Brucker
Department of Computer Science

University of She�eld
Regent Court

211 Portobello St.
She�eld S1 4DP, UK

� a.brucker@she�eld.ac.uk
8 @adbrucker
° https://de.linkedin.com/in/adbrucker/
� https://www.brucker.ch/
� https://logicalhacking.com/blog/
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