
Usable Security for Developers: A Nightmare
Achim D. Brucker | @adbrucker

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Usable Security for Developers: A Nightmare

Abstract

The term “usable security” is on everyone’s lips and there seems to be a general agreement that, first, security controls should

not unnecessarily affect the usability and unfriendliness of systems. And, second, that simple to use system should be preferred

as they minimize the risk of handling errors that can be the root cause of security incidents such as data leakages.

But it also seems to be a general surprise (at least for security experts), why software developers always (still) make so many

easy to avoid mistakes that lead to insecure software systems. In fact, many of the large security incidents of the last

weeks/months/years are caused by “seemingly simple to fix” programming errors.

Bringing both observations together, it should be obvious that we need usable and developer-friendly security controls and

programming frameworks that make it easy to build secure systems. Still, reality looks different: many programming languages,

APIs, and frameworks provide complex interfaces that are, actually, hard to use securely. In fact, they are miles away from

providing usable security for developers.

In this talk, I will discuss examples of complex and “non-usable” security for developers such as APIs that, in fact, are (nearly)

impossible to use securely or that require a understanding of security topics that most security experts to not have (and, thus,

that we cannot expert from software developers).

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

About Me

Security Expert/Architect at SAP SE
Member of the central security team, SAP SE (Germany)

Security Testing Strategist

Work areas at SAP included:

Defining the risk-based Security Testing Strategy

Evaluation of security testing tools (e.g., SAST, DAST)

Roll-out of security testing tools

Secure Software Development Life Cycle integration

. . .

Since December 2015:

Associate Professor, The University of Sheffield, UK
Head of the Software Assurance & Security Research Team
Available as consultancy & (research) collaborations

https://www.brucker.ch/

https://www.brucker.ch/

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Outline

1 Security experts and developers

2 Secure programming cant’ be that difficult . . .

3 The most common “fixes”

4 What we should do

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

70 years of software development

Since the late 1940ies, we

program,

debug, and

patch

computer systems.

we do not use punch cards anymore . . .

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

70 years of software development

Since the late 1940ies, we

program,

debug, and

patch

computer systems.

we do not use punch cards anymore . . .

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

70 years of software development

Since the late 1940ies, we

program,

debug, and

patch

computer systems.

we do not use punch cards anymore . . .

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

70 years of software development

Since the late 1940ies, we

program,

debug, and

patch

computer systems.

we do not use punch cards anymore . . .

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

We build software since 70 years

and still make the same old (security) mistakes

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

The common “silver bullet”: The SDLC

Training
Risk

Identification
Plan Security

Measures
Secure Development

& Security Testing
Security

Validation
Secure

Operations
Security

Response

Central security experts (SDLC owner)

Organizes security trainings
Defines product standard “Security”
Defines security testing strategy
Validates products
. . .

Development teams

Select technologies
Select development model
Design and execute security testing plan
. . .

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Works nicely

in theory – let’s move to reality

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Developer

Security Expert

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Introducing the SDLC: View of the security experts

The whiteboard is from the Microsoft’s security team

I confess, I am guilty too:

We also had a board with “embarrassing developers quotes”

SQL Injection:

I would never enter this!

Encryption:

We XOR-encrypted it

Injection:

But that would be illegal!

XSS (as a feature):

We can’t fix this, customers rely on it (sad but true)

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Introducing the SDLC: View of the developers

Experience security as

“The Department of No”

Confronted with a strange & complex language

(there are over 1024 CWEs – and counting)

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: Buffer overflow

> man gets
GETS (3S) GETS (3S)

NAME
gets , fgets - get a string from a stream

SYNOPSIS
include <stdio .h>

char *gets(s)
char *s;

DESCRIPTION
Gets reads a string into s from the standard input
stream stdin . The string is terminated by a newline
character , which is replaced in s by a null character .
Gets returns its argument .

Let’s travel back in time

Unix V7 (1979)

Reading strings

Gets returns a string

of arbitrary length

Is there a secure use of

gets?

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: Buffer overflow

Wait, let’s check the man page on a modern Unix/Linux:

NAME
gets - get a string from standard input (DEPRECATED)

BUGS
Never use gets (). Because it is impossible to tell without knowing the
data in advance how many characters gets () will read , and because
gets () will c ontinue to store characters past the end of the buffer ,
it is extremely dangerous to use. It has been used to br eak computer
security . Use fgets () instead .

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: Buffer overflow

OK, that’s sounds easy: Use fgets(buf, n, stdin) instead of gets(buf):

void f() {
char buf [20];
gets(buf)fgets(buf,20,stdin) // NOT: gets(buf);

}

Is this now secure? No, fgets does not always null-terminate

we need to manually null terminate the buffer (and reserve space for the null character)

void f() {
char buf [21];
fgets (buf ,20 , stdin);
buf [20]= ’\0 ’;

}

C-Programming has a lot in comming with (insurance) contracts: allways read the small print

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: Error handling

“
“Most OpenSSL functions will return an integer to indicate success or failure. Typically a function will

return 1 on success or 0 on error. All return codes should be checked and handled as appropriate.

Note that not all of the libcrypto functions return 0 for error and 1 for success. There are exceptions

which can trip up the unwary. For example if you want to check a signature with some functions you

get 1 if the signature is correct, 0 if it is not correct and -1 if something bad happened like a memory

allocation failure.” (OpenSSL)

Recall the common C convention:

0 indicates success
any non-zero value indicates failure

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: Error handling

Which one is correct:

1 Consider

if (some_verify_function ())
/* signature successful *?

2 Consider

if (1 != some_verify_function ())
/* signature successful *?

3 Consider

if (1 == some_verify_function ())
/* signature successful *?

The last one is correct

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: The Java 8 Crypto API

Just a nightmare:

Many configurations to choose from

algorithm
mode of operation
padding scheme
right keys and sizes
. . .

Most ciphers are oudated/broken. Only two can still be recommended

AES (symmetric)
RSA (asymmetric)

Many providers use insecure defaults (e.g., ECB mode)

Using the Java crypto API, is already hard for somebody who understands crypto . . .

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: XSS (Java)

Most Web Frameworks for Java do not provide input/output encoding as default

Developers need to include third party encoding libraries

(e.g., OWASP Java Encoder: https://github.com/OWASP/owasp-java-encoder)

and add calls to the encoder manually:

PrintWriter out =;
out. println ("<textarea >"+ Encode . forHtml (userData)+" </textarea >");

You need to insert the right (there are many) encoder each time.

https://github.com/OWASP/owasp-java-encoder

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Common mitigations

Provide training

Do we really expect that our developers understand
all these details?

Write (coding) guidelines

Guidelines without tool support are
(mostly) worthless

Use generic application security testing tools

without configuration, these tools are prone to both
high false-positive rates and high false-negative rates
many tools are developed for security experts
(and not for developers)
penetration tests

In their generality, these actions are often not very effective!

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Security experts and developers need to work together to achieve the common goal: secure

software!

(Disclaimer: security experts might need to learn how to code)!

Think positive: security enables developers to produce high-quality and secure software!

Start early in the development:

Select frameworks and/or programming languages that are secure by design
Develop custom APIs-Wrappers that are easy to use and require only little security knowledge
To consider

Configure your DAST/IAST/SAST tool to support your custom APIs

In the fix recommendations of your DAST/IAST/SAST tool, point developers to the recommended frameworks

If you develop APIs, make your examples secure by default

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

If you do not support your

developers, they will seek for help

elsewhere!

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Let’s close with a good example: Modern Rails

Modern versions of Rails are pretty secure by default

Input/output encoding is enabled by default and, in exceptional cases, needs to be disabled explicitly:

<%= account . balance . html_safe % >

(one can argue, if html_safe is a good name denoting un-sanitized (non-trusted) channels)

Suddenly, a simple grep becomes a powerful static analysis tool

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Call for action

Let’s build framework and APIs are easy to use securely!

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Call for action

Let’s build framework and APIs are easy to use securely!

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Call for action

Let’s build framework and APIs are easy to use securely!

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Call for action

Let’s build framework and APIs are easy to use securely!

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Thank you for your attention!

Any questions or remarks?

Contact: Dr. Achim D. Brucker

Department of Computer Science

University of Sheffield

Regent Court

211 Portobello St.

Sheffield S1 4DP, UK

� a.brucker@sheffield.ac.uk

8@adbrucker

° https://de.linkedin.com/in/adbrucker/

� https://www.brucker.ch/

� https://logicalhacking.com/blog/

mailto:a.brucker@sheffield.ac.uk
https://twitter.com/in/adbrucker/
https://de.linkedin.com/in/adbrucker/
https://www.brucker.ch/
https://logicalhacking.com/blog/
https://logicalhacking.com

Usable Security for Developers: A Nightmare

;

Achim D. Brucker | @adbrucker

Document Classification and License Information

© 2018 LogicalHacking.com, Achim D. Brucker | @adbrucker.

This presentation is classified as Public (CC BY-NC-ND 4.0):

Except where otherwise noted, this presentation is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International Public License (CC BY-NC-ND 4.0).

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	Security experts and developers
	The side of the security experts
	The side of the developers

	Secure programming cant' be that difficult …
	The most common ``fixes''
	What we should do

