
This is the author’s version of the work. It is posted at https://www.brucker.ch/bibliography/abstract/brucker.ea-core-dom-2018 for your personal use. Not for
redistribution. The definitive version was published in WWW’18 Companion: The 2018 Web Conference Companion, April 23–27, 2018, Lyon, France, pp. 741–749, 2018,
doi: 10.1145/3184558.3185980. BIBTEX, Word, EndNote, RIS

A Formal Semantics of the Core DOM in Isabelle/HOL
Achim D. Brucker

Department of Computer Science
The University of Sheffield

Sheffield, UK
a.brucker@sheffield.ac.uk

Michael Herzberg
Department of Computer Science

The University of Sheffield
Sheffield, UK

msherzberg1@sheffield.ac.uk

ABSTRACT
At its core, the Document Object Model (DOM) defines a tree-like
data structure for representing documents in general and HTML
documents in particular. It is the heart of any modern web browser.

Formalizing the key concepts of the DOM is a prerequisite for
the formal reasoning over client-side JavaScript programs and for
the analysis of security concepts in modern web browsers.

We present a formalization of the core DOM, with focus on the
node-tree and the operations defined on node-trees, in Isabelle/HOL.
We use the formalization to verify the functional correctness of the
most important functions defined in the DOM standard. Moreover,
our formalization is (1) extensible, i.e., can be extended without the
need of re-proving already proven properties and (2) executable, i.e.,
we can generate executable code from our specification.

CCS CONCEPTS
• Information systems→Markup languages; Document struc-
ture; • Software and its engineering→ Software verification;
Semantics; Formal software verification;

KEYWORDS
Document Object Model; DOM; Formal Semantics; Isabelle/HOL
ACM Reference Format:
Achim D. Brucker and Michael Herzberg. 2018. A Formal Semantics of
the Core DOM in Isabelle/HOL. In WWW’18 Companion: The 2018 Web
Conference Companion, April 23–27, 2018, Lyon, France. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3184558.3185980

1 INTRODUCTION
In a world in which more and more applications are offered as
services on the internet, web browsers start to take on a similarly
central role in our daily IT infrastructure as operating systems.
Thus, web browsers should be developed as rigidly and formally
as operating systems. While formal methods are a well-established
technique in the development of operating systems (see, e. g., Klein
[15] for an overview), there are few proposals for improving the
development of web browsers using formal approaches [2, 9, 12, 17].

As a first step towards a verified client-side web application stack,
we model and formally verify the Document Object Model (DOM)
in Isabelle/HOL. The DOM [21, 23] is the central data structure
of all modern web browsers. At its core, the Document Object

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04.
https://doi.org/10.1145/3184558.3185980

Model (DOM) defines a tree-like data structure for representing
documents in general and HTML documents in particular. Thus,
the correctness of a DOM implementation is crucial for ensuring
that a web browser displays web pages correctly. Moreover, the
DOM is the core data structure underlying client-side JavaScript
programs, i. e., client-side JavaScript programs are mostly programs
that read, write, and update the DOM.

In more detail, we formalize the core DOM as a shallow embed-
ding [14] in Isabelle/HOL. Our formalization is based on a typed
data model for the node-tree, i. e., a data structure for representing
XML-like documents in a tree structure. Furthermore, we formalize
a typed heap for storing (partial) node-trees together with the nec-
essary consistency constraints. Finally, we formalize the operations
(as described in the DOM standard [23]) on this heap that allow
manipulating node-trees.

Our machine-checked formalization of the DOM node tree [23]
has the following desirable properties:

(1) It provides a consistency guarantee. Since all definitions in our
formal semantics are conservative and all rules are derived,
the logical consistency of the DOM node-tree is reduced to
the consistency of HOL.

(2) It serves as a technical basis for a proof system. Based on
the derived rules and specific setup of proof tactics over
node-trees, our formalization provides a generic proof en-
vironment for the verification of programs manipulating
node-trees.

(3) It is executable, which allows to validate its compliance to
the standard by evaluating the compliance test suite on the
formal model and

(4) It is extensible in the sense of [5], i. e., properties proven over
the core DOMdo not need to be re-proven for object-oriented
extensions such as the HTML document model.

Finally, we show the correctness of the functions for manipulat-
ing the DOM w.r.t. the assumptions made in the standard.

After introducing Isabelle and higher-order logic in Sect. 2, we
introduce the formal datamodel of theDOMand operations over the
DOM in Sect. 3. In Sect. 4, we formalize the requirements for a valid
heap, followed by the discussion of the verification of important
properties of DOM operations in Sect. 5. Finally, we discuss related
work (Sect. 6) and draw conclusions (Sect. 7).

2 FORMAL AND TECHNICAL BACKGROUND
In this section, we will outline the underlying logical and method-
ological framework of our formalization of the DOM node-tree.

2.1 Higher-Order Logic and Isabelle
Isabelle [16] is a generic theorem prover implemented in the func-
tional programming language SML. Isabelle/HOL is the instance

https://www.brucker.ch/bibliography/abstract/brucker.ea-core-dom-2018
https://www.brucker.ch/bibliography/abstract/brucker.ea-core-dom-2018
https://doi.org/10.1145/3184558.3185980

@InProceedings{	 brucker.ea:core-dom:2018,
 author	= {Achim D. Brucker and Michael Herzberg},
 title		= {A Formal Semantics of the Core {DOM} in {Isabelle/HOL}},
 booktitle	= {The 2018 Web Conference Companion (WWW)},
 location	= {Lyon, France},
 editor	= {Pierre{-}Antoine Champin and Fabien L. Gandon and Mounia
		 Lalmas and Panagiotis G. Ipeirotis},
 publisher	= {ACM Press},
 conf_date	= {April 23-27, 2018},
 address	= {New York, NY, USA},
 isbn		= {978-1-4503-5640-4/18/04},
 url		= {https://www.brucker.ch/bibliography/abstract/brucker.ea-core-dom-2018},
 pages		= {741--749},
 classification= {workshop},
 doi		= {10.1145/3184558.3185980},
 year		= {2018},
 abstract	= {At its core, the Document Object Model (DOM) defines a
		 tree-like data structure for representing documents in
		 general and HTML documents in particular. It forms the
		 heart of any rendering engine of modern web browsers.
		 Formalizing the key concepts of the DOM is a pre-requisite
		 for the formal reasoning over client-side JavaScript
		 programs as well as for the analysis of security concepts
		 in modern web browsers. In this paper, we present a
		 formalization of the core DOM, with focus on the node-tree
		 and the operations defined on node-trees, in Isabelle/HOL.
		 We use the formalization to verify the functional
		 correctness of the most important functions defined in the
		 DOM standard. Moreover, our formalization is (1)
		 extensible, i.e., can be extended without the need of
		 re-proving already proven properties and (2) executable,
		 i.e., we can generate executable code from our
		 specification. },
 keywords	= {Document Object Model, DOM, Formal Semantics,
		 Isabelle/HOL},
 categories	= {websecurity},
 areas		= {formal methods, security},
 public	= {yes},
 pdf		= {https://www.brucker.ch/bibliography/download/2018/brucker.ea-core-dom-2018.pdf}
}

BibTeX entry of this paper

 brucker.ea:core-dom:2018
 Proceedings
 New York, NY, USA
 ACM Press
 2018
 The 2018 Web Conference Companion (WWW)
 741-749

 Brucker Achim D
 Herzberg Michael

 Champin Pierre-Antoine
 Gandon Fabien L
 Lalmas Mounia
 Ipeirotis Panagiotis G

 A Formal Semantics of the Core DOM in Isabelle/HOL
 At its core, the Document Object Model (DOM) defines a tree-like data structure for representing documents in general and HTML documents in particular. It forms the heart of any rendering engine of modern web browsers. Formalizing the key concepts of the DOM is a pre-requisite for the formal reasoning over client-side JavaScript programs as well as for the analysis of security concepts in modern web browsers. In this paper, we present a formalization of the core DOM, with focus on the node-tree and the operations defined on node-trees, in Isabelle/HOL. We use the formalization to verify the functional correctness of the most important functions defined in the DOM standard. Moreover, our formalization is (1) extensible, i.e., can be extended without the need of re-proving already proven properties and (2) executable, i.e., we can generate executable code from our specification.

XML entry of this paper (e.g., for Word 2007 and later)

%0 Conference Proceedings
%T A Formal Semantics of the Core DOM in Isabelle/HOL
%A Brucker, Achim D.
%A Herzberg, Michael
%E Champin, Pierre-Antoine
%E Gandon, Fabien L.
%E Lalmas, Mounia
%E Ipeirotis, Panagiotis G.
%B The 2018 Web Conference Companion (WWW)
%D 2018
%I ACM Press
%C New York, NY, USA
%@ 978-1-4503-5640-4/18/04
%F brucker.ea:core-dom:2018
%X At its core, the Document Object Model (DOM) defines a tree-like data structure for representing documents in general and HTML documents in particular. It forms the heart of any rendering engine of modern web browsers. Formalizing the key concepts of the DOM is a pre-requisite for the formal reasoning over client-side JavaScript programs as well as for the analysis of security concepts in modern web browsers. In this paper, we present a formalization of the core DOM, with focus on the node-tree and the operations defined on node-trees, in Isabelle/HOL. We use the formalization to verify the functional correctness of the most important functions defined in the DOM standard. Moreover, our formalization is (1) extensible, i.e., can be extended without the need of re-proving already proven properties and (2) executable, i.e., we can generate executable code from our specification.
%K Document Object Model, DOM, Formal Semantics, Isabelle/HOL
%U https://www.brucker.ch/bibliography/abstract/brucker.ea-core-dom-2018
%U https://www.brucker.ch/bibliography/download/2018/brucker.ea-core-dom-2018.pdf
%U http://dx.doi.org/10.1145/3184558.3185980
%P 741-749

Endnote entry of this paper

TY - CONF
AU - Brucker, Achim D.
AU - Herzberg, Michael
ED - Champin, Pierre-Antoine
ED - Gandon, Fabien L.
ED - Lalmas, Mounia
ED - Ipeirotis, Panagiotis G.
PY - 2018//
TI - A Formal Semantics of the Core DOM in Isabelle/HOL
BT - The 2018 Web Conference Companion (WWW)
SP - 741
EP - 749
PB - ACM Press
CY - New York, NY, USA
KW - Document Object Model, DOM, Formal Semantics, Isabelle/HOL
N2 - At its core, the Document Object Model (DOM) defines a tree-like data structure for representing documents in general and HTML documents in particular. It forms the heart of any rendering engine of modern web browsers. Formalizing the key concepts of the DOM is a pre-requisite for the formal reasoning over client-side JavaScript programs as well as for the analysis of security concepts in modern web browsers. In this paper, we present a formalization of the core DOM, with focus on the node-tree and the operations defined on node-trees, in Isabelle/HOL. We use the formalization to verify the functional correctness of the most important functions defined in the DOM standard. Moreover, our formalization is (1) extensible, i.e., can be extended without the need of re-proving already proven properties and (2) executable, i.e., we can generate executable code from our specification.
SN - 978-1-4503-5640-4/18/04
UR - https://www.brucker.ch/bibliography/abstract/brucker.ea-core-dom-2018
L1 - https://www.brucker.ch/bibliography/download/2018/brucker.ea-core-dom-2018.pdf
UR - http://dx.doi.org/10.1145/3184558.3185980
ID - brucker.ea:core-dom:2018
ER -

RIS entry of this paper

https://doi.org/10.1145/3184558.3185980
https://doi.org/10.1145/3184558.3185980

of Isabelle supporting Higher-order logic (HOL) [1, 8]. It supports
conservativity checks of definitions, datatypes, primitive and well-
founded recursion, and powerful generic proof engines based on
rewriting and tableau provers.

HOL is a classical logic with equality enriched with total poly-
morphic higher-order functions. HOL is strongly typed, i.e., each
expression e has a type 'a, written e::'a. In Isabelle, we denote
type variables with a prime (e. g., 'a) instead of Greek letters (e. g.,
α) that are usually used in textbooks. The type constructor for the
function space is written using infix notation: 'a ⇒ 'b. HOL is
centered around the extensional logical equality _ = _ with type
'a ⇒ 'a ⇒ bool, where bool is the fundamental logical type.

Functions in HOL are curried and pure, i.e., they take exactly
one argument, return exactly one result, and cannot produce side-
effects. To simulate functions with more than one argument, we let
these functions again return a function, until it will finally return a
non-function. Therefore, when reading curried function definitions,
it can be helpful to interpret the chain of function definitions in the
following way: the last type definition represents the “return value“
of the function, whereas the other types in the chain represent
arguments to the function. When modeling stateful functions, such
as in our case, we usually define functions that take an argument
that represents the state and return an updated version (i.e., a map
that contains an additional entry) that represents the state change.

The type discipline rules out paradoxes such as Russel’s para-
dox in untyped set theory. Sets of type 'a Set can be defined iso-
morphic to functions of type 'a ⇒ bool; the element-of-relation
_ ∈ _ has the type 'a ⇒ 'a set ⇒ bool and corresponds basi-
cally to the function application; the set comprehension {_ . _}
(usually written {_ | _} in textbooks) has type 'a set ⇒ ('a ⇒
bool)⇒ 'a set and corresponds to the λ-abstraction.
Isabelle/HOL allows for defining abstract datatypes. For example,

the following statement introduces the option type:

datatype 'a option = None | "Some 'a"

Besides the constructors None and Some, there is thematch-operation
case x of None ⇒ F | Some a ⇒ G a. The option type allows
us to represent partial functions (often calledmaps) as total functions
of type 'a ⇒ 'b option. For this type, we introduce the short-
hand 'a ⇀ 'b. We define dom f, called the domain of a partial
function f, by the set of all arguments of f that do not yield None.

We alsomake use of the sum type, 'a + 'b, and the product type,
'a ×'b. With the sum type, it is possible to express tuples, which,
for example, can be used to achieve a similar result to returning
a tuple from a function. The product type represents either 'a or
'b, and is useful to model errors, as it allows to let functions return
either some result on a successful calculation, or return an error.

When extending logics, two approaches can be distinguished:
the axiomatic method on the one hand and conservative extensions
on the other. Extending the HOL core via axioms, i.e., introducing
new, unproven laws seems to be the easier approach but it usually
leads easily to inconsistency; given the fact that in any major theo-
rem proving system the core theories and libraries contain several
thousand theorems and lemmas, the axiomatic approach is worth-
less in practice. In contrast, a conservative extension introduces
new constants (via constant definitions) and types (type definitions)

only via a particular schema of axioms; the (meta-level) proof that
axioms of this schema preserve consistency can be found in [10].

2.2 Shallow Embeddings vs. Deep Embeddings
We are now concerned with the question how a language is rep-
resented in a logic. Two techniques are distinguished: First, deep
embeddings represent the abstract syntax as a datatype and define a
semantic function I from syntax to semantics. Second, shallow em-
beddings define the semantics directly; each construct is represented
by some function on a semantic domain.

Assume we want to embed a simple logical language BOOL,
consisting of the two logical operators _ and _ and _ or _, into HOL.
The semantics I : expr → env → bool is a function that maps
BOOL expressions and environments to bool, where environments
env = var → bool maps variables to bool values. Using a shallow
embedding, we define directly:

x andy ≡ λ e • x e ∧ y e x ory ≡ λ e • x e ∨ y e

Shallow embeddings allow for direct definitions in terms of seman-
tic domains and operations on them. In a deep embedding, we have
to define the syntax of BOOL as a recursive datatype:

expr = var var | expr and expr | expr or expr

and the explicit semantic function I :

IJvar xK = λ e • e(x)

IJx andyK = λ e • IJxK e ∧ IJyK e
IJx oryK = λ e • IJxK e ∨ IJyK e

This example reveals the main drawback of deep embeddings: the
language is more distant to the underlying meta language HOL,
i.e. semantic functions represent obstacles for deduction. However;
for analyzing certain meta-theoretic analysis, deep-embeddings
have advantages. Since we are interested in a concise semantic
description of the DOM and efficient proof support (and we are not
interested in meta-theoretic proofs), we chose a shallow embedding.

3 FORMALIZING THE DOM
In this section, we will present our formalization of the core DOM
which follows theWHATWG specification [23], the updated version
of the W3C DOM 4 standard [21]. This includes the definition of
the tree-like data structure for representing documents and a set of
functions for creating and modifying a document.

3.1 The Core DOM Data Model: The Node-Tree
The main purpose of the DOM is to provide the data structure for
managing tree-structured documents, e. g., following the HTML
or XML standard. Fig. 1 illustrates a small example: Fig. 1a shows
the textual representation of a simple document (using HTML as
syntax), Fig. 1b shows the visualization of the DOM node-tree, and
Fig. 1c shows the rendered output (e. g., in a web browser).

As the DOM models a tree-like data structure, it is not a surprise
that the core datatypes of the DOM specifications are Document
and the datatype Node with the two specializations Element and
CharacterData. In our data model, we omitted attributes that can
computed from others, e.g., the parent attribute which represent

<!DOCTYPE html>
<html class=e>
<head>
<title >Aliens?</title>

</head>
<body>Why yes.</body>

</html>

(a) HTML

DOCTYPE: html

HTML class=e

HEAD

TITLE

text: Aliens?

BODY

text: Why yes.

(b) DOM

Why yes.

(c) Rendering

Fig. 1: A simple example of a DOM: (a) shows a textual rep-
resentation using HTML syntax, (b) a visualization of the
node-tree of the DOM, and (c) shows the result of rendering
this DOM, e.g., by a rendering engine of a web browser.

the inverse relation already represented by the childNodes and
documentElement attributes.

While the core idea of formalizing object-oriented data models
in an extensible way1 follows the construction presented in [3, 5],
we differ significantly in aspects such as the modeling of typed
pointers (references) and late binding of method invocations. Due
to space constraints, we will not discuss this in this paper.

First, we start by defining abstract datatypes for typed pointers
for the common super-class Object and the classes Node, Element,
CharacterData, and Document:
datatype

'object_ptr object_ptr = Ext 'object_ptr

'node_ptr node_ptr = Ext 'node_ptr

'element_ptr element_ptr = Ref ref | Ext 'element_ptr

'character_data_ptr character_data_ptr = Ref ref

| Ext 'character_data_ptr

'document_ptr document_ptr = Ref ref | Ext 'document_ptr

The pointers to the abstract classes object_ptr and node_ptr only
support a constructor for extensions; regular classes also have a con-
structor for the reference of the object itself. We use these datatypes
to introduce type synonyms representing the actual pointer types
for our DOM model (see Fig. 2).

The type polynomials are constructed in such a way that the
HOL types for pointers of sub-classes in the object-oriented model
are instances of the HOL type of their super-class. This is the key
construction allowing an extensible formalization. For details, we
are referring the reader to [5].

In the rest of this paper, we will use an underscore to denote
the tuple of type variables of the type constructors for pointer
and object types. For example, we will write _ node_ptrCore_DOM
instead of
('node_ptr, 'element_ptr,

'character_data_ptr) node_ptrCore_DOM

and assume that type variables of the same name are instantiated
with the same types.
1This object-oriented form of extensibility allows us, e.g., to later extend the DOM
model to a formal model of standards based on the DOM standard, such as HTML,
without the need to re-prove properties over the DOM.

Second, we define HOL types representing objects using the
record-package provided in Isabelle. Overall, we use the same con-
struction of type polynomials to represent inheritance in HOL. Due
to space reasons, we omit the technical details of the type construc-
tion. We refer interested readers to the Isabelle formalization [4].
For each class, we define one record:

record Object =

nothing :: unit

record Node = Object +

nothing :: unit

record _ Element = Node +

tag_name :: tag_type

child_nodes :: "_ node_ptrCore_DOM list"

attributes :: attributes_type

record CharacterData = Node +

data :: DOMString

record _ Document = Object +

doctype :: doctype

document_element :: "_ element_ptrCore_DOM option"

disconnected_nodes :: "_ node_ptrCore_DOM list"

Due to technical constraints of the record package, we need to
introduce an attribute nothing for classes that do not define at
least one attribute themselves. Given these definitions, we can, e.g.,
define a CharacterData object as follows:

definition

"CharacterDataExample = (|Object.nothing = (),

Node.nothing = (),

data = ''Why yes.'' |)"

Essentially, this models an object-oriented data model of a tree-
like data structure, called node-tree in the DOM standard, where
(1) the root of the tree is an instance of Document, (2) instances of
the class Element can be internal nodes or leaves, and (3) instances
of the class CharacterData can only appear as leaves.

Finally, we define a heap for storing node-trees, i.e., instances of
our DOM data model. A DOM heap is a map from object pointers
to objects:

type_synonym _ heapCore_DOM
= "_ object_ptrCore_DOM ⇀_ ObjectCore_DOM"

Where _ ObjectCore_DOM is the type synonym for the instantiated
super-type of object (similar to the construction for pointers).

Fig. 3 illustrates how the simple document from our example in
Fig. 1 can be expressed in our formal DOM heap.

3.2 Operations and Queries on Node-Trees
In the following, we will define the core DOMmethods for creating,
querying, and modifying the node-trees that are stored in a DOM
heap. We define the following functions formally in Isabelle/HOL.
Fig. 4 provides an overview of their formal type signatures.

All operations are defined over the DOM heap, i.e., they take a
heap as input and return either an exception or a tuple containing
the return value and a new heap:

type_synonym (_, 'result) dom_prog = "_ dom_heapCore_DOM
⇒ exception + ('result ×_ dom_heapCore_DOM)"

type_synonym
('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr) object_ptrCore_DOM

= "(('element_ptr element_ptr + 'character_data_ptr character_data_ptr + 'node_ptr) node_ptr
+ 'document_ptr document_ptr + 'shadow_root_ptr shadow_root_ptr + 'object_ptr) object_ptr"

('node_ptr, 'element_ptr, 'character_data_ptr) node_ptrCore_DOM
= "('element_ptr element_ptr + 'character_data_ptr character_data_ptr + 'node_ptr) node_ptr"

'element_ptr element_ptrCore_DOM = "'element_ptr element_ptr"
'character_data_ptr character_data_ptrCore_DOM = "'character_data_ptr character_data_ptr"
'document_ptr document_ptrCore_DOM = "'document_ptr document_ptr"

Fig. 2: The HOL types of our extensible, typed pointers for the core DOM. The type polynomials ensure that pointers for
sub-classes in the object-oriented data model are instances of the HOL type of the pointer of their super-class.

definition "test_heap = map_of [
(cast (document_ptr.Ref 1), cast (|Object.nothing = (), doctype = ''html'',

document_element = Some (element_ptr.Ref 1), disconnected_nodes = [] |)),
(cast (element_ptr.Ref 1), cast (|Object.nothing = (), Node.nothing = (),

tag_name = ''html'', child_nodes = [cast (element_ptr.Ref 2), cast (element_ptr.Ref 4)],
attributes = map_of [(''class'', ''e'')], shadow_root_opt = None |)),

(cast (element_ptr.Ref 2), cast (|Object.nothing = (), Node.nothing = (),
tag_name = ''head'', child_nodes = [cast (element_ptr.Ref 3)],
attributes = empty, shadow_root_opt = None |)),

(cast (element_ptr.Ref 3), cast (|Object.nothing = (), Node.nothing = (), tag_name = ''title'',
child_nodes = [cast (character_data_ptr.Ref 1)], attributes = empty, shadow_root_opt = None |)),

(cast (character_data_ptr.Ref 1), cast (|Object.nothing = (), Node.nothing = (), data = ''Aliens?'' |)),
(cast (element_ptr.Ref 4), cast (|Object.nothing = (), Node.nothing = (), tag_name = ''body'',

child_nodes = [cast (character_data_ptr.Ref 2)], attributes = empty, shadow_root_opt = None |)),
(cast (character_data_ptr.Ref 2), cast (|Object.nothing = (), Node.nothing = (), data = ''Why yes.'' |))

]"

Fig. 3: The formal representation of a heap containing our simple example DOM (recall Fig. 1).

All operations result in an exception if an argument is invalid,
e. g., a pointer that does not represent a valid object in the current
heap. We use a heap and error monad for modeling exceptions. This
allows us to define composite methods similar to stateful program-
ming in Haskell, but also to stay close to the official specification.

The function create_element takes an (owner)document and
the tag name of the new element. It returns the updated heap that
includes the new element with no children and no attributes along
with a reference to the new element, which is stored in the first free
location in the heap. This ensures that it will not change any existing
locations in the heap, which we will prove later. Additionally, the
new element is added to the list of disconnected nodes of the given
document, as it is not yet part of the node tree.

The function get_child_nodes takes a heap and a pointer to
a node and returns a list of pointers to its children. For elements,
it returns the children list that is stored in the datatype. For text
nodes, it returns the empty list. For documents, we convert their
document element into the appropriate node list.

The function get_attribute looks up the given attribute in
the element’s attribute map. It returns Some attr if there exists
an attribute with the given key, and None otherwise. The official
specification also has a concept called “reflected content attribute,”
which basically returns the stored attribute of the same name, but
returns the empty string if the attribute is not present.

The function set_attribute updates the given attribute of the
pointer in the heap. In the official specification, it is not allowed to
set the attribute to None or null, respectively, to delete the attribute.
We generalize this definition by allowing this.

The function get_parent_node takes a pointer to a node and
returns a pointer to its parent, or None, if the node does not have
a parent. The case where a node does not have a parent can only
occur in disconnected node-trees, which we will discuss later. Our
API does not accept documents, since they can never have a parent.
Having the types as narrow as possible will enable easier proofs. The
function get_parent_node is an example of a method where the
official specification leaves much room for interpretation regarding
the implementation. It neither provides an algorithm explaining
to how obtain a parent, given a node, nor does it specify that the
parent reference should be stored in the objects. To avoid specifying
additional consistency constraints that would be needed if both
children and parent references were to be stored, we implemented
get_parent_node by searching the whole heap for any node whose
get_child_nodes contains the given reference.

The function remove_child is rather close to the official specifi-
cation; if child’s parent is different from the passed parent, then
we “throw” a NotFoundError. Otherwise, we add the removed child
to the disconnected node list of its owner document and remove it
from either the document_element or the child_nodes attribute.

create_element :: "tag_type ⇒ _ document_ptrCore_DOM ⇒ _ dom_prog"
get_attribute :: "_ element_ptrCore_DOM ⇒ attributes_key ⇒ _ dom_prog"
set_attribute :: "_ element_ptrCore_DOM ⇒ attributes_key ⇒ attributes_value option ⇒ _ dom_prog"
get_child_nodes :: "_ object_ptrCore_DOM ⇒ _ dom_prog"
get_parent :: "_ node_ptrCore_DOM ⇒ _ dom_prog"
remove_child :: "_ object_ptrCore_DOM ⇒ _ node_ptrCore_DOM ⇒ _ dom_prog"
get_element_by_id :: "_ object_ptrCore_DOM ⇒ attributes_value ⇒ _ dom_prog"
adopt_node :: "_ document_ptrCore_DOM ⇒ _ node_ptrCore_DOM ⇒ _ dom_prog"
insert_before :: "_ object_ptrCore_DOM ⇒ _ node_ptrCore_DOM ⇒ _ node_ptrCore_DOM option ⇒ _ dom_prog"

Fig. 4: The formal type signatures of the methods for creating, querying, and modifying the core DOM.

The function get_element_by_id searches in tree order (depth-
first, left-to-right) for the first element with the given id. Our defi-
nition is more general than the official specification, as we dropped
the requirement that get_element_by_id should only be available
on documents, which is a legacy requirement.

3.2.1 Adopting Nodes. Themethod adopt_node removes a node
from its previous parent, if it had any, and assigns it to the new
ownerDocument. First, it tries to retrieve the parent of the node to be
adopted. If the node has a parent node, it removes the node from the
children list, otherwise it removes it from the list of disconnected
nodes of the previous owner document. Finally, the node is now
added to the disconnected nodes of the new document.

definition adopt_node ::

"_ document_ptrCore_DOM ⇒ _ node_ptrCore_DOM
⇒ _ dom_prog"

where

"adopt_node document node = do {

parent_opt ←get_parent node;

(case parent_opt of

Some parent ⇒ remove_child parent node

| None ⇒ do {

old_document ←get_owner_document (cast node);

remove_from_disconnected_nodes old_document

node});

add_to_disconnected_nodes document node

}"

3.2.2 Inserting Nodes. Using insert_before, one can insert
arbitrary nodes (i.e., not necessarily in the same node-tree) from
the heap into a node-tree:

definition insert_before ::

"_ object_ptrCore_DOM ⇒ _ node_ptrCore_DOM
⇒ _ node_ptrCore_DOM option ⇒ _ dom_prog"

where

"insert_before ptr node child = do {

ensure_pre_insertion_validity node ptr child;

reference_child ←(if Some node = child

then next_sibling node

else return child);

owner_document ←get_owner_document ptr;

adopt_node owner_document node;

insert_node ptr node reference_child

}"

Document

Element

Element Element

Element CharacterData CharacterData

Element

Element CharacterData

Fig. 5: DOM with a visible document (gray) and a runtime
tree (white)

A node that should be inserted needs to fulfill cer-
tain well-formedness criteria. This is checked using the
ensure_preinsertion_validity function which formalizes the
concept of pre-insertion validity from the DOM standard. Then, the
reference child needs to be determined, which is that node before
which the to-be-inserted node should be placed. Then, we adopt the
node into the (possibly new) node-tree and actually insert the node
into either the child_nodes or document_element attributes.

4 WELL-FORMEDNESS OF THE DOM HEAP
Our DOM heap is a map from object pointer to object. While a
map alone would allow numerous “illegal” heaps, two features of
our formalization already rule out many misconfigurations: Our
data model is typed and, thus, rules out illegal heaps such as one
that contains a document that contains a character data object as
its only child. Additionally, our data model omits some fields of
the standard, such as parentNode, which we calculate by using the
heap and get_child_nodes.

Still, some possible illegal heap configurations remain, such as
one with a cyclic get_child_nodes relationship. Thus, we need
further well-formedness constraints and we need to show that
the DOM methods preserve the well-formedness. We will now
introduce predicates that validate whether a given heap conforms
to the standard.

4.1 The Owner Document
The DOM specifications requires that each node is owned by ex-
actly one document, its owner document. Moreover, each node
participates in a tree w.r.t. the get_child_nodes-relation. A DOM
might—and usually will—consist of several trees, i.e., a DOM is a
forest of trees. We call the tree that has the main document as root
the visible document, as this is the part of the DOM that would be
rendered, e. g., by a web browser.

Fig. 5 illustrates this relationship for an example: the gray nodes
(connected by solid arrows that visualize the get_child_nodes-
relation) represent the visible document. The white nodes (con-
nected by dotted arrows that visualize the get_owner_document
relationship) are forming a temporary runtime tree. Runtime trees
are not serialized (e. g., in an HTML or XML document) and only
exist at runtime.

We define get_owner_document of a node to be the root, if the
root is an document; otherwise, we return that document whose
disconnected_nodes contains said node. In order for this defini-
tion to be well-formed, we need the following predicate:

definition owner_document_valid :: "_ heapCore_DOM ⇒ bool"

where "owner_document_valid h = (

{node_ptr. ∀doc_ptr disc_node_ptrs.

(h ⊢ get_disconnected_nodes doc_ptr → r disc_node_ptrs)

−→ node_ptr ∈set disc_node_ptrs}

= {node_ptr. ∀ptr.
(h ⊢ get_root_node (cast node_ptr) → r ptr)

−→ ¬is_document_ptr_kind ptr})"

This predicate guarantees us that the set of nodes in all
disconnected_nodes fields is exactly the set of nodes that do not
have a document as their root.

4.2 Restricting DOMs to Trees
So far, we do not restrict the relation given by get_child_nodes
to be acyclic, which is possible since we use pointers. To prevent
this, we can use the following predicate:

definition acyclic_heap :: "_ heapCore_DOM ⇒ bool"

where "acyclic_heap h = acyclic {(parent, child). ∀children.
(h ⊢ get_child_nodes parent → r children)

−→ child ∈ cast ‘ set children}"

We leverage the definition of acyclicity on relations, i.e., a set of
tuples. Our relation contains all pointers parent and child where
child is in the set of children of parent.

4.3 Node Sharing
The DOM standard assumes that a node cannot be the child of more
than one node. This property of heaps is informally implied by
the official standard, and all tree-modifying methods ensure that
such a DOM cannot be built. We, however, must deal with all heaps
that conform to our heap type. Therefore, in addition to our heap
predicate that guarantees us that all trees in our heap are acyclic,
we need a predicate that prevents the nodes from having more than
one parent. Therefore, we formally define another heap predicate:

definition maximal_one_parent :: "_ heapCore_DOM ⇒ bool"

where "maximal_one_parent h = (∀node_ptr.
(length (sorted_list_of_set {parent. ∀children.
(h ⊢ get_child_nodes parent → r children)

−→ node_ptr ∈set children})) ≤1)"

The definition checks whether for any node, the set of possible
parents (i.e., pointers whose children contains said node), contains
exactly zero or one parents.

4.4 Pointer Validity
Moreover, we need to ensure that objects do not contain invalid
pointers (e. g., pointers that do not point to an object stored in
the heap of the same type). Otherwise, whenever we work with
our pointers, we would have to deal with the possibility of a “null-
pointer exception”. Thus, we require:

definition all_ptrs_in_heap :: "_ heapCore_DOM ⇒ bool"

where "all_ptrs_in_heap h = ((∀ptr children.

(h ⊢ get_child_nodes ptr → r children)

−→ set children ⊆node_ptr_kinds h)

∧ (∀doc_ptr disc_node_ptrs.

(h ⊢ get_disconnected_nodes doc_ptr → r disc_node_ptrs)

−→ set disc_node_ptrs ⊆node_ptr_kinds h))"

The only place where we can find pointers (without arbitrar-
ily constructing them, which should be avoided) is in one of the
datatype fields. Therefore, for all pointers in the heap, we re-
trieve the corresponding object, and check whether all pointers
stored in applicable fields (childNodes, document_element, and
disconnected_nodes) are present in the heap.

4.5 Heaps are Strongly Typed
As we model typed pointers and objects, we want to assure that a
pointer of a certain type actually maps to an object of the related
type in a given heap, e. g., that a document_ptr actually maps to a
document. The following predicate assures us that this holds for
the whole heap:

definition matches_heapCore_DOM :: "_ heapCore_DOM ⇒ bool"

where "matches_heapCore_DOM =

(∀doc_ptr ∈document_ptr_kinds heap.

the (get (cast doc_ptr) is_document_kind heap)))

∧ . . .

Similarly to document, the definition also contains checks for the
other classes, which we omitted here due to space constraints. The
definition checks whether for all, e.g., document pointers, the heap
actually returns and object for which is_document_kind holds.

4.6 No Multi-Edges
The childNodes and disconnected_nodes attributes are of type
list. Thus, they may contain duplicates, i.e., the same pointer mul-
tiple times. This can lead to strange effects, such as that after
remove_child has been called, the pointer still is in the list. This
behavior is not addressed by the official specification. We make this
requirement explicit:

definition distinct_lists :: "_ heapCore_DOM ⇒ bool"

where "distinct_lists h = ((∀ptr children.

(h ⊢ get_child_nodes ptr → r children)

−→ distinct children)

∧ (∀doc_ptr disc_node_ptrs.

(h ⊢ get_disconnected_nodes doc_ptr → r disc_node_ptrs)

−→ distinct disc_node_ptrs))"

We retrieve the lists for every pointer in the heap and require
that they are distinct. In Sect. 5.2, we will show a formal proof of
the fact that insert_node actually can never lead to a childNodes
list with duplicates.

Table 1: Well-formedness properties of core heap methods

side-effect modifies preserves
free only well-formedness

get_child_nodes ✓
get_parent_node ✓
get_element_by_id ✓
get_attribute ✓
create_element ✓ ✓
set_attribute ✓ ✓
remove_child ✓ ✓
adopt_node ✓ ✓
insert_before ✓ ✓

4.7 Well-Formed Heaps
To put it all together, we define a well-formed heap as a heap that
satisfies all discussed constraints:

definition heap_is_wellformed :: "_ heapCore_DOM ⇒ bool"

where "heap_is_wellformed h ←→

finite (object_ptr_kinds h) ∧matches_heapCore_DOM h ∧

owner_document_valid h ∧acyclic_heap h ∧

all_ptrs_in_heap h ∧maximal_one_parent h ∧

distinct_lists h"

5 REASONING OVER THE DOM
So far we only defined the DOM data structure, a heap for storing
DOM instances, and methods over them. We now discuss the verifi-
cation of these methods in the sense of formally proving that they
preserve the well-formedness of the heap.

5.1 Properties of DOMMethods
5.1.1 Well-formedness of the Heap Methods. The DOMmethods

(see Sect. 3.2 and Table 1) can be divided into two categories: All
query functions (starting with the prefix get_) use the heap to
compute a value, but do not modify the heap. It is therefore easy to
show that they preserve the well-formedness of the heap. For all
other function, we have to formally prove their correctness w.r.t.
preserving the well-formedness of the heap. If all methods preserve
the well-formedness then we have shown that any exception-free
sequence of DOM methods creates a well-formed DOM heap.

For all methods, we need to prove a lemma of this form:

lemma insert_before_preserves_wellformedness:

assumes "heap_is_wellformed h"

and "h ⊢ insert_before ptr new_child ref_child → h h'"

shows "heap_is_wellformed h'"

All variables in lemmas are all-quantified, meaning they can
take all possible values of the corresponding type, only re-
stricted by the statements in the assumption. As the predicate
heap_is_wellformed is a conjunction of more specific predicates
(e. g., acyclic_heap), we can split the proof for these lemmas into
separate proofs that the methods are preserving those more specific
conditions. We will discuss such a proof in more detail at the end
of this section. Due to space limitations we will omit most proofs,
for which we refer the reader to our full formalization.

5.1.2 Heap Modifications are Local. We want to ensure that
heap-modifying functions do not modify the heap arbitrarily. Thus,
we first introduce two predicates that characterize a function by
specifying which locations (pointers) and fields are being read or
written, respectively:

definition reads :: "(_ object_ptrCore_DOM
× (_ object_ptrCore_DOM ⇒ _ heapCore_DOM
⇒ _ heapCore_DOM ⇒ bool)) set

⇒ _ dom_prog ⇒ bool"

where "reads S f ←→(∀h h' x. (h ⊢f → r x)

−→ (∀(ptr, P) ∈S. P ptr h h') −→(h' ⊢f → r x))"

definition writes :: "(_ object_ptrCore_DOM
× (_ object_ptrCore_DOM ⇒ _ heapCore_DOM
⇒ _ heapCore_DOM ⇒ bool)) set

⇒ _ dom_prog ⇒ bool"

where "writes S f ←→(∀h h'. (h ⊢f → h h')

−→ (∀ptr. ∀get ∈Sg. (ptr, get) <S −→get ptr h h'))"

Both predicates take a set of pointers and predicates that assert
something about the specified heap location in both the old and new
heap. This will be, for example, a predicate checking whether the
attributes field of Elementwill have the same value in both heaps.
The writes predicate is characterized by these getter predicates
that remain unaffected, which is why it references a set Sg, which
contains all such getter predicates for the getters of our classes.
For example, for the get_attribute and set_attribute DOM
methods we prove the following:

lemma get_attribute_reads:

"reads {(cast element_ptr,

element_getter_preserved attributes)}

(get_attribute element_ptr k)"

lemma set_attribute_writes:

"writes {(cast element_ptr,

element_getter_preserved attributes)}

(set_attribute element_ptr k v)"

5.1.3 Exceptions. All our functions can throw exceptions, i. e.,
they return a sum type of exception and their real return type,
which is a common way to model exceptions in functional lan-
guages. Therefore, we can provide lemmas that show under which
preconditions our functions will return their normal result and not
throw an exception. Most functions will throw an exception under
exactly one circumstance: if they try to resolve a pointer on the
given heap, but the heap does not have an object of the same type
stored in that location, i. e., the lookup returns None. This is not
surprising, since most functions will need to do something with
the object, and not just the pointer to the object. For example, we
show:

lemma set_attribute_ok:

assumes "matches_heapCore_DOM h"

and "ptr ∈element_ptr_kinds h"

shows "h ⊢ ok (set_attribute ptr k v)"

lemma adopt_node_removes_child:
assumes wellformed: "heap_is_wellformed h"
and parent_known: "

∧
parent.

h ⊢ get_parent node_ptr → r Some parent =⇒
is_known_ptrCore_DOM parent"

and adopt_node: "h ⊢adopt_node owner_document node_ptr → h h2"
and known_ptr: "is_known_ptrCore_DOM ptr"
and children: "h2 ⊢get_child_nodes ptr → r children"
shows "node_ptr <set children"

Fig. 6: The method adopt_node removes the node that is to
be adopted (proof in formalization document).

lemma adopt_node_children_remain_distinct:
assumes wellformed: "heap_is_wellformed h"
and parent_known: "

∧
parent.

h ⊢ get_parent node_ptr → r Some parent
=⇒ is_known_ptrCore_DOM parent"

and adopt_node: "h ⊢adopt_node owner_document node_ptr → h h2"
and ptr_known: "is_known_ptrCore_DOM ptr"
and children: "h2 ⊢get_child_nodes ptr → r children"

shows "distinct children"

Fig. 7: After using adopt_node, all children lists remain dis-
tinct (proof in formalization document).

5.2 Proving Properties Over DOMMethods
Our DOM model allows us to prove properties of our specified
DOM methods over arbitrary heaps. In proofs, the general line of
arguing will usually utilize the fact that heap-modifying methods
consist of a series of heap updates in single locations, whose proven
properties we can utilize. We will show one example of such a proof
to demonstrate how one can work with the formalization.

For example, we can prove that using insert_before does cer-
tainly never lead to duplicates in the node’s children list, even if a
pointer is being inserted that is already in this node’s children. We
express this property in our formalization as follows:
lemma insert_before_children_remain_distinct:

assumes wellformed: "heap_is_wellformed h"

and parent_known: "
∧
parent.

h ⊢ get_parent new_child → r Some parent

=⇒ is_known_ptrCore_DOM parent"

and known: "is_known_ptrCore_DOM ptr"

and insert_before:

"h ⊢ insert_before ptr new_child child_opt → h h2"

shows "
∧
ptr children. is_known_ptrCore_DOM ptr

=⇒ h2 ⊢ get_child_nodes ptr → r children

=⇒ distinct children"

We first assume that we start with a wellformed heap. The next
two assumptions guarantee us that ptr and the parent, if any,
of new_child are of a known type — so either a element_ptr,
character_data_ptr, or document_ptr. These two assumptions
are necessary to prove something about one of our late-bound
functions, get_child_nodes and set_child_nodes, later. The
last assumption introduces h2 as the heap after an application of
insert_before.

The conclusion is to be read as follows: After the use of
insert_before (h2), all lists of children of all known pointers will
be distinct. Fig. 9 shows a formal proof sketch (i.e., a simplified
excerpt of a formal proof using Isabelle’s proof language Isar [22]).

lemma insert_node_children_remain_distinct:
assumes ptr_known: "is_known_ptrCore_DOM ptr"
and insert_node: "h ⊢insert_node ptr new_child reference_child_opt
→ h h2"

and "
∧
children. h ⊢get_child_nodes ptr → r children

=⇒ new_child < set children"
and "

∧
ptr children. is_known_ptrCore_DOM ptr

=⇒ h ⊢ get_child_nodes ptr → r children =⇒distinct children"
shows "

∧
ptr children. is_known_ptrCore_DOM ptr

=⇒ h2 ⊢ get_child_nodes ptr → r children =⇒distinct children"

Fig. 8: After using insert_node, all children lists remain dis-
tinct if the child is not already in the children list into which
it will be inserted (proof in formalization document).

lemma insert_before_children_remain_distinct:
assumes wellformed: "heap_is_wellformed h"
and parent_known: "

∧
parent.

h ⊢ get_parent new_child → r Some parent
=⇒ is_known_ptrCore_DOM parent"

and known: "is_known_ptrCore_DOM ptr"
and insert_before:
"h ⊢ insert_before ptr new_child child_opt → h h2"

shows "
∧
ptr children. is_known_ptrCore_DOM ptr

=⇒ h2 ⊢ get_child_nodes ptr → r children
=⇒ distinct children"

proof -
obtain reference_child owner_document h' where

reference_child: "h ⊢(if Some new_child = child_opt
then next_sibling new_child
else return child_opt) → r reference_child" and

owner_doc: "h ⊢ get_owner_document ptr → r owner_document" and
h': "h ⊢ adopt_node owner_document new_child → h h'" and
h2: "h' ⊢ insert_node ptr new_child reference_child → h h2"

by (insert assms, unfold insert_before_def) unfold_progs

have "
∧
ptr children. is_known_ptrCore_DOM ptr

=⇒ h' ⊢ get_child_nodes ptr → r children
=⇒ distinct children"

using adopt_node_children_remain_distinct parent_known
using wellformed h' by blast

moreover have "
∧
ptr children. is_known_ptrCore_DOM ptr

=⇒ h' ⊢ get_child_nodes ptr → r children
=⇒ new_child < set children"

using h' parent_known wellformed adopt_node_removes_child
by blast

ultimately show "
∧
ptr children. is_known_ptrCore_DOM ptr

=⇒ h2 ⊢ get_child_nodes ptr → r children
=⇒ distinct children"

by (metis insert_node_children_remain_distinct known h2)
qed

Fig. 9: A formal proof that insert_before preserves the dis-
tinctness of the child nodes list

5.2.1 Proof Structure. Recall the definition of insert_before
in Sect. 3.2, which consists of two heap-modifying functions:
adopt_node, which removes the new child from its old parent and
updates the owner document, and insert_node, which appends
the new child to the actual children list. The proof is therefore
structured as follows:

First, we unroll the definition of insert_before to get a handle
to the individual statements. Additionally, we obtain h', which is
the intermediate heap in between adopt_node and insert_node.

Second, we prove that after adopt_node, in addition to all
children lists still being distinct (we only remove one child
from one list), the child will not be part of any of these (as
it has been removed from the only children list that contained

it). For this proof, we can use two properties of adopt_node
that we proved earlier, adopt_node_removes_child (Fig. 6) and
adopt_node_children_remain_distinct (Fig. 7).

Third, since we know that before the use of insert_node all
children lists are distinct and do not contain the node that is to be in-
serted, we can prove that all children list will remain distinct, as we
only insert the given node and nothing else. Again, for this proof, we
can use a property that we have already proven about insert_node,
insert_node_children_remain_distinct (Fig. 8).

6 RELATEDWORK
To our knowledge, there are only very few formalizations of data
structures for manipulating XML-like document structures avail-
able. Sternagel and Thiemann [19] present an “XML library” for
Isabelle/HOL. The purpose of this library is to provide XML pars-
ing and pretty printing facilities for Isabelle. As such, it is not a
formalization of XML or XML-like data structures in Isabelle/HOL.

Our DOM typed formalization shares several design decision
with the type-safe DOM API of Thiemann [20]. The most closely
related works are [9, 17, 18] in which the authors present a non-
executable, non-extensible, and non-mechanized operational se-
mantics of a minimal DOM and show how this semantics can be
used for Hoare-style reasoning for analyzing heaps of DOMs. The
authors focus on providing a formal foundation for reasoning over
client-side JavaScript programs that modify the DOM.

A more informal model of the DOM that focuses on the needs
of building a static analysis tool for client-side JavaScript programs
is presented by Jensen et al. [13]. This model does not focus on the
DOM as such, instead the authors focus on the representation of
HTML documents on top of the DOM.

Finally, there are several works, e. g., [2, 11, 12] on formalizing
parts of web browsers for analyzing their security. These works
use high-level specifications of web browsers and do not contain a
formalization of the DOM itself.

7 CONCLUSION AND FUTUREWORK
We presented a typed formalization of the Document Object Model
(DOM) in Isabelle/HOL. Technically, our formalization is an ex-
ecutable shallow embedding of the official specification of the
WHATWG [23] and the W3C.

We see several lines of future work. We consider tightening the
link between the formal specification and the actual implementa-
tions used by various web browsers as the most important line
of future work. One promising approach to achieve this goal is
the systematic generation of test cases from the formal specifica-
tion using test case generation techniques hat are integrated into
Isabelle/HOL [6, 7]. The generated test cases can, as the already
existing manually developed test cases, be used for validating the
compliance of actual browser implementation.

Furthermore, there are two promising areas w.r.t. extending
the scope of our formalization: first, formalizing and analyzing
the “DOM with Shadow Roots,” i. e., the new component model
proposed as part of the DOM standard of the WHATWG [23]. Sec-
ond, using the extensibility of our formalization to add support for
HTMLElement (and its sub-types such as HTMLIFrameElement). As
the concept of iframes is fundamental for restricting information

flow between parts of a website originating from different security
domains, such a formalization would allow us to reason over web
security properties in Isabelle/HOL.

Availability. The formalization is available under a 2-clause
BSD license in the Archive of Formal Proofs [4]. A copy is also
available at https://git.logicalhacking.com/afp-mirror/Core_DOM.

REFERENCES
[1] Peter B. Andrews. 2002. Introduction to Mathematical Logic and Type Theory: To

Truth through Proof. Kluwer Academic Publishers.
[2] Aaron Bohannon and Benjamin C. Pierce. 2010. Featherweight Firefox: For-

malizing the Core of a Web Browser. In Usenix Conference on Web Application
Development (WebApps).

[3] Achim D. Brucker. 2007. An Interactive Proof Environment for Object-oriented
Specifications. Ph.D. Dissertation. ETH Zurich. ETH Dissertation No. 17097.

[4] Achim D. Brucker and Michael Herzberg. 2018. Archive of Formal Proofs (2018).
http://www.isa-afp.org/entries/Core_DOM.shtml, Formal proof development.
Submitted.

[5] Achim D. Brucker and Burkhart Wolff. 2008. An Extensible Encoding of Object-
oriented Data Models in HOL. Journal of Automated Reasoning 41 (2008), 219–249.
Issue 3. https://doi.org/10.1007/s10817-008-9108-3

[6] Achim D. Brucker and Burkhart Wolff. 2009. HOL-TestGen: An Interactive Test-
case Generation Framework. In Fundamental Approaches to Software Engineering,
Marsha Chechik and Martin Wirsing (Eds.). Number 5503 in LNCS. Springer-
Verlag, 417–420. https://doi.org/10.1007/978-3-642-00593-0_28

[7] Achim D. Brucker and Burkhart Wolff. 2013. On Theorem Prover-based Testing.
Formal Aspects of Computing (FAC) 25, 5 (2013), 683–721. https://doi.org/10.1007/
s00165-012-0222-y

[8] Alonzo Church. 1940. A formulation of the simple theory of types. Journal of
Symbolic Logic 5, 2 (June 1940), 56–68.

[9] Philippa Gardner, Gareth Smith, Mark J. Wheelhouse, and Uri Zarfaty. 2008.
DOM: Towards a Formal Specification. In Programming Language Technologies
for XML.

[10] Mike J. C. Gordon and Tom F. Melham. 1993. Introduction to HOL: a theorem
proving environment for higher order logic. Cambridge University Press.

[11] Arjun Guha, Matthew Fredrikson, Benjamin Livshits, and Nikhil Swam. 2011.
Verified Security for Browser Extensions. In IEEE Symposium on Security and
Privacy. 115–130. https://doi.org/10.1109/SP.2011.36

[12] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2012. Establishing Browser
Security Guarantees through Formal Shim Verification. In USENIX Security Sym-
posium, Tadayoshi Kohno (Ed.). USENIX Association, 113–128.

[13] Simon Holm Jensen, Magnus Madsen, and Anders Møller. 2011. Modeling the
HTML DOM and Browser API in Static Analysis of JavaScript Web Applications.
In ACM SIGSOFT Symposium and European Conference on Foundations of Software
Engineering (ESEC/FSE). ACM, New York, NY, USA, 59–69. https://doi.org/10.
1145/2025113.2025125

[14] Jeffrey J. Joyce and Carl-Johan H. Seger (Eds.). 1994. Higher Order Logic Theorem
Proving and Its Applications (HUG). LNCS, Vol. 780. Springer-Verlag, Heidelberg.
https://doi.org/10.1007/3-540-57826-9

[15] Gerwin Klein. 2009. Operating System Verification — An Overview. Sādhanā 34,
1 (Feb. 2009), 27–69.

[16] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL—A
Proof Assistant for Higher-Order Logic. LNCS, Vol. 2283. Springer-Verlag, Heidel-
berg. https://doi.org/10.1007/3-540-45949-9

[17] Azalea Raad, José Fragoso Santos, and Philippa Gardner. 2016. DOM: Specification
and Client Reasoning. In Programming Languages and Systems (LNCS), Atsushi
Igarashi (Ed.), Vol. 10017. 401–422. https://doi.org/10.1007/978-3-319-47958-3_21

[18] Gareth David Smith. 2011. Local Reasoning about Web Programs. Ph.D. Disserta-
tion. Imperial College London, London, UK.

[19] Christian Sternagel and Renè Thiemann. 2014. XML. Archive of Formal Proofs
(Oct. 2014). http://isa-afp.org/entries/XML.shtml, Formal proof development.

[20] Peter Thiemann. 2005. A Type Safe DOM API. In Database Programming Lan-
guages (LNCS), Gavin M. Bierman and Christoph Koch (Eds.), Vol. 3774. Springer,
169–183. https://doi.org/10.1007/11601524_11

[21] W3C. 2015. W3C DOM4. (19 Nov. 2015). https://www.w3.org/TR/dom/
[22] Markus Wenzel and Lawrence C. Paulson. 2006. Isabelle/Isar. In The Seventeen

Provers of the World, Foreword by Dana S. Scott (LNCS), Freek Wiedijk (Ed.),
Vol. 3600. Springer, 41–49. https://doi.org/10.1007/11542384_8

[23] WHATWG. 2017. DOM – Living Standard. (24 March 2017). https://dom.spec.
whatwg.org/commit-snapshots/6253e53af2fbfaa6d25ad09fd54280d8083b2a97/
Last Updated 24 March 2017.

https://git.logicalhacking.com/afp-mirror/Core_DOM
http://www.isa-afp.org/entries/Core_DOM.shtml
https://doi.org/10.1007/s10817-008-9108-3
https://doi.org/10.1007/978-3-642-00593-0_28
https://doi.org/10.1007/s00165-012-0222-y
https://doi.org/10.1007/s00165-012-0222-y
https://doi.org/10.1109/SP.2011.36
https://doi.org/10.1145/2025113.2025125
https://doi.org/10.1145/2025113.2025125
https://doi.org/10.1007/3-540-57826-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-47958-3_21
http://isa-afp.org/entries/XML.shtml
https://doi.org/10.1007/11601524_11
https://www.w3.org/TR/dom/
https://doi.org/10.1007/11542384_8
https://dom.spec.whatwg.org/commit-snapshots/6253e53af2fbfaa6d25ad09fd54280d8083b2a97/
https://dom.spec.whatwg.org/commit-snapshots/6253e53af2fbfaa6d25ad09fd54280d8083b2a97/

	Abstract
	1 Introduction
	2 Formal and Technical Background
	2.1 Higher-Order Logic and Isabelle
	2.2 Shallow Embeddings vs. Deep Embeddings

	3 Formalizing the DOM
	3.1 The Core DOM Data Model: The Node-Tree
	3.2 Operations and Queries on Node-Trees

	4 Well-Formedness of the DOM Heap
	4.1 The Owner Document
	4.2 Restricting DOMs to Trees
	4.3 Node Sharing
	4.4 Pointer Validity
	4.5 Heaps are Strongly Typed
	4.6 No Multi-Edges
	4.7 Well-Formed Heaps

	5 Reasoning Over the DOM
	5.1 Properties of DOM Methods
	5.2 Proving Properties Over DOM Methods

	6 Related Work
	7 Conclusion and Future Work
	References

