
Secure Software Development on the Enterprise Level
Achim D. Brucker

a.brucker@she�eld.ac.uk https://www.brucker.ch/

Software Assurance & Security Research
Department of Computer Science, The University of She�eld, She�eld, UK

https://logicalhacking.com/

Shift Left: The Incredible Impact Early Security Testing Makes
January 19, 2017, London, UK

Outline

1 Background

2 Motivation

3 Secure Software Development

4 From (Mild) Pain to Success: My Experiences at SAP

5 Lesson’s Learned

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 3 of 26

Personal Background

Eight year of enterprise secure software development:
Member of the central security team, SAP SE (Germany)

(Global) Security Testing Strategist
Security Research Expert/Architect

Work areas:

De�ning the risk-based Security Testing Strategy of SAP
Introducing security testing tools (e.g., SAST, DAST) at SAP
Identify white spots and evaluate and improve
tools/methods
Secure Software Development Life Cycle integration
Applied security research
. . .

Since 12/2015:
Senior Lecturer, The University of She�eld, UK
Head of the Software Assurance & Security Research Team
Available as consultant & (research) collaborations

https://www.brucker.uk/

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 4 of 26

SAP SE

Leader in Business Software
Cloud
Mobile
On premise

Many di�erent technologies and platforms, e.g.,
In-memory database and application server (Hana)
Netweaver for ABAP and Java

More than 25 industries

63% of the world’s transaction revenue
touches an SAP system

over 68000 employees worldwide
over 25000 software developers

Headquarters: Walldorf (Heidelberg), Germany

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 5 of 26



Outline

1 Background

2 Motivation

3 Secure Software Development

4 From (Mild) Pain to Success: My Experiences at SAP

5 Lesson’s Learned

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 6 of 26

Example (LinkedIn, May 2016)

164 million email addresses and passwords

from an attack in 2012, o�ered for sale May 2016
Compromised data:

email addresses
passwords

Example (TalkTalk, October 2015)

nearly 157,000 customer records leaked

nearly 16,000 records included bank details

more than 150,000 customers lost
(home services market share fall by 4.4 percent
in terms of new customers)

Costs for TalkTalk: around any £60 million



Example (Ashley Madison, July 2015)

more than 30 million email addresses & much
more
Compromised data:

Dates of birth
Email addresses
Ethnicities, Genders
Sexual preferences
Home addresses, Phone numbers
Payment histories
Passwords, Usernames, Security questions and
answers
Website activity

Similar Leak: Mate1 in February 2016:
27 million records with even more personal details
(e.g., drinking/drug habits, political views)

What’s the Problem?
Authenticate without a password using “SQL Injection”

Implementation (SQL, simpli�ed):

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’Username’ AND ‘pwd ‘ = ’Password’;

Let’s try: user “test” & password “secret”:

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’test’ AND ‘pwd ‘ = ’secret ’;

Let’s use “’ OR ’1’=’1” as password:

SELECT * FROM ‘users ‘ WHERE
;

No password check!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 8 of 26

What’s the Problem?
Authenticate without a password using “SQL Injection”

Implementation (SQL, simpli�ed):

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’Username’ AND ‘pwd ‘ = ’Password’;

Let’s try: user “test” & password “secret”:

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’test’ AND ‘pwd ‘ = ’secret ’;

Let’s use “’ OR ’1’=’1” as password:

SELECT * FROM ‘users ‘ WHERE
;

No password check!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 8 of 26

What’s the Problem?
Authenticate without a password using “SQL Injection”

Implementation (SQL, simpli�ed):

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’Username’ AND ‘pwd ‘ = ’Password’;

Let’s try: user “test” & password “secret”:

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’test’ AND ‘pwd ‘ = ’secret ’;

Let’s use “’ OR ’1’=’1” as password:

SELECT * FROM ‘users ‘ WHERE
;

No password check!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 8 of 26



What’s the Problem?
Authenticate without a password using “SQL Injection”

Implementation (SQL, simpli�ed):

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’Username’ AND ‘pwd ‘ = ’Password’;

Let’s try: user “test” & password “secret”:

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’test’ AND ‘pwd ‘ = ’secret ’;

Let’s use “’ OR ’1’=’1” as password:

SELECT * FROM ‘users ‘ WHERE
;

No password check!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 8 of 26

What’s the Problem?
Authenticate without a password using “SQL Injection”

Implementation (SQL, simpli�ed):

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’Username’ AND ‘pwd ‘ = ’Password’;

Let’s try: user “test” & password “secret”:

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’test’ AND ‘pwd ‘ = ’secret ’;

Let’s use “’ OR ’1’=’1” as password:

SELECT * FROM ‘users ‘ WHERE
;

No password check!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 8 of 26

What’s the Problem?
Authenticate without a password using “SQL Injection”

Implementation (SQL, simpli�ed):

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’Username’ AND ‘pwd ‘ = ’Password’;

Let’s try: user “test” & password “secret”:

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’test’ AND ‘pwd ‘ = ’secret ’;

Let’s use “’ OR ’1’=’1” as password:

SELECT * FROM ‘users ‘ WHERE
;

No password check!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 8 of 26

What’s the Problem?
Authenticate without a password using “SQL Injection”

Implementation (SQL, simpli�ed):

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’Username’ AND ‘pwd ‘ = ’Password’;

Let’s try: user “test” & password “secret”:

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’test’ AND ‘pwd ‘ = ’secret ’;

Let’s use “’ OR ’1’=’1” as password:

SELECT * FROM ‘users ‘ WHERE
‘name‘ = ’test’ AND ‘pwd‘ = ’’ OR ’1’=’1′;

No password check!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 8 of 26



What’s the Problem?
Authenticate without a password using “SQL Injection”

Implementation (SQL, simpli�ed):

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’Username’ AND ‘pwd ‘ = ’Password’;

Let’s try: user “test” & password “secret”:

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’test’ AND ‘pwd ‘ = ’secret ’;

Let’s use “’ OR ’1’=’1” as password:

SELECT * FROM ‘users ‘ WHERE
‘name‘ = ’test’ AND ‘pwd‘ = ’’ OR TRUE′;

No password check!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 8 of 26

What’s the Problem?
Authenticate without a password using “SQL Injection”

Implementation (SQL, simpli�ed):

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’Username’ AND ‘pwd ‘ = ’Password’;

Let’s try: user “test” & password “secret”:

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’test’ AND ‘pwd ‘ = ’secret ’;

Let’s use “’ OR ’1’=’1” as password:

SELECT * FROM ‘users ‘ WHERE
TRUE;

No password check!

Ro
ot
cau

se:
a b

ug
.

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 8 of 26

Outline

1 Background

2 Motivation

3 Secure Software Development

4 From (Mild) Pain to Success: My Experiences at SAP

5 Lesson’s Learned

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 26

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 26



A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

Training
Security awareness

Secure programming

Threat modelling

Security testing

Data protection and privacy

Security expert curriculum (“Masters”)

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 26

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

Risk Identi�cation
Risk identi�cation (“high-level threat modelling”)

Threat modelling

Data privacy impact assessment

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 26

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

Plan Security Measures
Plan product standard compliance

Plan security features

Plan security tests

Plan security response

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 26

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

Secure Development
Secure Programming

Static code analysis (SAST)

Code review

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 26



A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

Security Testing
Dynamic Testing (e.g., IAST, DAST)

Manual testing

External security assessment

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 26

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

Security Validation (“First Customer”)
Check for “�aws” in the implementation of the S2DL

Ideally, security validation �nds:

No issues that can be �xed/detected earlier

Only issues that cannot be detect earlier
(e.g., insecure default con�gurations, missing security documentation)

Penetration tests in productive environments are di�erent:

They test the actual con�guration

They test the productive environment (e.g., cloud/hosting)

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 26

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

Security Response
Execute the security response plan

Security related external communication

Incident handling

Security patches

Monitoring of third party components

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 26

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

Secure Software 

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 26



A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

Secure Software 

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 26

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

Secure Software 
Security 

Validation

Security 
Testing

Secure 

Development

Plan Security

Measures

Risk
Identification

Training

Security
Response

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 26

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

Secure Software 
Security 

Validation

Security 
Testing

Secure 

Development

Plan Security

Measures

Risk
Identification

Training

Security
Response

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 26

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

Secure Software 
Security 

Validation

Security 
Testing

Secure 

Development

Plan Security

Measures

Risk
Identification

Training

Security
Response

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 26



A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

Secure Software 
Security 

Validation

Security 
Testing

Secure 

Development

Plan Security

Measures

Risk
Identification

Training

Security
Response

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 26

Secure Software Development Lifecycle for Cloud/Agile

Build Operate

Define

Release Release
Decision

Build
Decision

Risk
Identification

Plan Security
Measures

S
e

cu
re

 
D

e
ve

lo
p

m
e

n
t

S
e

cu
ri

ty
 

Te
st

in
g

S
e

cu
ri

ty
 

V
al

id
at

io
n

S
e

cu
ri

ty
R

e
sp

o
n

se

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 11 of 26

Outline

1 Background

2 Motivation

3 Secure Software Development

4 From (Mild) Pain to Success: My Experiences at SAP

5 Lesson’s Learned

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 12 of 26

Finding Security Vulnerabilities

Manual

Automatic

Running Application Static Analysis

Penetration
Testing

DAST, IAST
Vulnerability Scanner SAST

Manual
Code Review

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 13 of 26



Finding Security Vulnerabilities

Manual

Automatic

Running Application Static Analysis

Penetration
Testing

DAST, IAST
Vulnerability Scanner SAST

Manual
Code Review

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 13 of 26

In 2010: Static Analysis Becomes Mandatory

SAST tools used at SAP:

Language Tool Vendor

ABAP CodePro�ler Virtual Forge
Others Fortify HP

Since 2010: SAST mandatory for all SAP products

Within two years, multiple billions lines analysed

Constant improvement of tool con�guration

Further details:
Deploying Static Application Security Testing on a Large Scale. In
GI Sicherheit 2014. Lecture Notes in Informatics, 228, pages
91-101, GI, 2014.

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 14 of 26

A De-Centralised Application Security Approach
How SAP’s Application Development Approach Developed Over Time

Governance & approvals De-centralized approach

2009 2016

One Two SAST tools �t all
VF CodePro�ler
Fortify

Blending of Security Testing Tools
SAST:
SAP Netweaver CVA Add-on, Fortify,
Synopsis Coverity, Checkmarx,
Breakman
DAST:
HP WebInspect, Quotium Seeker
Others:
Burp Suite, OWASP ZAP, Codinomicon
Fuzzer, BDD

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 15 of 26

A De-Centralised Application Security Approach
How SAP’s Application Development Approach Developed Over Time

Governance & approvals De-centralized approach

2009 2016

One Two SAST tools �t all
VF CodePro�ler
Fortify

Blending of Security Testing Tools
SAST:
SAP Netweaver CVA Add-on, Fortify,
Synopsis Coverity, Checkmarx,
Breakman
DAST:
HP WebInspect, Quotium Seeker
Others:
Burp Suite, OWASP ZAP, Codinomicon
Fuzzer, BDD

Development Teams

feel pushed

Central Security Team

Controls development teams

Spends a lot time with granting
exemptions

Danger

Only ticking boxes

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 15 of 26



A De-Centralised Application Security Approach
How SAP’s Application Development Approach Developed Over Time

Governance & approvals De-centralized approach

2009 2016

One Two SAST tools �t all
VF CodePro�ler
Fortify

Blending of Security Testing Tools
SAST:
SAP Netweaver CVA Add-on, Fortify,
Synopsis Coverity, Checkmarx,
Breakman
DAST:
HP WebInspect, Quotium Seeker
Others:
Burp Suite, OWASP ZAP, Codinomicon
Fuzzer, BDD

Development Teams

feel pushed

Central Security Team

Controls development teams

Spends a lot time with granting
exemptions

Danger

Only ticking boxes

Development Teams

are empowered

are responsible

Central Security Team

Supports development teams
Can focuses on improvements

�lling white spots
tooling
processes

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 15 of 26

De-Centralised Approach: Organisational Setup

Central security expert team (S2DL owner)
Organizes security trainings
De�nes product standard “Security”
De�nes risk and threat assessment methods
De�nes security testing strategy
Selects and provides security testing tools
Validates products
De�nes and executes response process

Local security experts
Embedded into development teams
Organize local security activities
Support developers and architects
Support product owners (responsibles)

Development teams
Select technologies
Select development model
Design and execute security
testing plan
. . .

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 16 of 26

Security Team Focus: Security Testing for Developers

Security testing tools for developers, need to

Be applicable from the start of
development

Automate the security knowledge
Be integrated into dev world, e.g.,

IDE (instant feedback)
Continuous integration

Provide easy to understand �x
recommendations

Declare their “sweet spots”

security
experts

software
Developer

many cwe
and/or
technologies

only few cwe
and/or
technologies

generalist
tools for 
security
Experts

specialist
tools for 
security
Experts

specialist
tools for 
developers

generalist
tools for 
developers

https://logicalhacking.com/blog/2016/10/25/classifying-security-testing-tools/

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 17 of 26

Combining Multiple Security Testing Methods and Tools

Web Client 
Web Browser 

Server Application
Runtime Container 

Backend Systems 

https://logicalhacking.com/blog/2017/01/11/sast-vs-dast-vs-iast/

Risks of only using only SAST
Wasting e�ort that could be used more wisely
elsewhere
Shipping insecure software

Examples of SAST limitations
Not all programming languages supported
Covers not all layers of the software stack

A comprehensive approach combines
Static approaches (i.e., SAST)
Dynamic approaches (i.e., IAST or DAST)

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 18 of 26



Combining Multiple Security Testing Methods and Tools

Web Client 
Web Browser 

Server Application
Runtime Container 

Backend Systems 

SAST (Java)

SAST (JavaScript)

SAST (C/C++)

https://logicalhacking.com/blog/2017/01/11/sast-vs-dast-vs-iast/

Risks of only using only SAST
Wasting e�ort that could be used more wisely
elsewhere
Shipping insecure software

Examples of SAST limitations
Not all programming languages supported
Covers not all layers of the software stack

A comprehensive approach combines
Static approaches (i.e., SAST)
Dynamic approaches (i.e., IAST or DAST)

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 18 of 26

Combining Multiple Security Testing Methods and Tools

Web Client 
Web Browser 

Server Application
Runtime Container 

Backend Systems 

SAST (Java)

SAST (JavaScript)

SAST (C/C++)

To
o

l A
 (e

.g
., 

D
A

S
T

)

To
o

l B
 (e

.g
., 

IA
S

T
)

In
-B

ro
w

se
r

S
e

cu
ri

ty
 

Te
st

in
g

 
To

o
l

https://logicalhacking.com/blog/2017/01/11/sast-vs-dast-vs-iast/

Risks of only using only SAST
Wasting e�ort that could be used more wisely
elsewhere
Shipping insecure software

Examples of SAST limitations
Not all programming languages supported
Covers not all layers of the software stack

A comprehensive approach combines
Static approaches (i.e., SAST)
Dynamic approaches (i.e., IAST or DAST)

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 18 of 26

Combining Multiple Security Testing Methods and Tools

Web Client 
Web Browser 

Server Application
Runtime Container 

Backend Systems To
o

l A
 (e

.g
., 

D
A

S
T

)

To
o

l B
 (e

.g
., 

IA
S

T
)

In
-B

ro
w

se
r

S
e

cu
ri

ty
 

Te
st

in
g

 
To

o
l

SAST (Java)

SAST (JavaScript)

https://logicalhacking.com/blog/2017/01/11/sast-vs-dast-vs-iast/

Risks of only using only SAST
Wasting e�ort that could be used more wisely
elsewhere
Shipping insecure software

Examples of SAST limitations
Not all programming languages supported
Covers not all layers of the software stack

A comprehensive approach combines
Static approaches (i.e., SAST)
Dynamic approaches (i.e., IAST or DAST)

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 18 of 26

Combining Multiple Security Testing Methods and Tools

Web Client 
Web Browser 

Server Application
Runtime Container 

Backend Systems To
o

l A
 (e

.g
., 

D
A

S
T

)

To
o

l B
 (e

.g
., 

IA
S

T
)

In
-B

ro
w

se
r

S
e

cu
ri

ty
 

Te
st

in
g

 
To

o
l

SAST (Java)

SAST (JavaScript)

https://logicalhacking.com/blog/2017/01/11/sast-vs-dast-vs-iast/

Risks of only using only SAST
Wasting e�ort that could be used more wisely
elsewhere
Shipping insecure software

Examples of SAST limitations
Not all programming languages supported
Covers not all layers of the software stack

A comprehensive approach combines
Static approaches (i.e., SAST)
Dynamic approaches (i.e., IAST or DAST)

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 18 of 26



How to Measure Success (and Identify White Spots)

Analyze the vulnerabilities reported by
Security Validation
External security researchers

Vulnerability not detected by currently used methods
Improve tool con�guration
Introduce new tools

Vulnerability detected by our security testing tools
Vulnerability in older software release
Analyze reason for missing vulnerability

Covered

Not Covered

Success criteria:
Percentage of vulnerabilities not covered by our security testing tools increases

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 19 of 26

How to Measure Success (and Identify White Spots)

Analyze the vulnerabilities reported by
Security Validation
External security researchers

Vulnerability not detected by currently used methods
Improve tool con�guration
Introduce new tools

Vulnerability detected by our security testing tools
Vulnerability in older software release
Analyze reason for missing vulnerability

Covered

Not Covered

Success criteria:
Percentage of vulnerabilities not covered by our security testing tools increases

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 19 of 26

How to Measure Success (and Identify White Spots)

Analyze the vulnerabilities reported by
Security Validation
External security researchers

Vulnerability not detected by currently used methods
Improve tool con�guration
Introduce new tools

Vulnerability detected by our security testing tools
Vulnerability in older software release
Analyze reason for missing vulnerability

Covered

Not Covered

Success criteria:
Percentage of vulnerabilities not covered by our security testing tools increases

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 19 of 26

How to Measure Success (and Identify White Spots)

Analyze the vulnerabilities reported by
Security Validation
External security researchers

Vulnerability not detected by currently used methods
Improve tool con�guration
Introduce new tools

Vulnerability detected by our security testing tools
Vulnerability in older software release
Analyze reason for missing vulnerability

Covered

Not Covered

Newly
Covered

Success criteria:
Percentage of vulnerabilities not covered by our security testing tools increases

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 19 of 26



Outline

1 Background

2 Motivation

3 Secure Software Development

4 From (Mild) Pain to Success: My Experiences at SAP

5 Lesson’s Learned

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 20 of 26

Key Success Factors

A holistic security awareness program for
Developers
Managers

Yes, security awareness is important but

Developer awareness is even more important!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 21 of 26

Key Success Factors

A holistic security awareness program for
Developers
Managers

Yes, security awareness is important

but

Developer awareness is even more important!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 21 of 26

Key Success Factors

A holistic security awareness program for
Developers
Managers

Yes, security awareness is important but

Developer awareness is even more important!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 21 of 26



Key Success Factors

A holistic security awareness program for
Developers
Managers

Yes, security awareness is important but

Developer awareness is even more important!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 21 of 26

Listen to Your Developers And Make Their Life Easy!

We are often talking about a lack of security awareness and, by that,
forget the problem of lacking development awareness.

Building a secure system more di�cult than �nding a successful attack.

Do not expect your developers to become penetration testers (or security experts)!

Organisations can make it hard for developers to apply security testing skills!

Don’t ask developers to do security testing, if their contract doesn’t allows it

Budget application security activities centrally

Educate your developers and make them recognised experts

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 22 of 26

Final remarks

What works well:
Delegate power and accountability to development teams
Multi-tiered model of security experts:

local experts for the local implementation of secure development
global experts that support the local security experts (champions):

act as consultant in di�cult/non-standard situations
evaluate, purchase, and operate widely used security testing tools
can mediate between development teams and response teams

Strict separation of
security testing supporting developers and
security validation

What does not work well:
Forcing tools, processes, etc. on developers
Penetration testing as “secure development” approach

Penetration has its value, e.g.,
as security integration test
as “meta-test” for your secure development process (validation)

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 23 of 26

Thank you for your attention!
Any questions or remarks?

Contact: Dr. Achim D. Brucker
Department of Computer Science

University of She�eld
Regent Court

211 Portobello St.
She�eld S1 4DP, UK

� a.brucker@she�eld.ac.uk
8 @adbrucker
° https://de.linkedin.com/in/adbrucker/
� https://www.brucker.ch/
� https://logicalhacking.com/blog/



Bibliography

Ruediger Bachmann and Achim D. Brucker.
Developing secure software: A holistic approach to security testing.
Datenschutz und Datensicherheit (DuD), 38(4):257–261, April 2014.

Achim D. Brucker and Uwe Sodan.
Deploying static application security testing on a large scale.
In Stefan Katzenbeisser, Volkmar Lotz, and Edgar Weippl, editors, GI Sicherheit 2014, volume 228 of
Lecture Notes in Informatics, pages 91–101. GI, March 2014.

Michael Felderer, Matthias Büchler, Martin Johns, Achim D. Brucker, Ruth Breu, and Alexander
Pretschner.
Security testing: A survey.
Advances in Computers, 101:1–51, March 2016.

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 25 of 26

Document Classification and License Information

c© 2017 LogicalHacking.com, A.D. Brucker.

This presentation is classi�ed as Public (CC BY-NC-ND 4.0):
Except where otherwise noted, this presentation is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International Public License (CC BY-NC-ND 4.0).

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 26 of 26


