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Personal Background

Eight year of enterprise secure software development:
Member of the central security team, SAP SE (Germany)

(Global) Security Testing Strategist
Security Research Expert/Architect

Work areas:

De�ning the risk-based Security Testing Strategy of SAP
Introducing security testing tools (e.g., SAST, DAST) at SAP
Identify white spots and evaluate and improve
tools/methods
Secure Software Development Life Cycle integration
Applied security research
. . .

Since 12/2015:
Senior Lecturer, The University of She�eld, UK
Head of the Software Assurance & Security Research Team
Available as consultant & (research) collaborations

https://www.brucker.uk/
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SAP SE

Leader in Business Software
Cloud
Mobile
On premise

Many di�erent technologies and platforms, e.g.,
In-memory database and application server (Hana)
Netweaver for ABAP and Java

More than 25 industries

63% of the world’s transaction revenue
touches an SAP system

over 68000 employees worldwide
over 25000 software developers

Headquarters: Walldorf (Heidelberg), Germany
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Example (LinkedIn, May 2016)

164 million email addresses and passwords

from an attack in 2012, o�ered for sale May 2016
Compromised data:

email addresses
passwords

Example (TalkTalk, October 2015)

nearly 157,000 customer records leaked

nearly 16,000 records included bank details

more than 150,000 customers lost
(home services market share fall by 4.4 percent
in terms of new customers)

Costs for TalkTalk: around any £60 million



Example (Ashley Madison, July 2015)

more than 30 million email addresses & much
more
Compromised data:

Dates of birth
Email addresses
Ethnicities, Genders
Sexual preferences
Home addresses, Phone numbers
Payment histories
Passwords, Usernames, Security questions and
answers
Website activity

Similar Leak: Mate1 in February 2016:
27 million records with even more personal details
(e.g., drinking/drug habits, political views)

What’s the Problem?
Authenticate without a password using “SQL Injection”

Implementation (SQL, simpli�ed):

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’Username’ AND ‘pwd ‘ = ’Password’;

Let’s try: user “test” & password “secret”:

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’test’ AND ‘pwd ‘ = ’secret ’;

Let’s use “’ OR ’1’=’1” as password:

SELECT * FROM ‘users ‘ WHERE
;

No password check!
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What’s the Problem?
Authenticate without a password using “SQL Injection”

Implementation (SQL, simpli�ed):

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’Username’ AND ‘pwd ‘ = ’Password’;

Let’s try: user “test” & password “secret”:

SELECT * FROM ‘users ‘ WHERE
‘name ‘ = ’test’ AND ‘pwd ‘ = ’secret ’;

Let’s use “’ OR ’1’=’1” as password:

SELECT * FROM ‘users ‘ WHERE
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No password check!
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A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response
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Training
Security awareness

Secure programming

Threat modelling

Security testing

Data protection and privacy

Security expert curriculum (“Masters”)
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Training Risk
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Risk Identi�cation
Risk identi�cation (“high-level threat modelling”)

Threat modelling

Data privacy impact assessment
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A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)
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Identification
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Plan Security Measures
Plan product standard compliance

Plan security features

Plan security tests

Plan security response
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A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

Security Validation (“First Customer”)
Check for “�aws” in the implementation of the S2DL

Ideally, security validation �nds:

No issues that can be �xed/detected earlier

Only issues that cannot be detect earlier
(e.g., insecure default con�gurations, missing security documentation)

Penetration tests in productive environments are di�erent:

They test the actual con�guration

They test the productive environment (e.g., cloud/hosting)
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A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (S2DL)

Training Risk
Identification

Plan Security
Measures

Secure 
Development

Security 
Testing

Security 
Validation

Security
Response

Security Response
Execute the security response plan

Security related external communication

Incident handling

Security patches

Monitoring of third party components
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Secure Software Development Lifecycle for Cloud/Agile

Build Operate

Define

Release Release
Decision

Build
Decision

Risk
Identification

Plan Security
Measures
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Finding Security Vulnerabilities

Manual

Automatic

Running Application Static Analysis

Penetration
Testing

DAST, IAST
Vulnerability Scanner SAST

Manual
Code Review
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In 2010: Static Analysis Becomes Mandatory

SAST tools used at SAP:

Language Tool Vendor

ABAP CodePro�ler Virtual Forge
Others Fortify HP

Since 2010: SAST mandatory for all SAP products

Within two years, multiple billions lines analysed

Constant improvement of tool con�guration

Further details:
Deploying Static Application Security Testing on a Large Scale. In
GI Sicherheit 2014. Lecture Notes in Informatics, 228, pages
91-101, GI, 2014.
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A De-Centralised Application Security Approach
How SAP’s Application Development Approach Developed Over Time

Governance & approvals De-centralized approach

2009 2016

One Two SAST tools �t all
VF CodePro�ler
Fortify

Blending of Security Testing Tools
SAST:
SAP Netweaver CVA Add-on, Fortify,
Synopsis Coverity, Checkmarx,
Breakman
DAST:
HP WebInspect, Quotium Seeker
Others:
Burp Suite, OWASP ZAP, Codinomicon
Fuzzer, BDD
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Fuzzer, BDD

Development Teams

feel pushed

Central Security Team

Controls development teams

Spends a lot time with granting
exemptions

Danger

Only ticking boxes

Development Teams

are empowered

are responsible

Central Security Team

Supports development teams
Can focuses on improvements

�lling white spots
tooling
processes
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De-Centralised Approach: Organisational Setup

Central security expert team (S2DL owner)
Organizes security trainings
De�nes product standard “Security”
De�nes risk and threat assessment methods
De�nes security testing strategy
Selects and provides security testing tools
Validates products
De�nes and executes response process

Local security experts
Embedded into development teams
Organize local security activities
Support developers and architects
Support product owners (responsibles)

Development teams
Select technologies
Select development model
Design and execute security
testing plan
. . .
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Security Team Focus: Security Testing for Developers

Security testing tools for developers, need to

Be applicable from the start of
development

Automate the security knowledge
Be integrated into dev world, e.g.,

IDE (instant feedback)
Continuous integration

Provide easy to understand �x
recommendations

Declare their “sweet spots”

security
experts

software
Developer

many cwe
and/or
technologies

only few cwe
and/or
technologies

generalist
tools for 
security
Experts

specialist
tools for 
security
Experts

specialist
tools for 
developers

generalist
tools for 
developers

https://logicalhacking.com/blog/2016/10/25/classifying-security-testing-tools/
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Combining Multiple Security Testing Methods and Tools

Web Client 
Web Browser 

Server Application
Runtime Container 

Backend Systems 

https://logicalhacking.com/blog/2017/01/11/sast-vs-dast-vs-iast/

Risks of only using only SAST
Wasting e�ort that could be used more wisely
elsewhere
Shipping insecure software

Examples of SAST limitations
Not all programming languages supported
Covers not all layers of the software stack

A comprehensive approach combines
Static approaches (i.e., SAST)
Dynamic approaches (i.e., IAST or DAST)
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How to Measure Success (and Identify White Spots)

Analyze the vulnerabilities reported by
Security Validation
External security researchers

Vulnerability not detected by currently used methods
Improve tool con�guration
Introduce new tools

Vulnerability detected by our security testing tools
Vulnerability in older software release
Analyze reason for missing vulnerability

Covered

Not Covered

Success criteria:
Percentage of vulnerabilities not covered by our security testing tools increases
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Key Success Factors

A holistic security awareness program for
Developers
Managers

Yes, security awareness is important but

Developer awareness is even more important!
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Listen to Your Developers And Make Their Life Easy!

We are often talking about a lack of security awareness and, by that,
forget the problem of lacking development awareness.

Building a secure system more di�cult than �nding a successful attack.

Do not expect your developers to become penetration testers (or security experts)!

Organisations can make it hard for developers to apply security testing skills!

Don’t ask developers to do security testing, if their contract doesn’t allows it

Budget application security activities centrally

Educate your developers and make them recognised experts
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Final remarks

What works well:
Delegate power and accountability to development teams
Multi-tiered model of security experts:

local experts for the local implementation of secure development
global experts that support the local security experts (champions):

act as consultant in di�cult/non-standard situations
evaluate, purchase, and operate widely used security testing tools
can mediate between development teams and response teams

Strict separation of
security testing supporting developers and
security validation

What does not work well:
Forcing tools, processes, etc. on developers
Penetration testing as “secure development” approach

Penetration has its value, e.g.,
as security integration test
as “meta-test” for your secure development process (validation)
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Thank you for your attention!
Any questions or remarks?

Contact: Dr. Achim D. Brucker
Department of Computer Science

University of She�eld
Regent Court

211 Portobello St.
She�eld S1 4DP, UK

� a.brucker@she�eld.ac.uk
8 @adbrucker
° https://de.linkedin.com/in/adbrucker/
� https://www.brucker.ch/
� https://logicalhacking.com/blog/
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