
Introducing Security Testing to Developers
Experiences and Lessons Learned

Achim D. Brucker（ブルッカー・アキム）
a.brucker@she�eld.ac.uk https://www.brucker.ch/

Software Assurance & Security Research
Department of Computer Science, The University of She�eld, She�eld, UK

https://logicalhacking.com/

Checkmarx Security Conference Tokyo 2017
実践アプリケーションセキュリティ

December 1st , 2017

Outline

1 About Me

2 Motivation

3 Secure Software Development

4 Enabling Developers: From (Mild) Pain to Success

5 Lesson’s Learned

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 3 of 30

About Me

PhD from ETH Zurich, Switzerland

Eight year experience in secure enterprise software development:
Member of the central security team, SAP SE (Germany)

Security Testing Strategist
Security Research Expert/Architect

Work areas at SAP included:

De�ning the risk-based Security Testing Strategy
Evaluation of security testing tools (e.g., SAST, DAST)
Roll-out of security testing tools
Identi�cation of white spots and improvements of tools
Secure Software Development Life Cycle integration
Applied security research

Since December 2015:
Associate Professor, The University of She�eld, UK
Head of the Software Assurance & Security Research Team
Available as consultancy & (research) collaborations

https://www.brucker.ch/

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 4 of 30

SAP SE

Leader in Business Software
Cloud
Mobile
On premise

Many di�erent technologies and platforms, e.g.,
In-memory database and application server (Hana)
Netweaver for ABAP and Java

More than 25 industries

63% of the world’s transaction revenue
touches an SAP system

Over 68000 employees worldwide
(over 25000 software developers)

Headquarters: Walldorf (Heidelberg), Germany

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 5 of 30

Outline

1 About Me

2 Motivation

3 Secure Software Development

4 Enabling Developers: From (Mild) Pain to Success

5 Lesson’s Learned

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 6 of 30

Example (LinkedIn, May 2016)

164 million email addresses and passwords

Data leaked in 2012, data sold in 2016

Leaked Data
E-mail addresses
Passwords

Example (TalkTalk, October 2015)

nearly 157,000 customer records leaked

nearly 16,000 records included bank details

more than 150,000 customers lost
(home services market share fall by 4.4 percent
in terms of new customers)

Costs for TalkTalk: ca. £60 million (ca. 90億円)

Example (Ashley Madison, July 2015)

More than 30 million email addresses & much more
Leaked data:

Date of birth
E-mail addresses
Ethnicities, Genders
Sexual preferences
Home addresses, Phone numbers
Payment histories
Passwords, usernames, security questions and answers
Website activity

Outline

1 About Me

2 Motivation

3 Secure Software Development

4 Enabling Developers: From (Mild) Pain to Success

5 Lesson’s Learned

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 8 of 30

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (SDLC)

Training Risk
Identification

Plan Security
Measures

Secure
Development

Security
Testing

Security
Validation

Security
Response

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 30

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (SDLC)

Training Risk
Identification

Plan Security
Measures

Secure
Development

Security
Testing

Security
Validation

Security
Response

Training

Security awareness

Secure programming

Threat modelling

Security testing

Data protection and privacy

Security expert curriculum (“Masters”)

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 30

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (SDLC)

Training Risk
Identification

Plan Security
Measures

Secure
Development

Security
Testing

Security
Validation

Security
Response

Risk Identi�cation

Risk identi�cation (“high-level threat modelling”)

Threat modelling

Data privacy impact assessment

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 30

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (SDLC)

Training Risk
Identification

Plan Security
Measures

Secure
Development

Security
Testing

Security
Validation

Security
Response

Plan Security Measures

Plan product standard compliance

Plan security features

Plan security tests

Plan security response

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 30

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (SDLC)

Training Risk
Identification

Plan Security
Measures

Secure
Development

Security
Testing

Security
Validation

Security
Response

Secure Development

Secure Programming

Static code analysis (SAST)

Code review

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 30

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (SDLC)

Training Risk
Identification

Plan Security
Measures

Secure
Development

Security
Testing

Security
Validation

Security
Response

Security Testing

Dynamic Testing (e.g., IAST, DAST)

Manual testing

External security assessment

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 30

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (SDLC)

Training Risk
Identification

Plan Security
Measures

Secure
Development

Security
Testing

Security
Validation

Security
Response

Security Validation (“First Customer”)

Check for “�aws” in the implementation of the SDLC

Ideally, security validation �nds:

No issues that can be �xed/detected earlier

Only issues that cannot be detect earlier
(e.g., insecure default con�gurations, missing security documentation)

Penetration tests in productive environments are di�erent:

They test the actual con�guration

They test the productive environment (e.g., cloud/hosting)

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 30

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (SDLC)

Training Risk
Identification

Plan Security
Measures

Secure
Development

Security
Testing

Security
Validation

Security
Response

Security Response
Execute the security response plan

Security related external communication

Incident handling

Security patches

Monitoring of third party components

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 30

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (SDLC)

Training Risk
Identification

Plan Security
Measures

Secure
Development

Security
Testing

Security
Validation

Security
Response

Secure Software

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 30

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (SDLC)

Training Risk
Identification

Plan Security
Measures

Secure
Development

Security
Testing

Security
Validation

Security
Response

Secure Software

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 30

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (SDLC)

Training Risk
Identification

Plan Security
Measures

Secure
Development

Security
Testing

Security
Validation

Security
Response

Secure Software
Security

Validation

Security
Testing

Secure

Development

Plan Security

Measures

Risk
Identification

Training

Security
Response

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 30

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (SDLC)

Training Risk
Identification

Plan Security
Measures

Secure
Development

Security
Testing

Security
Validation

Security
Response

Secure Software
Security

Validation

Security
Testing

Secure

Development

Plan Security

Measures

Risk
Identification

Training

Security
Response

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 30

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (SDLC)

Training Risk
Identification

Plan Security
Measures

Secure
Development

Security
Testing

Security
Validation

Security
Response

Secure Software
Security

Validation

Security
Testing

Secure

Development

Plan Security

Measures

Risk
Identification

Training

Security
Response

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 30

A Path Towards (More) Secure Software
SAP’s Secure Software Development Lifecycle (SDLC)

Training Risk
Identification

Plan Security
Measures

Secure
Development

Security
Testing

Security
Validation

Security
Response

Secure Software
Security

Validation

Security
Testing

Secure

Development

Plan Security

Measures

Risk
Identification

Training

Security
Response

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 9 of 30

Secure Software Development Lifecycle for Cloud/Agile

Build Operate

Define

Release Release
Decision

Build
Decision

Risk
Identification

Plan Security
Measures

S
e

cu
re

D

e
ve

lo
p

m
e

n
t

S
e

cu
ri

ty

Te
st

in
g

S
e

cu
ri

ty

V
al

id
at

io
n

S
e

cu
ri

ty
R

e
sp

o
n

se
c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 10 of 30

Secure Software Lifecycle: My Vision

Training Risk
Identification

Plan Security
Measures

Secure
Development

Security
Testing

Security
Validation

Security
Response

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 11 of 30

Secure Software Lifecycle: My Vision

Training Risk
Identification

Plan Security
Measures

Secure Development
& Security Testing

Security
Validation

Security
Response

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 11 of 30

Secure Software Lifecycle: My Vision

Training Risk
Identification

Plan Security
Measures

Secure Development
& Security Testing

Security
Validation

Secure
Operations

Security
Response

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 11 of 30

Outline

1 About Me

2 Motivation

3 Secure Software Development

4 Enabling Developers: From (Mild) Pain to Success

5 Lesson’s Learned

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 12 of 30

Finding Security Vulnerabilities

Manual

Automatic

Running Application Static Analysis

Penetration
Testing

DAST, IAST
Vulnerability Scanner SAST

Manual
Code Review

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 13 of 30

Finding Security Vulnerabilities

Manual

Automatic

Running Application Static Analysis

Penetration
Testing

DAST, IAST
Vulnerability Scanner SAST

Manual
Code Review

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 13 of 30

In 2010: Static Analysis Becomes Mandatory

SAST tools used:

Language Tool Vendor

ABAP CodePro�ler Virtual Forge
Others Fortify HP

Since 2010: SAST mandatory for all products

Within two years, multiple billions lines analysed

Constant improvement of tool con�guration

Further details:
Deploying Static Application Security Testing on a Large Scale. In GI
Sicherheit 2014. Lecture Notes in Informatics, 228, pages 91-101, GI,
2014.

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 14 of 30

A De-Centralised Application Security Approach
Improving The Application Development Approach

Governance & approvals De-centralized approach

2009 2016

One Two SAST tools �t all
VF CodePro�ler
Fortify

Blending of Security Testing Tools
Static:
SAP Netweaver CVA Add-on, Fortify,
Synopsis Coverity, Checkmarx, Breakman
Dynamic:
HP WebInspect, Quotium Seeker
Others:
Burp Suite, OWASP ZAP, Codenomicon
Defensics, BDD

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 15 of 30

A De-Centralised Application Security Approach
Improving The Application Development Approach

Governance & approvals De-centralized approach

2009 2016

One Two SAST tools �t all
VF CodePro�ler
Fortify

Blending of Security Testing Tools
Static:
SAP Netweaver CVA Add-on, Fortify,
Synopsis Coverity, Checkmarx, Breakman
Dynamic:
HP WebInspect, Quotium Seeker
Others:
Burp Suite, OWASP ZAP, Codenomicon
Defensics, BDD

Development Teams

Feel pushed

Central Security Team

Controls development teams

Spends a lot time with granting
exemptions

Danger

Only ticking boxes

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 15 of 30

A De-Centralised Application Security Approach
Improving The Application Development Approach

Governance & approvals De-centralized approach

2009 2016

One Two SAST tools �t all
VF CodePro�ler
Fortify

Blending of Security Testing Tools
Static:
SAP Netweaver CVA Add-on, Fortify,
Synopsis Coverity, Checkmarx, Breakman
Dynamic:
HP WebInspect, Quotium Seeker
Others:
Burp Suite, OWASP ZAP, Codenomicon
Defensics, BDD

Development Teams

Feel pushed

Central Security Team

Controls development teams

Spends a lot time with granting
exemptions

Danger

Only ticking boxes

Development Teams

Are empowered

Are responsible

Central Security Team

Supports development teams

Can focuses on improvements
Filling white spots
Tooling
Processes

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 15 of 30

De-Centralised Approach: Organisational Setup

Central security expert team (SDLC owner)
Organizes security trainings
De�nes product standard “Security”
De�nes risk and threat assessment methods
De�nes security testing strategy
Selects and provides security testing tools
Validates products
De�nes and executes response process

Local security experts
Embedded into development teams
Organize local security activities
Support developers and architects
Support product owners (responsibles)

Development teams
Select technologies
Select development model
Design and execute security testing
plan
. . .

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 16 of 30

Security Team Focus: Security Testing for Developers

Security testing tools for developers, need to

Be applicable from the start of development

Automate the security knowledge

Be integrated into dev world, e.g.,
IDE (instant feedback)
Continuous integration

Provide easy to understand �x
recommendations

Declare their “sweet spots”

security experts
software Developer

many cwe and/or technologies

only few cwe and/or technologies

generalist
tools for
security
Experts

specialist tools for security Experts

specialist tools for developers

generalist tools for developers

https://logicalhacking.com/blog/2016/10/25/classifying-security-testing-tools/

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 17 of 30

How to Start?

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 18 of 30

Develop a Culture of Security Champions

Make security interesting
O�er education/talks
Gami�cation

Encourage (volunteers!) security champions
Do not force them, they should volunteer
Provide incentives

Build a community
Organize knowledge transfer
Meet in person

Empower your security champions
Trust their decisions
Include them decisions
(selection of new tools, process changes, etc.)

Each developer should know a security champion personally

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 19 of 30

Start Slow, Grow and Improve Fast

Start slow:
Start with a limited scope

Only one team
Only a subset of vulnerability types
Introduce only one tool at a time

Focus �rst on newly developed code
but develop a plan for �xing old code as well

Grow and improve fast:

Encourage teams to
share their success stories
to help each other

Make tools available easily
Central budgeting
Integration into build/repository infrastructure

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 20 of 30

Success criteria by a (bad!) Security Expert:
Fix all issues so that nothing is reported

(I don’t want to understand, why an issue is a false positive . . .)

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 21 of 30

Listen to your developers:
forget Security Awareness, a successful application security program

needs Developer Awareness

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 22 of 30

Thoughts on Success Criteria for Developers

Use of frameworks that help to avoid security issues

Fixing of obvious issues prior to commits

Taking security �xes seriously

Use of security testing tools

How about third party libraries?

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 23 of 30

How to Measure Success (and Identify White Spots)

Non-working performance indicators include:

Absolute number of reported vulnerabilities

Absolute number of �xed issues

A new idea:
Analyze the vulnerabilities reported by

Security Validation
External security researchers

Two classes:
Vulnerabilities that can be detected by used tools

Investigate why issues was missed
Vulnerabilities not detected by used tools

if risk acceptable: nothing to do
if risk not acceptable: improve tooling

externally reported vuln.

100%

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 24 of 30

How to Measure Success (and Identify White Spots)

Non-working performance indicators include:

Absolute number of reported vulnerabilities

Absolute number of �xed issues

A new idea:
Analyze the vulnerabilities reported by

Security Validation
External security researchers

Two classes:
Vulnerabilities that can be detected by used tools

Investigate why issues was missed
Vulnerabilities not detected by used tools

if risk acceptable: nothing to do
if risk not acceptable: improve tooling

externally reported vuln.in scope
not in scope of current
security testing tools

100%

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 24 of 30

How to Measure Success (and Identify White Spots)

Non-working performance indicators include:

Absolute number of reported vulnerabilities

Absolute number of �xed issues

A new idea:
Analyze the vulnerabilities reported by

Security Validation
External security researchers

Two classes:
Vulnerabilities that can be detected by used tools

Investigate why issues was missed
Vulnerabilities not detected by used tools

if risk acceptable: nothing to do
if risk not acceptable: improve tooling

externally reported vuln.in scope
not in scope of current
security testing tools

100%

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 24 of 30

How to Measure Success (and Identify White Spots)

Non-working performance indicators include:

Absolute number of reported vulnerabilities

Absolute number of �xed issues

A new idea:
Analyze the vulnerabilities reported by

Security Validation
External security researchers

Two classes:
Vulnerabilities that can be detected by used tools

Investigate why issues was missed
Vulnerabilities not detected by used tools

if risk acceptable: nothing to do
if risk not acceptable: improve tooling

externally reported vuln.in scope
not in scope of current
security testing tools

not acceptable
risk

100%

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 24 of 30

How to Measure Success (and Identify White Spots)

Non-working performance indicators include:

Absolute number of reported vulnerabilities

Absolute number of �xed issues

A new idea:
Analyze the vulnerabilities reported by

Security Validation
External security researchers

Two classes:
Vulnerabilities that can be detected by used tools

Investigate why issues was missed
Vulnerabilities not detected by used tools

if risk acceptable: nothing to do
if risk not acceptable: improve tooling

externally reported vuln.in scope
not in scope of current
security testing tools

not acceptable
risknew scope

100%

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 24 of 30

How to Measure Success (and Identify White Spots)

Non-working performance indicators include:

Absolute number of reported vulnerabilities

Absolute number of �xed issues

A new idea:
Analyze the vulnerabilities reported by

Security Validation
External security researchers

Two classes:
Vulnerabilities that can be detected by used tools

Investigate why issues was missed
Vulnerabilities not detected by used tools

if risk acceptable: nothing to do
if risk not acceptable: improve tooling

externally reported vuln.in scope
not in scope of current
security testing tools

not acceptable
risknew scope

100%

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 24 of 30

How to Measure Success (and Identify White Spots)

Non-working performance indicators include:

Absolute number of reported vulnerabilities

Absolute number of �xed issues

A new idea:
Analyze the vulnerabilities reported by

Security Validation
External security researchers

Two classes:
Vulnerabilities that can be detected by used tools

Investigate why issues was missed
Vulnerabilities not detected by used tools

if risk acceptable: nothing to do
if risk not acceptable: improve tooling

externally reported vuln.in scope
not in scope of current
security testing tools

not acceptable
risknew scope

100%

“Su
cce

ss c
rite

ria:”

Per
cen

tag
e of v

uln
era

bilit
ies

not
cov

ere
d by

cur
ren

tly
use

d sec
urit

y tes
ting

too
ls i

n-

cre
ase

s, i.
e., t

he
use

d to
ols

are
use

d e
�ec

tive
ly!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 24 of 30

Outline

1 About Me

2 Motivation

3 Secure Software Development

4 Enabling Developers: From (Mild) Pain to Success

5 Lesson’s Learned

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 25 of 30

Key Success Factors

A holistic security awareness program for
Developers
Managers

Yes, security awareness is important but

Developer awareness is even more important!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 26 of 30

Key Success Factors

A holistic security awareness program for
Developers
Managers

Yes, security awareness is important

but

Developer awareness is even more important!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 26 of 30

Key Success Factors

A holistic security awareness program for
Developers
Managers

Yes, security awareness is important but

Developer awareness is even more important!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 26 of 30

Key Success Factors

A holistic security awareness program for
Developers
Managers

Yes, security awareness is important but

Developer awareness is even more important!

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 26 of 30

Listen to Your Developers And Make Their Life Easy!

We are often talking about a lack of security awareness and, by that,
forget the problem of lacking development awareness.

Building a secure system more di�cult than �nding a successful attack.

Do not expect your developers to become penetration testers (or security experts)!

Organisations can make it hard for developers to apply security testing skills!

Don’t ask developers to do security testing, if their contract doesn’t allows it

Budget application security activities centrally

Educate your developers and make them recognised experts

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 27 of 30

Recommendations for Selecting Security Testing Tools

Select tools that are

easy to integrate into your development process and tools
central scan infrastructure
source code upload, CLI, Jenkins, github, . . .

easy to use by developers
easy to understand descriptions of �ndings
actionable �x recommendations
integrates teaching

easy to adapt to your security policies and prioritisation
report issues that are relevant for you
focus developers e�ort on the issues that are critical for you

allow for tracking your success
tool internal reporting
interfaces to your own reporting infrastructure

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 28 of 30

Final Remarks

What works well:

Delegate power and accountability to development teams

Multi-tiered model of security experts:
local experts for the local implementation of secure development
global experts that support the local security experts (champions):

act as consultant in di�cult/non-standard situations
evaluate, purchase, and operate widely used security testing tools
can mediate between development teams and response teams

Strict separation of
security testing supporting developers and
security validation

What does not work well:

Forcing tools, processes, etc. on developers

Penetration testing as “secure development” approach
Penetration has its value (e.g., as security integration test)

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 29 of 30

ご清聴ありがとうございました。

Contact: Dr. Achim D. Brucker
Department of Computer Science

University of She�eld
Regent Court

211 Portobello St.
She�eld S1 4DP, UK

� a.brucker@she�eld.ac.uk
8 @adbrucker
° https://de.linkedin.com/in/adbrucker/
� https://www.brucker.ch/
� https://logicalhacking.com/blog/

Bibliography

Ruediger Bachmann and Achim D. Brucker.

Developing secure software: A holistic approach to security testing.
Datenschutz und Datensicherheit (DuD), 38(4):257–261, April 2014.

Achim D. Brucker and Uwe Sodan.

Deploying static application security testing on a large scale.
In Stefan Katzenbeisser, Volkmar Lotz, and Edgar Weippl, editors, GI Sicherheit 2014, volume 228 of Lecture Notes in
Informatics, pages 91–101. GI, March 2014.

Michael Felderer, Matthias Büchler, Martin Johns, Achim D. Brucker, Ruth Breu, and Alexander Pretschner.

Security testing: A survey.
Advances in Computers, 101:1–51, March 2016.

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 31 of 30

Document Classification and License Information

c© 2017 LogicalHacking.com, A.D. Brucker.

This presentation is classi�ed as Public (CC BY-NC-ND 4.0):
Except where otherwise noted, this presentation is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International Public License (CC BY-NC-ND 4.0).

c© 2017 LogicalHacking.com. Public (CC BY-NC-ND 4.0) Page 32 of 30

