
This is the author’s version of the work. It is posted at http://www.brucker.ch/bibliography/abstract/asim.
ea-policy-monitoring-2018 for your personal use. Not for redistribution. The definitive version was published in In L. ben Oth-
mane et al (eds.): Empirical Research for Software Security: Foundations and Experience. CRC Press. 2017., pp. 69–94, 2018.

Chapter 3

An Introduction to Data
Analytics For Software
Security

Lotfi ben Othmane
Fraunhofer Institute for Secure Information Technology, Darmstadt, Germany

Achim D. Brucker
Department of Computer Science, The University of Sheffield, Sheffield, UK

Stanislav Dashevskyi
University of Trento, Italy

Peter Tsalovski
SAP SE, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany

CONTENTS
3.1 Introduction . 70
3.2 Secure Software Development . 71

3.2.1 Fixing Vulnerabilities and Static Analysis Efforts 73
3.2.2 Secure Consumption of Third Party Components 74

3.3 Software Security Analytical Process . 74
3.3.1 Identify the Research Goal . 74
3.3.2 Collect Data . 76
3.3.3 Prepare the Data . 77

69

http://www.brucker.ch/bibliography/abstract/asim.ea-policy-monitoring-2018
http://www.brucker.ch/bibliography/abstract/asim.ea-policy-monitoring-2018

70 � Data Analytics for Software Security: Foundations and Experience

3.3.4 Explore the Data . 79
3.3.5 Apply Data Analytics . 80
3.3.6 Analyze the Data Analytics Results . 82

3.4 Learning Methods Used in Software Security . 83
3.4.1 Classification Methods . 84
3.4.2 Regression Methods . 85
3.4.3 Graph Mining . 86
3.4.4 Forecasting Methods . 86

3.5 Evaluation of Models Performance . 87
3.5.1 Performance Metrics: Categorical-Response-Variables 87
3.5.2 Performance Metrics: Continuous Response-Variables 89

3.6 More Lessons Learned . 90
3.7 Conclusion . 91

References . 91

3.1 Introduction
Secure software development, e. g., following processes similar to Microsoft’s
Security Development Lifecycle (SDL) [18], is considered to be an important
part of developing secure software. On the one hand, such processes require a
significant effort and, on the other hand, generate (potentially) a large amount
of data—both on the process level (e. g., process descriptions and regulations)
where reported, as well as on the technical level (e. g., results of static code anal-
ysis tools).

The large effort put into secure software development immediately raises the
question, if this investment is effective and if the effort can be invested more ef-
fectively. While, at the first sight, it looks like the generated data provides the
basis for an answer, this is, in our experience, not the case: data often does not
exist in the necessary quality and quantity. This can be caused by processes be-
ing constantly improved (changed), sometimes in an undocumented way, while
recording data. Moreover, the large variety of security-related challenges can also
work against statistical methods: if one is interested in analysing a specific vul-
nerability or development approach, the actual data set for this specific part of
the overall picture might be rather small. Thus, the successful application of data
science methods for improving the software security or for making software se-
curity processes more efficient required careful planning to record the right data
in the necessary quality.

In this chapter, we report on our own experiences [8, 2] in empirical secure
software research at, SAP SE, the largest European software vendor. Based on
this, we derive an actionable recommendations for building the foundations of an
expressive data science for software security: we focus on using data analytics
for improving the secure software development. Data analytics is the science of
examining raw data with the purpose of drawing conclusions about that informa-

An Introduction to Data Analytics For Software Security � 71

tion using machine learning methods or statistical learning methods. Data ana-
lytical techniques have been successfully used in both the cyber-security domain
as well as the software engineering domain. For example, Jackobe and Rudis
showed how to learn virus propagation and characteristics of data breaches form
public data [20]. Data analytical methods are also commonly used to investigate
software engineering challenges such as effort prediction [10]. Thus, applying
these techniques to the intersection of both areas to help practitioners to develop
more secure software with less effort, seems promising.

The rest of the chapter is structured as follows: in Sec. 3.2 we introduce the
secure software development life-cycle used at SAP and two case studies that we
worked on in collaboration with the central security team of SAP: they motivated
our software security analytical process (Sec. 3.3). Afterwards, we introduce the
most important learning methods (Sec. 3.4) and techniques for evaluating the
performance of the generated models (Sec. 3.5)—both with a strict focus on their
application in the software security field. We finish the chapter with few generic
lessons that we learned and recommend for data scientist in the software security
field (Sec. 3.6) and conclude the chapter (Sec. 3.7).

3.2 Secure Software Development
The case studies we report on in this chapter were done together with the product
security team of SAP SE. The processes for secure software development at SAP
need to support a wide range of application types (ranging from small mobile
apps to large scale enterprise resource planning solutions). These applications
are developed using a wide range of software development styles (ranging from
traditional waterfall, to agile development to DevOps with continuous delivery).
Serving such a diverse software development community is already a very chal-
lenging problem, still it gets even more complex as the cultural differences within
a globally distributed organization need to be taken into account as well. To allow
the flexibility required to meet the different demands, SAP follows a two-staged
security expert model:

1. a central security team defines the security global processes, such as the
SAP Secure Development Lifecycle (S2DL) or the guidance for consum-
ing FOSS, provides security training programs, risk identification meth-
ods, offers security testing tools, or defines and implements the security
response process;

2. local security experts in each development area or team are supporting the
developers, architects, and product owners in implementing the S2DL and
its supporting processes.

This two-staged models allows a high degree of flexibility and adaptability on

72 � Data Analytics for Software Security: Foundations and Experience

Preparation Development Utilization Transition

Training
Risk

Identification
Plan Security

Measures
Secure

development
Security
testing

Security
Validation

Security
Response

Figure 3.1: Overview of the SAP Secure Development Lifecycle (S2DL).

the local level while ensuring that all products meet the level of security (and
quality) SAP customers expect.

To ensure a secure software development, SAP follows the SAP Security
Development Lifecycle (S2DL) (which is inspired by Microsft’s Security Devel-
opment Lifecylce [18]). Fig. 3.1 shows the main steps in the S2DL, which is split
into four phases: preparation, development, transition, and utilization.

� Preparation: This phase comprises all activities that take place before the
actual development starts. These activities can be independent of the actual
product being developed (e. g., general security awareness trainings) or
product specific (e. g., risk identification for a specific product).

The results of a thorough data analytics and modeling of the following
steps of the S2DL contribute significantly to the success of the preparation
phase: for example, it helps to identify training needs as well as gaps in
the risk analysis.

� Development: This phase comprise the steps from planing a new product
(or product version) to the actual development. In particular, it covers

� the Planning of Security Measures which describes the mitigation of
the previously identified security risks,

� the Secure Development using defensive implementation strategies,

� the Security Testing that ensures that the planned security measures
(including the defensive implementation strategies) are implemented
and are effective in preventing security threats.

This phase generated a large amount of data (see, e. g., the datasets used
in [3]) that is important for further analysis as well as profits a lot in ef-
fectivity and efficiency from a software-security specific data analytical
approach. In particular the security testing activities are expensive and re-
quire a close monitoring to be successful. We will discuss this in our case
studies (see Sec. 3.2.1 and Sec. 3.2.2) in more details.

� Transition: The Security Validation team is an independent control that
acts like the first customer and executes a security analysis and security
test of the final products.

An Introduction to Data Analytics For Software Security � 73

� Utilization: The Security Response team handles the communication with
customers and external security researchers about reported vulnerabilities
as well as ensures that the development and maintenance teams fix the
reported issues (including down-ports to all supported releases as required
by the support agreements).

As the development phase, this phase generated a lot of data that is impor-
tant for further analysis as well as profits a lot in effectively and efficiency
from a software-security specific data analytical approach, e. g., to im-
prove the response and fix times for security vulnerabilities. Thus, it is not
surprising that our case studies (see Sec. 3.2.1 and Sec. 3.2.2) also address
this phase.

The S2DL is only one example of a security development lifecycle and that
the challenges and lessons learned in this paper are not specific to this particular
security development process. We believe that, for example, they are similarly
applicable to Microsoft’s SDL [18].

In the following, we briefly introduce our two case studies with SAP, which
both focus on improving the development and utilization phases of the S2DL .

3.2.1 Fixing Vulnerabilities and Static Analysis Efforts
We worked, in the first case study [2, 3], together with the central security team of
SAP to identify the factors that impact the time for fixing issues1 (either reported
by in-house security testing activities [1, 6] or reported by external security re-
searchers.

Analyzing and fixing security issues is a costly undertaking that impacts a
software’s time to market and increases its overall development and maintenance
cost. But by how much? and what are the most influential factors? To answer
these questions directly, one would need to trace all the effort of the different
actions that the developers undertake to address a security issue: initial triage,
communication, implementation, verification, porting, deployment and valida-
tion of a fix. Unfortunately, such a direct accountability of the individual efforts
associated with these action items is impossible to achieve, last but not least due
to legal constraints that forbid any monitoring of the workforce. One must there-
fore opt for indirect means to relate quantitative, measurable data, such as the
vulnerability type, the channel through which it was reported, or the component
in which it resides, to soft human factors that correlate with the time it takes to fix
the related vulnerabilities. We described the work that we performed to identify
these factors and the results that we obtained in [2, 3].

1Experts check each reported issue and confirm that either it is indeed a vulnerability or it cannot be
exploited.

74 � Data Analytics for Software Security: Foundations and Experience

3.2.2 Secure Consumption of Third Party Components
Our second case study [8] is also a collaboration with the central security team
at SAP: in this project, we focused on the impact of vulnerabilities in consumed
third-party code in general and Free/Libre and Open Source Software (FLOSS)
in particular.

As the security of a software offering, independently of the delivery model
(e.g., cloud software or on premise delivery), depends on all components, a se-
cure software supply chain is of utmost importance. While this is true for both
proprietary and as well as FOSS components that are consumed, FLOSS com-
ponents impose particular challenges as well as provide unique opportunities.
For example, while FOSS licenses contain usually a very strong “no warranty”
clause (and no service-level agreement), they allow users to modify the source
code and, thus, to fix issues without depending on an (external) software vendor.

Thus, it is important to determine the future security risk (and, thus, the asso-
ciated effort) of a third-party already when deciding to use a component. Thus,
we worked with the central security team of SAP on validating if static analysis
(which was already used successfully at SAP [1, 6]) can be used for assessing
FLOSS components. Our research showed that this, while being the original mo-
tivation, is not the most urgent question to answer [8]—allowing project teams
to plan the future security maintenance effort is much more important. Thus, we
concentrated our collaboration in developing effort models and predictors for the
security maintenance effort. In case of SAP, where software is used over a very
long time (i. e., decades) it is very common that old FLOSS version are used that
are not necessarily supported by the community: in this scenario it becomes very
important to be able to estimate the required maintenance effort that is either
caused by down-porting fixes to the actual consumed version or by upgrading
the consumed version.

3.3 Software Security Analytical Process
Extracting knowledge from data using data analytical techniques requires
(1) identifying the research goal, (2) collecting data, (3) preparing the data,
(4) exploring the data, (5) developing analytical models, and (6) analyzing the
developed models. Fig. 3.2 depicts this generic data analytics process, which is
quite similar to the one used by Bener et al. [4]. The process is iterative. For
example, the project partners may decide, after analysing developed models, to
extend the datasets.2 We describe in the following the process activities.

2A decision to change the research goal implies starting a new project, as the scope changes.

An Introduction to Data Analytics For Software Security � 75

Apply data

analytics

Analyze the

analytic results

Collect data
Prepare the

data
Explore the data

Identify the

research goal

Figure 3.2: The software security analytical process.

3.3.1 Identify the Research Goal
Secure software engineering involves software, people, tools, and processes.
Each of these aspects has a complex structure. For example, people involved
in secure software engineering include developers, managers, security experts,
operation administrators, and incident response engineers, all should collaborate
even though their locations and cultures may be diverse. Decisions needs often to
be made regarding aspects of secure software engineering, such as resources allo-
cation. These decisions either use knowledge or make assumptions about specific
phenomenon. The knowledge could be acquired by testing theoretical models us-
ing empirical research methods such as data analytics.

Testing theoretical models using data analytical techniques requires express-
ing the problem to be investigated as a question, which may be divided into
sub-questions. The question could be of common interest or specific to a given
organization. Questions of common interest are often raised by scholars curi-
ous about specific aspects related to software security. Questions of interest to a
given organization are often raised by the organization and need to consider the
organization context.

Research questions formulated early in the projects are often vague, impre-
cise, and cannot be answered/evaluated. Workshops and discussions among the
interested parties including the researchers allow to nail down them to precise
ones that could be assessed [4]. For example, in our fixing effort project (recall
Sec. 3.2.1), the initial goal was: estimate the budget required to fix security is-
sues in a new project. The questions is vague; it does not indicate, for example,
whether we need to consider time spent to design generic solutions to vulner-
abilities types or not. The project participants, including the researchers, had a
workshop to discuss the goal and nail it down to questions that could be assessed

76 � Data Analytics for Software Security: Foundations and Experience

using data. We agreed that the practical goal would be: predict the time to fix
security issues.

Similarly, in our secure consumption project (recall Sec. 3.2.2) we started
with the initial goal to validate if static application security testing is an effec-
tive means for ensuring the security of third party components. After several
iterations with the product teams, we ended up with the goal of developing ef-
fort models that help product teams to actually plan for fixing vulnerabilities in
consumed components (respectively, for the effort of upgrading products to later
version of a consumed component). Thus, the final research goal was to validate
different effort models.

A good question should be precise enough to be formulated mathematically
as follows: let y be the response variable, xi are the set of independent variables (i
is the index of the variables), and their relationships could be formulated as: y =
f (x1,x2, . . . ,xn) where f represents the systematic information that the variables
xi provide about y [21]. The goal is then to find data that measure xi and y and to
apply data analytics to identify the function f and measure its performance. For
instance, the question we identified for the generic question described above is:
what is relationship between the time to fix security issues and the characteristics
of security issues.

3.3.2 Collect Data
The main challenge in data analytics is the availability of data. Often, the re-
searcher needs to collect artifacts (e. g., source code and documents) that could
be used to derive data that can be used to test theoretical models. The sources of
the artifacts and datasets could be private and public. Public artifacts could be,
for example, a repository of the comments on code changes related to a set of
open source software. Such artifacts could be changed to derive data related to
fixing security issues in open source software [5]. Public datasets could be repos-
itories such as the Promise data repository [31] or the Common Vulnerabilities
and Exposures (CVE) database.3 Public data sources played, e. g., an important
role in our secure consumption project (Sec. 3.2.2). Private datasets could be,
for example, the database of the security code analysis tool, such as Coverity4

or Fortify5 of a given organization. These datasets played an important role in
our fixing effort project (Sec. 3.2.1). Nevertheless, used datasets must represent
the population of the study goal. For example, programs developed by students
cannot be used to derive results about characteristics of vulnerable software.

Useful datasets need to contribute to addressing the research goal. This im-
plies that the attributes of the datasets need to be in accordance with the inde-
pendent and dependent variables of the theoretical models. The researcher needs

3https://cve.mitre.org/
4http://www.coverity.com/
5http://www.fortify.com/

An Introduction to Data Analytics For Software Security � 77

to understand the attributes of the data and the used codification schema that
may be used by some attributes, e. g., codification of vulnerabilities types. This
should include, for example, the semantic of the data, the scale of the data, the
relationships between the data attributes, and the process of collecting the data
(including the dates of process changes if possible). For instance, the names of
data attributes are often misleading and need clear definitions. For example, the
attribute “open date” in dataset fixing security issues may imply the date when
the code analysis tool reported the issue or the date when the developers started
working on the issue.6 The data attribute definitions impact the interpretations
of the results obtained from the data analytical techniques. In addition, the re-
searcher needs to understand the implication of missing data. They need to deter-
mine whether they should replace missing data with default values or computed
values, or to exclude the rows that have missing data.

Data collection is iterative. At the beginning, the researcher may start with an
initial dataset that has a limited set of attributes. Such dataset may be provided
by the entity that has interest in the research results or was identified by the re-
searcher. First, the researcher may derive new variables from the data attributes.
For instance, they may compute development life-cycle duration by computing
the difference between start of a release and end of a release. This was on of the
approaches that we took in our fixing effort project (Sec. 3.2.1), see [2] for de-
tails. Second, the dataset may be extended with variables that are commonly used
for the given research problem. For example, data related to code size, cohesion,
and coherence should be collected and used for research concerning predicting
whether a software is vulnerable or not as they are commonly used [7].

The researcher may use the initial data to develop initial models that address
the research goal. They should present and discuss the initial models they derive
from the data with the stakeholders interested in or familiar with the research
questions. The findings may spark discussions of usability of the derived models
or ways to improve them. Such discussions may lead to ideas to integrate other
existing datasets—not discussed before—or collect new data that allow to get
better insights. For example, in our fixing effort project (Sec. 3.2.1), the main
factor that impact the issue fix time is the projects where the issues are found [2].
The team realized that they have a dataset that describes a subset of the projects—
i. e., not all projects have records in the dataset. The dataset was used to develop
extended models using the subset of the records of the main dataset related to the
projects described in the secondary dataset.

6This uncertainty in the time frames could be more complicated if issues could be reopened to address
inefficacy of implemented solution: Is the open date the date of first discovery or the date of discovery of
the inefficacy of the solution?

78 � Data Analytics for Software Security: Foundations and Experience

3.3.3 Prepare the Data
Collected data are, often, not suited as-is to address the research goal. They may
include records that are not related to the research goal and thus should be ex-
cluded from the datasets. For example, in our fixing effort project (Sec. 3.2.1),
the initial datasets that we received in our study on issue fix time include records
of security issues that are still open (not fixed yet). The records were excluded
because they do not have issue fix time [2]. In addition, the datasets may include
invalid data. Recognizing invalid data requires understanding the semantics of
the data attributes. For example, the values “?” and “&novuln” are not valid vul-
nerability types. Though, sometimes datasets may include valid values that are
poorly-expressed, which should be retained. The researcher should plot the data
to analyse the distribution of the values, which allows to identify such problems.

Moreover, not all data is structured. In our secure consumption project
(Sec. 3.2.2), CVEs play an important role. In a CVE, a lot of important infor-
mation is part of the semi-structured or even unstructured part of an CVE entry.
Thus, the data preparation phase required a manual translation of unstructured
data into a structured form that can be analyzed automatically [8].

Data analytics is performed to validate theoretical models, which relate inde-
pendent variables to dependent variables. The variables of the theoretical models
may not have equivalent in the datasets. In this case, new variables maybe derived
(e. g., computed) from data attributes of the dataset. For example, the variable is-
sue fix time could be derived from the issue closing date and issue discovery
date such as in [2]. In other cases, the datasets contain attributes, where the val-
ues could not be used as-is to address the investigated research problem; derived
values are very useful though. For example, comments on code-changes are too
detailed and cannot be used by statistical methods; thus, useful information may
be derived from these comments and be used to address the research problem [5].
In other cases the data attributes contain detailed information that need to be ab-
stracted to be useful for analytics. For example, in our fixing effort project, we
had to group the 511 vulnerability types in vulnerability categories and to group
the 2300 components into component families. Then, we used the derived data
in the prediction models [2].

Collected datasets have often data attributes where their values are frequently
missing. Missing values impact the results of the statistical algorithms because
those algorithms may incorrectly assume default values for the missing ones. The
researcher should visualize the missing values in their datasets. Fig. 3.3 shows the
missing values of one of the datasets we worked with in our fixing effort project
(recall Sec. 3.2.1 and [2]). Statistical algorithms have strategies to address them,
such as ignore the related record, replace with default values, or extrapolate the
values, using e. g., average. The researcher should investigate the causes of the
missing values and have a strategy for addressing them.

Data attributes sometimes contain row values collected using diverse meth-

An Introduction to Data Analytics For Software Security � 79

Proportion of missings

0.0 0.1 0.2 0.3 0.4

Year

PriorityC

PatchDay

ROProject

processor

nduration

Combinations

Year

PriorityC

PatchDay

ROProject

processor

nduration

Figure 3.3: Plot that visualizes missing data.

ods and tools. The researcher has two options: (1) consider the diversity when
interpreting the results of the data analytics or (2) transform the values such that
they become uniform, e. g., use the same measurement metric or have the same
format. For example, the Common Vulnerability Scoring System (CVSS) 7 score
attribute shall include numeric values computed using only one version of the
metric and be within a specific range. In addition, data values are descriptive and
may not capture processes changes (e. g., issue fixing process). The researcher
may not be able to address such problems, but they should report them in the
validity of the analytics’ results.

3.3.4 Explore the Data
Data describe a phenomenon at a given abstraction level. Deriving statistical
models and knowledge from data requires understating the patterns and hidden
facts that they embed. In our fixing effort project (recall Sec. 3.2.1), we initially
anonymized the vulnerability types [2]. We realized when discussing the use of
the data that the anonymization algorithms included bugs—e. g., processing spe-
cial characters. Thus, we were making wrong statements from the data and it was
difficult to detect that.

7https://www.first.org/cvss

80 � Data Analytics for Software Security: Foundations and Experience

There are three main techniques to explore the data and identify patterns,
which are data visualization, correlation analysis, and hypothesis testing. Data
visualization concerns the use of plots (box plots, line charts, and basic charts)
to visualize the distributional characteristics of the data, such as frequencies and
variability. The plots can visualize the basic descriptive statistics, such as the
min, max, mean, and variance for numeric data attributes and levels for factors
data attributes. They can also visualize the basic relationships and patterns in
the data. In addition, they could be used to detect outliers, i. e., data values that
are outside the expected range. For example, we developed in the fixing effort
project a plot relating the issue fix time to vulnerability type, shown in Fig. 3.4.
The figure shows that vulnerability type impacts moderately the issue fix time.

Correlation analysis concerns using statistics to identify the relationships
between variables represented by data attributes. The two commonly used ap-
proaches to measure correlation are Pearson’s correlation coefficient and Spear-
man’s rank correlation coefficient [47]. The Pearson’s correlation coefficient
measures the linear relationship between two variables. The coefficient values
range between 1 and −1. In software engineering, a coefficient whose absolute
value is above ±0.75 implies a strong relationship and a coefficient whose ab-
solute value is less than ±0.3 implies the correlation is weak. Spearman’s rank
correlation coefficient measures the relationship between the ranks of the data
values of the variables. The coefficient values range also between 1 and −1 [47].
The information is critical as it shows the dependencies between the variables,
which allows to choose the (independent) variables to use in the predictive mod-
els. For example, the correlation between issue fix time and CVSS score was
found to be weak, it has a score of −0.051 [2].

The data visualization and correlation analysis may show the researcher pat-
terns, such as distribution of values of specific variables or the equality of two
samples. The researcher may use hypothesis testing techniques, such as t-test or
Mann-Whitney U-test to check such hypothesis.

3.3.5 Apply Data Analytics
Recall that a data analytics problem should be formulated as: y= f (x1,x2, . . . ,xn)
where y is the dependent variable (also called response variable), xi are the set of
independent variables (also called features and predictors) where i is the variable
index, and f represents the systematic information that the variables xi provide
about y. The goal of this step is to learn (i. e., infer) the dependency relationship
between the variables xi and variable y, which is represented by function f , from
the datasets using a machine learning algorithm.

The researcher needs first to identify the nature of the function that they need
to identify; that is, whether f is a regression, classification, or forecasting func-
tion. Then, they may select one of the standard data analytical methods, such as
the ones described in Sec. 3.4. The researcher may apply initially the commonly

An Introduction to Data Analytics For Software Security � 81

? CDR−1 INF−1 MEM SQL TRV XSS

0
50

0
10

00
15

00

Vulnerability type

V
ul

ne
ra

bi
lit

y
fix

 ti
m

e

Figure 3.4: Duration by vulnerability.

82 � Data Analytics for Software Security: Foundations and Experience

used analytical methods and explore the possibilities of improving the results
through, e. g., using other analytical methods or customizing the used algorithms.
The commonly used methods are linear regression for regression problems and
support vector machine for classification problems.

The analytical algorithms derive/infer analytical models from given datasets,
where the values for both the response variable and the dependent variables are
given. An analytical algorithm produces a function that computes the response
variable from the dependent variables such that the applied metric (e.g., R2 for
the linear regression method) for the deviation of the computed response values
from the real response values is minimized. The developed analytical models are
expected to be applied on unknown datasets and thus need to be validated. The
simple validation technique, called one round validation, splits the given dataset
into a training set and test set. The commonly used ratios of training set to test
set are: 3 to 1 and 4 to 1. The analytical model is inferred from the training
set and then applied on the test set to compute expected response values. The
performance of developed models is measured as the deviation of the expected
response values computed using the validation/test data from the related real
response values. Sec. 3.5 discusses the commonly used performance metrics.

Validation could be done using a more complicated technique: a k-fold cross-
validation. The method requires partitioning the dataset randomly into k equal
sized shares. The cross-validation process iterates k times—10 is commonly used
for k. In each iteration, k−1 shares are used to train the model and the remaining
one share is retained for validating the trained model—each of the k shares is
used only once as the validation data. The k results of the k iterations can then be
averaged to produce a single estimation.

3.3.6 Analyze the Data Analytics Results
Developed analytical models have performance (aka goodness-of-fit). The re-
searcher needs to compare the performance of the generated models to the per-
formance of models developed in similar topics. They need to discuss the perfor-
mance of their models with the project stakeholders to evaluate the trust on the
results and the possibilities to improve them. For instance, the performance met-
ric PRED(25) (see Eq. 3.10 in Sec. 3.5 for its formal definition) that we obtained
in a study that we performed on issue fix time estimation was about 35% [2]
which is below a PRED(30) of 51 reports by Kultur [27] for project effort esti-
mation in commercial products. Nevertheless, a ratio of 35% (or even 51%) does
not encourage companies to use the models (and the techniques) for business
purposes.

Analytical models are usually developed to address specific research ques-
tions. The results of the secure software analytical projects should be discussed
with the stakeholders to interpret them and get their semantics, that is, what do
the results mean in practice. The stakeholders may get new insights while dis-

An Introduction to Data Analytics For Software Security � 83

cussing the results. For example, when discussing the initial results of the issue
fix time project [2], the participants asked about the coefficients of the indepen-
dent variables used in the linear regression model. The coefficients indicate the
contributions of the independent variables to the issue fix time. The analysis of
the coefficients showed that the factors components, projects, and development
teams have high impact on the issue fix time. The stakeholders have observed the
impact of identified factors but did not have evidence, as the one presented, to
justify using the information to take decisions. Thus, the discussion allowed to
identify new uses of the results.

Analytical models are often developed iteratively. Sharing the results with
the stakeholders and discussing them may allow to identify the weaknesses in
the work, which could be related to the data or to the used analytical methods.
Analysis of the causes of these weaknesses should reveal ways to improve the
results. For example, we found when developing a model predicting the issue
fix time, as stated above, that the components, projects, and development teams
are the main factors that impact the issue fix time [2]. The results encouraged
investigating the aspects of these specific factors. The stakeholders provided new
datasets related to these factors, which we used to extend the used datasets. The
analytical models developed from the extended datasets had sometimes better
performance than the basic ones. This activity allowed to identify the aspects
that made the factors highly contribute to the issue fix time.

Analysis of the results of the data analytical projects often sparks ideas for
new directions in the research. For example, we observed in our fixing effort
project (Sec. 3.2.1) that the results are not stable because extending the datasets
with newly collected data changes the models (e. g., the coefficients of linear
models change). We plotted the tendency of the average issue fix time by month
and we observed that the metric is not constant; it has a changing tendency over
time. The change is explained by frequent changes to the issue fixing process and
by the use of push-sprints. This analysis suggests that a prediction model of issue
fix time that consider time evolution should have better performance that the
basic prediction model. The observed sequence of publications on vulnerability
prediction models [35, 46, 42, 37] is also a result of reflection and analysis of the
obtained results.

3.4 Learning Methods Used in Software Security
Many research questions8 are related to software security study dependencies
between all variables of interest using correlation analysis. However, often the
need is to predict or forecast response variables (the variables of interest) and not

8For example, “How software security metrics obtained from a software component are relevant with
the time it takes to compromise the component?” [17].

84 � Data Analytics for Software Security: Foundations and Experience

just to explain them. In these cases learning algorithms of the response variables
are used.

Response variables are either quantitative or qualitative. Quantitative vari-
ables take numerical values and qualitative variables take values from a finite
unordered set. For example, The variable number of days is quantitative while
the variable vulnerability type is qualitative. We refer to prediction problems that
have quantitative response variables as regression problems and problems that
have qualitative response variables as classification problems [22]. When the in-
dependent variable is time, the prediction problems is considered as a special
case and is called time series forecasting [19].

This section gives an overview of set of regression, classification, and fore-
casting learning methods commonly used in software security.9 Each of the
method is based on the optimization of a specific metric for measuring errors and
may require satisfying specific assumptions. Tab 3.1 summarizes these methods
and gives examples of studies that applied each of them.

Table 3.1: Selected set of machine learning methods.

Response
variable

Learn. Type Algorithm Example

Categorical Classification Logistic regression [41, 42, 7]
Bayes [45, 28, 37, 7]
Support vector machine (SVM) [34, 45, 28, 37]
Decision-tree classification [45, 37, 7]

Continuous Regression Linear regression [35, 2, 8, 50]
Tree-based regression [11, 2, 12]
Neural-networks regression [2]

Continuous Forecasting Exponential smoothing [36]
Autoreg. integrated moving avg. [36, 23]

3.4.1 Classification Methods
Classifying observations is assigning the observations to categories (aka classes)
based on prediction of the values of the response variable [22]. There are sev-
eral methods that could be used for classification. We give in the following an
overview of some of the commonly used methods.

9Readers interested in machine learning methods and techniques may consult for example [15, 22].

An Introduction to Data Analytics For Software Security � 85

Naı̈ve Bayes. This classifier is a probabilistic classifiersbased on the Bayes the-
orem:

P(A|B) = P(B|A) ·P(A)
P(B)

(3.1)

where P(A) and P(B) are the probabilities of observing the event A and B inde-
pendently; P(A|B) (respectively P(B|A)) is the conditional probability of observ-
ing event A (respectively B) given that B (respectively A) is true. Naı̈ve Bayes
classifiers are particularly successful when applied to text classification prob-
lems, including spam detection.

Logistic regression. This method, called also linear classifier, models the prob-
ability that the values of the response variable belong to a given category. This
probability is modeled using the logistic function [22]. The method is commonly
used, for example, to classify the factors that indicate vulnerable code.

Decision-tree classification. The method is based on segmenting the training
observations into a set of partitions using a set of rules expressed based on the
independent variables. Each of the partitions is assigned a response value, which
is the value that is the most commonly occurring in the partition. The splitting
algorithms use metrics that are based on the proportions of observations that
are classified in the wrong partitions [22]. Bagging, random forest, and boosting
methods extend the decision tree prediction methods by building a set of deci-
sions trees from the training datasets such that together they predict better the
response variables.

Support vector machines. The logistic regression and decision-tree classifica-
tion methods assume a linear decision boundaries on the features, that is, the
boundaries between two classes is linear. These methods do not work well for
the case of non-linear class boundaries. The SVM idea is to enlarge the features
space using specific ways (called kernels [22]) and map the points from the orig-
inal features space to the enlarged features space. The SVM algorithm learns a
hyperplane that can separate the classes in the enlarged features space.

3.4.2 Regression Methods
Regression methods predict quantitative response variables. The most used one
is the linear regression method [22]. We give in the following an overview of
three of the commonly regression used methods in software security.

Linear regression. This method assumes that the regression function is linear to
the input [15]. The method allows for an easy interpretation of the dependencies
between input and output variables, as well as predictions of potential future

86 � Data Analytics for Software Security: Foundations and Experience

values of the output variables. Most modern regression methods can be perceived
as modifications of the linear regression method, being relatively simple [22] and
transparent as opposed to its successors. Moreover, understanding and successful
usage of such methods as neural networks is nearly impossible without good
grasp of the linear regression method [48].

Tree-based regression. This method recursively partitions the observations
(i. e., the data records of the object being analyzed) for each of the prediction
factors (aka features) such that it reduces the value of a metric that measures
the prediction error, e. g., the Residual Sum of Squares of the partitions [22, 30].
Each partition is assigned a response value, which is the mean of the response
values of that partition [22].

Neural-networks regression. This method represents functions that are non-
linear in the prediction variables. It uses a multi-layer network that relates the
input to the output through intermediate nodes. The output of each intermediate
node is the sum of weighted input of the nodes of the previous layer. The data
input is the first layer [43].

3.4.3 Graph Mining
Graph mining methods try to identify graph patterns in complicated structures.
In the security domain, they are, for example, popular to analyze social net-
works [33] or computer programs [49].

Particularly important are techniques for identifying frequent subgraphs, i. e.,
reoccurring sub-patterns within a large graph as well as techniques for identify-
ing constrained subgraphs, i. e., sub-patterns that fulfill a specified constraints.
A good overview of the various techniques and their implementation is given in
[13, Chapter 9].

3.4.4 Forecasting Methods
A time series is a set of numbers that measures a fact over time. Their analysis
accounts for the fact that the data points may have an internal structure (such as
autocorrelation, trend or seasonal variation) that should be accounted for [24].

Time series data are useful to forecast phenomenon that change over time.
The aim of forecasting time series data is to estimate how the sequence of obser-
vations will continue into the future. The generated forecasting model uses only
information on the variable to be forecasted, and makes no attempt to discover
the factors that affect its behavior [19]. We describe in the following the two main
forecasting methods: the exponential smoothing method and the Autoregressive
Integrated Moving Average (ARIMA) method.

An Introduction to Data Analytics For Software Security � 87

Exponential smoothing. This method uses weighted average of past observa-
tions, with the weights decaying exponentially as the observations get older [19],
that is, recent observations are given relatively more weight than the older ob-
servations. The commonly used method, the Holt-Winters, uses three smoothing
parameters [36]:

1. Level - the relative magnitude of the fact,

2. trend - the gradual upward or downward long term movement, and

3. seasonality - short-term variation at the regular intervals.

Autoregressive Integrated Moving Average (ARIMA). The ARIMA10 method
aims to describe the autocorrelations in the data. Unlike the exponential smooth-
ing method, which aims to model time series data that have trend and seasonality,
ARIMA models stationary time series data [19]. The ARIMA method uses the
following three parameters:

1. the number of Autoregressive (AR) terms - the number of preceding (in
time) data points),

2. the differencing - the type of adjustment to make the data stationary, e. g.,
remove trend or seasonality, and

3. the number of Moving Average (MA) terms - the number of preceding
prediction errors.

3.5 Evaluation of Models Performance
The measures of evaluating the performance of analytical models (aka accuracy
of models) are different from categorical and continuous response-variables. We
discuss in the following the metrics commonly used for both response-variable
categories.

3.5.1 Performance Metrics: Categorical-Response-Variables
This subsection provides the common metrics used to evaluate the performance
of analytical models when the response variable is categorical. All the perfor-
mance measures can be calculated from the confusion matrix. The confusion
matrix, as seen in Tab 3.2, provides four basic metrics, which are: true positives
(TP), false positives (FN), true negatives (TN), and false negatives (FN). The
description of the metrics follow.

10This method is also called Box-Jenkins method.

88 � Data Analytics for Software Security: Foundations and Experience

Table 3.2: Confusion matrix for two-class outcome variables.
Predicted

Positive Negative

Actual True TP FN
False FP TN

Accuracy. This metric measures the fraction of correctly classified cases [32]. A
perfect prediction model has accuracy 1. The formula for computing the metric
is:

ACC =
TP+TN

TP+TN +FN +FP
(3.2)

This metric should be interpreted carefully, as it could be misleading [32].

Hit rate (aka Recall). This metric measures the success rate to predict correctly
positive cases. A perfect prediction model has Recall of 1. The formula for the
metric is:

REC =
TP

TP+FN
(3.3)

Precision. This metric measures the rate of success to predict positive cases. A
perfect prediction model has Precision of 1. The formula for the metric is:

PREC =
TP

TP+FP
(3.4)

False alarm rate. This metric measures the rate of incorrect prediction of posi-
tive cases. A perfect prediction model has false alarm rate of 0. The formula for
the metric is:

FPR =
FP

TP+FP
(3.5)

F-measure. This metric measures the weighted harmonic mean of recall and
precision. The formula for the metric is:

F-measure = 2 · PREC ·REC
PREC+REC

(3.6)

Receiver Operating Characteristics (ROC) Curve. The ROC Curve [32] plots
the hit rate on the y axis against the false alarm rate on the x axis. A good clas-
sification model has a high hit rate and a low false alarm rate, which would be

An Introduction to Data Analytics For Software Security � 89

visualized with an ROC curve closer to the upper left corner. The Curve allows
to compare generated prediction models. In addition, it allows to compare pre-
diction models to the random prediction model–i.e., where the hit rate is equal to
the false alarm rate [9].

3.5.2 Performance Metrics: Continuous Response-Variables
Several metrics have been developed to compare the performance of the pre-
diction and forecast models. These metrics indicate how well the models pre-
dict/forecast accurate responses for future inputs. We describe in the following 4
metrics that are commonly used in software security.

Coefficient of determination (R2). This metric “summarizes” how well the gen-
erated regression model fits the data. It computes the proportion of the variation
of the response variable as estimated using the generated regression compared
to the variation of the response variable computed using the null model, i. e., the
mean of the values [19]. A value such as 0.5 indicates that about half of the vari-
ation in the data can be predicted or explained using the model [19]. A value 1 of
this metric indicates that the model perfectly fits the data and value 0 indicates
that the model does not explain the data. The following equation formulates the
metric.

R2 = 1−

n
∑

i=0
(xi− x̂i)

2

n
∑

i=0
(xi− x̄)2

(3.7)

where n is the number of observations, xi is the actual value for observation i, x̂i
is the estimated value for observation i, and x̄ is the mean of xi values.

The Linear Regression method focuses on minimizing R2. The metric is used
to evaluate the performance of linear regression models. Thus, it may not be
a good metric to evaluate non-linear models [44] since they do not attempt to
optimize it too.

Mean Magnitude of relative Error (MMRE). This metric measures the mean of
the errors ratio between the predicted/forecasted values and their corresponding
actual values [25, 26]. The following equation formulates the metric.

MMRE =

n
∑

k=0

|x̂i−xi|
xi

n
(3.8)

where n is the number of observations, xi is the actual value for observation i, x̂i
is the estimated value for observation i.

90 � Data Analytics for Software Security: Foundations and Experience

Akaike’s Information Criterion. This metric estimates the information loss
when approximating reality. The following equation formulates the metric [19].

AIC = n · log

(
n

∑
k=0

(xi− x̂i)
2

n

)
+2 · (k+2) (3.9)

where n is the number of observations, xi is the actual value for observation i, x̂i
is the estimated value for observation i, and k is the number of variables.

A smaller AIC value indicates a better model.

PRED. This metric computes the percentage of prediction falling within a
threshold h [25, 26]. The following equation formulates the metric

PRED(h) =
100
n
·

n

∑
i=1

1 if
xi− x̂i

xi
≤ h,

0 otherwise.
(3.10)

Here n is the number of observations, xi is the actual value for observation i,
x̂i is the estimated value for observation i, and h is the threshold, e. g., 25%.

The perfect value for the PRED metric is 100%.

3.6 More Lessons Learned
Our experience shows that one of the biggest challenges of empirical research
applied to software security is the availability and quality of the data that can be
used for hypothesis evaluation. This ground truth data is often incomplete. For
example, when we tried to understand, how the number of published security
vulnerabilities for an open source project is related to its other characteristics, we
understood that for many similar projects there is not enough information about
vulnerabilities (sometimes, it does not even exist). That means, for example, that
a time-series model for predicting the disclosure time of security vulnerabilities
trained on the set of Apache projects may not be adequate for other projects,
because Apache Foundation may be more dedicated to systematic vulnerability
disclosure than other projects.

Therefore, choosing the right source of information is critical. For instance,
Massacci and Nguyen [29] addressed the question of selecting adequate sources
of ground truth data for vulnerability discovery models, showing problems of
various vulnerability data sources, and that the set of features that can be used
for vulnerability prediction is scattered over all of them, discouraging researchers
in relying on a single source of such information.

Another example of data deficiency in empirical security research is the ques-
tion “Is open source software more/less secure than proprietary software?” While
there exist numerous studies on the matter [14, 16, 40, 38, 39], we believe it is

References � 91

unlikely that this question will get an exhaustive answer. The reason for that is
that independent security researchers will unlikely get full access to the data that
correspond to the whole population of proprietary software, or (at least) to the
similar extent with open source software.

Working with large data sets can be also very challenging for empirical re-
searchers. However, while tasks such as data exploration/cleaning of analysis
cannot be completely automated, we fully appreciate the value of automation
in repetitive tasks such as data collection, which allows to relocate significant
amounts of time to the actual analysis.

3.7 Conclusion
While applying data analytics for improving software security has already proven
to be useful, it is a very young discipline and we expect much more improve-
ments and success stories. We identified, as a particular challenges that needs to
be addressed, the lack of data of the necessary quality. Thus, we can only repeat
our call for collecting high-quality data in any security engineering project and to
use data analytics to monitor and improve secure software engineering activities.

References
[1] Ruediger Bachmann and Achim D. Brucker. Developing secure software: A holistic

approach to security testing. Datenschutz und Datensicherheit (DuD), 38(4):257–261,
apr 2014.

[2] Lotfi ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsalovski, and Achim D.
Brucker. Time for addressing software security issues: Prediction models and impacting
factors. Data Science and Engineering (DSEJ), 2016.

[3] Lotfi ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsalovski, Achim D. Brucker,
and Philip Miseldine. Factors impacting the effort required to fix security vulnerabilities:
An industrial case study. In Colin Boyd and Danilo Gligoriski, editors, Information
Security Conference (ISC) 2015), Lecture Notes in Computer Science. Springer-Verlag,
2015.

[4] Ayse Bener, Ayse Tosun Misirli, Bora Caglayan, Ekrem Kocaguneli, and Gul Calikli.
Lessons learned from software analytics in practice. In Christian Bird, Tim Menzies,
and Thomas Zimmermann, editors, The Art and Science of Analyzing Software Data,
pages 453–489, Waltham, USA, Aug. 2015. Elsevier.

[5] Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek Janni.
Identifying the characteristics of vulnerable code changes: An empirical study. In Proc.
of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, FSE 2014, pages 257–268, 2014.

[6] Achim D. Brucker and Uwe Sodan. Deploying static application security testing on
a large scale. In Stefan Katzenbeisser, Volkmar Lotz, and Edgar Weippl, editors, GI

92 � References

Sicherheit 2014, volume 228 of Lecture Notes in Informatics, pages 91–101. GI, March
2014.

[7] Istehad Chowdhury and Mohammad Zulkernine. Using complexity, coupling, and co-
hesion metrics as early indicators of vulnerabilities. Journal of Systems Architecture,
57(3):294–313, 2011. Special Issue on Security and Dependability Assurance of Soft-
ware Architectures.

[8] Stanislav Dashevskyi, Achim D. Brucker, and Fabio Massacci. On the security cost
of using a free and open source component in a proprietary product. In Juan Caballero
and Eric Bodden, editors, International Symposium on Engineering Secure Software and
Systems (ESSoS), number 9639 in Lecture Notes in Computer Science, pages 190–206.
Springer-Verlag, 2016.

[9] Tom Fawcett. An introduction to roc analysis. Pattern Recogn. Lett., 27(8):861–874,
June 2006.

[10] Harald Gall, Tim Menzies, Laurie Williams, and Thomas Zimmermann. Software De-
velopment Analytics (Dagstuhl Seminar 14261). Dagstuhl Reports, 4(6):64–83, 2014.

[11] Michael Gegick, Pete Rotella, and Laurie Williams. Toward non-security failures as a
predictor of security faults and failures. In International Symposium on Engineering
Secure Software and Systems, pages 135–149. Springer, 2009.

[12] Michael Gegick, Laurie Williams, Jason Osborne, and Mladen Vouk. Prioritizing soft-
ware security fortification throughcode-level metrics. In Proceedings of the 4th ACM
workshop on Quality of protection, pages 31–38. ACM, 2008.

[13] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2011.

[14] Marit Hansen, Kristian Köhntopp, and Andreas Pfitzmann. The Open Source approach:
opportunities and limitations with respect to security and privacy. Computers & Security
Journal, 21(5):461–471, 2002.

[15] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer, 2013.

[16] Jaap-Henk Hoepman and Bart Jacobs. Increased security through open source. Commu-
nications of the ACM, 50(1):79–83, 2007.

[17] Hannes Holm, Mathias Ekstedt, and Dennis Andersson. Empirical analysis of system-
level vulnerability metrics through actual attacks. IEEE Transactions on dependable and
secure computing, 9(6):825–837, 2012.

[18] Michael Howard and Steve Lipner. The Security Development Lifecycle. Microsoft
Press, Redmond, WA, USA, 2006.

[19] Rob J. Hyndman and George Athanasopoulos. Forecasting: principles and practice.
Otexts, 2014.

[20] Jay Jacobs and Bob Rudis. Data-Driven Security: Analysis, Visualization and Dash-
boards. Wiley Publishing, 2014.

[21] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to
Statistical Learning with Applications in R. Springer-Verlag, New York, US, 2013.

[22] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to
Statistical Learning with Applications in R. Springer, 2014. Springer Texts in Statistics.

References � 93

[23] Pontus Johnson, Dan Gorton, Robert Lagerström, and Mathias Ekstedt. Time between
vulnerability disclosures: A measure of software product vulnerability. Computers &
Security, 62:278–295, 2016.

[24] Myungsook Klassen. Investigation of some technical indexes instock forecasting using
neural networks. International Journal of Computer, Electrical, Automation, Control
and Information Engineering, 1(5):1438–1442, 2007.

[25] Ekrem Kocaguneli, Tim Menzies, and Jacky Keung. On the value of ensemble effort
estimation. IEEE Transactions on Software Engineering, 38(6):1403–1416, Nov 2012.

[26] Ekrem Kocaguneli, Tim Menzies, and Emilia Mendes. Transfer learning in effort esti-
mation. Empirical Software Engineering, 20(3):813–843, June 2015.

[27] Yigit Kultur, Burak Turhan, and Ayse Bener. Ensemble of neural networks with asso-
ciative memory (enna) for estimating software development costs. Knowledge-Based
Systems, 22(6):395–402, 2009.

[28] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang Zhai.
Have things changed now? an empirical study of bug characteristics in modern open
source software. In Proceedings of the 1st workshop on Architectural and system support
for improving software dependability, pages 25–33. ACM, 2006.

[29] Fabio Massacci and Viet Hung Nguyen. An empirical methodology to evaluate vulner-
ability discovery models. Software Engineering, IEEE Transactions on, 40(12):1147–
1162, 2014.

[30] Tim Menzies. Data mining: A tutorial. In Martin P. Robillard, Walid Maalej, Robert J.
Walker, and Thomas Zimmermann, editors, Recommendation Systems in Software Engi-
neering, pages 39–75. Springer Berlin Heidelberg, 12 2013.

[31] Tim Menzies, Rahul Krishna, and David Pryor. The promise repository of empirical
software engineering data. http://openscience.us/repo, 2015. North Carolina
State University, Department of Computer Science.

[32] Charles E. Metz. Basic principles of ROC analysis. Seminars in Nuclear Medicine,
8(4):283–298, 1978.

[33] Sudip Mittal, Prajit Kumar Das, Varish Mulwad, Anupam Joshi, and Tim Finin. Cy-
berTwitter: Using twitter to generate alerts for cybersecurity threats and vulnerabilities.
In International Symposium on Foundations of Open Source Intelligence and Security
Informatics. IEEE Computer Society, August 2016.

[34] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller. Predict-
ing vulnerable software components. In Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS ’07, pages 529–540, 2007.

[35] Viet Hung Nguyen and Le Minh Sang Tran. Predicting vulnerable software components
with dependency graphs. In Proceedings of the 6th International Workshop on Security
Measurements and Metrics, page 3. ACM, 2010.

[36] Yaman Roumania, Joseph K. Nwankpab, and Yazan F. Roumani. Time series modeling
of vulnerabilities. Computers & Security, 51:32–40, June 2015.

[37] Riccardo Scandariato, James Walden, Aram Hovsepyan, and Wouter Joosen. Predicting
vulnerable software components via text mining. Software Engineering, IEEE Transac-
tions on, 40(10):993–1006, 2014.

94 � References

[38] Guido Schryen. Security of open source and closed source software: An empirical com-
parison of published vulnerabilities. In Americas Conference on Information Systems
(AMCIS), 2009.

[39] Guido Schryen. Is open source security a myth? Communications of the ACM,
54(5):130–140, 2011.

[40] Guido Schryen and Rouven Kadura. Open source vs. closed source software: towards
measuring security. In Proceedings of the 2009 ACM symposium on Applied Computing,
pages 2016–2023. ACM, 2009.

[41] Yonghee Shin, A. Meneely, L. Williams, and J.A. Osborne. Evaluating complexity, code
churn, and developer activity metrics as indicators of software vulnerabilities. Software
Engineering, IEEE Transactions on, 37(6):772–787, Nov 2011.

[42] Yonghee Shin and Laurie Williams. An empirical model to predict security vulnerabil-
ities using code complexity metrics. In Proceedings of the Second ACM-IEEE interna-
tional symposium on Empirical software engineering and measurement, pages 315–317.
ACM, 2008.

[43] Donald F. Specht. A general regression neural network. Neural Networks, IEEE Trans-
actions on, 2(6):568–576, Nov 1991.

[44] Andrej-Nikolai N. Spiess and Natalie Neumeyer. An evaluation of R2 as an inadequate
measure for nonlinear models in pharmacological and biochemical research: a Monte
Carlo approach. BMC pharmacology, 10(1):6+, June 2010.

[45] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang
Zhai. Bug characteristics in open source software. Empirical Software Engineering,
19(6):1665–1705, 2014.

[46] James Walden and Maureen Doyle. Savi: Static-analysis vulnerability indicator. Security
& Privacy Journal, IEEE, 10(3):32–39, 2012.

[47] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye. Probability
& statistics for engineers and scientists. Pearson Education, Upper Saddle River, 2007.

[48] Sanford Weisberg. Applied linear regression, volume 528. John Wiley & Sons, 2005.

[49] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and discov-
ering vulnerabilities with code property graphs. In Symposium on Security and Privacy
(SP), pages 590–604. IEEE Computer Society, 2014.

[50] Su Zhang, Doina Caragea, and Xinming Ou. An empirical study on using the national
vulnerability database to predict software vulnerabilities. In International Conference
on Database and Expert Systems Applications, pages 217–231. Springer, 2011.

@Article{	 asim.ea:policy-monitoring:2018,
 author	= {Muhammad Asim and Artsiom Yautsiukhin and Achim D. Brucker
		 and Thar Baker and Qi Shi and Brett Lempereur},
 journal	= {Journal of Software: Evolution and Process},
 publisher	= {John Wiley \& Sons},
 address	= {},
 language	= {USenglish},
 title		= {Security Policy Monitoring of {BPMN}-based Service
		 Compositions},
 year		= {2018},
 classification= {journal},
 areas		= {security, software},
 public	= {yes},
 keywords	= {Service-Oriented Computing, Composite services, Business
		 process compliance, Compliance monitoring, Securijty },
 abstract	= {Service composition is a key concept of Service- Oriented
		 Architecture that allows for combining loosely coupled
		 services that are offered and operated by different service
		 providers. Such environments are expected to dynamically
		 respond to changes that may occur at runtime, including
		 changes in the environment and individual services
		 themselves. Therefore, it is crucial to monitor these
		 loosely-coupled services throughout their lifetime. In this
		 paper, we present a novel framework for monitoring services
		 at runtime and ensuring that services behave as they have
		 promised. In particular, we focus on monitoring
		 non-functional properties that are specified within an
		 agreed security contract. The novelty of our work is based
		 on the way in which monitoring information can be combined
		 from multiple dynamic services to automate the monitoring
		 of business processes and proactively report compliance
		 violations. The framework enables monitoring of both atomic
		 and composite services and provides a user friendly
		 interface for specifying the monitoring policy. We provide
		 an information service case study using a real composite
		 service to demonstrate how we achieve compliance
		 monitoring. The transformation of security policy into
		 monitoring rules, which is done automatically, makes our
		 framework more flexible and accurate than existing
		 techniques. },
 pdf		= {https://www.brucker.ch/bibliography/download/2018/asim.ea-policy-monitoring-2018.pdf},
 url		= {https://www.brucker.ch/bibliography/abstract/asim.ea-policy-monitoring-2018}
}

%0 Journal Article
%T Security Policy Monitoring of BPMN-based Service Compositions
%A Asim, Muhammad
%A Yautsiukhin, Artsiom
%A Brucker, Achim D.
%A Baker, Thar
%A Shi, Qi
%A Lempereur, Brett
%J Journal of Software: Evolution and Process
%D 2018
%I John Wiley & Sons
%G USenglish
%F asim.ea:policy-monitoring:2018
%X Service composition is a key concept of Service- Oriented Architecture that allows for combining loosely coupled services that are offered and operated by different service providers. Such environments are expected to dynamically respond to changes that may occur at runtime, including changes in the environment and individual services themselves. Therefore, it is crucial to monitor these loosely-coupled services throughout their lifetime. In this paper, we present a novel framework for monitoring services at runtime and ensuring that services behave as they have promised. In particular, we focus on monitoring non-functional properties that are specified within an agreed security contract. The novelty of our work is based on the way in which monitoring information can be combined from multiple dynamic services to automate the monitoring of business processes and proactively report compliance violations. The framework enables monitoring of both atomic and composite services and provides a user friendly interface for specifying the monitoring policy. We provide an information service case study using a real composite service to demonstrate how we achieve compliance monitoring. The transformation of security policy into monitoring rules, which is done automatically, makes our framework more flexible and accurate than existing techniques.
%K Service-Oriented Computing, Composite services, Business process compliance, Compliance monitoring, Securijty
%U https://www.brucker.ch/bibliography/abstract/asim.ea-policy-monitoring-2018
%U https://www.brucker.ch/bibliography/download/2018/asim.ea-policy-monitoring-2018.pdf

TY - JOUR
AU - Asim, Muhammad
AU - Yautsiukhin, Artsiom
AU - Brucker, Achim D.
AU - Baker, Thar
AU - Shi, Qi
AU - Lempereur, Brett
PY - 2018//
TI - Security Policy Monitoring of BPMN-based Service Compositions
JO - Journal of Software: Evolution and Process
PB - John Wiley & Sons
KW - Service-Oriented Computing, Composite services, Business process compliance, Compliance monitoring, Securijty
N2 - Service composition is a key concept of Service- Oriented Architecture that allows for combining loosely coupled services that are offered and operated by different service providers. Such environments are expected to dynamically respond to changes that may occur at runtime, including changes in the environment and individual services themselves. Therefore, it is crucial to monitor these loosely-coupled services throughout their lifetime. In this paper, we present a novel framework for monitoring services at runtime and ensuring that services behave as they have promised. In particular, we focus on monitoring non-functional properties that are specified within an agreed security contract. The novelty of our work is based on the way in which monitoring information can be combined from multiple dynamic services to automate the monitoring of business processes and proactively report compliance violations. The framework enables monitoring of both atomic and composite services and provides a user friendly interface for specifying the monitoring policy. We provide an information service case study using a real composite service to demonstrate how we achieve compliance monitoring. The transformation of security policy into monitoring rules, which is done automatically, makes our framework more flexible and accurate than existing techniques.
UR - https://www.brucker.ch/bibliography/abstract/asim.ea-policy-monitoring-2018
L1 - https://www.brucker.ch/bibliography/download/2018/asim.ea-policy-monitoring-2018.pdf
ID - asim.ea:policy-monitoring:2018
ER -

 asim.ea:policy-monitoring:2018
 ArticleInAPeriodical
 John Wiley & Sons
 2018
 Journal of Software: Evolution and Process

 Asim Muhammad
 Yautsiukhin Artsiom
 Brucker Achim D
 Baker Thar
 Shi Qi
 Lempereur Brett

 Security Policy Monitoring of BPMN-based Service Compositions
 Service composition is a key concept of Service- Oriented Architecture that allows for combining loosely coupled services that are offered and operated by different service providers. Such environments are expected to dynamically respond to changes that may occur at runtime, including changes in the environment and individual services themselves. Therefore, it is crucial to monitor these loosely-coupled services throughout their lifetime. In this paper, we present a novel framework for monitoring services at runtime and ensuring that services behave as they have promised. In particular, we focus on monitoring non-functional properties that are specified within an agreed security contract. The novelty of our work is based on the way in which monitoring information can be combined from multiple dynamic services to automate the monitoring of business processes and proactively report compliance violations. The framework enables monitoring of both atomic and composite services and provides a user friendly interface for specifying the monitoring policy. We provide an information service case study using a real composite service to demonstrate how we achieve compliance monitoring. The transformation of security policy into monitoring rules, which is done automatically, makes our framework more flexible and accurate than existing techniques.

