
Using Third Party Components for

Building an Application Might be More

Dangerous Than You Think!

Achim D. Brucker Fabio Massacci Stanislav Dashevskyi

Abstract

2

Today, nearly all developers rely on third party components for building an application. Thus, for most software vendors, third

party components in general and Free/Libre and Open Source Software (FLOSS) in particular, are an integral part of their

software supply chain.

As the security of a software offering, independently of the delivery model, depends on all components, a secure software supply

chain is of utmost importance. While this is true for both proprietary and as well as FLOSS components that are consumed,

FLOSS components impose particular challenges as well as provide unique opportunities. For example, on the one hand,

FLOSS licenses contain usually a very strong “no warranty” clause and no service-level agreement. On the other hand, FLOSS

licenses allow to modify the source code and, thus, to fix issues without depending on an (external) software vendor.

This talk is based on working on integrating securely third-party components in general, and FLOSS components in particular,

into the SAP's Security Development Lifecycle (SSDL). Thus, our experience covers a wide range of products (e.g., from small

mobile applications of a few thousands lines of code to large scale enterprise applications with more than a billion lines of code),

a wide range of software development models (ranging from traditional waterfall to agile software engineering to DevOps), as

well as a multiple deployment models (e.g., on premise products, custom hosting, or software-as-a-service).

About Us
Achim D. Brucker
• Senior Lecturer (Software Security), University of Sheffield, UK

• Software Security Consultant

• Until 12/2015: Security Testing Strategist at SAP SE, Germany

3

Stanislav Dashevskyi

• PhD Student at the University of Trento and SAP SE, France

Part I:

Securing The Software Supply Chain

or

The Security Risk of Third Party Components

Preparation Development Utilization Transition

Start of development Release decision

Training

• Security
awareness

• Secure
programming

• Threat modeling

• Security static
analysis

• Data protection
and privacy

• Security expert
curriculum

Risk
Identification

•Product Level
Threat
Modelling

•Data Privacy
Impact
Assessment

•Product Level
Threat
Modelling

Plan Security
Measures

• Plan product
standard
compliance

• Plan security
features

• Plan security
tests

• Plan security
response

Secure
Development

• Secure
programming

• Static code scan

• Code review

Security
Testing

• Dynamic testing

• Manual testing

• External security
assessment

Security
Validation

• Independent
security
assessment

Security
Response

• Execute the
security response
plan

Secure Software Development

Source: SAP’s Security Development Lifecycle (S2DL)

Preparation Development Utilization Transition

Start of development Release decision

Training

• Security
awareness

• Secure
programming

• Threat modeling

• Security static
analysis

• Data protection
and privacy

• Security expert
curriculum

Risk
Identification

•Security Risk
Identification
and
Management
(SECURIM)

•Data Privacy
Impact
Assessment

•Threat
Modeling

Plan Security
Measures

• Plan product
standard
compliance

• Plan security
features

• Plan security
tests

• Plan security
response

Secure
Development

• Secure
programming

• Static code scan

• Code review

Security
Testing

• Dynamic testing

• Manual testing

• External security
assessment

Security
Validation

• Independent
security
assessment

Security
Response

• Execute the
security response
plan

Secure Software Development

Source: SAP’s Security Development Lifecycle (S2DL)

Preparation Development Utilization Transition

Start of development Release decision

• Many external dependencies

• Only control over a small part of the

source code

How We Develop Software Today

• Very few external dependencies

• Full control over source code

How We Used To Develop Software

The Maintenance Challenge

• > 90% of customers are using

the latest two releases

• > 50 % of customers are using

releases older 10 years

Product Release EoL Ext. EoL

Windows XP 2001 2009 2014

Windows 8 2012 2018 2023

SAP SRM 2006 2013 2016

Red Hat 2012 2020 2023

Tomcat 2007 2016 n/a

Preparation Development Utilization Transition

Start of development Release decision

Training

• Security
awareness

• Secure
programming

• Threat modeling

• Security static
analysis

• Data protection
and privacy

• Security expert
curriculum

Risk
Identification

•Product Level
Threat
Modelling

•Data Privacy
Impact
Assessment

•Product Level
Threat
Modelling

Plan Security
Measures

• Plan product
standard
compliance

• Plan security
features

• Plan security
tests

• Plan security
response

Secure
Development

• Secure
programming

• Static code scan

• Code review

Security
Testing

• Dynamic testing

• Manual testing

• External security
assessment

Security
Validation

• Independent
security
assessment

Security
Response

• Execute the
security response
plan

Secure Software Development

Source: SAP’s Security Development Lifecycle (S2DL)

Third-party

• Bill of material

• Licensing

• Maintenance

Identify

• Risk and

• Mitigation strategies

of third-party software

Plan third-party specific

• security response

• security tests

Secure consumption

of third-party software

(API usage, etc.)

Test secure

consumption of third

party software and act

on found vulnerabilities

Assess secure

consumption of third-

party software

Monitor vulnerabilities

of third party software

and fix/upgrade

vulnerable versions

Types of Third-Party Software
Commercial Libraries

Outsourcing

Bespoke Software

Freeware

Free/Libre Open

Source Software

(FLOSS)

• Outsourcing

• SAP HANA

• Jabra Device Driver

• NVIDIA Device Driver

• Apache Tomcat

• JQuery

Upfront costs High Low Low

Ease of access

(for developers)
Hard Medium Easy

Modification of

Source Code
Depends on contract Impossible Possible

Support contract Easy Hard Medium

Types of Third-Party Software
Commercial Libraries

Outsourcing

Bespoke Software

Freeware

Free/Libre Open

Source Software

(FLOSS)

• Outsourcing

• SAP HANA

• Jabra Device Driver

• NVIDIA Device Driver

• Apache Tomcat

• JQuery

Upfront costs High Low Low

Ease of access

(for developers)
Hard Medium Easy

Modification of

Source Code
Depends on contract Impossible Possible

Support contract Easy Hard Medium

Data Sources
Public

 FOSS information repositories
 Open Hub (formerly Ohloh)

 Core Infrastructure Initiative (CII) Census project

 Public databases of vulnerabilities
 National Vulnerability Database (NVD)

 Exploit Database website (ExploitDB)

 Open Sourced Vulnerability Database (OSVDB)

 Project data
 Coverity FOSS scan service

 Source code repositories

Internal
 Software inventory (e.g., Black Duck Code Center as used by SAP)

FLOSS Usage At SAP

Based on the 166 most used FOSS components (as of autumn 2015)

Programming Languages

Java

C

JavaScript

PHP

C++

Other

Vulnerabilities (CVEs)

DoS

Code execution

Overflow

Bypass something

Gain information

XSS

Gain privileges

Directory traversal

Memory corruption

CSRF

Part II:

Security of Open Source Enterprise Frameworks

or

Assessing Risks and Planning Efforts of the Secure

Consumption of FLOSS

What We Want

https://www.flickr.com/photos/fimbrethil/4507848067/

1. How many vulnerabilities will be

published next year for component X?

2. How often do I need to ship a patch to fix

a vulnerability caused by component X?

Vulnerability Prediction?

Tomcat 6.x publicly known vulnerabilities (CVEs)

Vulnerability Prediction: Problems

• There is not enough data

• Number of vulnerabilities depends on:

 Age of the project

 Number of users

• Sometimes you simply have no choice…

Understanding Factors Is More

Critical Than Predictions

 When will a vulnerability appear in a FOSS component?
 We do not know

 Can we distinguish features of projects causing

"problems" for consuming software?
 We use maintenance effort of proprietary consumers to denote “problems”

 Does the ”security culture” of FOSS developers make a difference?

 Does is make a difference which main language/technology is used?

Which Factors Are Interesting?

 Collect all possible data, build a regression model to

asses the impact of each factor

 Can we use all data that is available?
 Actual Total #LoCs of a component

 Added Total #LoCs of a component

 Removed Total #LoCs of a component

 Changed Total #LoCs (added, removed, etc.)...

Relationships Between Factors

Different Maintenance Models

 60 products are using Apache Tomcat
 Requires a lot of expertise to resolve security issues

 It makes more sense to have a team of Apache Tomcat experts around

 2 products are using a small JavaScript library
 This does not require any major expertise

 However, if a company ends up using large number of products for which only the

“local” expertise exists, it may be problematic

Centralized Security Maintenance
 Policy: dev. teams must select only components widely used and

supported within a company

 A central team resolves vulnerabilities in all FOSS components and

pushes changes to all consumers

 The security maintenance effort scales logarithmically with the

number of products consuming a component

Distributed Security Maintenance
 Policy: each dev. team is free of selecting appropriate components

 Each team has to take care of security issues individually

 While this model should decrease the effort for organizational aspects

(not considered by us), it adds up for the technical part of the effort

Hybrid Security Maintenance

Part III:

Practical Recommendations On

Controling Risk & Effort Of Using Third Party Components

Secure Software Development Life Cycle
 Maintain a detailed software inventory

(Do not forget the dependencies)

 Actively monitor vulnerability databases

 Assess project specific risk of third-party components

Obtaining components (or sources)
 Download from trustworthy sources

(https, check signatures/checksums)

Strategies For Controlling Risks (1/2)

Project Selection
 Prefer projects with private bug trackers

 Evidences of a healthy/working SDLC

 Documented security fixes/patches

(no “secret” security fixes)

 Documented security guidelines

 Use of security testing tools

Strategies For Controlling Risks (2/2)

https://www.coreinfrastructure.org/programs

https://www.coreinfrastructure.org/programs

Secure Software Development Life Cycle
 Update early and often

 Avoid own forks

(collaborate with FLOSS community)

Project selection
 Large user base

 Active development community

 Technologies you are familiar with

 Compatible maintenance strategy/life cycle

 Smaller (in terms of code size) and less complex might be better

Strategies For Controlling Effort

Part IV:

Conclusion

Do not waste time with unimportant questions!
(Is FLOSS more/less secure as proprietary software)

Implement a secure consumption strategy:
• Risk assessment of third party consumption (at least security & licenses)

• Plan for the efforts of secure consumption

• Plan the efforts/costs for response and maintenance

Conclusion

Do not waste time with unimportant questions!
(Is FLOSS more/less secure as proprietary software)

Implement a secure consumption strategy:
• Risk assessment of third party consumption (at least security & licenses)

• Plan for the efforts of secure consumption

• Plan the efforts/costs for response and maintenance

Conclusion

Final advice:

• Accept that you can be hit by a “black swan” (e.g., heartbleed)

• If it happens:

• Concentrate on understanding and fixing the issue

• Understanding why you did not find the swan

earlier should not be your first priority

Achim D. Brucker

Department of Computer Science

University of Sheffield

Regent Court

211 Portobello St.

Sheffield S1 4DP, UK

https://de.linkedin.com/in/adbrucker

https://www.brucker.uk

https://www.logicalhacking.com

a.brucker@sheffield.ac.uk

Stanislav Dashevskyi

University of Trento

Scuola di dottorato in Informatica e Telecomunicazioni

Via Sommarive, 14

38123 Povo, Italy

https://st.fbk.eu/people/profile/dashevskyi

stanislav.dashevskyi@unitn.it

Contact:

Thank you!

https://de.linkedin.com/in/adbrucker
https://www.brucker.uk/
https://www.logicalhacking.com/
mailto:a.brucker@sheffield.ac.uk
https://st.fbk.eu/people/profile/dashevskyi
mailto:stanislav.dashevskyi@unitn.it
mailto:stanislav.dashevskyi@unitn.it

Bibliography
 Stanislav Dashevskyi, Achim D. Brucker, and Fabio Massacci. On the Security Cost of Using a Free and Open

Source Component in a Proprietary Product. In International Symposium on Engineering Secure Software and

Systems (ESSoS). Lecture Notes in Computer Science 9639, Springer-Verlag, 2016.

https://www.brucker.ch/bibliography/abstract/dashevskyi.ea-foss-costs-2016.en.html

 Ruediger Bachmann and Achim D. Brucker. Developing Secure Software: A Holistic Approach to Security Testing.

In Datenschutz und Datensicherheit (DuD), 38 (4), pages 257-261, 2014.

https://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014.en.html

 Achim D. Brucker and Uwe Sodan. Deploying Static Application Security Testing on a Large Scale. In GI

Sicherheit 2014. Lecture Notes in Informatics, 228, pages 91-101, GI, 2014.

https://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014.en.html

 Achim D. Brucker. Bringing Security Testing To Development: How To Enable Developers To Act As Security

Experts, OWASP AppSecEU 2015. https://youtu.be/LZoz4cv0MAg

https://www.brucker.ch/bibliography/abstract/talk-brucker.ea-owasp-sectest-2015.en.html

36

https://www.brucker.ch/bibliography/abstract/dashevskyi.ea-foss-costs-2016.en.html
https://www.brucker.ch/bibliography/abstract/dashevskyi.ea-foss-costs-2016.en.html
https://www.brucker.ch/bibliography/abstract/dashevskyi.ea-foss-costs-2016.en.html
https://www.brucker.ch/bibliography/abstract/dashevskyi.ea-foss-costs-2016.en.html
https://www.brucker.ch/bibliography/abstract/dashevskyi.ea-foss-costs-2016.en.html
https://www.brucker.ch/bibliography/abstract/dashevskyi.ea-foss-costs-2016.en.html
https://www.brucker.ch/bibliography/abstract/dashevskyi.ea-foss-costs-2016.en.html
https://www.brucker.ch/bibliography/abstract/dashevskyi.ea-foss-costs-2016.en.html
https://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014.en.html
https://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014.en.html
https://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014.en.html
https://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014.en.html
https://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014.en.html
https://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014.en.html
https://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014.en.html
https://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014.en.html
https://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014.en.html
https://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014.en.html
https://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014.en.html
https://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014.en.html
https://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014.en.html
https://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014.en.html
https://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014.en.html
https://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014.en.html
https://youtu.be/LZoz4cv0MAg
https://www.brucker.ch/bibliography/abstract/talk-brucker.ea-owasp-sectest-2015.en.html
https://www.brucker.ch/bibliography/abstract/talk-brucker.ea-owasp-sectest-2015.en.html
https://www.brucker.ch/bibliography/abstract/talk-brucker.ea-owasp-sectest-2015.en.html
https://www.brucker.ch/bibliography/abstract/talk-brucker.ea-owasp-sectest-2015.en.html
https://www.brucker.ch/bibliography/abstract/talk-brucker.ea-owasp-sectest-2015.en.html
https://www.brucker.ch/bibliography/abstract/talk-brucker.ea-owasp-sectest-2015.en.html
https://www.brucker.ch/bibliography/abstract/talk-brucker.ea-owasp-sectest-2015.en.html
https://www.brucker.ch/bibliography/abstract/talk-brucker.ea-owasp-sectest-2015.en.html
https://www.brucker.ch/bibliography/abstract/talk-brucker.ea-owasp-sectest-2015.en.html
https://www.brucker.ch/bibliography/abstract/talk-brucker.ea-owasp-sectest-2015.en.html

