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Today, nearly all developers rely on third party components for building an application. Thus, for most software vendors, third 

party components in general and Free/Libre and Open Source Software (FLOSS) in particular, are an integral part of their 

software supply chain.   

 
As the security of a software offering, independently of the delivery model, depends on all components, a secure software supply 

chain is of utmost importance. While this is true for both proprietary and as well as FLOSS components that are consumed, 

FLOSS components impose particular challenges as well as provide unique opportunities. For example, on the one hand, 

FLOSS licenses contain usually a very strong “no warranty” clause and no service-level agreement. On the other hand, FLOSS 

licenses allow to modify the source code and, thus, to fix issues without depending on an (external) software vendor. 

 
This talk is based on working on integrating securely third-party components in general, and FLOSS components in particular, 

into the SAP's Security Development Lifecycle (SSDL). Thus, our experience covers a wide range of products (e.g., from small 

mobile applications of a few thousands lines of code to large scale enterprise applications with more than a billion lines of code), 

a wide range of software development models (ranging from traditional waterfall to agile software engineering to DevOps), as 

well as a multiple deployment models (e.g., on premise products, custom hosting, or software-as-a-service). 
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Part I:  
 

Securing The Software Supply Chain  

or 

The Security Risk of Third Party Components 
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Source: SAP’s Security Development Lifecycle (S2DL) 
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Source: SAP’s Security Development Lifecycle (S2DL) 

Preparation Development Utilization Transition 

Start of development Release decision  

• Many external dependencies  

• Only control over a small part of the 

source code 

How We Develop Software Today 

• Very few external dependencies 

• Full control over source code 

How We Used To Develop Software 



The Maintenance Challenge 

• > 90% of customers are using 

the latest two releases 

 

• > 50 % of customers are using 

releases older 10 years 

Product Release EoL Ext. EoL 

Windows XP 2001 2009 2014 

Windows 8 2012 2018 2023 

SAP SRM  2006 2013 2016 

Red Hat 2012 2020 2023 

Tomcat 2007 2016 n/a 
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Source: SAP’s Security Development Lifecycle (S2DL) 
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Data Sources 
Public 

 FOSS information repositories 
 Open Hub (formerly Ohloh)  

 Core Infrastructure Initiative (CII) Census project  

 Public databases of vulnerabilities 
 National Vulnerability Database (NVD) 

 Exploit Database website (ExploitDB) 

 Open Sourced Vulnerability Database (OSVDB) 

 Project data 
 Coverity FOSS scan service 

 Source code repositories 

Internal  
 Software inventory (e.g., Black Duck Code Center as used by SAP) 



FLOSS Usage At SAP 

Based on the 166 most used FOSS components (as of autumn 2015) 

Programming Languages  

Java

C

JavaScript

PHP

C++

Other

Vulnerabilities (CVEs) 

DoS

Code execution

Overflow

Bypass something

Gain information

XSS

Gain privileges

Directory traversal

Memory corruption

CSRF



Part II:  
 

Security of Open Source Enterprise Frameworks 

or  

Assessing Risks and Planning Efforts of the Secure 

Consumption of FLOSS 



What We Want 

https://www.flickr.com/photos/fimbrethil/4507848067/ 

1. How many vulnerabilities will be 

published next year for component X? 

 

2. How often do I need to ship a patch to fix 

a vulnerability caused by component X? 



Vulnerability Prediction? 

Tomcat 6.x publicly known vulnerabilities (CVEs) 



Vulnerability Prediction: Problems 
 

• There is not enough data 

   

• Number of vulnerabilities depends on: 

  Age of the project 

  Number of users 

 

• Sometimes you simply have no choice… 

 



Understanding Factors Is More 

Critical Than Predictions 

 When will a vulnerability appear in a FOSS component? 
 We do not know 

 

  Can we distinguish features of projects causing 

"problems" for consuming software? 
 We use maintenance effort of proprietary consumers to denote “problems” 

 Does the ”security culture” of FOSS developers make a difference? 

 Does is make a difference which main language/technology is used? 



Which Factors Are Interesting? 

 

 Collect all possible data, build a regression model to 

asses the impact of each factor 
 

 Can we use all data that is available? 
 Actual Total #LoCs of a component 

 Added Total #LoCs of a component 

 Removed Total #LoCs of a component 

 Changed Total #LoCs (added, removed, etc.)... 

 

 

 
 



Relationships Between Factors 



Different Maintenance Models 

 60 products are using Apache Tomcat 
 Requires a lot of expertise to resolve security issues 

 It makes more sense to have a team of Apache Tomcat experts around 

 

 

 2 products are using a small JavaScript library 
 This does not require any major expertise 

 However, if a company ends up using large number of products for which only the 

“local” expertise exists, it may be problematic 



Centralized Security Maintenance 
 Policy: dev. teams must select only components widely used and 

supported within a company 

 
 A central team resolves vulnerabilities in all FOSS components and 

pushes changes to all consumers 
  

 The security maintenance effort scales logarithmically with the 

number of products consuming a component  



Distributed Security Maintenance 
 Policy: each dev. team is free of selecting appropriate components 

  

 Each team has to take care of security issues individually 

 
 While this model should decrease the effort for organizational aspects 

(not considered by us), it adds up for the technical part of the effort 



Hybrid Security Maintenance 



Part III:  
 

Practical Recommendations On 

Controling Risk & Effort Of Using Third Party Components 

 



Secure Software Development Life Cycle 
 Maintain a detailed software inventory 

(Do not forget the dependencies) 

  Actively monitor vulnerability databases 

 Assess project specific risk of third-party components 

 

Obtaining components (or sources) 
 Download from trustworthy sources  

(https, check signatures/checksums) 

Strategies For Controlling Risks (1/2) 



Project Selection 
 Prefer projects with private bug trackers 

 Evidences of a healthy/working SDLC 

 Documented security fixes/patches  

(no “secret” security fixes) 

 Documented security guidelines   

 Use of security testing tools 

 

Strategies For Controlling Risks (2/2) 

https://www.coreinfrastructure.org/programs 

https://www.coreinfrastructure.org/programs


Secure Software Development Life Cycle 
 Update early and often 

 Avoid own forks  

(collaborate with FLOSS community) 

Project selection 
 Large user base  

 Active development community 

 Technologies you are familiar with 

 Compatible maintenance strategy/life cycle 

 Smaller (in terms of code size) and less complex might be better 

 

Strategies For Controlling Effort 



Part IV:  
 

Conclusion 



Do not waste time with unimportant questions! 
(Is FLOSS more/less secure as proprietary software) 

 

 

 

Implement a secure consumption strategy: 
• Risk assessment of third party consumption (at least security & licenses) 

• Plan for the efforts of secure consumption  

• Plan the efforts/costs for response and maintenance  

Conclusion 



Do not waste time with unimportant questions! 
(Is FLOSS more/less secure as proprietary software) 

 

 

 

Implement a secure consumption strategy: 
• Risk assessment of third party consumption (at least security & licenses) 

• Plan for the efforts of secure consumption  

• Plan the efforts/costs for response and maintenance  

Conclusion 

Final advice: 

• Accept that you can be hit by a “black swan” (e.g., heartbleed) 

• If it happens:  

• Concentrate on understanding and fixing the issue 

• Understanding why you did not find the swan  

earlier should not be your first priority 
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