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Abstract Finding and fixing software vulnerabilities
have become a major struggle for most software devel-
opment companies. While generally without alternat-
ive, such fixing efforts are a major cost factor, which
is why companies have a vital interest in focusing their
secure software development activities such that they
obtain an optimal return on this investment.

We investigate, in this paper, quantitatively the ma-
jor factors that impact the time it takes to fix a given
security issue based on data collected automatically
within SAP’s secure development process and we show
how the issue fix time could be used to monitor the
fixing process. We use three machine-learning meth-
ods and evaluate their predictive power in predicting
the time to fix issues. Interestingly, the models indicate
that vulnerability type has less dominant impact on is-
sue fix time than previously believed. The time it takes
to fix an issue instead seems much more related to the
component in which the potential vulnerability resides,
the project related to the issue, the development groups
that address the issue, and the closeness of the software
release date. This indicates that the software structure,
the fixing processes, and the development groups are
the dominant factors that impact the time spent to ad-
dress security issues.

SAP can use the models to implement a continuous
improvement of its secure software development pro-
cess and to measure the impact of individual improve-
ments. The development teams at SAP develop differ-
ent types of software, adopt different internal develop-
ment processes, use different programming languages
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and platforms, and are located in different cities and
countries. Other organizations, may use the results–
with precaution–and be learning organizations.

Keywords Human factors · secure software · issue fix
time.

1 Introduction

Fixing vulnerabilities, before and after a release, is
one of the most costly and unproductive software-
engineering activities. Yet, it comes with few altern-
atives, as code-level vulnerabilities in the application
code are the basis of increasingly many exploits [1].
Large software development enterprises, such as SAP,
embed in their development process activities for identi-
fying vulnerabilities early, such as dynamic and static
security testing [2]. Next to that, SAP’s security devel-
opment lifecycle (see, e.g., [3] for Microsoft’s security
development lifecycle) includes a process for fixing vul-
nerabilities after a software release.

Analyzing and fixing security issues is a costly un-
dertaking that impacts a software’s time to market and
increases its overall development and maintenance cost.
In result, software development companies have an in-
terest to determine the factors that impact the effort,
and thus, the time it takes to fix security issues, in par-
ticular to:

– identify time-consuming factors in the secure devel-
opment process,

– better understand affecting factors,
– focus on important factors to enhance software’s se-

curity level,
– accelerate secure software development processes,

and to
– enhance security cost planning for software develop-

ment projects.

http://www.brucker.ch/bibliography/abstract/othmane.ea-fix-effort-2016
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In a previous study, Othmane et al. [4] conducted
expert interviews at SAP to identify factors that im-
pact the effort of fixing vulnerabilities. SAP collects
data about fixing security issues (potential vulnerab-
ilities that need to be analyzed further manually to en-
sure whether they are vulnerabilities or false positive
issues) both during a software’s development and after
its release. With this study we supplement the previ-
ous qualitative, interview-based results with objectively
gathered system data. In this study, we used this data to
identify and quantify, using machine learning, to what
extent automatically measured factors impact a given
issue’s fix time. By issue fix time we mean the duration
between the time at which a security issue is reported
to SAP and the time at which the issue is marked as
closed in number of days. For simplicity, we use the
term issue to refer to a security issue in the remaining
of the paper.

Vulnerabilities are subset of software defects; they
allow violation of constraints that can lead to malicious
use of the software. The information, tools, and expert-
ise that help to analyze faults (functionalities errors)
apply with limited efficacy to analyze vulnerabilities.
Zimmermann et al. [5] reported, for example, that the
number of vulnerabilities is highly correlated with code
dependencies, while the metrics that are correlated with
faults such as size of changed code have only small ef-
fect. In addition, detecting faults requires exercising the
specified functionalities of the software, while vulnerab-
ilities analysis requires the software developers to have
the knowledge and expertise to think like attackers [6].
Moreover, vulnerabilities detection tools do not provide
often sufficient information to locate the issue easily,
besides that they report high number of false posit-
ive. Thus, it is believed that“finding vulnerabilities is
akin to finding a needle in a haystack” [6]. Moreover,
vulnerabilities issues occur much less frequently then
faults. Thus, models derived from data related to faults
and vulnerabilities issues have to deal with unbalanced
datasets, c.f., [7]. Therefore, better prediction models of
issue fix time should use only security issues data and
consider the characteristics of issues.

For the analysis we use five data sources based
on distinct system tools available at SAP. The first
three main data sources relate to security issues; issues
found by code scanners for the programming language
ABAP [8] (Data source 1) and for Java, JavaScript, and
C (Data source 2), as well as issues found in already re-
leased code, which are communicated through so-called
security messages, for instance reported by customers,
security experts or SAP’s own security team (Data
source 3). The other two data sources comprise sup-
port data. They describe the components, i.e., a group

of applications that performs a common business goal
such as sales order or payroll (Support data 1), and the
projects (Support data 2).

After cleaning the data, we used three methods to
develop prediction models, based on (1) linear regres-
sion, (2) Recursive PARTitioning (RPART), and (3)
Neural Network Regression (NNR). Next, we measured
the models’ accuracy using three different metrics. In-
terestingly, the models indicate that the impact of a vul-
nerability’s type (buffer overflow, cross-site-scripting,
etc.) has a less dominant impact than previously be-
lieved. Instead, the time it takes to fix an issue is more
related to the component in which the vulnerability
resides, the project related to the issue, to the develop-
ment groups that address the issue, and to the closeness
of the software release date.

SAP can use the results of this study to identify
costly pain points and important areas in the secure
development process, and to prioritize improvements
to this process. Such models can be used to establish
a learning organization, which learns and improves its
processes based on the company-specific actual facts
reflected in the collected data [9]. Since SAP collects
the models’ input data continuously, the models can be
used to analyze the company’s processes and measure
the impact of enhancements over time.

This paper is organized as follows. First, we give
an overview of related work (Sect. 2), discuss SAP’s
approach to secure software development (Sect. 3),
and provide an overview of the regression methods
and model accuracy metrics that we use in the study
(Sect. 4). Next, we describe the research methodology
that we applied (Sect. 5), report about our findings
(Sect. 6) and analyze the factors that impact the issue
fix time (Sect. 7). Subsequently, we discuss the impacts
and the limitations of the study (Sect. 8), the main
lessons (and surprises) that we learned (Sect. 9) and
conclude the paper.

2 Related Work

There is related work on prediction models for devel-
opment efforts and time to fix bugs but work in the
area of effort estimation for fixing security issues is
scarce. Thus, we discuss in this section related work
that investigate influencing factors on issue fix time or
vulnerability fix time and also the development of pre-
diction models for effort estimations, and differentiate
them from our work.

Cornell measured the time that the developers spent
fixing vulnerabilities in 14 applications [10]. Table 1
shows the average time the developers in the study take
to fix vulnerabilities for several vulnerability types. Cor-
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Table 1 Examples of time required for fixing vulnerabilities [10].

Vulnerability type Average fix time (min)
Dead Code (unused methods) 2.6
Lack of authorization check 6.9
Unsafe threading 8.5
XSS (stored) 9.6
SQL injection 97.5

nell found that there are vulnerability types that are
easy to fix, such as dead code, vulnerability types that
require applying prepared solutions, such as a lack of
authorization, and vulnerability types that, although
simple conceptually, may require a long time to fix for
complex cases, such as SQL injection. The vulnerability
type is thus one of the factors that indicate the vulner-
ability fix time but is certainly not the only one [4].

In previous work, Othmane et al. [4] reported on
a qualitative study conducted at SAP to identify the
factors that impact the effort of fixing vulnerabilities
and thus, the vulnerability fix time. The study involved
interviews with 12 security experts. Through these in-
terviews identified 65 factors that include, beside the
vulnerabilities characteristics, the structure of the soft-
ware involved, the diversity of the used technologies, the
smoothness of the communication and collaboration,
the availability and quality of information and docu-
mentation, the expertise and knowledge of developers
and security coordinators, and the quality of the code-
analysis tools.

Several studies aim at predicting the time to fix
bugs [11,12,13,14,15,16,17]. Zhang et al. [18] conduc-
ted an empirical study on three open-source software to
examine what factors affect the time between bug as-
signment to a developer and the time bug fixing starts,
that is the developer’s delay (when fixing bugs), along
three dimensions: bug reports, source code, and code
changes. The most influencing factor found was the
issue’s level of severity. Other factors are of technical
nature, such as sum of code churn, code complexity or
number of methods in changed files as well as the max-
imum length of all comments in a bug report. Similar to
our study, Zhang et al. were interested in revealing the
factors that impact time, but as opposed to them we fo-
cus on security issues, not on bugs, and include in our
analysis not only automatically collected information
about security issues before and after release, but ad-
ditionally component- and project-related factors from
which human-based and organizational factors can be
derived. In contrast to Zhang et al., we consider the
overall fix time that starts at the time when a security
issue is reported and ends when the issue is marked as
closed.

Menzies et al. [19] estimated projects development-
effort, using project related data, such as the type of

teams involved, the development time of the projects,
and the number of high-level operations within the soft-
ware. They found that it is better to use local data
based on related projects instead of global data, which
allows to account for project-related particularities that
impact the development effort. Their data sample is
a “global dataset” that includes data from several re-
search software projects conducted by different entit-
ies. We believe that the issue is related to contextual
information that are not captured by the data and are
related to the entities. Instead, our data is related to
thousands of projects developed by quasi-independent
development teams that use, for example, different pro-
gramming languages and platforms (e.g., mobile, cloud,
Web, etc.), adopt different internal processes, and are
located in several countries and cities.

In another study, Menzies et al. [20] reassured
the usefulness of static code attributes to learn de-
fect predictors. They showed that naive-Bayes machine-
learning methods outperform rule-based or decision-
tree learning methods and they showed, on the other
hand, that the choice of learning methods used for de-
fect predictions can be much more important than used
attributes. Unlike this previous work, we use static code
attributes to predict issue fix time and we use neural
networks as additional method for prediction.

Following the objective to reduce effort for secur-
ity inspection and testing, Shin et al. [21] used in their
empirical study code complexity, code churn, and de-
veloper activity metrics obtained to predict vulnerable
code locations with logistic regressions. They also used
J48 decisions trees, random forest, and Bayesian net-
work classification techniques based on data obtained
from two large-scale open source projects using code
characteristics and version control data. They found
out that the combination of these metrics is effective
in predicting vulnerable files. Nevertheless, they state
that further effort is necessary to characterize differ-
ences between faults and vulnerabilities and to enhance
prediction models. Unlike Shin et al., our empirical re-
search focuses on predictions using system-based data
to predict vulnerability fix time.

Hewett and Kijsanayothin [17] developed models for
defect repair time prediction using seven different ma-
chine learning algorithms, e.g. decision trees and sup-
port vector machines. Their predictive models are based
on a case study with data from a large medical soft-
ware system. Similar to our approach they consider the
whole repair time including all phases of a defect life-
cycle. They use twelve defect attributes selected by do-
main experts for their estimations such as component,
severity, start and end date, and phase. Unlike them we
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are interested in estimating vulnerability fix time not
defect fix time.

In contrast to prior work, which often is based on
open-source software, we estimate the vulnerability fix
time based on an industrial case study of a major soft-
ware development company, based on distinct data sets
that include security issues before and after release
and combine them with project and component-related
data. Our objective is to identify the impacting strength
of the factors on vulnerability fix time as well as to pre-
dict issue fix time in general.

3 Secure Software Development at SAP

To ensure a secure software development, SAP follows
the SAP Security Development Lifecycle (S2DL). Fig-
ure 1 illustrates the main steps in this process, which is
split into four phases: preparation, development, trans-
ition, and utilization.

To allow the necessary flexibility to adapt this pro-
cess to the various application types (ranging from
small mobile apps to large-scale enterprise resource-
planning solutions) developed by SAP as well as the
different software development styles and cultural dif-
ferences in a worldwide distributed organisation, SAP
follows a two-staged security-expert model:

1. a central security team defines the global security
processes, such as the S2DL, provides security train-
ings, risk identification methods, offers security test-
ing tools, or defines and implements the security re-
sponse process;

2. local security experts in each development
area/team are supporting the developers, ar-
chitects, and product owners in implementing the
S2DL and its supporting processes.

For this study, the development and utilization
phases of the S2DL are the most important ones, as the
activities carried out during these phases detect most
of the vulnerabilities that need to be fixed:

– during the actual software development (in the steps
secure development and security testing) vulnerab-
ilities are detected, e.g., by using manual and auto-
mated as well as static and dynamic methods for
testing application security [22,2]. Most vulnerabil-
ities detected are found during this step, i.e., most
vulnerabilities are fixed in unreleased code (e.g., in
newly developed code that is not yet used by cus-
tomers);

– security validation is an independent quality control
that acts as “first customer” during the transition
from software development to release, i.e., security
validation finds vulnerabilities after the code freeze,
(called correction close) and the actual release;

– security response handles issues reported after the
release of the product, e.g., by external security re-
searchers or customers.

If an issue is confirmed (e.g., by an analysis of a se-
curity expert), from a high-level perspective developers
and their local security experts implement the follow-
ing four steps: 1. analyze the issue, 2. design or select a
recommended solution, 3. implement and test a fix, and
4. validate (e.g., by re-testing the fixed solution) and re-
lease this fix. Of course, the details differ depending of
the development model of the product team and, more
importantly, depending on whether the issue is detected
in code that is used by customers or not.

While the technical steps for fixing an issue are the
same regardless of whether the issue is in released code
or currently developed code, the organizational aspects
differ significantly: for vulnerabilities in unreleased de-
velopment code, detecting, confirming, and fixing vul-
nerabilities is a lightweight process defined locally by
the development teams. Vulnerabilities detected by se-
curity validation, e.g., after the code freeze, even if in
unreleased code, involve much larger communication ef-
forts across different organisations for explaining the
actual vulnerabilities to development as well as ensur-
ing that the vulnerability is fixed before the product is
released to customers.

Fixing vulnerabilities in released code requires the
involvement of yet more teams within SAP, as well as
additional steps, e.g., for back-porting fixes to older
releases and providing patches (called SAP Security
Notes) to customers.

Let us have a closer look on how an externally re-
ported vulnerability in a shipped software version is
fixed: First, an external reporter (e.g., customer or in-
dependent security researcher) contacts the security re-
sponse team, which assigns a case manager. The case
manager is responsible for driving the decision if a re-
ported problem is a security vulnerability that needs to
be fixed, and for ensuring that the confirmed vulnerab-
ility is fixed and that a patch is released. After a vul-
nerability is confirmed, the case manager contacts the
development team and often also a dedicated mainten-
ance team (called IMS) to ensure that a fix is developed
and back-ported to all necessary older releases (accord-
ing to SAP’s support and maintenance contracts). The
developed fixes are subject to a special security test
by the security validation team and, moreover, the re-
sponse teams reviews the SAP Security Note. If the
technical fix as well as the resulting Security Note pass
the quality checks, the Security Note is made available
to customers individually and/or in form of a support
package (usually on the first Tuesday of a month). Sup-
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Figure 1 Overview of the SAP Security Development Lifecycle (S2DL)

port packages are functional updates that also contain
the latest security notes.

4 Background

Assume a response variable y and a set of independent
variables xi such that y = f(x1, x2, . . . , xn) where f

represents the systematic information that the variables
xi provide about y [23]. Regression models relate the
quantity of a response factor, i.e., dependent variable
to the independent variables.

Different regression models have different capabilit-
ies, e.g., in terms of their resistance to outliers, their fit
for small datasets, and their fit for a large number of
predicting factors [24]. However, in general, a regression
model is assumed to be good, if it predicts responses
close to the actual values observed in reality. In this
study, the performance of a given model is judged by
its prediction errors; the low are the errors the better
is the performance of the model.

This section provides background about the regres-
sion methods, model’s performance metrics, and a met-
ric for measuring the relative importance of the predic-
tion factors used in the models.

4.1 Overview of Used Regression Methods

We give next an overview of the three methods used in
this study.
Linear regression. This method assumes that the re-
gression function is linear in the input [25], i.e., in the
prediction factors. The linear method has the advant-
age of being simple and allows for an easy interpreta-
tion of the correlations between the input and output
variables.
Tree-based regression. This method recursively par-
titions the observations, i.e., the data records of the ob-
ject being analyzed, for each of the prediction factors
(aka features) such that it reduces the value of a
metric that measures the information quantity of the
splits [26]. In this study, we use the method recursive
partitioning and regression trees (RPART) [27].
Neural-networks regression. This method repres-
ents functions that are non-linear in the prediction vari-
ables. It uses a multi-layer network that relates the in-
put to the output through intermediate nodes. The out-
put of each intermediate node is the sum of weighted

input of the nodes of the previous layer. The data input
is the first layer [28].

These three regression methods are the basic ones
that are commonly used in data analytics. In this study,
we use their implementations in packages for the statist-
ics language R:1 rpart2 for RPART, and nnet3 for NNR.
The implementation “lm” of the Linear Regression (LR)
is already contained within the core of R.

4.2 Model Performance Metrics

Regression methods infer prediction models from a
given set of training data. Several metrics have been
developed to compare the performance of the models
in terms of accuracy of the generated predictions [29].
The metrics indicate how well the models predict ac-
curate responses for future inputs. Next, we describe
the three metrics that we used in this work, the Coef-
ficient of determination (R2) [30], the Akaike Informa-
tion Criterion (AIC) [29] and the Prediction at a given
level (PRED) [30].4

Coefficient of determination (R2). This metric
“summarizes” how well the generated regression model
fits the data. It computes the proportion of the vari-
ation of the response variable as estimated using the
generated regression compared to the variation of the
response variable computed using the null model, i.e.,
the mean of the values [29]. The following equation for-
mulates the metric.

R2 = 1 −
∑n

i=0 (xi − x̂i)
2∑n

i=0 (xi − x̄)2
(1)

Here n is the number of observations, xi is the actual
value for observation i, x̂i is the estimated value for
observation i, and x̄ is the mean of xi values.

The LR method focuses on minimizing R2. Thus,
Spiess and Neumeyer, for example, consider that the
metric is not appropriate for evaluating non-linear re-
gression models [32]. Nevertheless, the metric is often
used to compare models, e.g., [29]. In this study we use

1 https://www.r-project.org/about.html
2 https://cran.r-project.org/web/packages/rpart/rpart.pdf
3 https://cran.r-project.org/web/packages/nnet/nnet.pdf
4 We avoided the metric Mean of the Magnitude of the Relative

Error (MMRE) as it was shown to be misleading [31].
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the metric to evaluate the performance of the predic-
tion models in predicting the test dataset and not the
training dataset. The metric provides a “summary” of
the errors of the predictions.
Akaike Information Criterion. This metric estim-
ates the information loss when approximating reality.
The following equation formulates the metric [29].

AIC = n× log

(
n∑

k=0

(xi − x̂i)
2/n

)
+ 2(k + 2) (2)

Here n is the number of observations, xi is the actual
value for observation i, x̂i is the estimated value for
observation i, and k is the number of variables.

A smaller AIC value indicates a better model.
Prediction at a given level. This metric computes
the percentage of prediction falling within a threshold
h [33]. The following equation formulates the metric

PRED(h) =
100

n
×

n∑
i=1

{
1 if xi−x̂i

xi
≤ h

0 otherwise
(3)

Here n is the number of observations, xi is the actual
value for observation i, x̂i is the estimated value for
observation i, and h is the threshold, e.g., 25%.

The perfect value for the PRED metric is 100%.

4.3 Variable Importance

This metric measures the relative contributions of
the different predicting factors used by the regression
method to the response variable. For statistical use,
such metric could be, for example, the statistical signi-
ficance while for business use, the metric could be the
“impact on the prediction factor” on the (dependent)
response variable.

In this work we use the variable-importance met-
ric employed in the RPART regression method.5 The
metric measures the sum of the weighted reduction in
the impurity method (e.g. the Shannon entropy and
the variance of response variable) attributed to each
variable [34,35].6 It associates scores to each variable,
which can be used to rank the variables based on their
contribution to the model.

5 We use function varImp().
6 There are other methods for ranking variables. We choose this

method, which comes with RPART, because most the variables
are categorical.

Develop 

models 

Analyze the 

models 

Collect data 
Prepare the 

data 

Explore the 

data 

Set research 

goal 

Figure 2 Analysis method.

5 Methodology

Figure 2 depicts the process that we used in this study;
a process quite similar to the one used by Bener et
al. [36]. First, we define the goal of the data-analytics
activity, which is: develop a function for predicting the
issue fix time using the data that SAP collects on it’s
processes for fixing vulnerabilities in pre-release and
post-release software. The following steps are: collect
data that could help achieve the goal; prepare the data
to be used to derive insights using statistical meth-
ods; explore the collected data sets to understand the
used coding scheme, its content, and the relationships
between the data attributes; develop prediction models
for each of the collected datasets; compute metrics on
the model and try to find explanations and arguments
for the results. The results of the models analysis were
used to identify ways to improve the models. The im-
provements included the collection of new datasets for
dependent information, e.g., about projects. We discuss
next the individual steps in more details.

5.1 Data Collection

SAP maintains three data sets on fixing security vul-
nerabilities, which we refer to as our main data sources.
In addition, it maintains a data set about components,
and a dataset about projects, which we call support
data. Table 2 lists the different datasets we use. The
datasets used in our study span over distinct time peri-
ods for each dataset (e.g., about 5 years).

The security-testing process records data about fix-
ing issues in two data sets. First, ABAP developers use
SLINT for security code analysis. In Data source 1, the
tool records data related to a set of attributes about
each of the issues it discovers and the tasks performed
on these issues. Table 3 lists these attributes.
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Table 2 Datasets collected from SAP’s tools

Dataset Description
Data source 1 Vulnerabilities found in ABAP code
Data source 2 Vulnerabilities found in Java and C++

code
Data source 3 Security messages
Support data 1 Components
Support data 2 Projects
Extended data
source 2

Extend data source 2 with information
about the projects (support data 2)

Extended data
source 3

Extend data source 3 with information
about the components (support data 1)

Table 3 List of the attributes of ABAP issue fixing (Data source
1).

Attribute Description
Date_found Date on which the issue was found
Date_solved Date on which the issue was closed
Vulnerability_name Vulnerability types such as memory

corruption and buffer overflow
Project_ID Project identifier
Priority The priority of fixing the vulnerability.

Range: 1 to 4, with 1 highest, 4 lowest
priority.

Vulnerability_count Number of issues of the same vulnerab-
ility found at once. This indicates that
the issues might be related to the same
problem.

Second, Java and JavaScript developers use Fortify7

and C++ developers use Coverity to analyze software
for security issues. In Data source 2, these tools record
data related to a set of attributes about each of the
vulnerabilities they discover and the tasks performed
on these vulnerabilities. Table 4 lists these attributes.

In Data source 3, the security response process
maintains data about fixing issues discovered in re-
leased software. The data is collected and maintained
through a Web form; it is not collected automatically
as in the case of data sources 1 and 2. The attributes
of this data source are listed in Table 5.

Each issue can relate to a concrete component. Com-
ponents are groups of applications that perform a com-
mon business goal. A system consists of a set of com-
ponents. Table 6 lists the components attributes.

A software is developed in the context of a project.
Table 7 lists the attribute of the projects dataset (sup-
port data 2). We extended data source 2 with project
descriptions data; we joined data source 2 and support
data 2. We also added three computed fields to the data
set:

1. FixtoRelease_period: The time elapsed from fixing
the given issue to releasing the software.

7 Since 2013, SAP uses Checkmarx for analyzing JavaScript.
Thus, the use of Fortify by JavaScript developers declines since
then.

Table 4 List of the attributes of Java and C++ issue fixing
(Data source 2).

Attribute Description
Date_found Date on which the issue was found
Date_solved Date on which the issue was closed
Vulnerability_name Vulnerability types such as memory

corruption and buffer overflow
Scan_source Tool that performed the scan, i.e.,

Coverity (for C++ code) or Fortify (for
Java code)

Project_name Project identifier
Folder_name Indicates the required behavior of the

developer towards the issue, e.g., must
fix, fix one of the a set, optional, etc.

Scan_status Status of the issues, i.e., new, updated,
removed and reintroduced (i.e. removed
but reopened). It allows to identify
whether the issue is addressed or not,
and is a false positive or not.

Vulnerability_count Number of issues of the same vulnerab-
ility found at once.

Priority The priority of fixing the vulnerability.
Range: 1 to 4, with 1 highest, 4 lowest
priority.

Table 5 List of the attributes for security messages (Data source
3).

Attribute Description
CVSS_Score Common Vulnerability Scoring System

(CVSS). The score indicates also the
urgency of fixing the vulnerability.

Processor Identifier of development team/area
and, thus, implicitly for the local in-
stantiation of the S2DL

Reporter Identifier of the external re-
searcher/company who reported
the issue

Source The source of the reported issue such as
internal, security testing tool, custom-
ers

Vulnerability_type Vulnerability type
Priority Priority of the issue to be fixed: low,

medium, or high
Component Group of applications that perform a

common business goal such as sales or-
der or payroll

2. Dev_period: The time elapsed from starting the de-
velopment to closing the development of the soft-
ware that contains the issue.

3. FoundtoRelease_period: The time elapsed from dis-
covering the issue to the releasing of the software
that contains the issue.

The number of records for each of the basic data sets
range from thousands of records to hundred of thou-
sands of records. We did not provide the exact numbers
to avoid their misuse (in combination with potentially
other public data) to derive statistics about vulnerabil-
ities in SAP products, which would be out of the scope
of this work.
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Table 6 List of the attributes for the components (Support data
1).

Attribute Description
PTU_area The area of the component, e.g., CRM,

IMS, ERP
Gr_component Component group, i.e., semantic ag-

gregation of components based on su-
perordinate level

Language The language(s) used to develop the
component: ABAP, Java, ABAP and
Java, or unknown

PPMS_product The name of product that the compon-
ent is part of, as stated in PPMS (Pro-
jects Management System)

Comp_owner The component’s development group
Product_owner The product’s development group

Table 7 List of the attributes for projects (Support data 2).

Attribute Description
Project_name The name of the project (Internal pro-

gram name)
Prg_typ_id Release related vs release unrelated

(RR / UR)
Rel_type_id Project type (standard, etc.)
Rel_typ_id Release type ID (standard, pilot, etc.)
Delivery_mode_id Mode of delivery to the customer. Val-

ues are on premise, on demand, on mo-
bile, etc.

Maintstrategy_id Maintenance strategy. There is a codi-
fication for the strategies.

Deploy_type Deployment type. There is a codifica-
tion for the deployment

D2t_date Planned end of the test period. The
period starts after the development
closes

Devclose_date Closing date of the development
P2d_date Planned development starting date
P2r_date Planned release date
Prg_lead_resp Development team responsible for the

project
Risk_expert Identifier of risk expert (anonymized

data).

5.2 Data Preparation

Using the collected data required us to prepare them for
the model-generation routines. The preparation activ-
ities required cleaning the data and transforming them
as needed for processing.
Data cleaning. First, we identified the data columns
where data are frequently missing. Missing values im-
pact the results of the regression algorithms because
these algorithms may incorrectly assume default values
for the missing ones. We used plots such as the one of
Figure 3 to identify data columns that require atten-
tion.

Second, we developed a set of plots to check out-
liers – values that are far from the common range of
the values of the attributes. We excluded data rows
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Figure 3 Plot that visualizes missing data for data source 3.

that include semantically wrong values, e.g., we re-
moved records from Data source 1 where the value of
"Date_found" is 1 Dec. 0003.

Third, we excluded records related to issues that are
not addressed yet; we cannot deduce issue fix time of
such records.

Fourth, we excluded records that include invalid
data. For example, the vulnerability type attribute of
Data source 2 includes values such as “not assigned",
“?", and “&novuln." The records that have these values
are excluded. There is no interpretation of prediction
results that include these values.

Fifth, we excluded non-useful data attributes. These
include, for example, the case where the attribute is
derived from other attributes considered in the models.
Data transformation. First, we transformed the data
of some columns from type text to appropriate types.
For instance, we transformed the data of the CVSS
column to numeric. Next, we computed new data
columns from the source (original) data. For example,
we computed the issue fix time from the issue closing
date and issue discovery date or we performed some at-
tributes’ value transformations to obtain machine read-
able data for model generation. Some attributes contain
detailed information that reduces the performance of
the regression algorithms. We addressed this issue by
developing a good level of data aggregation for the pre-
diction algorithm. For example, the original dataset in-
cluded 511 vulnerability types. We grouped the vulner-
abilities types in vulnerability categories, which helps
to derive better prediction models. Also, we aggregated
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Table 8 Coefficients of the linear regression of issue fix time to
security message dataset (Data source 3).

Message source Coefficient p-value
(Intercept) 249.17 < 0.001
Code scan tool -50.04 < 0.001
Central security department -38.05 < 0.001
Customers -60.68 < 0.001
External research organizations -102.78 < 0.001
Internal development departments -12.21 0.304
Test services -124.74 < 0.001
Validation services -21.88 0.136
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Figure 4 Relationship between issue fix time (in days) and vul-
nerability types in the context of Data source 3. CDR-1, INF-1,
MEM, SQL, TRV, XSS are internal codes for vulnerabilities types
and code “?” indicates unknown or uncategorized type of repor-
ted vulnerabilities. (Some vulnerability types do not appear on
the X axis to ensure clarity.)

the “component” variable to obtain “Gr_component” to
include in our regression.

5.3 Data Exploration

We developed a set of plots and statistics about the fre-
quencies of values for the factors and the relationship
between the issue fix time and some of the prediction
factors. For example, Figure 4 shows the relationship
between the issue fix time in days and vulnerability

type. This gives us a first impression of the relations
among the attributes of a given data set. Also, Table 8
shows the coefficients of the Linear Regression (LR) of
the issue fix time using the factor message source, that
identifies the source of the reported issue. The table
shows that the coefficients in this categorical factor in-
dicate the different contributions of the factor on the
issue fix time. The results indicate different impacting
strengths of the different sources of security messages
(e.g., external parties, customers or the security depart-
ment) on the issue fix time.

5.4 Models Development

We partitioned each prepared data source into a train-
ing set that includes 80% of the data and a test set (used
to validate the developed model) that includes the re-
maining 20%.8 We used the training set to develop the
prediction models, or fits, and the test set to assess the
goodness of the generated models. The selection of the
records for both sets is random.

Next, we performed three operations for each of the
main data sources. First, we generated three prediction
models using the training set, one using the linear re-
gression method, one using the RPART method, and
one using the NNR method. The three data sources
have different data attributes and cannot be combined.
Thus, we cannot use them together to develop a generic
prediction model.

5.5 Models Analysis

We used the variable-importance metric described in
Sect. 4.3 to assess the impact of the different pre-
diction factors on the issue fix time for each of the
three data sources. The metric indicates that the factor
“project name” is very important for Data source 2
and the factor “component” is very important forDdata
source 3. The results and their appropriateness were
discussed with the security experts at SAP. We exten-
ded Data source 2 with Support data 2 (i.e., projects
data set) and we extended Data source 3 with Support
data 1 (i.e., components data set). Next, we performed
the model development phase (section 5.4) using the
extended datasets. Then, we used each of the predic-
tion models to predict the issue fix time for the test
data set and computed the performance metrics (see

8 We used 80% of the data for developing the prediction models
and not 60% of the data because the size of extended data source
3 is limited: 380 records. (We wanted to use the same ratio for
all datasets.)
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 84) vulnerabilitytype=,&OTHER,ACI-1,CDR-1,INF-1,MAC-1,MEM,XSS,XS

S-2 270   5063771.00  286.53700   

              168) Component=AP-RC-ANA-UI-XLS,BC-BSP,BC-CST-DP,BC-C

ST-IC,BC-CTS-SDM,BC-CTS-TMS,BC-DOC-HLP,BC-DOC-TTL,BC-I18,BC

-JAS-ADM-MON,BC-JAS-DPL,BC-SEC,BC-SEC-DIR,BC-SRV-ARL,BC-SR

V-FSI,BC-UPG-SLM,BC-UPG-TLS-TLJ,BC-WD-CMP-FPM,BC-XI-CON-AX

S,BC-XI-IBD,BC-XI-IBF,BI-BIP-AUT,BI-OD-STW,BI-RA-WBI,BW-BEX-OT-

MDX,CA-GTF-IC-BRO,CA-GTF-IC-SCR,CA-GTF-RCM,CRM-BF,CRM-BF-

SVY,CRM-CIC,CRM-IC-EMS,CRM-IC-FRW,CRM-IPS-BTX-APL,CRM-ISA,

CRM-ISA-AUC,CRM-ISE,CRM-LAM-BF,CRM-MD-PRO,CRM-MKT-DAM,C

RM-MKT-MPL,CRM-MSA,FS-CM,FS-SR,IS-A-DP,IS-U-CS-ISS,LO-AB-BS

P,LO-GT,MFG-ME,MOB-APP-EMR-AND,PA-GE,PLM-PPM-PDN,PLM-WUI

-RCP,PSM-GPR-SN,SBO-INT-B1ISN,SCM-EWM-RF,XAP-IC-IDM,XX-PRO

J-CDP-TEST-296 119   1015233.00  205.82350 * 

              169) Component=AP-CFG,AP-LM-MON-HC,AP-LM-SUP,AP-RC-

ANA-RT-MDA,AP-RC-RSP,AP-RC-UIF-RT,AP-SDM-EXC,BC-CCM-MON-

OS,BC-CCM-SLD-JAV,BC-CST,BC-CUS-TOL-CST,BC-DB-ORA-INS,BC-D

OC-TER,BC-ESI-WS-ABA,BC-ESI-WS-JAV-RT,BC-FES-BUS-RUN,BC-JA

S-ADM-ADM,BC-JAS-COR,BC-JAS-SEC-UME,BC-MID-RFC,BC-SEC-SA

L,BC-SRV-COM,BC-SRV-COM-FTP,BC-SRV-KPR-CS,BC-SRV-MCM,BC-

SRV-SSF,BC-WD-ABA,BC-WD-  

Figure 5 Part of the prediction model generated from data
source 3 using RPART method. (It shows that there is a long
list of component IDs (among a set of about 2300 components)
for the selection of nodes 168 and 169 while also the parent node
uses a set of vulnerability types.)

subsection 4.2) for each model. We discuss the results
in the next section.

6 Study Results

This section discusses the developed prediction mod-
els addressing issue fix time and their performance, the
relative importance of the prediction factors, and the
evolution of mean vulnerability fix time over time.

6.1 Issue Fix Time Prediction Models

This section aims to address the question: How well do
the chosen models (LR, RPART, and NNR) predict the
issue fix time from a set of given factors?

Most of the data that we use are not numeric; they
are categorical variables, e.g., vulnerability types and
component IDs. The number of categories in each of
these variables can be very high. For instance, there
are about 2300 components. This makes the prediction
models large, e.g., in the order of a couple of hundred of
nodes for the tree-based model and few thousands for
the neural-network model. This problem of large sets
for the categorical factors limits the ability to generate
accurate prediction models.

The regression algorithms cluster the elements
of the categorical variables automatically; this clus-
tering does not follow a given semantics, such as
aggregation on superordinate component level, i.e.,
“Gr_component” in Support data 1. Because of this, it

is impractical to plot the prediction models. Figure 5,
for instance, shows a prediction model that we gener-
ated from Data source 3 by using the RPART method.
The big number of (categorical) values for many of
the prediction variables makes visualizing the generated
models clearly difficult.

Interestingly, we observe that the component factor
is built upon a set of distinct component classes (i.e.
the first three digits indicate the superordinate compon-
ent level, e.g. CRM for Customer Relationship Manage-
ment). An investigation of underlying reasons for such
clustering might reveal e.g., coherence with process-
related factors.

6.2 Performance of Selected Regression Methods on
the Prediction of Issue Fix Time

This subsection addresses the question: Which of the
developed regression models gives the most accurate
predictions? It reports and discusses the measurements
of the performance-metrics (introduced in Sect. 4.2)
that we performed on the models that we generated
for predicting the issue fix time. Table 9 summarizes
the measurements that we obtained.

Coefficient of determination metric. We observe
that the LRs method outperforms the RPART and
NNR methods for the five datasets. The metric values
indicate that the prediction models generated using LR
explain about half of the variation of the real values for
Data source 1 and for Data source 2 and explains most
of the variations for the remaining data sources. In-
deed, the estimates of the model for the Extended data
source 2 perfectly match the observed values. We note
also that the residues metric values indicate that the
prediction models generated using the NNR perform
worse than the null model, that is, taking the average
of the values.

AIC metric. We observe that the LR method outper-
forms the RPART and NNR methods for two datasets
and that the RPART method outperforms the LR and
NNR methods for the remaining three datasets. Thus,
this metric gives mixed results with respect to perform-
ance of the three regression methods.

PRED metric. We observe that the LR method out-
performs the RPART and NNR methods for two data
sets, the RPART method outperforms the LR and NNR
methods for one data set, and the NNR method outper-
forms the RPART and LR methods for two data sets.
This gives mixed results with respect to performance of
the three regression methods. However, the NNR per-
formance improves when the data set is extended with
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Table 9 Measurement of the performance metrics of the prediction models.

Data set LR RPART NN Best method
Residuals metric
Data source 1 0.526 0.498 -1.252 LR (0.526)
Data source 2 0.461 0.44 -0.294 LR (0.461)
Extended data source 2 1 0.956 -0.587 LR(1)
Data source 3 0.944 0.6585 1.944 LR(0.944)
Extended data source 3 0.909 0.701 1.97 LR(0.909)
AIC metric
Data source 1 122465 123157 141462 LR(122465)
Data source 2 334565 335936 365665 LR(334565)
Extended data source 2 -4877 463 793 RPART(463)
Data source 3 6632 6507 6958 RPART(6507)
Extended data source 3 6581 6421 7057 RPART(6421)
PRED metric
Data source 1 31.81% 31.74% 0.156% LR(31.81%)
Data source 2 14.93% 13.96% 33.81% NN(33.81%)
Extended data source 2 100% 30.32% 39.40% LR(100%)
Data source 3 33.98% 34.71% 0.73% RPART(34.71%)
Extended data source 3 35.41% 34.52% 65.05% NN(65.05%)

related data. For instance, the PRED value increased
from 0.73% in the case of Data source 3 to 65.05% for
the case of the Extended data source 3. We acknowledge
that the PRED value improved also for the LR method
for the case of Data source 2 and Extended data source
2. However, the number of records (N) for the Exten-
ded data source 2 is low (N = 380); the result should
be taken with caution.

Different regression methods have shown conflicting
performance measurements towards the problem of ef-
fort estimation. For example, Gray and MacDonell [24]
compared a set of regression approaches using MMRE
and PRED metrics. The methods have shown conflict-
ing results; their rank change based on the used per-
formance metrics. For example, they found that based
on the MMRE metric, LR outperforms NNR and based
on the PRED metric, NNR outperforms LR. This find-
ing was confirmed by Wen et al. [37] who analyzed the
performance of several other regression methods. The
regression methods have different strengths and weak-
nesses. Most importantly they perform differently in the
presence of small data sets, outliers, categorical factors,
and missing values. We found in this study that it is
not possible to claim that a regression method is bet-
ter than the other in the context of predicting the issue
fix time. This result supports the findings of Gray and
MacDonell [24] and of Wen et al. [37].

6.3 Relative Importance of the Factors Contributing
to Issue Fix Time

This section aims to address the question: What are the
main factors that impact the issue fix time? To answer
this question, we used RPART [38] to develop predic-

tion models for the five data sources. Given that the
factors used in the data sets are different, we present,
and shortly discuss, each data set separately. In the
next section, we analyze the factors impact in depth.

Data source 1. Table 10 reports the importance of the
factors used in Data source 1 on issue fix time. The most
important factor in this data set is “Project_ID,” fol-
lowed by “Vulnerability_name.” This implies that there
is a major contribution of the project characteristics to
issue fix time. Unfortunately, there was no additional
metadata available on the projects that could have been
joined with Data source 1 to allow us to further invest-
igate aspects of projects that impact the fixing time.

Data source 2. Table 10 reports the importance of
the factors used in Data source 2 on issue fix time. The
most important factor in this data set is “Scan_status.”
This shows that depending on whether the issue is false
positive or not impacts the issue fix time.9 The second
ranking factor is “Project_name”, followed by “Vulner-
ability_name.” This results support the observation we
had with Data source 1. We observe also that the factor
“Scan_source,” which indicates the static code-analysis
tool used to discover the vulnerabilities (i.e., Fortify or
Coverity) is ranked at place 5.

Extended data source 2.We extended Data source 2
with data that describe the projects and computed
three additional variables: the time elapsed between fix-
ing the vulnerability and releasing the software, called
FixtoRelease_period; the development period, called
Dev_period; and the time elapsed between discover-

9 As indicated before, issues marked as e.g., new and updated
are not considered in the models; they are for issues that are not
addressed yet.
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Table 10 Importance factors for the main data sets.

Factor Data source 1 Data source 2 Data source 3
Rank Factor Metric Factor Metric Factor Metric
1 Project_ID 0.408 Scan_status 1.231 Component 3.653
2 Vulnerability_name 0.179 Project_name 0.956 Processor 3.352
3 Vulnerability_count 0.097 Vulnerability_name 0.841 Reporter 1.813
4 Priority 0.042 Folder_name 0.522 Vulnerability_type 0.879
5 Scan_source 0.238 Source 0.443
6 Priority 0.358 CVSS_score 0.230
7 Vulnerability_count 0.078

Table 11 Importance factors for the extended data sets.

Rank Extended data source 2 Extended data source 3
Factor Metric Factor Metric

1 FixtoRelease_period 0.946 Component 2.434
2 Dev_period 0.634 Processor 2.363
3 Project_name 0.634 Dev_comp_owner 1.380
4 Risk_expert 0.634 Reporter 1.207
5 Prg_lead_resp 0.672 Dev_product_owner 0.633
6 FoundtoRelease_Period 0.433 PPMS_product 0.407
7 Vulnerability_name 0.429 PTU_area 0.407
8 Priority 0.045 Vulnerability_type 0.058
9 Vulnerability_count 0.045
10 Folder_name 0.045

ing the vulnerability and releasing the software, called
FoundtoRelease_period.

Table 11 reports the importance of the factors
used in the extended data source on issue fix
time. We observe that the most important factor is
FixRelease_period while a related factor, FoundtoRe-
lease_period has less importance (rank 6). The other
main important factors include the development period
(dev_period), the project (Project_name), the risk
expert (Risk_expert), the project development team
(Prg_lead_resp), and the vulnerability name (Vulner-
ability_name). We observe that vulnerability name is
ranked at the seventh position.

Data source 3. Table 10 reports the importance of
the factors used in Data source 3 on the issue fix time.
The most important factor in this data set is the soft-
ware component that needs to be changed (Compon-
ent) followed by the development team who addresses
the issue (Processor). We observe that the vulnerability
name (vulnerability_type) has a moderate importance,
ranked 4th, while the CVSS (CVSS_score) is ranked on
the 6th position.

Extended data source 3.We extended Data source 3
with data that describe the components. Table 11 re-
ports the importance of the factors used in the Exten-
ded data source 3 on the issue fix time. The most im-
portant factors in this extended dataset is the compon-
ent (Component), followed by the development team
(Processor), the development team responsible for the
component (Dev_Comp_owner), the reporter of the

vulnerability (Reporter), and a set of other factors.
We observe that the vulnerability name (Vulnerabil-
ity_type) has a moderate importance, ranked 8th, and
the CVSS score (CVSS_score) decreased considerably
to be 0.

6.4 Evolution of The Issue Fix Time

This section aims to address the question: Is the com-
pany improving in fixing security issues? The tendency
of the issue fix time could be used as “indicator” of
such improvement. For instance, increasing time indic-
ates deteriorating capabilities and decreasing time in-
dicates improving process. The information should not
be used as an evidence but as indicator of a fact that
requires further investigation.

We modeled the evolution of the mean issue fix time
for the resolving (closing) issue month10 for the three
data sources using the Linear Regression (LR), which
shows the trend of the response variable over time. Fig-
ure 6 depicts respectively the mean issue fix time for (a)
Data source 1 (pre-release ABAP-based code), (b) Data
source 2 (pre-release Java, C++, and JavaScript-based
code), and (c) Data source 3 (post-release security is-
sues).

The figure indicates a fluctuation of the mean issue
fix time but with an increasing trend. This trend indic-
ates a deteriorating performance with respect to fixing

10 Compute the mean issue fix time for the vulnerabilities re-
solved (addressed) in the specified month.
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Figure 6 Trend of the issue fix effort by closing month. The x axis indicates the number of months elapsed since the start date of
the data. The y axis indicates the mean issue fix time in number of days.

security issues. A close look at the figure shows that
there is a recent reverse in the tendency, which indicates
a response to specific events such as dedicated quality
releases or the development of new flag ship products.
So called quality releases are releases that focus on im-
proving the product quality instead of focusing on new
features. To ensure a high level of product quality and
security of SAP products, top level managements plans,
once in a while, for such quality releases. Also the de-
velopment of new flag shop products that change the
development focus of a large fraction of all developers
at SAP can have an influence. Such a shift might res-
ult in significant code simplifications of the underlying
frameworks.

Figure 6 shows that the increasing global trend ap-
plies for pre-release as well as post-release issues. We
believe that this indicates that the causes of the in-
crease of the mean issue fix time applies to both cases.
We again see that the management actions impacted
both cases.

Berner et al. [36] advice that models are sensitive
to time. This work supports the claim because it shows
that the issue fix time is sensitive to the month of clos-
ing the issue.

7 Analysis of The Impacting Factors

We observe from Data source 1 and Data source 2
that projects (represented by e.g., Project_ID, and
Project_name data attributes) have major contribu-
tions to issue fix time for the case of pre-release issue

fixing. The extension of Data source 2 with project-
related data confirmed our observation: the most im-
pacting factors of pre-release issues on the time to fix
are project characteristics. Among these characterist-
ics we find the time between issue fixing and software
release, project development-duration, and the develop-
ment team (data attribute Project_name). We believe
that the factor time between issue fixing and software
release indicates that developers tend to fix vulnerabil-
ities as the release date becomes close. This is not sur-
prising, since they must address all open issues before
the software can pass the quality gate to be prepared for
release. We expect that the factor project development-
duration is related to e.g., the used development mod-
els, and the component-related characteristics. Further
data analysis shall provide insights about the impact of
the factors related to the project development-duration
(Dev_period), such as component complexity. For in-
stance, updating smaller component could be easy and
be performed in short development cycles while up-
dating complex components requires long development
cycles. In addition, we believe that the factor develop-
ment team (Processor) indicates the level of expertise
of the developers and the smoothness of communica-
tion and collaboration among the team. Nevertheless,
it is interesting to observe that the influence of vulner-
ability type decreases when project-related factors are
included.

There are two additional dominant factors for the
issue fix time, based on the analysis of Data source 2:
scan status and folder name. We believe that the factor
scan status indicates that the developers address issues
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based on their perception of whether the given issue is
a false positive or not and whether it is easy to address
or not. For example, they may close false positive is-
sues that are easy to analyze and postpone addressing
issues that are difficult to analyze and/or fix to e.g.,
when the time for the quality gates becomes close. We
also expect that the factor “folder name” indicates that
the developers behave differently towards issues flagged
must fix, fix one of the set, or optional to fix.

The analysis of Data source 2 reveals that the se-
curity scan tools (represented by the data attribute
Scan_source) is not a leading factor of issue fix time. It
is possible that the developers rely on their expertise in
analyzing security issues and not on the tool features as
they get experts in addressing security issues. Further
analysis may explain the finding better.

The results obtained from the analysis of Data
source 3 (and its extension) suggests that the software
structure and development-team characteristics are the
dominant factors that impact the issue fix time for the
case of post-release issue fixing. (Note that issues for
post-release are not related to projects but to released
components.). The analysis results show that the com-
ponent factor is among the most impacting factors on
the issue fix time, which indicates the impact of soft-
ware structure characteristics. Unfortunately, we do not
have, at this moment, data that describe the compon-
ents, such as the component’s complexity, which could
be used to get detailed insights about these character-
istics.

The results obtained from the analysis of Data
source 3 shows the dominance of the impact of pro-
cessor and reporter on the issue fix time, and thus,
the importance of the human-related factors. The im-
portance of the reporter factor is aligned with the
results of Hooimeijer and Weimer [39], who found a
correlation between a bug reporter’s reputation and
triaging time: we confirm the importance of the report-
ing source on vulnerability fix time. Unlike Zhang et
al. [18] finding, we found that severity,represented by
the ”CVSS_score” in our study, is not a leading factor.

The qualitative study [4], which was based on expert
interviews at SAP, revealed several factors that impact
the issue/vulnerability fix time, such as communication
and collaboration issues, experience and knowledge of
the involved developers and security coordinators, and
technology diversification. The results of this study con-
firm the impact of some of these factors–and shows
their importance. For example, the category techno-
logy diversification included factors related to techno-
logies and libraries supported by the components asso-
ciated with the given vulnerability. The impact of the
component, found in our current study, reflects these

underlying factors. Unfortunately, it was only possible
to relate components’ attributes to security messages,
i.e. post-release issues, not to pre-release issues to fur-
ther investigate the components’ impact on these. The
impact of the development groups reflects the import-
ance of the experience and vulnerability- and software-
related knowledge of the teams as well as the import-
ance of the smoothness of communication and collab-
oration between the involved stakeholders.

At SAP, the project development-teams work in-
dependently; e.g., they choose their own development
model and tools, as long as they confirm to the corpor-
ate requirements, such as the global security policies.
Further investigation of component-, project-, human-,
and process-related characteristics of the development
teams might reveal more insights on the underlying
factors that impact the issue fix time. Such investig-
ation may reveal why certain products/teams are more
efficient than others. Reasons may, for example, include
the local setup of the communication structures, the
used development model (i.e., SCRUM, DevOps, etc.)
and the security awareness of teams. Another potential
factor to check its impact is the number of people in-
volved in fixing the given issue. This factor was found
to impact the fix time of bugs [40,15]. Controlling these
factors allows to control the issue fix time, and thus, the
cost of addressing security issues.

A question worth also investigating is: Are the
factors that impact the time for addressing pre-release
and post-release issues similar? We argued in Sect. 3
that the processes for fixing pre- and post-release issues
are different, which shall impact the issue fix time for
both cases. Nevertheless, acquiring evidence to answer
this question requires using the same data attributes for
both cases, which may not be possible, at the moment,
with data collected at SAP.

8 Study Validity and Impacts

This section discusses the impacts of the finding and
the limitations of the study.

8.1 Impacts of the Findings

This study showed that the models generated using the
LR, RPART, and NNR methods have conflicting accur-
acy measurements in predicting the issue fix time. This
implies that the conflict in the performance measure-
ments in estimating software development effort, e.g.,
in [37], applies to security issues. We infer from this
result that there is no better regression method, from
the analyzed ones, when it comes to predicting security
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issue time. We believe that more work needs to be done
to develop regression methods appropriate for predict-
ing issue fix time.

The second main finding of this study is that vul-
nerability type is not the dominant impacting factors
for issue fix time. Instead, the dominant factors are the
component in which the vulnerability resides, the pro-
ject related to the issue, the development groups that
address the issue, and the closeness of the software re-
lease date, a process-related information. This result
implies that we should focus on the impact of software
structure, developers’ expertise and knowledge, and se-
cure software development process when investigating
ways to reduce the cost of fixing issues.

The third main finding is that the monthly mean
issue fix time changes with the issue closing month. We
can infer from this result that the prediction models
are time sensitive; that is, they depend on the data col-
lection period. This supports Berner et al. advice to
consider recently collected data when developing pre-
diction models [36]. We infer, though, that prediction
models are not sufficient for modeling issue fix time
since they provide a static view. We believe that pre-
diction methods should be extended to consider time
evolution; that is, combine prediction and forecasting.

Finally, SAP can use the models to implement a
continuous improvement of its secure software develop-
ment process and to measure the impact of individual
improvements. Other companies can use similar models
and mechanism to realize a learning organization.

8.2 Limitations

There is a consensus among the community that there
are many “random” factors involved in software devel-
opment that may impact the results of data analytics
experiments [36]. This aligned with Menzies et al.’s [19]
findings about the necessity to be careful about general-
ization of results related to effort estimations in a global
context.

The data analysis described in this report suffers
from the two common threats to validity that apply to
effort estimation [20]. First, the conclusions are based
on the data that SAP collects about fixing vulnerabil-
ities in its software. Changes to the data-collection pro-
cesses, such as changes to the attributes of the collec-
ted data, could impact the predictions and the viability
of producing predictions in the first place. Second, the
conclusions of this study are based on the regression
methods we used, i.e., LR, RPART, and NNR. There
are many other single and ensemble regression methods
that we did not experiment with. We note that per-
formance issues due to the size of the datasets inhibit

us from using random forest [23] and boosting [23], two
ensemble regression methods.

In addition, the data is collected over 5 years. Dur-
ing that time SAP refined and enhanced its secure soft-
ware development processes. This could bias our res-
ults. The identification of major process changes along
with the times of the changes and a partitioning of
the data accordingly might reduce such bias and reveal
measurable insights about impacts of process changes
on issue fix time.

On the positive side, the conclusions are not biased
by the limited data size and the subjectivity in the
responses. First the number of records of each of the
data set was high enough to derive meaningful statist-
ics. Second, the data is generated automatically and do
not include subjective opinions, except the CVSS score
of datasource 3. This score is generated based on is-
sue related information that is assessed by the security
coordinator responsible for the issue.

Our findings are based on particular data sets of
SAP and might mirror only the particularities of time
to fix issues for this organization. However, SAP has
a diversified software portfolio, the development teams
are highly independent in using development processes
and tools (as long as they follow generic guidelines such
as complying with corporate security requirements),
teams are located in different countries, and software
are developed using several programming languages
(e.g., ABAP, C++, and Java). These characteristics en-
courage us to believe that the findings apply to indus-
trial companies in general and therefore contribute to
the discussion about predicting the issue fix time.

Vulnerabilities, such as SQL injection, Cross-site
scri-pting (XSS), buffer overflow, and directory path
traversal are commonly identified using the same tech-
niques, such as taint analysis [41], but by applying
different patterns. This may explain why vulnerability
type is not a dominant factor of issue fix time–because
the time to analyse many of the vulnerability types us-
ing the techniques is the same. These techniques may
be used to detect other defect types besides vulnerabil-
ities, but not all (or most) defects. Thus, the fact that
vulnerability type is not a dominant factor of issue fix
time does not imply that the study results apply to
defects in general.

9 Lessons Learned

Data analytics methods are helpful tools to make gener-
alizations about past experience [36]. These generaliza-
tions require considering the context of the data being
used. In our study we learned few lessons in this regard.



16

Anonymization. Companies prefer provide anonym-
ized data for data analytics experiments and keep the
anonymization map to trace the results to the appro-
priate semantics. There is a believe that the analyst
would develop models and the data expert (from the
company) would interpret them using the anonymiz-
ation map. We initially applied the technique and we
found that it prevents the analyst from even cleaning
the data correctly. We worked closely with the owner
of the data to understand them, interpret the results,
and correct or improve the models. The better the data
analyst understands the data, the more they are able
to model them.

Prediction using time-series data. We initially
sliced the data sequentially into folds (sliced them based
on their order in the dataset) and used the cross-
validation method in the regression.11 We found that
the performance metrics of the generated prediction
models deviate considerably. To explore this further,
we developed the tendency of the mean issue fix time
shown by Figure 6. The figure shows a fluctuation
of the issue fix time over time. This leads to believe
that the prediction models are of temporal relevance
as claimed by Berner et al. [36]. The lesson warns to
check whether the data are time series or not when us-
ing cross-validation with sequential slicing of the data
in the regression.

A more generic lesson that we learned concerns At-
tribute values clustering. We found in this study
an insignificant small difference in the performance of
the prediction models that automatically cluster com-
ponents and the ones that use semantically clustered
components instead. The latter aggregates components
based on a semantic based on superordinate level, i.e.
Gr_component. Manual investigation is necessary to
infer the component characteristics that the algorithms
silently used in the clustering. Table 12, for example,
shows that the performance of the prediction models
using the automated clustering and using the manual
clustering are similar. This implies that manual clus-
tering does not provide additional information.

10 Conclusions

We developed in this study prediction models for issue
fix time using data that SAP, one of the largest soft-
ware vendors worldwide, and the largest in Germany,
collects about fixing security issues in the software de-
velopment phase and also after release. The study con-

11 This slicing method allows for easily splitting all the data
among the folds.

Table 12 Predicted values for automatically clustered compon-
ent factor and Gr_component.

Error
Metric

LR RPART NNR

AC MC AC MC AC MC
RSQ 0.98 0.76 0.80 0.7045 2.02 1.92
AIC 6586 6187 6461 6139 7033 6733
PRED 33.88 34.12 33.48 32.6915 0.48 0.67

Note: AC is for automatic clustering of components
and MC is for manual clustering of components

cludes that none of the regression methods that we
used (Linear Regression (LR), Recursive PARTition-
ing (RPART), Neural Network Regression (NNR)) out-
performs the others in the context of predicting issue
fix time. Second, it shows that vulnerability type does
not have a strong impact on the issue fix time. In con-
trast, the development groups involved in processing
the issue, the component, the project, and the close-
ness of the release date have strong impact on the issue
fix time.

We also investigated in this study the evolution of
the mean issue fix time as time progresses. We found
that the issue fix time fluctuates over time. We suggest
that better models for predicting issue fix time should
consider the temporal aspect of the prediction models;
they shall combine both prediction technique and fore-
casting techniques.
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