
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 1–17, 2016.
© 2016 Springer-Verlag. This is the author’s version of the work. It is posted at http://
www.brucker.ch/bibliography/abstract/brucker.ea-cordova-security-2016 by permission
of Springer-Verlag for your personal use. The definitive version was published with doi:
10.1007/978-3-319-30806-7_5.

On the Static Analysis of Hybrid Mobile Apps
A Report on the State of Apache Cordova Nation

Achim D. Brucker1? and Michael Herzberg2

1 Department of Computer Science, The University of Sheffield, Sheffield, UK
a.brucker@sheffield.ac.uk

2 SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
michael.herzberg@sap.com

Abstract. Developing mobile applications is a challenging business: de-
velopers need to support multiple platforms and, at the same time, need
to cope with limited resources, as the revenue generated by an average
app is rather small. This results in an increasing use of cross-platform
development frameworks that allow developing an app once and offering
it on multiple mobile platforms such as Android, iOS, or Windows.
Apache Cordova is a popular framework for developing multi-platform
apps. Cordova combines HTML5 and JavaScript with native applica-
tion code. Combining web and native technologies creates new security
challenges as, e. g., an XSS attacker becomes more powerful.
In this paper, we present a novel approach for statically analysing the
foreign language calls. We evaluate our approach by analysing the top
Cordova apps from Google Play. Moreover, we report on the current state
of the overall quality and security of Cordova apps.

Keywords: Static program analysis · Static application security test-
ing · Android · Cordova · Hybrid mobile apps

1 Introduction

Developing mobile applications is a challenging business: developers need to
support multiple platforms, but also have to cope with limited resources, as the
revenue generated by an average app is rather small. In principle, there are three
different approaches: 1) native apps, 2) mobile web apps, or 3) hybrid apps. Na-
tive apps are built using platform specific technologies (e. g., Swift for iOS or
Java for Android). They have the advantage that they can use all platform spe-
cific features. Mobile web apps are on the other end of the spectrum: they are web
apps developed using standard web technologies (i. e., HTML5 and JavaScript)
and, thus, run on every device with a modern web browser. As a downside, they
are only very shallowly, if at all, integrated into the mobile platform and can
? Parts of this research were done while the author was a Security Testing Strategist
and Research Expert at SAP SE in Germany.

http://www.brucker.ch/bibliography/abstract/brucker.ea-cordova-security-2016
http://www.brucker.ch/bibliography/abstract/brucker.ea-cordova-security-2016
http://dx.doi.org/10.1007/978-3-319-30806-7_5
http://www.brucker.ch/
mailto:"Achim D. Brucker" <a.brucker@sheffield.ac.uk>
mailto:"Michael Herzberg" <michael.herzberg@sap.com>


2 A.D. Brucker and M. Herzberg

only access device features that are supported by HTML5. Hybrid apps com-
bine the advantages of native and mobile apps; they allow developing most of
the application using platform independent technologies, where small platform
specific plugins enable the developer to access all device features that a native
application can access.

Due to the increased market pressure for supporting multiple mobile plat-
form as well as the increased demand to save development costs, more and
more mobile apps are developed as hybrid apps. Thus, hybrid development
frameworks such as PhoneGap (http://phonegap.com/), Trigger.io (https:
//trigger.io/), or Apache Cordova (https://cordova.apache.org/) are be-
coming more and more popular. This is not only true for small independent
studios developing mobile apps, also large enterprise software vendors such as
SAP are recommending the hybrid approach as the default development model
to their developers. SAP offers its own extension of Apache Cordova, called SAP
Kapsel, that is used both by SAP as well as its customers for developing mobile
enterprise apps.

From a security development perspective, hybrid apps pose several challenges.
We need to be aware that, e. g., a XSS attacker becomes much more powerful
as he might be able to break out of the JavaScript environment and inject code
that is executed in the context of the native part of the app—resulting in a
much larger attack surface. The combination of web technologies and native
mobile code is not yet supported by state of the art automated security testing
tools in general and static application security testing (SAST) tools in particular.
SAST tools are the back-bone of a holistic security testing strategy [3] and are
widely used in the software industry [5, 6].

We address this problem by developing a static code analysis approach that
supports hybrid mobile apps developed using Apache Cordova. In more detail,
our contributions are twofold: 1) we present a novel technique providing the basis
for detecting data-flows in hybrid mobile apps, and 2) we report on our lessons
learned from applying our approach to a large number of top Cordova apps from
Google Play.

2 Apache Cordova and Its Security Model

In this section, we briefly introduce Apache Cordova and provide a general
overview of the particular security challenges of Cordova apps.

2.1 Apache Cordova Architecture and Programming Model

Cordova is a framework for developing mobile apps using HTML5 and JavaScript
while still allowing full access to the device features.

Architecture. Fig. 1 shows the architecture of an Android Cordova app. The
main part, i. e., the application logic and the user interface, are written in
HTML5, CSS, and JavaScript. This part is executed in an extended WebView
that provides, besides the HTML5 API, also a dedicated Cordova JavaScript

http://phonegap.com/
https://trigger.io/
https://trigger.io/
https://cordova.apache.org/


On the Static Analysis of Hybrid Mobile Apps 3

API. The latter allows, via the Cordova Native API, to access various Cordova
Plugins. The Cordova Plugins are written in the platform’s programming lan-
guage (e. g., in Java for Android). Cordova ships with many default plugins;
additional plugins are offered by third party providers or can implemented by
the application developer.

Android Platform

HTML Android App

A
n
d

ro
id

 C
o
rd

o
v
a
 C

o
n
ta

in
e
r

W
e
b

 A
rc

h
it

e
ct

u
re

UI Layer (HTML, CSS, JS)

Application Logic in JS

Android WebView

Camera

Cordova Plugins

Custom Plugins

In-App Browser

Geolocation

Media File

Vibration

Network 

Device Motion

Cordova
Native API

H
M

T
L5

/J
S

A
P
I

C
o
rd

o
v
a

JS
 A

P
I

A
n
d
ro

id
A

P
Is

A
n
d
ro

id
A

P
Is

Fig. 1: The Android Cordova Architecture

Our approach also works for extensions of Cordova such as PhoneGap by
Adobe or SAP Kapsel by SAP that mostly provide additional plugins.

An Example Cordova Plugin. Let us assume we want to implement a Cor-
dova plugin that allows for searching the contacts database. Listing 1.1 (List-
ing 1.2) shows an excerpt of the JavaScript (Java) of the plugin implementation.

Listing 1.1 shows a JavaScript function showPhoneNumber that can be used
to implement the business logic of a Cordova app. The exec method (Line 5–6)
is the core of the foreign language interface of Cordova. It takes five arguments:
1. a callback that is invoked in case of a successful termination of the native
call, 2. a callback that is invoked in case of a erroneous termination of the native
call, 3. a string that identifies the name of Java class that implements the native

1 function showPhoneNumber(name) {
var successCallback = function(contact) {

3 alert("Phone␣number:␣" + contacts.phone);
}

5 exec(successCallback , null , "ContactsPlugin", "find",
[{"name" : name }]);

7 }

Listing 1.1: Contacts Plugin Example: JavaScript



4 A.D. Brucker and M. Herzberg

class ContactsPlugin extends CordovaPlugin {
2 boolean execute(String action , CordovaArgs args ,

CallbackContext callbackContext) {
4 if ("find".equals(action )) {

String name = args.get (0). name;
6 find(name , callbackContext );

} else if ("create".equals(action )) ...
8 }

void find(String name , CallbackContext callbackContext) {
10 Contact contact = query("SELECT␣...␣where␣name=" + name);

callbackContext.success(contact );
12 }

}

Listing 1.2: Contacts Plugin Example: Java

function, 4. a string that identifies the action that should be executed by the
native function, and 5. a list containing the arguments of the native function.

The Cordova framework delegates this call to the execute method of the
Java class ContactsPlugin (Listing 1.2, Line 2), which delegates the call, based
on the action, to the find method (Line 9). The find method uses a SQL query
to find the contact information and passes it to the success callback (Line 11).
The information is then passed back to the corresponding JavaScript method
(Listing 1.1, Line 2).

2.2 Security Considerations for Cordova Apps

On the one hand, Cordova apps are HTML5 applications, i. e., they share all
typical features (e. g., JavaScript code that is downloaded at runtime) and se-
curity risks (e. g., XSS) of web applications (see, e. g., [19, 23] for an overview
of these risks). On the other hand, Cordova apps share the features (e. g., full
device access) and security risk (e. g., SQL injections, privacy leaks) of native
apps (see, e. g., [17, 27] for an overview of these risks).

To limit the typical web application threats, WebViews are re-using the well-
known security mechanism from web browsers such as the same-origin policy [10].
Moreover, WebViews are separated from the regular web browsers on Android,
e. g., WebViews have their own cache and cookie store. Still, there are subtle
differences that make implementing secure Cordova apps even for experienced
web application developers a challenge [9, 10].

A plugin is a mechanism for drilling holes into the sandbox of a WebView,
making the traditional web attacker much more powerful as, e. g., an XSS attack
might grant access to arbitrary device features. The root cause for such vulnera-
bilities can be located in Cordova itself (e. g., CVE-2013-4710 or CVE-2014-1882)
or in programming and configuration mistakes by the app developer.

There have been several works introducing more fine-grained access control
mechanism for the cross-language interface in hybrid mobile apps, particularly

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4710
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-1882


On the Static Analysis of Hybrid Mobile Apps 5

Cordova, such as NoFrak [10], MobileIFC [22], and others [12, 21]. They all iden-
tified the breach of the sandbox security and that Cordova fails to restrict access
to plugins by untrusted JavaScript code as the major security and privacy con-
cern. To remedy this breach, they propose modifications to the hybrid framework
which mitigate attacks by introducing fine-grained access control and modifica-
tions to Android’s permission model. Apache Cordova is certainly in need of
such additions. This way, existing hybrid applications could be secured without
modification, reducing the potential implications of vulnerabilities such as XSS.
This running time protection paired with tools helping the app developers to
secure their apps in the first place, such as presented in this paper, is certainly
a good combination to ensure a secure experience when using hybrid apps.

3 Static Analysis for Finding Cross-Language Flows

In this section, we present our approach for building a uniform call graph for
Cordova apps with connected Java and JavaScript parts. This call graph is the
basis for a cross-language data-flow analysis which enables an end-to-end static
program analysis of Cordova apps.

3.1 Modelling Cordova

The usage patterns of cross-language calls depends heavily on the underlying
framework, e. g., Cordova. Thus, to implement a cross-language analysis, one can
either model the underlying framework or analyse the application including the
cross-language framework itself. In our work, we decided to model the Cordova
framework due to two reasons: 1. Modelling Cordova avoids the need for re-
analysing the Cordova source code for each app and 2. data-flows within the
framework code are not of interest to the app developer.

Since the official documentation regarding plugins is rather sparse, many
observations are based on the officially provided plugins.

The usual cross-language control flow in a Cordova app follows a JavaScript-
to-Java-to-JavaScript scheme: Starting in the JavaScript part, a call to exec
transfers the flow to the Java side, where the requested native action is executed.
When finished, the Java part calls one of the two callbacks that were passed to
the exec call, after which the flow transfers back to the JavaScript part.

We model Cordova implicitly by four Cordova specific heuristics. The purpose
of the first two is finding the JavaScript callbacks passed to the exec call; they
are the targets of the Java-to-JavaScript call chain link. The third heuristic is
concerned with finding the Java callers of this link. The fourth one filters out
cross-language calls which have been reported by the first three heuristics, but
are very unlikely to be correct.

The JavaScript-to-Java calls are easier to detect and thus not addressed by
the heuristics, because the exec calls are rather static and carry enough infor-
mation in their service and action parameters3 to deduct the Java call target.
3 For more information on the usage of these two parameters, see https://cordova.
apache.org/docs/en/latest/guide/hybrid/plugins/

https://cordova.apache.org/docs/en/latest/guide/hybrid/plugins/
https://cordova.apache.org/docs/en/latest/guide/hybrid/plugins/


6 A.D. Brucker and M. Herzberg

Mocking the cross-language call interface. Cordova’s exec method is
the heart of its cross-language interface, thus a precise modelling of calls to
this method is key. The actual implementation of this method, androidExec
in cordova.js, is not useful for detecting cross-language calls statically for at
least two reasons: 1. The heavy use of dynamic language features by Cordova
is challenging; e. g., the callback functions passed to exec are being stored by
androidExec in a global dictionary and are only used much later. Thus, it is
very hard to determine statically when the callback functions are called. As a
result, these calls will not get modelled by typical building algorithms, which is
fatal as they are the targets of the calls from Java-to-JavaScript. 2. The algo-
rithms for building JavaScript call graphs are often context-insensitive. As all
cross-language calls from JavaScript-to-Java are done via the one exec method
offered by Cordova, this becomes a problem. We want to be able to relate the
passed callback functions to the other parameters, which provide important in-
formation about the part on the Java side which will later call these callbacks.
Therefore, context-sensitivity for the calls to exec is vital.

Solution. Both issues are addressed by our heuristic ReplaceCordovaExec, which
automatically pre-processes the JavaScript source code. The core idea is to search
for all cordova.exec and exec calls and replace each of them with a call to a
freshly created method with a unique name that calls the callbacks.

function showPhoneNumber(name) {
var succCb = function(contact) {

alert("Number:␣"+contacts.phone);
}

exec(succCb , null ,
"ContactsPlugin",
"find", [{"name" : name }]);

}

Listing 1.3: Before: Example of mock-
ing the cross-language call interface

function showPhoneNumber(name) {
var succCb = function(contact) {

alert("Number:␣"+contacts.phone);
}
function stub1(succ , fail , service ,

action , args) {
succ(null);
fail(null);

}
stub1(succCb , null ,

"ContactsPlugin",
"find", [{"name" : name }]);

}

Listing 1.4: After: Example of mocking
the cross-language call interface

Recall the JavaScript part of our example, Listing 1.1. Listing 1.3 shows it
again in a shorter version, and Listing 1.4 shows the modifications made by
ReplaceCordovaExec. A new method stub1, which replaces the exec call, is
introduced that makes the calls to the success and fail callbacks explicit.

The renaming of the ReplaceCordovaExec takes into account that the result
of invoking require("cordova/exec") can be assigned to an arbitrary vari-
able. This call is not shown in the example, but often used to obtain the exec
method. Overall, ReplaceCordovaExec introduces local context-sensitivity into
our analysis approach.



On the Static Analysis of Hybrid Mobile Apps 7

Emulating the module loading mechanism. Cordova provides its own
JavaScript module mechanism, i. e., it provides two functions for structuring
JavaScript code: define and require. When a Cordova app is assembled, the
plugins’ JavaScript code is converted into modules, and bigger plugins use those
modules, too, to separate their code.

There are basically two major challenges when searching for uses of the plug-
ins: 1. determining which object gets returned by a call to require, and 2. help-
ing the call graph builder understand what is behind the global plugin variables
under which Cordova makes the plugins available.

Solution. Both issues are addressed by our heuristic ConvertModules, which
automatically pre-processes the JavaScript source code. The object that gets
returned by the require call is determined by whatever gets assigned to the
module.exports field inside the factory function. Thus, we replace the require
and module.exports references with a global unique variable, derived from the
unique module id. Now, any call graph builder will be able to track this new
global object and connect the corresponding method calls. For the plugin mod-
ules, one additional transformation needs to be applied: For all global variables
(there may be more than one), which are specified in the plugin’s configuration
file, a statement is added to the plugin definition which assigns the variable that
is created by the first transformation to the queried global variable. Normally,
these variables get defined at runtime when Cordova loads the plugins, but this
transformation now hard-codes these definitions into the module.

define("com.contacts",
function(require , exports , module ){

exports.find =
function(succCb , name) {

exec(succCb , null ,
"ContactsPlugin", "find",
[{"name" : name }]);

};
});

...
var succCb = function(contact) {

alert("Number:␣"+contacts.phone);
}
plugins.contacts.find(succCb ,

"Peter");

Listing 1.5: Before: Example of emu-
lating the module loading mechanism

define("com.contacts",
function(require , exports , module ){

plugins.contacts.find =
function(succCb , name) {

exec(succCb , null ,
"ContactsPlugin", "find",
[{"name" : name }]);

};
});

...
var succCb = function(contact) {

alert("Number:␣"+contacts.phone);
}
plugins.contacts.find(succCb ,

"Peter");

Listing 1.6: After: Example of emulat-
ing the module loading mechanism

Recall our phone number example: Listing 1.5 shows an exemplary definition
of the contacts plug-in with an export declaration as it would look like after being
imported by Cordova. We transform this export declaration using the plugin’s
global variable (see Listing 1.6). As a result, the relation between this global
variable and the actual plugin method becomes statically apparent.



8 A.D. Brucker and M. Herzberg

Data-flow heuristic based on action string. While the first two heuris-
tics enable finding the targets of the calls from Java-to-JavaScript related to
each exec call, finding the callers poses its own challenges: when execution is
transferred to the Java side, the passed callback functions can be called via
a CallbackContext Java object. This object offers three methods which get
mapped to the two callback calls: success, error, and sendPluginResult.
Given such a call somewhere on the Java side, how does one determine the
possible JavaScript targets?

All exec calls of a plugin are mapped to a single Java execute method.
Thus, it is not clear how calls to methods of CallbackContext object map to
the JavaScript callbacks. During runtime, Cordova decides based on the feature
string which class’s execute to call, and passes the supplied action string to
the plugin’s execute implementation. Commonly, each exec call has only one
possible value for each of the two parameters, so it is possible to limit the number
of Java-to-JavaScript connections by utilising these context information.

Another challenge is the frequent use of the command pattern in the execute
method, e. g., when dealing with threads. As the calls on the CallbackContext
object are then actually done somewhere deep in the thread library, call graph
builders will not attribute this call even to the execute method, which is a
problem since the context information supplied by the JavaScript exec call is
needed.

Solution. As callbackContext calls are only of interest when an exec call is
encountered in the JavaScript code, the parameters passed to exec can be used
as context information when looking for the callbackContext calls. First the
Java class and its execute method that corresponds to the feature string need
to be found. As Cordova keeps a mapping from those string values to Java classes,
the class is looked up there.

To determine which CallbackContext calls are reachable from the beginning
of the execute method, a two-fold reachability analysis is conducted for each
call site. Fig. 2 illustrates the involved control flow graph and call graphs.

Invoke exec

Entry

Invoke CordovaArgs.getif action == "create"

if action == "find"

Invoke alert

Entry

Invoke query

Invoke callbackContext.success

Exit

Invoke find...

Exit

find
execute

... ...showPhoneNumber
Invoke callbackContext.success

Fig. 2: The control flow graph and call graph of the example in Listing 1.1 and
Listing 1.2, including two cross-language edges



On the Static Analysis of Hybrid Mobile Apps 9

1. First, using the Java call graph, we compute all possible call chains without
cycles from the execute method to the method which contains the call to
the particular CallbackContext. If the execute method is not a predecessor
in this call graph, the callbackContext call is considered not reachable. If it
is reachable though, all those invoke instructions in the execute method are
determined through which the callbackContext call is eventually reachable.

2. Using these invoke instructions as well as the action parameter and the
control flow graph of the execute method, a more precise reachability anal-
ysis is conducted. For each invoke instruction, all possible paths through
the control flow graph from the entry of the execute method to the invoke
are determined. For all found paths, the action parameter is taken into ac-
count; as many plugins implement an execute method using many if-else
clauses based on action, the paths are checked for statements similar to
"get".equals(action). If the action strings do not match, the path can
be discarded as impossible, as it can never be taken during runtime.

If there are any paths left after the two-fold reachability analysis, the reach-
able callbackContext calls need to be classified as either being a success or
fail callback call. This is done by deciding whether the method called on the
CallbackContext is either success, error, or sendPluginResult (and here,
which status codes are possibly passed). Eventually, the corresponding success
and fail connections can be reported as calls from Java-to-JavaScript.

Filtering Frameworks. The static construction of precise call graphs for
JavaScript programs is challenging [7]. Approaches for building JavaScript call
graphs have to make a compromise between scalability and correctness. Large
and widely used frameworks such as jQuery (https://jquery.com/) or Angu-
larJS (https://angularjs.org) can currently only be handled with field-based
call graph builders that analyse field names non-context sensitively. Therefore,
plugins that define methods with popular names or the same names as those
used in the core JavaScript language such as call, apply, get, or open, result
in many incorrect edges in the call graph.

Solution. The preferred solution would be to use more precise (e. g., a context-
sensitive) call graph builder. Sadly, this would reduce our approach to small
applications with only a few hundreds lines of JavaScript code. Alternatively,
we could exclude such frameworks from our analysis. As this would make the
analysis of apps based on frameworks that change the way the JavaScript code
is written, e. g., frameworks promoting an asynchronous programming style, im-
possible, this approach is also not feasible.

Thus, we filter the problematic functions after the call graph is constructed
based on further information such as the file names. This approach, on the
one hand, allows balancing correctness and scalability of the static analysis. On
the other hand, the configuration of the filter need to be adapted to fit new
frameworks that might emerge.

https://jquery.com/
https://angularjs.org


10 A.D. Brucker and M. Herzberg

3.2 Implementation

We implemented our approach, in particular a unified call graph builder for Cor-
dova apps, using the WALA framework (http://wala.sf.net).4 Our prototype
allows to process Android binaries (i. e., APK files) directly. Using WALA’s Java
front-end, the analysis of Java source of Android apps can be supported easily
as well. For parsing the Dalvik binary code and the JavaScript, we rely on the
front-ends provided by WALA.

First, we apply the ReplaceCordovaExec and ConvertModules heuristic to
the JavaScript parts of the application. Then we use WALA for building the
call graphs for the JavaScript and Java parts of a Cordova app. After building
the Java and JavaScript call graphs independently, we traverse both call graphs
for connecting the cross-language calls. The result is a unified call graphs that
allows implementing further static analysis methods that can uniformly traverse
the Java and JavaScript parts of a Cordova app.

4 The State of Cordova App Security (and Quality)

In this section, we evaluate our approach for building uniform call graphs for
Cordova apps as well as report on our findings based on analysing Cordova apps
from the top Android app category of the Google Play Store, three Cordova apps
from SAP, and one artificial app specifically written for this work. Our evaluation
is two-fold in order to assess the scalability and quality of our analysis.

4.1 Popularity of Cordova and Benchmark Selection

We took the Top 1000 apps (as ranked by Google in spring 2015) from Google
Play and checked if these apps contain a config.xml file that belongs to the
Cordova framework. Using this criterion, we could identify 50 Cordova apps.
Thus, according to our analysis, only 5% of the Top 1000 apps are using Cordova.

As SAP usually distributes its applications directly to its customers, we did
not expect SAP apps within the Top 1000 apps category. To include SAP apps
and their specific characteristics in our analysis, we have selected three mobile
enterprise apps from SAP that are based on SAP Kapsel and SAP’s OpenUI5
JavaScript framework (for details, see http://openui5.org/).

Finally, we implemented one test app, called Damn Vulnerable Hybrid Mobile
App (DVHMA), that intentionally contains vulnerabilities and different coding
styles to serve as a controlled test bed for our analysis.5

4.2 Scalability

To evaluate the runtime behaviour and, thus, the scalability of our approach,
we analysed all 54 apps of our test set. Our prototype is able to analyse 52 out
4 Our prototype is available at https://github.com/DASPA/DASCA.
5 The DVHMA app is available at https://github.com/ZertApps/DVHMA.

http://wala.sf.net
http://openui5.org/
https://github.com/DASPA/DASCA
https://github.com/ZertApps/DVHMA


On the Static Analysis of Hybrid Mobile Apps 11

of the 54: two apps from the Top 1000 are obfuscated in such a way that the
WALA front-ends are not able to analyse them at all.

Our analysis can build the unified call graph for 50% of the apps in under
30 minutes and for all but one within 12 hours. The memory consumption was
in all but one cases under 8GB. The benchmarks have been run on a virtual
machine running Ubuntu 14.04 using six cores of an Intel Xeon CPU E7-4830v2
@ 2.20GHz and 12GB of RAM. Due to space reasons, we omit the detailed
results. Thus, our prototype is able to analyse typical Android apps on modern
modern workstations and notebooks.

In general, the runtime for building the language specific call graphs is mainly
influenced by the complexity in terms of the number of function calls as call depth
and only to a minor extend by the code size. This is true for both the Java as
well as the JavaScript part. For building the unified call graphs, the number of
cross-language calls is, given the pre-computed call graphs for each language,
the main influence for building the unified call graphs.

4.3 Quality

To assess the quality of our analysis, we selected eight apps (six from the top
apps as ranked by the Google Play Store, one from SAP, and our artificial test
app). We did a thorough manual code review either on the original source code
(for the app from SAP and our test app) or on the result of de-compiling the
binary (for the six apps from Google Play). Our manual code review focused on
finding all cross-language calls.

As a manual code review is a time consuming task, we limited the analysis
to eight apps that we consider a good representation of the overall population of
Cordova apps: Table 1 shows that the most commonly used plugins from the six
apps from Google Play are the same ones as from the 50 apps. In addition, we
have chosen a typical SAP app as well as our test apps that captures our expertise
based on a shallow analysis of a larger number of Cordova apps. We consider the
distribution of plugins as most relevant for our work, as cross-language calls are
most often located in plugins. Thus, this analysis allows us to assess the quality
of the unified call graphs with respect to capturing cross-language calls.

The following four sections will compare the manually found cross-language
calls with the ones reported from the prototype. We will focus on the calls from
Java-to-JavaScript. The calls from JavaScript-to-Java are relatively easy to find,
thanks to the structure of Cordova’s function interface. Therefore, the prototype
found all these calls.

Two values are especially important when evaluating the quality [1]:

R =
TP

TP + FN
(recall) P=

TP

TP + FP
(precision)

where TP is the number of correctly found cross-language calls, FP the number
of falsely reported ones, and FN the number of missed calls.



12 A.D. Brucker and M. Herzberg

Table 1: The ten most used plugins from each test set

(a) Plugins from the 50 apps

Plugin #

device 26
inappbrowser 25
dialogs 20
splashscreen 18
network-information 14
file 14
console 12
camera 11
statusbar 11
PushPlugin 11

(b) Plugins from the six manually analysed apps

Plugin #

device 5
inappbrowser 5
dialogs 2
splashscreen 2
console 2
network-information 1
file 1
camera 1
statusbar 1
PushPlugin 1

Informally, recall is defined as the number of correctly found calls divided by
the number of calls which should have been found and precision is defined as
the number of correctly found calls divided by the number of calls reported.

ReplaceCordovaExec. This heuristic is necessary to identify any Java-to-
JavaScript calls at all. Without it, the callback functions on the JavaScript side
will not get modelled, which is bad since they are the targets of those calls from
the Java side. As can be seen in Table 2a, the precision with just ReplaceCor-
dovaExec is already very good. However, as is represented by the bad recall,
there are also many incorrect calls being reported. But before we will present
the results of FilterJavaCallSites and FilterJSFrameworks, which will lead to
less errors, we will present the results for another heuristic aimed at increasing
the number of found calls.

ConvertModules. The main purpose of this heuristic is to model the module
mechanism and thus allow finding more calls from Java-to-JavaScript. However,
this effect is only observed on one of the eight apps: our artificially created
one. The explanation is simple; this heuristic enables tracking callback functions
through the Cordova plugin mechanism, from the application code to the actual
call to exec. Surprisingly, our app was the only one of those eight to create and
pass callbacks from application code.

The errors for two apps are significantly reduced. This is because assigning
the functions to module.exports is not ambiguous anymore and does not result
in the field-based call graph builder vastly overestimating method invocations.

FilterJavaCallSites. Adding this heuristic, two effects can be observed in
Table 2c: The number of errors is greatly reduced, but at the cost of a few



On the Static Analysis of Hybrid Mobile Apps 13

Table 2: The quality of the found cross-language calls from Java-to-JavaScript

(a) ReplaceCordovaExec

App Hits Misses Errors Recall Prec.

app01 4 0 400 1% 100%
app02 3 0 8 28% 100%
app03 30 0 5804 1% 100%
app04 1 0 2315 1% 100%
app05 3 0 47 6% 100%
app06 246 0 1567 14% 100%

sap01 3 0 32 9% 100%
DVHMA 5 5 8 39% 50%

(b) ReplaceCordovaExec and ConvertMod-
ules

App Hits Misses Errors Recall Prec.

app01 4 0 394 2% 100%
app02 3 0 8 28% 100%
app03 30 0 4574 1% 100%
app04 1 0 1157 1% 100%
app05 3 0 47 6% 100%
app06 246 0 1552 14% 100%

sap01 3 0 32 9% 100%
DVHMA 10 0 9 53% 100%

(c) ReplaceCordovaExec, ConvertModules,
and FilterJavaCallSites

App Hits Misses Errors Recall Prec.

app01 3 1 397 1% 75%
app02 2 1 0 100% 67%
app03 28 2 2829 1% 94%
app04 1 0 0 100% 100%
app05 2 1 12 15% 67%
app06 239 7 444 35% 98%

sap01 2 1 0 100% 67%
DVHMA 10 0 0 100% 100%

(d) Using all heuristics

App Hits Misses Errors Recall Prec.

app01 3 1 6 34% 75%
app02 2 1 0 100% 67%
app03 28 2 2323 2% 94%
app04 1 0 0 100% 100%
app05 2 1 4 34% 67%
app06 239 7 443 36% 98%

sap01 2 1 0 100% 67%
DVHMA 10 0 0 100% 100%

cross-language calls missed. The misses come from the fact that this heuristic
relies on being able to trace the callbackContext call back to the execute call.
Some plugins, however, store their CallbackContext object for later use, e. g.,
when a listener for changes of the network state triggers. In these cases, other
possibilities than simply discarding these call sites are also imaginable: Instead of
reporting the callback functions from no exec call as targets, the callbacks from
all exec calls could be reported, resulting possibly in a vast over approximation.

Most of the errors which are still reported are related to the file plugin. Here,
the developers used a utility method which translates a lot of different exception
types into different callbackContext calls. However, not all actions are able
to throw all of them. This distinction is not made by this heuristic and would
require a more sophisticated reachability analysis.

FilterJSFrameworks. Cordova apps contain significant amounts of framework
code. As expected, this heuristic increases the recall by a great amount as can
be seen in Table 2d, because cross-language calls related to these frameworks are



14 A.D. Brucker and M. Herzberg

filtered. However, as the detection of framework code is currently only based on
the file name, apps who repackage all JavaScript code into one big file will not
see any improvements. Also, not all errors are related to JavaScript frameworks,
so some errors coming from incorrectly found calls within the apps themselves
will not get filtered.

4.4 Noticeable findings about the apps

How developers use the Cordova framework. The way the Cordova frame-
work is used differs wildly among the 50 apps. Many apps do, in fact, use Cordova
as intended: The app is written in JavaScript, the Java part is unmodified and
simply loads the entry-point HTML file which is set in the Cordova configuration
file. Some apps, however, significantly change the Java part. The most extreme
apps do not ship any HTML or JavaScript code in the APK and simply specify
one hard coded URL in Java to be loaded, which is often just the mobile version
of their website, hosted in a remote location.

Some apps chose a middle ground: They may first load Activities like regular
Android apps, and may embed HTML and JavaScript code only into some parts
of the app, where Cordova Plugins may be used to communicate back and forth.
Such irregular Cordova apps are the exception and are significantly harder to
statically analyse, as they change the way Cordova is integrate into the app.

How developers use the Cordova plugins. Many plugins take callback
functions and pass them through to their exec call. Especially for plugins which
do not simply yield a result which can be passed to the success callback, e. g.,
when the plugin is just supposed to execute a command, there are often no fail
callbacks being provided, either. Some of these actions could indeed fail, which
would not get propagated through to the app code itself, though, because no fail
callback has been passed. This seems to indicate a lack of proper error handling
for many apps, and is one of the reasons why the ConvertModules heuristic did
not find any additional calls in the apps.

How Cordova plugins are written. Plugins generally have the character of
libraries, where the JavaScript part does rarely more than encapsulate the exec
calls. There are also no other mechanism used to conduct cross-language calls.
The official Cordova plugins adhere to these guidelines. Our work is intended for
this kind of plugins.

Anyone can write Cordova plugins, and not all developers adhere to these
guidelines. One found plugin, apparently written just for this specific app, does
not contain any JavaScript code; instead, the exec calls are done right in the
app code itself. Other plugins represent the other extreme and implement quite
a bit of the plugin logic on the JavaScript side, which could have been as well
written in Java. Again some other plugins do not even use exec to communicate
with their Java side, but use methods which are also used internally in the Cor-
dova framework. The reason for these unnecessary uses of workarounds remains
unclear.



On the Static Analysis of Hybrid Mobile Apps 15

One plugin found in those Cordova apps is special in a different way: Com-
bining Java and JavaScript was apparently not enough, as the APK contained
some native libraries accessed via JNI to do some basic arithmetic calculations.
As JSON strings get passed from the JavaScript part via Java to the C part, the
attack surface gets even larger.

5 Related Work

There is a large body of work that uses static program analysis for finding
security vulnerabilities in JavaScript-based web applications [11, 16, 24, 26] as
well as dealing with the privacy concerns of Android apps [4, 13, 18, 20].

While cross-language calls in the form of foreign language interface such as
the Java Native Interface (JNI) are not new, there are surprisingly few works
that address the problem of static program analysis across such interface. Among
those few there is SafeJNI [25], which statically ensures that that unsafe native
code cannot bypass Java’s type-safety. Another example is the work of Li and
Tan [15], who developed a static analysis framework to find bugs related to the
different use of exceptions in Java and native code.

The most closely related work is HybriDroid. The development of HybriDroid
seems to have started by Lee et al. [14] roughly at the same time as we started
our work. With HybriDroid, we share the overall goal: detecting security vulner-
abilities as well as leakage of private information in hybrid mobile applications
on Android. In contrast to our work, HybriDroid analyses not the cross language
interface of Cordova, but the low-level interface provided by Android and does
not yet support Cordova. Thus, HybriDroid works rather independently from
the framework (e. g., Cordova) used for developing a hybrid app and therefore
reports also cross-language calls that our approach might miss, e. g., in case a
Cordova developer does use the low-level functions in addition to the mechanism
offered by Cordova. In exchange, our approach allows for better explanations of
found issues to Cordova developers. Moreover, we expect a better scalability of
our approach. Still, as both approach are very young, it is too early for a detailed
comparison of the actual implementations.

The next most closely related works are FlowDroid [2] and SCanDroid [8].
Both are tools supporting the Android life-cycle model and are able to build call
graphs for native Android apps as well as perform a static data-flow analysis
for finding security vulnerabilities as well as privacy violations. For our work,
SCanDroid is of particular interest, as it is based on Wala which makes it very
attractive to extend its data flow analysis to support our unified call graphs.
Extending the data flow analysis of SCanDroid would require developing support
for the JavaScript part of our unified call graph as well as the cross language
calls. In addition, the Android life-cycle events that are specific to the JavaScript
part need to be added.



16 A.D. Brucker and M. Herzberg

6 Conclusion and Future Work

We presented a novel approach for constructing a uniform call graph for hybrid
mobile apps using the Cordova framework. Our evaluations show that the gen-
erated calls graphs are, with respect to the cross language calls, very accurate.
Their quality, though, depends on the used call graph builder for JavaScript.

As future work, we plan to develop a data-flow analysis (e. g., extending
SCanDroid [8]) on top of the uniform call graphs that will allow for detecting
programming related vulnerabilities in Cordova apps such as SQL injections and
to enforce policies such as “only local JavaScript code shall be allowed to access
the address book” statically, i. e., at development time.

Still, the presented approach is already applicable to real Cordova applica-
tions. When the apps from the test set have been manually examined, it quickly
became apparent that any tool helping with properly programming Cordova apps
is useful. One app even used a custom Cordova plugin which contains libraries
written in C++ that were used by the Java code, so detecting cross-language
calls does not stop at just Java and JavaScript and can certainly be extended.

Acknowledgements. We would like to thank Jens Heider and Stephan Huber
from Fraunhofer SIT who provided us with the initial list of Cordova apps for
our evaluation. This research was partially supported by the Federal Ministry
for Education and Research (BMBF) in the context of the project ZertApps
(http://www.zertapps.de/).

References

[1] Anderson, P.: Measuring the value of static-analysis tool deployments. Security
Privacy, IEEE 10(3), 40–47 (2012).

[2] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. In: PLDI ’14, pp. 259–269.
ACM (2014).

[3] Bachmann, R., Brucker, A.D.: Developing secure software: A holistic approach to
security testing. Datenschutz und Datensicherheit (DuD) 38(4), 257–261 (2014).

[4] Batyuk, L., Herpich, M., Camtepe, S.A., Raddatz, K., Schmidt, A.D., Albayrak,
S.: Using static analysis for automatic assessment and mitigation of unwanted
and malicious activities within android applications. In: Malicious and Unwanted
Software (MALWARE), pp. 66–72. IEEE (2011)

[5] Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C.,
Kamsky, A., McPeak, S., Engler, D.: A few billion lines of code later: using static
analysis to find bugs in the real world. Commun. ACM 53, 66–75 (2010).

[6] Brucker, A.D., Sodan, U.: Deploying static application security testing on a large
scale. In: Katzenbeisser, S., Lotz, V., Weippl, E. (eds.) GI Sicherheit 2014, Lecture
Notes in Informatics, vol. 228, pp. 91–101. GI (2014).

[7] Feldthaus, A., Schafer, M., Sridharan, M., Dolby, J., Tip, F.: Efficient construction
of approximate call graphs for JavaScript IDE services. In: Software Engineering
(ICSE), 2013 35th International Conference on, pp. 752–761. IEEE (2013)

http://www.zertapps.de/


On the Static Analysis of Hybrid Mobile Apps 17

[8] Fuchs, A.P., Chaudhuri, A., Foster, J.S.: SCanDroid: automated security certifi-
cation of android applications. Tech. Rep. CS-TR-4991, Department of Computer
Science, University of Maryland, College Park (2009)

[9] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The
most dangerous code in the world: validating SSL certificates in non-browser soft-
ware. In: CSS, pp. 38–49. ACM (2012).

[10] Georgiev, M., Jana, S., Shmatikov, V.: Breaking and fixing origin-based access
control in hybrid web/mobile application frameworks. In: NDSS, 2014. The Inter-
net Society (2014).

[11] Guha, A., Krishnamurthi, S., Jim, T.: Using static analysis for AJAX intrusion
detection. In: World Wide Web, pp. 561–570. ACM (2009)

[12] Jin, X., Wang, L., Luo, T., Du, W.: Fine-grained access control for HTML5-based
mobile applications in Android. In: ISC. (2013)

[13] Kim, J., Yoon, Y., Yi, K., Shin, J., Center, S.: Scandal: Static analyzer for detect-
ing privacy leaks in android applications. MoST (2012)

[14] Lee, S., Dolby, J., Ryu, S.: Hybridroid: Analysis framework for Android hybrid
applications (2015).

[15] Li, S., Tan, G.: Finding bugs in exceptional situations of JNI programs. In: CCS,
pp. 442–452. ACM (2009)

[16] Madsen, M., Livshits, B., Fanning, M.: Practical static analysis of javascript ap-
plications in the presence of frameworks and libraries. In: Foundations of Software
Engineering, pp. 499–509. ACM (2013)

[17] McGraw, G.: Software Security: Building Security In. Addison-Wesley (2006)
[18] Mohr, M., Graf, J., Hecker, M.: Jodroid: Adding android support to a static in-

formation flow control tool. In: Conference on Programming Languages (2015)
[19] Rubin, A.D., Geer Jr., D.E.: A survey of web security. Computer 31(9), 34–41

(1998).
[20] Shabtai, A., Fledel, Y., Elovici, Y.: Automated static code analysis for classifying

android applications using machine learning. In: CIS, pp. 329–333. IEEE (2010)
[21] Shehab, M., AlJarrah, A.: Reducing attack surface on Cordova-based hybrid mo-

bile apps. In: Workshop on Mobile Development Lifecycle, pp. 1–8. ACM (2014)
[22] Singh, K.: Practical context-aware permission control for hybrid mobile applica-

tions. In: Research in Attacks, Intrusions, and Defenses, pp. 307–327. Springer
(2013)

[23] Stuttard, D., Pinto, M.: The Web Application Hacker’s Handbook: Discovering
and Exploiting Security Flaws. John Wiley & Sons, Inc. (2011)

[24] Taly, A., Erlingsson, Ú., Mitchell, J.C., Miller, M.S., Nagra, J.: Automated analysis
of security-critical JavaScript apis. In: SP, pp. 363–378. IEEE (2011)

[25] Tan, G., Appel, A.W., Chakradhar, S., Raghunathan, A., Ravi, S., Wang, D.: Safe
Java native interface. In: Secure Software Engineering, pp. 97–106. (2006)

[26] Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: Taj: effective taint
analysis of web applications. ACM Sigplan Notices 44(6), 87–97 (2009)

[27] Tsipenyuk, K., Chess, B., McGraw, G.: Seven pernicious kingdoms: a taxonomy
of software security errors. Security Privacy, IEEE 3(6), 81–84 (2005).


	On the Static Analysis of Hybrid Mobile Apps
	1 Introduction
	2 Apache Cordova and Its Security Model
	2.1 Apache Cordova Architecture and Programming Model
	2.2 Security Considerations for Cordova Apps

	3 Static Analysis for Finding Cross-Language Flows
	3.1 Modelling Cordova
	3.2 Implementation

	4 The State of Cordova App Security (and Quality)
	4.1 Popularity of Cordova and Benchmark Selection
	4.2 Scalability
	4.3 Quality
	4.4 Noticeable findings about the apps

	5 Related Work
	6 Conclusion and Future Work




@InCollection{	  brucker.ea:cordova-security:2016,
  author	= {Achim D. Brucker and Michael Herzberg},
  booktitle	= {International Symposium on Engineering Secure Software and
		  Systems (ESSoS)},
  language	= {USenglish},
  editor	= {Juan Caballero and Eric Bodden},
  publisher	= {Springer-Verlag},
  address	= {Heidelberg},
  series	= {Lecture Notes in Computer Science},
  title		= {On the Static Analysis of Hybrid Mobile Apps: A Report on
		  the State of Apache Cordova Nation},
  year		= {2016},
  isbn		= {978-3-642-11746-6},
  classification= {conference},
  areas		= {security, software},
  public	= {yes},
  pdf		= {https://www.brucker.ch/bibliography/download/2016/brucker.ea-cordova-security-2016.pdf},
  abstract	= {Developing mobile applications is a challenging business:
		  developers need to support multiple platforms and, at the
		  same time, need to cope with limited resources, as the
		  revenue generated by an average app is rather small. This
		  results in an increasing use of cross-platform development
		  frameworks that allow developing an app once and offering
		  it on multiple mobile platforms such as Android, iOS, or
		  Windows.
		  
		  Apache Cordova is a popular framework for developing
		  multi-platform apps. Cordova combines HTML5 and JavaScript
		  with native application code. Combining web and native
		  technologies creates new security challenges as, e.g., an
		  XSS attacker becomes more powerful.
		  
		  In this paper, we present a novel approach for statically
		  analysing the foreign language calls. We evaluate our
		  approach by analysing the top Cordova apps from Google
		  Play. Moreover, we report on the current state of the
		  overall quality and security of Cordova apps. },
  keywords	= {static program analysis, static application security
		  testing, Android, Cordova, hybrid mobile apps},
  url		= {https://www.brucker.ch/bibliography/abstract/brucker.ea-cordova-security-2016}
}



%0 Book Section
%T On the Static Analysis of Hybrid Mobile Apps: A Report on the State of Apache Cordova Nation
%A Brucker, Achim D.
%A Herzberg, Michael
%E Caballero, Juan
%E Bodden, Eric
%B International Symposium on Engineering Secure Software and Systems (ESSoS)
%D 2016
%I Springer-Verlag
%C Heidelberg
%@ 978-3-642-11746-6
%G USenglish
%F brucker.ea:cordova-security:2016
%X Developing mobile applications is a challenging business: developers need to support multiple platforms and, at the same time, need to cope with limited resources, as the revenue generated by an average app is rather small. This results in an increasing use of cross-platform development frameworks that allow developing an app once and offering it on multiple mobile platforms such as Android, iOS, or Windows. Apache Cordova is a popular framework for developing multi-platform apps. Cordova combines HTML5 and JavaScript with native application code. Combining web and native technologies creates new security challenges as, e.g., an XSS attacker becomes more powerful. In this paper, we present a novel approach for statically analysing the foreign language calls. We evaluate our approach by analysing the top Cordova apps from Google Play. Moreover, we report on the current state of the overall quality and security of Cordova apps. 
%K static program analysis, static application security testing, Android, Cordova, hybrid mobile apps
%U https://www.brucker.ch/bibliography/abstract/brucker.ea-cordova-security-2016
%U https://www.brucker.ch/bibliography/download/2016/brucker.ea-cordova-security-2016.pdf




TY  - CHAP
AU  - Brucker, Achim D.
AU  - Herzberg, Michael
ED  - Caballero, Juan
ED  - Bodden, Eric
PY  - 2016//
TI  - On the Static Analysis of Hybrid Mobile Apps: A Report on the State of Apache Cordova Nation
BT  - International Symposium on Engineering Secure Software and Systems (ESSoS)
T3  - Lecture Notes in Computer Science
PB  - Springer-Verlag
CY  - Heidelberg
KW  - static program analysis, static application security testing, Android, Cordova, hybrid mobile apps
N2  - Developing mobile applications is a challenging business: developers need to support multiple platforms and, at the same time, need to cope with limited resources, as the revenue generated by an average app is rather small. This results in an increasing use of cross-platform development frameworks that allow developing an app once and offering it on multiple mobile platforms such as Android, iOS, or Windows. Apache Cordova is a popular framework for developing multi-platform apps. Cordova combines HTML5 and JavaScript with native application code. Combining web and native technologies creates new security challenges as, e.g., an XSS attacker becomes more powerful. In this paper, we present a novel approach for statically analysing the foreign language calls. We evaluate our approach by analysing the top Cordova apps from Google Play. Moreover, we report on the current state of the overall quality and security of Cordova apps. 
SN  - 978-3-642-11746-6
UR  - https://www.brucker.ch/bibliography/abstract/brucker.ea-cordova-security-2016
L1  - https://www.brucker.ch/bibliography/download/2016/brucker.ea-cordova-security-2016.pdf
ID  - brucker.ea:cordova-security:2016
ER  - 



 
 
 brucker.ea:cordova-security:2016
 BookSection
 Heidelberg
 Springer-Verlag
 2016
 International Symposium on Engineering Secure Software and Systems (ESSoS)
 
  
  Brucker Achim D
  Herzberg Michael

  
  Caballero Juan
  Bodden Eric


 On the Static Analysis of Hybrid Mobile Apps: A Report on the State of Apache Cordova Nation
 Developing mobile applications is a challenging business: developers need to support multiple platforms and, at the same time, need to cope with limited resources, as the revenue generated by an average app is rather small. This results in an increasing use of cross-platform development frameworks that allow developing an app once and offering it on multiple mobile platforms such as Android, iOS, or Windows. Apache Cordova is a popular framework for developing multi-platform apps. Cordova combines HTML5 and JavaScript with native application code. Combining web and native technologies creates new security challenges as, e.g., an XSS attacker becomes more powerful. In this paper, we present a novel approach for statically analysing the foreign language calls. We evaluate our approach by analysing the top Cordova apps from Google Play. Moreover, we report on the current state of the overall quality and security of Cordova apps. 



