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Security Testing: Myths, Challenges, and Opportunities
Experiences in Integrating Security Testing “End-to-End” Into the Software Life-Cycle at SAP

Security testing is an important part of any security development lifecycle (SDL) and, thus, should be a part of
any software (development) lifecycle. Still, security testing is often understood as an activity done by security
testers in the time between “end of development” and “offering the product to customers.”

On the one hand, learning from traditional testing that the fixing of bugs is the more costly the later it is done
in development, security testing should be integrated into the daily development activities. On the other
hand, developing software for the cloud and offering software in the cloud raises the need for security testing
in a “close-to-production” or even production environment. Consequently, we need an end-to-end integration
of security testing into the software lifecycle.

In this talk, we will report on our experiences on integrating security testing “end-to-end” into SAP’s software
development lifecycle in general and, in particular, SAP’s Secure Software Development Lifecycle (S2DL).
Moreover, we will discuss different myths, challenges, and opportunities in the are security testing.
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A Security Testing Taxonomy
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A Security Testing Taxonomy

..and a Disclaimer

Dynamic

static [INianual BinaniARaivSiS ]

Disclaimer

Black-Box

In this talk, security testing refers to all kind of methods that find security
vulnerabilities in systems, including (but not limited) to:

static approaches (e.g., SAST, code reviews)
dynamic approaches (e.g., DAST, fuzzing)

combined approaches (e.g., IAST, concolic testing)

White-Box Sy
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SAP in a Nutshell

Motivation

The Beginning: Large Scale Introduction of SAST

Bl A Risk-based Security Testing Strategy

SAP’s Secure Software Development Lifecycle (S2DL)

I Myths and Lesson’s Learned
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Die SAP SE

Leader in Business Software

Cloud
Mobile
On premise

Many different technologies and platforms, e.g.,

In-memory database and application server (HANA)
Netweaver for ABAP and Java

More than 25 industries

63% of the world’s transaction revenue touches an
SAP system

approx. 68 000 employees worldwide

Headquarters: Walldorf
(close to Heidelberg, Germany)
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SAP’ Security Team

How SAP Organizes Software Security

De-centralized development model:
Central security expert team (S2DL owner)

Organizes security trainings
Defines product standard “Security”
Defines risk and threat assessment methods
Defines security testing strategy
Selects and provides security testing tools
Validates products
Defines and executes response process

Local security experts

Embedded into development teams
Organize local security activities
Support developers and architects
Support product owners (responsibles)
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My Background

| wear two hats:

Research Expert/Architect
(Global) Security Testing Strategist

Background:
Security, Formal Methods, Software Engineering

Current work areas:

Static code analysis
(Dynamic) Security Testing
Mobile Security . I IR
Security Development Lifecycle http://www.brucker.ch/
Secure Software Development Lifecycle
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Costs of Vulnerabilities (Attacks on IT Systems)

TJX Company, Inc. (2007) $ 250 million
Sony (2011) $ 170 million
Heartland Payment Systems (2009) $41 million

A hack not only costs a company money, but also its reputation and the trust of its
customers. It can take years and millions of dollars to repair the damage that a single
computer hack inflicts.

(http://financialedge.investopedia.com/financial-edge/0711/Most- Costly- Computer-Hacks-0f-All-Time.aspx)
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Vulnerability Types of CVE Reports Since 1999

Other
15%

Causes for most vulnerabilities are
programming errors
configuration errors

Bypass Something
4%

Gain Information
5%

Patching
is expensive
may introduce new bugs

How can we help developers to avoid this mistakes?
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The Beginning: Large Scale Introduction of SAST
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How We Started: What We Wanted to Find

Programming Patterns That May Cause Security Vulnerabilities

Mainly two patterns

Local issues (no data-flow dependency), e.g., Data-flow related issues, e.g.,
Insecure functions Cross-site Scripting (XSS)
1 var x = Math.random(); 1 var docref = document.location.href;
2 var input = docref.substring(
. 3 docref.index0f ("default=")+8);
Secrets stored in the source code 4 var fake = function (x) {return x;}
5 var cleanse = function (x) {
1 var password = 'secret’; 6 return 'hello_world’;}
7 document.write(fake(input));
8 document.write(cleanse(uinput));

Secrets stored in the source code

1 var foo = ’'secret’;
2 var x = decrypt(foo,data);
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SAST at SAP

Since 2010, mandatory for all SAP products

Multiple billions lines analyzed
Others

Constant improvement of tool configuration

JavaScript
avascrip SAST tools used at SAP:

Language Tool Vendor
ABAP CVA (SLIN_SEC) SAP

JavaScript  Checkmarx CxSAST  Checkmarx
C/C++ Coverity Coverity
Others Fortify HP

Further details:

Deploying Static Application Security Testing on a Large
Scale. In Gl Sicherheit 2014. Lecture Notes in Informatics,
228, pages 91-101, GI, 2014.
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So Everything is Secure Now, Right?

Our tool reports all vulnerabilities in your software — you only need to fix them and you
are secure.
Undisclosed sales engineer from a SAST tool vendor.
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So Everything is Secure Now, Right?

Our tool reports all vulnerabilities in your software — you only need to fix them and you
are secure.
Undisclosed sales engineer from a SAST tool vendor.
Yes, this tools exists! It is called Code Assurance Tool (cat):
The cat tool reports each line, that might contain a vulnerability:

brucker@fujikawa - fusr/src/modulesftp-smapi
File Edit View Search Terminal Help
brucker@fujikawa:/usr/s
#include <linux/kernel.h
#include <linux/module.h:
#include <Llinux/dmi.h=>

/modules/tp-smapi$ cat thinkpad_ec.c

static int thinkpad_ec_request_row(const struct thinkpad_ec_row *args)
I
L

Q 2
ug str3;

int i;
© 2015 SAP SE. All Rights Reserved.
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So Everything is Secure Now, Right?

Our tool reports all vulnerabilities in your software — you only need to fix them and you
are secure.
Undisclosed sales engineer from a SAST tool vendor.

Yes, this tools exists! It is called Code Assurance Tool (cat):
The cat tool reports each line, that might contain a vulnerability:
It supports also a mode that reports no false positives:

brucker@fujikawa - fusr/src/modules/tp-smapi

File Edit View Search Terminal Help
brucker@fujikawa:/usr/src/modules/tp-smapi$ cat thinkpad_ec.c > /dev/null
brucker@fujikawa:/usr/src/modules/tp-smapi$ I
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B A Risk-based Security Testing Strategy
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Combining Multiple Security Testing Methods and Tools

Risks of only using only SAST
Wasting effort that could be used more wisely
elsewhere
Shipping insecure software

Examples of SAST limitations

Not all programming languages supported
Covers not all layers of the software stack
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A Risk-based Test Plan

7/ + Combines multiple security testing methods, e.qg.,
v v \ 4 code scans, dynamic analysis, manual penetration
testing or fuzzing

Selects the most efficient test tools and test cases
based on the risks and the technologies used in the
project

Re-adjusts priorities of test cases based on identified
risks for the project

Monitors false negative findings in the results of risk
assessment
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SAP’s Secure Software Development Lifecycle (S?DL)
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SAP’ Secure Software Development Lifecycle (S2DL)

Start of development Release decision
| Transition J Utilization

Risk
Identification

Plan Security
Measures

Secure
development

Security
Validation

Security
Response

Security testing

sSecurity awareness  #SECURIM *Plan product sSecure sDynamic testing sindependent sExecute the security
sSecure (Security Risk standard programming eManual testing security assessment  response plan
programming Identification and compliance eStatic code scan eExternal security
sThreat modelling Management) *Plan security sCode review assessment
eSecurity static eData Privacy Impact  features
analysis Assessment *Plan security tests
eData protection and *Threat Modeling +Plan security
privacy response
sSecurity expert
curriculum
SAP SSDL
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SAP’ Secure Software Development Lifecycle (S2DL)

Security Testing Plan and Security Testing Report

Start of development N

Shipment decision
J L S J L

> ) G >

Security Measure Plan

Security Measure Report

Security Testing Plan

Security Testing Report
+Based on Security Risk

+Result of executed security testing
Identification and Mitigation activities (e.g., code scan report)
Report (Threat Modelling, +Describes deviations from plan
SECURIM) «Input for validation and operation
+Describes planned security testing (cloud)
activities

+Completeness and plausibility
check by validation or security
enablement team
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A Myths and Lesson’s Learned
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Continuously Measure Your Work and Improve Your Setup

But How to Measure and What to Expect?

What we do:
Externally reported vulnerabilities/found by validation: check why we missed it earlier
Potential reasons for missing a vulnerability (and actions)
Vulnerability not detected by our tools (strategy)
could be detected in principle by our tools
= analyze necessary changes (with tool vendor) and decide if risk justifies effort for enhancing tool
cannot be detected in principle by our tools
= research for suitable tools and and decide if risk justifies effort for introducing new tool
Vulnerability can be detected by our tools
With recent configuration but not configuration at release date
= no immediate actions necessary
With configuration at release date
= analyze why it was not detected and take further actions

What we expect

Issues not covered by current tool configuration should increase (ideally to 100%)
What we observe

Increase of logic-based flaws
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Penetration Tests at the End of Development

... test/ensure the security of the developed product, right?

Main purpose of penetration tests at end of development is:
to check for “flaws” in the the S?DL (and not the product)

Ideally, they only find:
no issues that can be fixed/detected earlier (e.g., configuration)

Note, penetration tests in productive environments are different:
They test the actual configuration
They test the productive environment (e.g., cloud/hosting)
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False Positives are not Your Biggest Concern

A Pragmatic Solution for Too Many Findings: Prioritize Them

Filter Set: |SAP - My Issues

B 96| [ 640 M8 195 (0 1102]

Corporate Security Requirements (171) What needs to be audited
What needs to be fixed
Group By: |Category v|
as security issue

» 2] Command Injection - [0/ 5] (res onseyeffort)

» [Z] Cross-Site Scripting: Persistent - [0/ 38] IF')t .

» [ Cross-Site Scripting: Reflected - [0/ 70] quality Issue

+ [ Dynamic Code Evaluation: Code Injection - [0 /1] Different rules for

+ ] Header Manipulation - [0/ 7] old code

» [ Password Management: Empty Password - [0/ 2] new code

» [ Path Manipulation - [0/ 5]
> 2] SQL Injection - [0/ 43]
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False Positives are not Your Biggest Concern

A Pragmatic Solution for Too Many Findings: Prioritize Them

Filter Set: |SAP - [] My Issues

Wi D 640 M0 195 D 1102]
What needs fo be audited
'I What needs to be fixed

as security issue
(response effort)
quality issue

Group By: ICategor}r
> [ Insecure Randomness - [0 /1]

> [ J2EE Bad Practices: Non-Serializable Object Stored in Se
> [ Mull Dereference - [0 / 8]

> [ Password Management: Hardcoded Password - [0 / 3] Different rules for
> [ Password Management: Password in Configuration File old code
> [ Privacy Vielation - [0 / 45] new code

> [ Race Condition: Singleton Member Field - [0 /1]
> [ Race Condition: Static Database Connection - [0 / 2]
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False Positives are not Your Biggest Concern

A Pragmatic Solution for Too Many Findings: Prioritize Them

Filter Set: |SAP - My Issues

W17l W os|| 195 0 1102]
Group By: |Categnr}r v|
» [ Access Control: Database - [0 / 33] -~

: ] Code Correctness: Erroneous Class Compare - [0/1
: ] Code Correctness: Erronecus String Compare - [0 /¢
: [ Cookie Security: Cookie not Sent Over S5L - [0/ 4]

» [ Cross-5ite Request Forgery - [0/ 27]

: [ Denial of Service - [0/ 7]

: O] Hidden Field - [0/ 15]

. [ J2EE Bad Practices: getConnection(] - [0 / 5]

m
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False Positives are not Your Biggest Concern

A Pragmatic Solution for Too Many Findings: Prioritize Them

Filter Set: [ My Issues

171 M9 64 [ 1102]
What needs to be audited
-] What needs to be fixed

as security issue
(response effort)
quality issue

Group By: [ Category

» [ Axis 2 Misconfiguration: Debug Information - [0/ 6]
» [_] Dead Code: Unused Method - [0/ 2]

» ] J2EE Bad Practices: Leftover Debug Code - [0 / 4]

+ [Z J2EE Bad Practices: Sockets - [0 /1] Different rules for
» ] J2EE Bad Practices: Threads - [0 / 6] old code

> [Z] J2EE Misconfiguration: Excessive Serviet Mappings - [0
> [Z] J2EE Misconfiguration: Missing Data Transport Constrai
» [C] Object Model Violation: Just one of equals() and hashC

e e e e . -~

new code
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Listen to Your Developers: Development Awareness

Developers Should be the Best Friends of Security Experts (not Their Enemies)

We are often talking about a lack of security awareness
and, by that, forget the problem of
lacking development awareness.

Always keep in mind:
Building a a secure system more difficult than finding a successful attack.

We need:
Easier to use security APIs
More tools that make it easy to implement system securely
Frameworks that make it hard to implement insecure systems

And, btw, this also holds for DevOps (Cloud)
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HI, THIS 15 OH, DEAR - DID HE | DID YOU REALLY
YOUR SONS SCHOOL. | BREAK SOMETHING? | NAME YOUR SON
WERE HAVING SOME Robert'); DROP
(OMPUTER TROUBLE- TABLE Students;-~ 7

§

~ OH.YES. UTTLE

http://xkcd.com/327/

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.
# AND I HOPE
= YOUVE LEARNED
TO SANMZE YOUR
DATABASE INPUTS,


http://xkcd.com/327/

Related Publications

Developing secure software: A holistic approach to security testing.

Formal firewall conformance testing: An application of test and proof techniques.

Deploying static application security testing on a large scale.

On theorem prover-based testing.
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