
Security Testing: Myths, Challenges, and Opportunities
Experiences in Integrating Security Testing “End-to-End” Into the Software Life-Cycle at SAP

Achim D. Brucker
achim.brucker@sap.com http://www.brucker.ch/

SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany

SECTEST Keynote
6th international Workshop on Security Testing (SECTEST)

Graz, Austria, April 13, 2015

http://www.brucker.ch/
mailto:"Achim D. Brucker" <achim.brucker@sap.com>
http://www.brucker.ch/

Security Testing: Myths, Challenges, and Opportunities
Experiences in Integrating Security Testing “End-to-End” Into the Software Life-Cycle at SAP

Abstract

Security testing is an important part of any security development lifecycle (SDL) and, thus, should be a part of
any software (development) lifecycle. Still, security testing is often understood as an activity done by security
testers in the time between “end of development” and “offering the product to customers.”
On the one hand, learning from traditional testing that the fixing of bugs is the more costly the later it is done
in development, security testing should be integrated into the daily development activities. On the other
hand, developing software for the cloud and offering software in the cloud raises the need for security testing
in a “close-to-production” or even production environment. Consequently, we need an end-to-end integration
of security testing into the software lifecycle.
In this talk, we will report on our experiences on integrating security testing “end-to-end” into SAP’s software
development lifecycle in general and, in particular, SAP’s Secure Software Development Lifecycle (S2DL).
Moreover, we will discuss different myths, challenges, and opportunities in the are security testing.

© 2015 SAP SE. All Rights Reserved. Page 2 of 27

A Security Testing Taxonomy

Manual

Automated

Black-Box

Black-Box

White-Box

White-Box

Dynamic

Dynamic

Dynamic

Static

Static

Static

Static

Dynamic

Manual Penetration Testing

Manual Binary Analysis

Manual Penetration Testing

Manual Code Review

Web Vulnerability Scanning

Static Binary Analysis

Runtime Memory Analysis

Static Source Analysis

© 2015 SAP SE. All Rights Reserved. Page 3 of 27

A Security Testing Taxonomy
. . . and a Disclaimer

Manual

Automated

Black-Box

Black-Box

White-Box

White-Box

Dynamic

Dynamic

Dynamic

Static

Static

Static

Static

Dynamic

Manual Penetration Testing

Manual Binary Analysis

Manual Penetration Testing

Manual Code Review

Web Vulnerability Scanning

Static Binary Analysis

Runtime Memory Analysis

Static Source Analysis

Disclaimer

In this talk, security testing refers to all kind of methods that find security
vulnerabilities in systems, including (but not limited) to:

• static approaches (e.g., SAST, code reviews)

• dynamic approaches (e.g., DAST, fuzzing)

• combined approaches (e.g., IAST, concolic testing)

© 2015 SAP SE. All Rights Reserved. Page 3 of 27

Agenda

1 SAP in a Nutshell

2 Motivation

3 The Beginning: Large Scale Introduction of SAST

4 A Risk-based Security Testing Strategy

5 SAP’s Secure Software Development Lifecycle (S2DL)

6 Myths and Lesson’s Learned

© 2015 SAP SE. All Rights Reserved. Page 4 of 27

Die SAP SE

• Leader in Business Software
• Cloud
• Mobile
• On premise

• Many different technologies and platforms, e.g.,
• In-memory database and application server (HANA)
• Netweaver for ABAP and Java

• More than 25 industries

• 63% of the world’s transaction revenue touches an
SAP system

• approx. 68 000 employees worldwide

• Headquarters: Walldorf
(close to Heidelberg, Germany)

© 2015 SAP SE. All Rights Reserved. Page 5 of 27

SAP’ Security Team
How SAP Organizes Software Security

De-centralized development model:
• Central security expert team (S2DL owner)

• Organizes security trainings
• Defines product standard “Security”
• Defines risk and threat assessment methods
• Defines security testing strategy
• Selects and provides security testing tools
• Validates products
• Defines and executes response process

• Local security experts
• Embedded into development teams
• Organize local security activities
• Support developers and architects
• Support product owners (responsibles)

Product
Security

“Training &
Standard”

Security Training

Security
Standard

Merger &
Acquisitions

“Security
Testing &

Validation”

Security
Enablement

Tools

Validation

“Response”

External
Findings

Patch Process

Security
Communication
(Virtual Team)

© 2015 SAP SE. All Rights Reserved. Page 6 of 27

My Background

• I wear two hats:
• Research Expert/Architect
• (Global) Security Testing Strategist

• Background:
Security, Formal Methods, Software Engineering

• Current work areas:

• Static code analysis
• (Dynamic) Security Testing
• Mobile Security
• Security Development Lifecycle
• Secure Software Development Lifecycle

http://www.brucker.ch/

© 2015 SAP SE. All Rights Reserved. Page 7 of 27

http://www.brucker.ch/

Agenda

1 SAP in a Nutshell

2 Motivation

3 The Beginning: Large Scale Introduction of SAST

4 A Risk-based Security Testing Strategy

5 SAP’s Secure Software Development Lifecycle (S2DL)

6 Myths and Lesson’s Learned

© 2015 SAP SE. All Rights Reserved. Page 8 of 27

Costs of Vulnerabilities (Attacks on IT Systems)

• TJX Company, Inc. (2007) $ 250 million

• Sony (2011) $ 170 million

• Heartland Payment Systems (2009) $ 41 million

“ A hack not only costs a company money, but also its reputation and the trust of its
customers. It can take years and millions of dollars to repair the damage that a single
computer hack inflicts.

(http://financialedge.investopedia.com/financial-edge/0711/Most-Costly-Computer-Hacks-Of-All-Time.aspx)

© 2015 SAP SE. All Rights Reserved. Page 9 of 27

http://financialedge.investopedia.com/financial-edge/0711/Most-Costly-Computer-Hacks-Of-All-Time.aspx

Vulnerability Types of CVE Reports Since 1999

Execute Code
28%

Denial of Service
17%

Overflow
12%

XSS
11%

SQL Injection
8%

Gain Information
5%

Bypass Something
4%

Other
15%

• Causes for most vulnerabilities are
• programming errors
• configuration errors

• Patching
• is expensive
• may introduce new bugs

• How can we help developers to avoid this mistakes?

© 2015 SAP SE. All Rights Reserved. Page 10 of 27

Agenda

1 SAP in a Nutshell

2 Motivation

3 The Beginning: Large Scale Introduction of SAST

4 A Risk-based Security Testing Strategy

5 SAP’s Secure Software Development Lifecycle (S2DL)

6 Myths and Lesson’s Learned

© 2015 SAP SE. All Rights Reserved. Page 11 of 27

How We Started: What We Wanted to Find
Programming Patterns That May Cause Security Vulnerabilities

Mainly two patterns
Local issues (no data-flow dependency), e.g.,

• Insecure functions

1 var x = Math.random();

• Secrets stored in the source code

1 var password = ’secret’;

Data-flow related issues, e.g.,

• Cross-site Scripting (XSS)

1 var docref = document.location.href;
2 var input = docref.substring(
3 docref.indexOf("default=")+8);
4 var fake = function (x) {return x;}
5 var cleanse = function (x) {
6 return ’hello world’;}
7 document.write(fake(input));
8 document.write(cleanse(uinput));

• Secrets stored in the source code

1 var foo = ’secret’;
2 var x = decrypt(foo,data);

© 2015 SAP SE. All Rights Reserved. Page 12 of 27

How We Started: What We Wanted to Find
Programming Patterns That May Cause Security Vulnerabilities

Mainly two patterns
Local issues (no data-flow dependency), e.g.,

• Insecure functions

1 var x = Math.random();

• Secrets stored in the source code

1 var password = ’secret’;

Data-flow related issues, e.g.,

• Cross-site Scripting (XSS)

1 var docref = document.location.href;
2 var input = docref.substring(
3 docref.indexOf("default=")+8);
4 var fake = function (x) {return x;}
5 var cleanse = function (x) {
6 return ’hello world’;}
7 document.write(fake(input));
8 document.write(cleanse(uinput));

• Secrets stored in the source code

1 var foo = ’secret’;
2 var x = decrypt(foo,data);

We trust our developers, i.e., we are

focusing on finding “obvious” bugs.

© 2015 SAP SE. All Rights Reserved. Page 12 of 27

SAST at SAP

ABAP

Java

C

JavaScript

Others

• Since 2010, mandatory for all SAP products

• Multiple billions lines analyzed

• Constant improvement of tool configuration

• SAST tools used at SAP:

Language Tool Vendor

ABAP CVA (SLIN_SEC) SAP
JavaScript Checkmarx CxSAST Checkmarx

C/C++ Coverity Coverity
Others Fortify HP

• Further details:
Deploying Static Application Security Testing on a Large
Scale. In GI Sicherheit 2014. Lecture Notes in Informatics,
228, pages 91-101, GI, 2014.

© 2015 SAP SE. All Rights Reserved. Page 13 of 27

So Everything is Secure Now, Right?

“ Our tool reports all vulnerabilities in your software – you only need to fix them and you
are secure.

Undisclosed sales engineer from a SAST tool vendor.

Yes, this tools exists! It is called Code Assurance Tool (cat):
• The cat tool reports each line, that might contain a vulnerability:

• It supports also a mode that reports no false positives:

© 2015 SAP SE. All Rights Reserved. Page 14 of 27

So Everything is Secure Now, Right?

“ Our tool reports all vulnerabilities in your software – you only need to fix them and you
are secure.

Undisclosed sales engineer from a SAST tool vendor.

Yes, this tools exists! It is called Code Assurance Tool (cat):

• The cat tool reports each line, that might contain a vulnerability:

• It supports also a mode that reports no false positives:

© 2015 SAP SE. All Rights Reserved. Page 14 of 27

So Everything is Secure Now, Right?

“ Our tool reports all vulnerabilities in your software – you only need to fix them and you
are secure.

Undisclosed sales engineer from a SAST tool vendor.

Yes, this tools exists! It is called Code Assurance Tool (cat):
• The cat tool reports each line, that might contain a vulnerability:

• It supports also a mode that reports no false positives:

© 2015 SAP SE. All Rights Reserved. Page 14 of 27

So Everything is Secure Now, Right?

“ Our tool reports all vulnerabilities in your software – you only need to fix them and you
are secure.

Undisclosed sales engineer from a SAST tool vendor.

Yes, this tools exists! It is called Code Assurance Tool (cat):
• The cat tool reports each line, that might contain a vulnerability:
• It supports also a mode that reports no false positives:

© 2015 SAP SE. All Rights Reserved. Page 14 of 27

Agenda

1 SAP in a Nutshell

2 Motivation

3 The Beginning: Large Scale Introduction of SAST

4 A Risk-based Security Testing Strategy

5 SAP’s Secure Software Development Lifecycle (S2DL)

6 Myths and Lesson’s Learned

© 2015 SAP SE. All Rights Reserved. Page 15 of 27

Combining Multiple Security Testing Methods and Tools

Client Application

Web Browser

Server Application

Runtime Container

Backend Systems

• Risks of only using only SAST
• Wasting effort that could be used more wisely

elsewhere
• Shipping insecure software

• Examples of SAST limitations
• Not all programming languages supported
• Covers not all layers of the software stack

© 2015 SAP SE. All Rights Reserved. Page 16 of 27

Combining Multiple Security Testing Methods and Tools

Client Application

Web Browser

Server Application

Runtime Container

Backend Systems

Checkmarx (JavaScript)

Fortify (Java) Coverity (C/C++)

• Risks of only using only SAST
• Wasting effort that could be used more wisely

elsewhere
• Shipping insecure software

• Examples of SAST limitations
• Not all programming languages supported
• Covers not all layers of the software stack

© 2015 SAP SE. All Rights Reserved. Page 16 of 27

Combining Multiple Security Testing Methods and Tools

Client Application

Web Browser

Server Application

Runtime Container

Backend Systems

Checkmarx (JavaScript)

Fortify (Java)

D
O

M
in

a
to

r

Coverity (C/C++)

H
P

 W
e

b
In

s
p

e
c
t

/
IB

M
 A

p
p

S
c
a

n

• Risks of only using only SAST
• Wasting effort that could be used more wisely

elsewhere
• Shipping insecure software

• Examples of SAST limitations
• Not all programming languages supported
• Covers not all layers of the software stack

© 2015 SAP SE. All Rights Reserved. Page 16 of 27

Combining Multiple Security Testing Methods and Tools

Client Application

Web Browser

Server Application

Runtime Container

Backend Systems

Checkmarx

Fortify (Java)

D
O

M
in

a
to

r

H
P

 W
e

b
In

s
p

e
c
t

/
IB

M
 A

p
p

S
c
a

n

• Risks of only using only SAST
• Wasting effort that could be used more wisely

elsewhere
• Shipping insecure software

• Examples of SAST limitations
• Not all programming languages supported
• Covers not all layers of the software stack

© 2015 SAP SE. All Rights Reserved. Page 16 of 27

A Risk-based Test Plan

Select from a
list of

predefined
application

types

Implementation
detao;s ,e.g.,
programming
languages,
frameworks

Priority of SAP
Security

Requirements

Security
Test
Plan

RISK ASSESMENT

(e.g., SECURIM, Threat Modelling, OWASP ASVS)
• Combines multiple security testing methods, e.g.,

code scans, dynamic analysis, manual penetration
testing or fuzzing

• Selects the most efficient test tools and test cases
based on the risks and the technologies used in the
project

• Re-adjusts priorities of test cases based on identified
risks for the project

• Monitors false negative findings in the results of risk
assessment

© 2015 SAP SE. All Rights Reserved. Page 17 of 27

Agenda

1 SAP in a Nutshell

2 Motivation

3 The Beginning: Large Scale Introduction of SAST

4 A Risk-based Security Testing Strategy

5 SAP’s Secure Software Development Lifecycle (S2DL)

6 Myths and Lesson’s Learned

© 2015 SAP SE. All Rights Reserved. Page 18 of 27

SAP’ Secure Software Development Lifecycle (S2DL)

Figure: SAP SSDL
© 2015 SAP SE. All Rights Reserved. Page 19 of 27

SAP’ Secure Software Development Lifecycle (S2DL)
Security Testing Plan and Security Testing Report

7

Security Test

Plan

Security

Validation Report

Start of development Shipment decision

Training
Risk

Identification
Plan Security

Measures
Secure

development
Security
testing

Security
Validation

Security
Response

Security Test

Report

Security Measure Plan

Security Testing Plan

•Based on Security Risk
Identification and Mitigation
Report (Threat Modelling,
SECURIM)

•Describes planned security testing
activities

•Completeness and plausibility
check by validation or security
enablement team

Security Measure Report

Security Testing Report

•Result of executed security testing
activities (e.g., code scan report)

•Describes deviations from plan

•Input for validation and operation
(cloud)

Figure: SAP SSDL

© 2015 SAP SE. All Rights Reserved. Page 20 of 27

Agenda

1 SAP in a Nutshell

2 Motivation

3 The Beginning: Large Scale Introduction of SAST

4 A Risk-based Security Testing Strategy

5 SAP’s Secure Software Development Lifecycle (S2DL)

6 Myths and Lesson’s Learned

© 2015 SAP SE. All Rights Reserved. Page 21 of 27

Continuously Measure Your Work and Improve Your Setup
But How to Measure and What to Expect?

What we do:
• Externally reported vulnerabilities/found by validation: check why we missed it earlier
• Potential reasons for missing a vulnerability (and actions)

• Vulnerability not detected by our tools (strategy)
• could be detected in principle by our tools

⇒ analyze necessary changes (with tool vendor) and decide if risk justifies effort for enhancing tool
• cannot be detected in principle by our tools

⇒ research for suitable tools and and decide if risk justifies effort for introducing new tool
• Vulnerability can be detected by our tools

• With recent configuration but not configuration at release date
⇒ no immediate actions necessary

• With configuration at release date
⇒ analyze why it was not detected and take further actions

What we expect
• Issues not covered by current tool configuration should increase (ideally to 100%)

What we observe
• Increase of logic-based flaws

© 2015 SAP SE. All Rights Reserved. Page 22 of 27

Penetration Tests at the End of Development
. . . test/ensure the security of the developed product, right?

Main purpose of penetration tests at end of development is:

• to check for “flaws” in the the S2DL (and not the product)

• Ideally, they only find:
• no issues that can be fixed/detected earlier (e.g., configuration)

Note, penetration tests in productive environments are different:

• They test the actual configuration

• They test the productive environment (e.g., cloud/hosting)

© 2015 SAP SE. All Rights Reserved. Page 23 of 27

False Positives are not Your Biggest Concern
A Pragmatic Solution for Too Many Findings: Prioritize Them

• What needs to be audited

• What needs to be fixed
• as security issue

(response effort)
• quality issue

• Different rules for
• old code
• new code

© 2015 SAP SE. All Rights Reserved. Page 24 of 27

False Positives are not Your Biggest Concern
A Pragmatic Solution for Too Many Findings: Prioritize Them

• What needs to be audited

• What needs to be fixed
• as security issue

(response effort)
• quality issue

• Different rules for
• old code
• new code

© 2015 SAP SE. All Rights Reserved. Page 24 of 27

False Positives are not Your Biggest Concern
A Pragmatic Solution for Too Many Findings: Prioritize Them

• What needs to be audited

• What needs to be fixed
• as security issue

(response effort)
• quality issue

• Different rules for
• old code
• new code

© 2015 SAP SE. All Rights Reserved. Page 24 of 27

False Positives are not Your Biggest Concern
A Pragmatic Solution for Too Many Findings: Prioritize Them

• What needs to be audited

• What needs to be fixed
• as security issue

(response effort)
• quality issue

• Different rules for
• old code
• new code

© 2015 SAP SE. All Rights Reserved. Page 24 of 27

Listen to Your Developers: Development Awareness
Developers Should be the Best Friends of Security Experts (not Their Enemies)

We are often talking about a lack of security awareness
and, by that, forget the problem of
lacking development awareness.

Always keep in mind:
Building a a secure system more difficult than finding a successful attack.

We need:

• Easier to use security APIs

• More tools that make it easy to implement system securely

• Frameworks that make it hard to implement insecure systems

• . . .

And, btw, this also holds for DevOps (Cloud)

© 2015 SAP SE. All Rights Reserved. Page 25 of 27

Thank you!

http://xkcd.com/327/

http://xkcd.com/327/

Related Publications

Ruediger Bachmann and Achim D. Brucker.

Developing secure software: A holistic approach to security testing.
Datenschutz und Datensicherheit (DuD), 38(4):257–261, April 2014.
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014.

Achim D. Brucker, Lukas Brügger, and Burkhart Wolff.

Formal firewall conformance testing: An application of test and proof techniques.
Software Testing, Verification & Reliability (STVR), 25(1):34–71, 2015.
http://www.brucker.ch/bibliography/abstract/brucker.ea-formal-fw-testing-2014.

Achim D. Brucker and Uwe Sodan.

Deploying static application security testing on a large scale.
In Stefan Katzenbeisser, Volkmar Lotz, and Edgar Weippl, editors, gi Sicherheit 2014, volume 228 of Lecture Notes in Informatics, pages 91–101. gi, March 2014.
ISBN 978-3-88579-622-0.
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014.

Achim D. Brucker and Burkhart Wolff.

On theorem prover-based testing.
Formal Aspects of Computing (FAC), 25(5):683–721, 2013.
ISSN 0934-5043.
http://www.brucker.ch/bibliography/abstract/brucker.ea-theorem-prover-2012.

© 2015 SAP SE. All Rights Reserved. Page 27 of 27

http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-formal-fw-testing-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-theorem-prover-2012

© 2015 SAP SE. All rights reserved

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP SE. The information contained herein may be changed
without prior notice.
Some software products marketed by SAP SE and its distributors contain proprietary software
components of other software vendors.
Microsoft, Windows, Excel, Outlook, and PowerPoint are registered trademarks of Microsoft
Corporation.
IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, System x,
System z, System z10, System z9, z10, z9, iSeries, pSeries, xSeries, zSeries, eServer, z/VM,
z/OS, i5/OS, S/390, OS/390, OS/400, AS/400, S/390 Parallel Enterprise Server, PowerVM, Power
Architecture, POWER6+, POWER6, POWER5+, POWER5, POWER, OpenPower, PowerPC,
BatchPipes, BladeCenter, System Storage, GPFS, HACMP, RETAIN, DB2 Connect, RACF,
Redbooks, OS/2, Parallel Sysplex, MVS/ESA, AIX, Intelligent Miner, WebSphere, Netfinity, Tivoli
and Informix are trademarks or registered trademarks of IBM Corporation.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered
trademarks of Adobe Systems Incorporated in the United States and/or other countries.
Oracle is a registered trademark of Oracle Corporation.
UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.
Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are
trademarks or registered trademarks of Citrix Systems, Inc.
HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide
Web Consortium, Massachusetts Institute of Technology.
Java is a registered trademark of Sun Microsystems, Inc.
JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.
SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP BusinessObjects Explorer,
StreamWork, and other SAP products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of SAP SE in Germany and other
countries.

Business Objects and the Business Objects logo, BusinessObjects, Crystal Reports, Crystal Decisions,
Web Intelligence, Xcelsius, and other Business Objects products and services mentioned herein as well
as their respective logos are trademarks or registered trademarks of Business Objects Software Ltd.
Business Objects is an SAP company.
Sybase and Adaptive Server, iAnywhere, Sybase 365, SQL Anywhere, and other Sybase products and
services mentioned herein as well as their respective logos are trademarks or registered trademarks of
Sybase, Inc. Sybase is an SAP company.
All other product and service names mentioned are the trademarks of their respective companies. Data
contained in this document serves informational purposes only. National product specifications may
vary.
The information in this document is proprietary to SAP. No part of this document may be reproduced,
copied, or transmitted in any form or for any purpose without the express prior written permission of
SAP SE.
This document is a preliminary version and not subject to your license agreement or any other
agreement with SAP. This document contains only intended strategies, developments, and
functionalities of the SAP® product and is not intended to be binding upon SAP to any particular course
of business, product strategy, and/or development. Please note that this document is subject to change
and may be changed by SAP at any time without notice.
SAP assumes no responsibility for errors or omissions in this document. SAP does not warrant the
accuracy or completeness of the information, text, graphics, links, or other items contained within this
material. This document is provided without a warranty of any kind, either express or implied, including
but not limited to the implied warranties of merchantability, fitness for a particular purpose, or
non-infringement.
SAP shall have no liability for damages of any kind including without limitation direct, special, indirect,
or consequential damages that may result from the use of these materials. This limitation shall not
apply in cases of intent or gross negligence.
The statutory liability for personal injury and defective products is not affected. SAP has no control over
the information that you may access through the use of hot links contained in these materials and does
not endorse your use of third-party Web pages nor provide any warranty whatsoever relating to
third-party Web pages.

© 2015 SAP SE. All Rights Reserved. Page 28 of 27

	SAP in a Nutshell
	Motivation
	The Beginning: Large Scale Introduction of SAST
	A Risk-based Security Testing Strategy
	SAP's Secure Software Development Lifecycle (Smath text inlined[fg]math text inlinedfg2DL)
	Myths and Lesson's Learned

