i
|
!
!

Security Testing: Myths, Challenges, and Opportunities

Experiences in Integrating Security Testing “End-to-End” Into the Software Life-Cycle at SAP

Achim D. Brucker
achim.brucker@sap.com

http://www.brucker.ch/
SAP SE, Vincenz-Priessnitz-Str.

1, 76131 Karlsruhe, Germany
SECTEST Keynote

6th international Workshop on Security Testing (SECTEST)
Graz, Austria, April 13, 2015

http://www.brucker.ch/
mailto:"Achim D. Brucker" <achim.brucker@sap.com>
http://www.brucker.ch/

Security Testing: Myths, Challenges, and Opportunities
Experiences in Integrating Security Testing “End-to-End” Into the Software Life-Cycle at SAP

Security testing is an important part of any security development lifecycle (SDL) and, thus, should be a part of
any software (development) lifecycle. Still, security testing is often understood as an activity done by security
testers in the time between “end of development” and “offering the product to customers.”

On the one hand, learning from traditional testing that the fixing of bugs is the more costly the later it is done
in development, security testing should be integrated into the daily development activities. On the other
hand, developing software for the cloud and offering software in the cloud raises the need for security testing
in a “close-to-production” or even production environment. Consequently, we need an end-to-end integration
of security testing into the software lifecycle.

In this talk, we will report on our experiences on integrating security testing “end-to-end” into SAP’s software
development lifecycle in general and, in particular, SAP’s Secure Software Development Lifecycle (S2DL).
Moreover, we will discuss different myths, challenges, and opportunities in the are security testing.

© 2015 SAP SE. All Rights Reserved. Page 2 of 27

A Security Testing Taxonomy

Dynamic

Black-Box Static

Manual White-Box Dynamic

Static

Dynamic

Automated Black-Box Static

White-Box Dynamic

Static

© 2015 SAP SE. All Rights Reserved. Page 3 of 27

A Security Testing Taxonomy

..and a Disclaimer

Dynamic

static [INianual BinaniARaivSiS]

Disclaimer

Black-Box

In this talk, security testing refers to all kind of methods that find security
vulnerabilities in systems, including (but not limited) to:

static approaches (e.g., SAST, code reviews)
dynamic approaches (e.g., DAST, fuzzing)

combined approaches (e.g., IAST, concolic testing)

White-Box Sy

© 2015 SAP SE. All Rights Reserved. Page 3 of 27

SAP in a Nutshell

Motivation

The Beginning: Large Scale Introduction of SAST

Bl A Risk-based Security Testing Strategy

SAP’s Secure Software Development Lifecycle (S2DL)

I Myths and Lesson’s Learned

© 2015 SAP SE. All Rights Reserved. Page 4 of 27

Die SAP SE

Leader in Business Software

Cloud
Mobile
On premise

Many different technologies and platforms, e.g.,

In-memory database and application server (HANA)
Netweaver for ABAP and Java

More than 25 industries

63% of the world’s transaction revenue touches an
SAP system

approx. 68 000 employees worldwide

Headquarters: Walldorf
(close to Heidelberg, Germany)

© 2015 SAP SE. All Rights Reserved. Page 5 of 27

SAP’ Security Team

How SAP Organizes Software Security

De-centralized development model:
Central security expert team (S2DL owner)

Organizes security trainings
Defines product standard “Security”
Defines risk and threat assessment methods
Defines security testing strategy
Selects and provides security testing tools
Validates products
Defines and executes response process

Local security experts

Embedded into development teams
Organize local security activities
Support developers and architects
Support product owners (responsibles)

© 2015 SAP SE. All Rights Reserved. Page 6 of 27

My Background

| wear two hats:

Research Expert/Architect
(Global) Security Testing Strategist

Background:
Security, Formal Methods, Software Engineering

Current work areas:

Static code analysis
(Dynamic) Security Testing
Mobile Security . I IR
Security Development Lifecycle http://www.brucker.ch/
Secure Software Development Lifecycle

© 2015 SAP SE. All Rights Reserved. Page 7 of 27

http://www.brucker.ch/

Bl Motivation

© 2015 SAP SE. Al ights Reserved

Costs of Vulnerabilities (Attacks on IT Systems)

TJX Company, Inc. (2007) $ 250 million
Sony (2011) $ 170 million
Heartland Payment Systems (2009) $41 million

A hack not only costs a company money, but also its reputation and the trust of its
customers. It can take years and millions of dollars to repair the damage that a single
computer hack inflicts.

(http://financialedge.investopedia.com/financial-edge/0711/Most- Costly- Computer-Hacks-0f-All-Time.aspx)

© 2015 SAP SE. All Rights Reserved. Page 9 of 27

http://financialedge.investopedia.com/financial-edge/0711/Most-Costly-Computer-Hacks-Of-All-Time.aspx

Vulnerability Types of CVE Reports Since 1999

Other
15%

Causes for most vulnerabilities are
programming errors
configuration errors

Bypass Something
4%

Gain Information
5%

Patching
is expensive
may introduce new bugs

How can we help developers to avoid this mistakes?

© 2015 SAP SE. All Rights Reserved. Page 10 of 27

The Beginning: Large Scale Introduction of SAST

© 2015 SAP SE. All Rights Reserved. Page 11 of 27

How We Started: What We Wanted to Find

Programming Patterns That May Cause Security Vulnerabilities

Mainly two patterns

Local issues (no data-flow dependency), e.g., Data-flow related issues, e.g.,
Insecure functions Cross-site Scripting (XSS)
1 var x = Math.random(); 1 var docref = document.location.href;
2 var input = docref.substring(
. 3 docref.index0f ("default=")+8);
Secrets stored in the source code 4 var fake = function (x) {return x;}
5 var cleanse = function (x) {
1 var password = 'secret’; 6 return 'hello_world’;}
7 document.write(fake(input));
8 document.write(cleanse(uinput));

Secrets stored in the source code

1 var foo = ’'secret’;
2 var x = decrypt(foo,data);

© 2015 SAP SE. All Rights Reserved. Page 12 of 27

How We Started: What We Wanted to Find

Programming Patterns That May Cause Security Vulnerabilities

Mainly two patterns

Local issues (no data-flow dependency), e.g., Data-flow related issues, e.g.,
Insecure functions Cross-site S~ é(e XSS)
e
1 var x = Math.random(); 1 1. S . .t.location.href;
\opeﬁ" . \)5" oV _ief.substring(
) geve ..O‘OQ\O docref.index0f ("default=")+8);
Secrets stored in the source code ¢ oV 3o . Take = function (x) {return x;}
e»(_(\)s 0“““ var cleanse = function (x) {
1 var password = 'secret’; E;\“ 6 return 'hello_world’;}
\ OC\) - 7 document.write(fake(input));
8 document.write(cleanse(uinput));

Secrets stored in the source code

1 var foo = ’'secret’;
2 var x = decrypt(foo,data);

© 2015 SAP SE. All Rights Reserved. Page 12 of 27

SAST at SAP

Since 2010, mandatory for all SAP products

Multiple billions lines analyzed
Others

Constant improvement of tool configuration

JavaScript
avascrip SAST tools used at SAP:

Language Tool Vendor
ABAP CVA (SLIN_SEC) SAP

JavaScript Checkmarx CxSAST Checkmarx
C/C++ Coverity Coverity
Others Fortify HP

Further details:

Deploying Static Application Security Testing on a Large
Scale. In Gl Sicherheit 2014. Lecture Notes in Informatics,
228, pages 91-101, GI, 2014.

© 2015 SAP SE. All Rights Reserved. Page 13 of 27

So Everything is Secure Now, Right?

Our tool reports all vulnerabilities in your software — you only need to fix them and you
are secure.
Undisclosed sales engineer from a SAST tool vendor.

© 2015 SAP SE. All Rights Reserved. Page 14 of 27

So Everything is Secure Now, Right?

Our tool reports all vulnerabilities in your software — you only need to fix them and you
are secure.
Undisclosed sales engineer from a SAST tool vendor.

Yes, this tools exists! It is called Code Assurance Tool (cat):

© 2015 SAP SE. All Rights Reserved. Page 14 of 27

So Everything is Secure Now, Right?

Our tool reports all vulnerabilities in your software — you only need to fix them and you
are secure.
Undisclosed sales engineer from a SAST tool vendor.
Yes, this tools exists! It is called Code Assurance Tool (cat):
The cat tool reports each line, that might contain a vulnerability:

brucker@fujikawa - fusr/src/modulesftp-smapi
File Edit View Search Terminal Help
brucker@fujikawa:/usr/s
#include <linux/kernel.h
#include <linux/module.h:
#include <Llinux/dmi.h=>

/modules/tp-smapi$ cat thinkpad_ec.c

static int thinkpad_ec_request_row(const struct thinkpad_ec_row *args)
I
L

Q 2
ug str3;

int i;
© 2015 SAP SE. All Rights Reserved.

Page 14 of 27

So Everything is Secure Now, Right?

Our tool reports all vulnerabilities in your software — you only need to fix them and you
are secure.
Undisclosed sales engineer from a SAST tool vendor.

Yes, this tools exists! It is called Code Assurance Tool (cat):
The cat tool reports each line, that might contain a vulnerability:
It supports also a mode that reports no false positives:

brucker@fujikawa - fusr/src/modules/tp-smapi

File Edit View Search Terminal Help
brucker@fujikawa:/usr/src/modules/tp-smapi$ cat thinkpad_ec.c > /dev/null
brucker@fujikawa:/usr/src/modules/tp-smapi$ I

© 2015 SAP SE. All Rights Reserved. Page 14 of 27

B A Risk-based Security Testing Strategy

© 2015 SAP SE. All Rights Reserved. Page 15 of 27

Combining Multiple Security Testing Methods and Tools

Risks of only using only SAST
Wasting effort that could be used more wisely
elsewhere
Shipping insecure software

Examples of SAST limitations

Not all programming languages supported
Covers not all layers of the software stack

© 2015 SAP SE. All Rights Reserved. Page 16 of 27

Combining Multiple Security Testing Methods and Tools

Risks of only using only SAST
Wasting effort that could be used more wisely
elsewhere
Shipping insecure software

Examples of SAST limitations

Not all programming languages supported
Covers not all layers of the software stack

© 2015 SAP SE. All Rights Reserved. Page 16 of 27

Combining Multiple Security Testing Methods and Tools

Risks of only using only SAST
Wasting effort that could be used more wisely
elsewhere
Shipping insecure software

Examples of SAST limitations

Not all programming languages supported
Covers not all layers of the software stack

© 2015 SAP SE. All Rights Reserved. Page 16 of 27

Combining Multiple Security Testing Methods and Tools

Risks of only using only SAST
Wasting effort that could be used more wisely
elsewhere
Shipping insecure software

Examples of SAST limitations

Not all programming languages supported
Covers not all layers of the software stack

© 2015 SAP SE. All Rights Reserved. Page 16 of 27

A Risk-based Test Plan

7/ + Combines multiple security testing methods, e.qg.,
v v \ 4 code scans, dynamic analysis, manual penetration
testing or fuzzing

Selects the most efficient test tools and test cases
based on the risks and the technologies used in the
project

Re-adjusts priorities of test cases based on identified
risks for the project

Monitors false negative findings in the results of risk
assessment

© 2015 SAP SE. All Rights Reserved. Page 17 of 27

SAP’s Secure Software Development Lifecycle (S?DL)

© 2015 SAP SE. All Rights Reserved. Page 18 of 27

SAP’ Secure Software Development Lifecycle (S2DL)

Start of development Release decision
| Transition J Utilization

Risk
Identification

Plan Security
Measures

Secure
development

Security
Validation

Security
Response

Security testing

sSecurity awareness #SECURIM *Plan product sSecure sDynamic testing sindependent sExecute the security
sSecure (Security Risk standard programming eManual testing security assessment response plan
programming Identification and compliance eStatic code scan eExternal security
sThreat modelling Management) *Plan security sCode review assessment
eSecurity static eData Privacy Impact features
analysis Assessment *Plan security tests
eData protection and *Threat Modeling +Plan security
privacy response
sSecurity expert
curriculum
SAP SSDL

© 2015 SAP SE. All Rights Reserve! Page 19 of 27

SAP’ Secure Software Development Lifecycle (S2DL)

Security Testing Plan and Security Testing Report

Start of development N

Shipment decision
J L S J L

>) G >

Security Measure Plan

Security Measure Report

Security Testing Plan

Security Testing Report
+Based on Security Risk

+Result of executed security testing
Identification and Mitigation activities (e.g., code scan report)
Report (Threat Modelling, +Describes deviations from plan
SECURIM) «Input for validation and operation
+Describes planned security testing (cloud)
activities

+Completeness and plausibility
check by validation or security
enablement team

© 2015 SAP SE ights Reserved.

Page 20 of 27

A Myths and Lesson’s Learned

© 2015 SAP SE. All Rights Reserved. Page 21 of 27

Continuously Measure Your Work and Improve Your Setup

But How to Measure and What to Expect?

What we do:
Externally reported vulnerabilities/found by validation: check why we missed it earlier
Potential reasons for missing a vulnerability (and actions)
Vulnerability not detected by our tools (strategy)
could be detected in principle by our tools
= analyze necessary changes (with tool vendor) and decide if risk justifies effort for enhancing tool
cannot be detected in principle by our tools
= research for suitable tools and and decide if risk justifies effort for introducing new tool
Vulnerability can be detected by our tools
With recent configuration but not configuration at release date
= no immediate actions necessary
With configuration at release date
= analyze why it was not detected and take further actions

What we expect

Issues not covered by current tool configuration should increase (ideally to 100%)
What we observe

Increase of logic-based flaws

© 2015 SAP SE. All Rights Reserved. Page 22 of 27

Penetration Tests at the End of Development

... test/ensure the security of the developed product, right?

Main purpose of penetration tests at end of development is:
to check for “flaws” in the the S?DL (and not the product)

Ideally, they only find:
no issues that can be fixed/detected earlier (e.g., configuration)

Note, penetration tests in productive environments are different:
They test the actual configuration
They test the productive environment (e.g., cloud/hosting)

© 2015 SAP SE. All Rights Reserved. Page 23 of 27

False Positives are not Your Biggest Concern

A Pragmatic Solution for Too Many Findings: Prioritize Them

Filter Set: |SAP - My Issues

B 96| [640 M8 195 (0 1102]

Corporate Security Requirements (171) What needs to be audited
What needs to be fixed
Group By: |Category v|
as security issue

» 2] Command Injection - [0/ 5] (res onseyeffort)

» [Z] Cross-Site Scripting: Persistent - [0/ 38] IF')t .

» [Cross-Site Scripting: Reflected - [0/ 70] quality Issue

+ [Dynamic Code Evaluation: Code Injection - [0 /1] Different rules for

+] Header Manipulation - [0/ 7] old code

» [Password Management: Empty Password - [0/ 2] new code

» [Path Manipulation - [0/ 5]
> 2] SQL Injection - [0/ 43]

© 2015 SAP SE. All Rights Reserved. Page 24 of 27

False Positives are not Your Biggest Concern

A Pragmatic Solution for Too Many Findings: Prioritize Them

Filter Set: |SAP - [] My Issues

Wi D 640 M0 195 D 1102]
What needs fo be audited
'I What needs to be fixed

as security issue
(response effort)
quality issue

Group By: ICategor}r
> [Insecure Randomness - [0 /1]

> [J2EE Bad Practices: Non-Serializable Object Stored in Se
> [Mull Dereference - [0 / 8]

> [Password Management: Hardcoded Password - [0 / 3] Different rules for
> [Password Management: Password in Configuration File old code
> [Privacy Vielation - [0 / 45] new code

> [Race Condition: Singleton Member Field - [0 /1]
> [Race Condition: Static Database Connection - [0 / 2]

© 2015 SAP SE. All Rights Reserved. Page 24 of 27

False Positives are not Your Biggest Concern

A Pragmatic Solution for Too Many Findings: Prioritize Them

Filter Set: |SAP - My Issues

W17l W os|| 195 0 1102]
Group By: |Categnr}r v|
» [Access Control: Database - [0 / 33] -~

:] Code Correctness: Erroneous Class Compare - [0/1
:] Code Correctness: Erronecus String Compare - [0 /¢
: [Cookie Security: Cookie not Sent Over S5L - [0/ 4]

» [Cross-5ite Request Forgery - [0/ 27]

: [Denial of Service - [0/ 7]

: O] Hidden Field - [0/ 15]

. [J2EE Bad Practices: getConnection(] - [0 / 5]

m

© 2015 SAP SE. All Rights Reserved. Page 24 of 27

What needs to be audited
What needs to be fixed
as security issue
(response effort)
quality issue
Different rules for
old code
new code

False Positives are not Your Biggest Concern

A Pragmatic Solution for Too Many Findings: Prioritize Them

Filter Set: [My Issues

171 M9 64 [1102]
What needs to be audited
-] What needs to be fixed

as security issue
(response effort)
quality issue

Group By: [Category

» [Axis 2 Misconfiguration: Debug Information - [0/ 6]
» [_] Dead Code: Unused Method - [0/ 2]

»] J2EE Bad Practices: Leftover Debug Code - [0 / 4]

+ [Z J2EE Bad Practices: Sockets - [0 /1] Different rules for
»] J2EE Bad Practices: Threads - [0 / 6] old code

> [Z] J2EE Misconfiguration: Excessive Serviet Mappings - [0
> [Z] J2EE Misconfiguration: Missing Data Transport Constrai
» [C] Object Model Violation: Just one of equals() and hashC

e e e e . -~

new code

© 2015 SAP SE. All Rights Reserved. Page 24 of 27

Listen to Your Developers: Development Awareness

Developers Should be the Best Friends of Security Experts (not Their Enemies)

We are often talking about a lack of security awareness
and, by that, forget the problem of
lacking development awareness.

Always keep in mind:
Building a a secure system more difficult than finding a successful attack.

We need:
Easier to use security APIs
More tools that make it easy to implement system securely
Frameworks that make it hard to implement insecure systems

And, btw, this also holds for DevOps (Cloud)

© 2015 SAP SE. All Rights Reserved. Page 25 of 27

HI, THIS 15 OH, DEAR - DID HE | DID YOU REALLY
YOUR SONS SCHOOL. | BREAK SOMETHING? | NAME YOUR SON
WERE HAVING SOME Robert'); DROP
(OMPUTER TROUBLE- TABLE Students;-~ 7

§

~ OH.YES. UTTLE

http://xkcd.com/327/

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.
AND I HOPE
= YOUVE LEARNED
TO SANMZE YOUR
DATABASE INPUTS,

http://xkcd.com/327/

Related Publications

Developing secure software: A holistic approach to security testing.

Formal firewall conformance testing: An application of test and proof techniques.

Deploying static application security testing on a large scale.

On theorem prover-based testing.

ights Reserved

age 27 of 27

http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-formal-fw-testing-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-theorem-prover-2012

© 2015 SAP SE. All rights reserved

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP SE. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors contain proprietary software
components of other software vendors.

Microsoft, Windows, Excel, Outlook, and PowerPoint are registered trademarks of Microsoft
Corporation.

IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, System x,
System z, System z10, System z9, z10, z9, iSeries, pSeries, xSeries, zSeries, eServer, z/VM,
z/0S, i5/0S, S/390, 0S/390, 0S/400, AS/400, S/390 Parallel Enterprise Server, PowerVM, Power
Architecture, POWER6+, POWERG, POWER5+, POWERS, POWER, OpenPower, PowerPC,
BatchPipes, BladeCenter, System Storage, GPFS, HACMP, RETAIN, DB2 Connect, RACF,
Redbooks, 0S/2, Parallel Sysplex, MVS/ESA, AlX, Intelligent Miner, WebSphere, Netfinity, Tivoli
and Informix are trademarks or registered trademarks of IBM Corporation.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered
trademarks of Adobe Systems Incorporated in the United States and/or other countries.
Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are
trademarks or registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide
Web Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP BusinessObjects Explorer,
StreamWork, and other SAP products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of SAP SE in Germany and other
countries.

ights Reserved

Business Objects and the Business Objects logo, BusinessObjects, Crystal Reports, Crystal Decisions,
Web Intelligence, Xcelsius, and other Business Objects products and services mentioned herein as well
as their respective logos are trademarks or registered trademarks of Business Objects Software Ltd.
Business Objects is an SAP company.

Sybase and Adaptive Server, iAnywhere, Sybase 365, SQL Anywhere, and other Sybase products and
services mentioned herein as well as their respective logos are trademarks or registered trademarks of
Sybase, Inc. Sybase is an SAP company.

All other product and service names mentioned are the trademarks of their respective companies. Data
contained in this document serves informational purposes only. National product specifications may
vary.

The information in this document is proprietary to SAP. No part of this document may be reproduced,
copied, or transmitted in any form or for any purpose without the express prior written permission of
SAP SE.

This document is a preliminary version and not subject to your license agreement or any other
agreement with SAP. This document contains only intended strategies, developments, and
functionalities of the SAP® product and is not intended to be binding upon SAP to any particular course
of business, product strategy, and/or development. Please note that this document is subject to change
and may be changed by SAP at any time without notice.

SAP assumes no responsibility for errors or omissions in this document. SAP does not warrant the
accuracy or completeness of the information, text, graphics, links, or other items contained within this
material. This document is provided without a warranty of any kind, either express or implied, including
but not limited to the implied warranties of merchantability, fitness for a particular purpose, or
non-infringement.

SAP shall have no liability for damages of any kind including without limitation direct, special, indirect,
or consequential damages that may result from the use of these materials. This limitation shall not
apply in cases of intent or gross negligence.

The statutory liability for personal injury and defective products is not affected. SAP has no control over
the information that you may access through the use of hot links contained in these materials and does
not endorse your use of third-party Web pages nor provide any warranty whatsoever relating to
third-party Web pages.

	SAP in a Nutshell
	Motivation
	The Beginning: Large Scale Introduction of SAST
	A Risk-based Security Testing Strategy
	SAP's Secure Software Development Lifecycle (Smath text inlined[fg]math text inlinedfg2DL)
	Myths and Lesson's Learned

