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Security Testing: Myths, Challenges, and Opportunities
Experiences in Integrating Security Testing “End-to-End” Into the Software Life-Cycle at SAP

Abstract

Security testing is an important part of any security development lifecycle (SDL) and, thus, should be a part of
any software (development) lifecycle. Still, security testing is often understood as an activity done by security
testers in the time between “end of development” and “offering the product to customers.”
On the one hand, learning from traditional testing that the fixing of bugs is the more costly the later it is done
in development, security testing should be integrated into the daily development activities. On the other
hand, developing software for the cloud and offering software in the cloud raises the need for security testing
in a “close-to-production” or even production environment. Consequently, we need an end-to-end integration
of security testing into the software lifecycle.
In this talk, we will report on our experiences on integrating security testing “end-to-end” into SAP’s software
development lifecycle in general and, in particular, SAP’s Secure Software Development Lifecycle (S2DL).
Moreover, we will discuss different myths, challenges, and opportunities in the are security testing.
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A Security Testing Taxonomy
. . . and a Disclaimer
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Disclaimer

In this talk, security testing refers to all kind of methods that find security
vulnerabilities in systems, including (but not limited) to:

• static approaches (e.g., SAST, code reviews)

• dynamic approaches (e.g., DAST, fuzzing)

• combined approaches (e.g., IAST, concolic testing)
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Die SAP SE

• Leader in Business Software
• Cloud
• Mobile
• On premise

• Many different technologies and platforms, e.g.,
• In-memory database and application server (HANA)
• Netweaver for ABAP and Java

• More than 25 industries

• 63% of the world’s transaction revenue touches an
SAP system

• approx. 68 000 employees worldwide

• Headquarters: Walldorf
(close to Heidelberg, Germany)
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SAP’ Security Team
How SAP Organizes Software Security

De-centralized development model:
• Central security expert team (S2DL owner)

• Organizes security trainings
• Defines product standard “Security”
• Defines risk and threat assessment methods
• Defines security testing strategy
• Selects and provides security testing tools
• Validates products
• Defines and executes response process

• Local security experts
• Embedded into development teams
• Organize local security activities
• Support developers and architects
• Support product owners (responsibles)
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My Background

• I wear two hats:
• Research Expert/Architect
• (Global) Security Testing Strategist

• Background:
Security, Formal Methods, Software Engineering

• Current work areas:

• Static code analysis
• (Dynamic) Security Testing
• Mobile Security
• Security Development Lifecycle
• Secure Software Development Lifecycle

http://www.brucker.ch/
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Costs of Vulnerabilities (Attacks on IT Systems)

• TJX Company, Inc. (2007) $ 250 million

• Sony (2011) $ 170 million

• Heartland Payment Systems (2009) $ 41 million

“ A hack not only costs a company money, but also its reputation and the trust of its
customers. It can take years and millions of dollars to repair the damage that a single
computer hack inflicts.

(http://financialedge.investopedia.com/financial-edge/0711/Most-Costly-Computer-Hacks-Of-All-Time.aspx)
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Vulnerability Types of CVE Reports Since 1999

Execute Code 
28% 

Denial of Service 
17% 

Overflow 
12% 

XSS 
11% 

SQL Injection 
8% 

Gain Information 
5% 

Bypass Something 
4% 

Other 
15% 

• Causes for most vulnerabilities are
• programming errors
• configuration errors

• Patching
• is expensive
• may introduce new bugs

• How can we help developers to avoid this mistakes?
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How We Started: What We Wanted to Find
Programming Patterns That May Cause Security Vulnerabilities

Mainly two patterns
Local issues (no data-flow dependency), e.g.,

• Insecure functions

1 var x = Math.random();

• Secrets stored in the source code

1 var password = ’secret’;

Data-flow related issues, e.g.,

• Cross-site Scripting (XSS)

1 var docref = document.location.href;
2 var input = docref.substring(
3 docref.indexOf("default=")+8);
4 var fake = function (x) {return x;}
5 var cleanse = function (x) {
6 return ’hello world’;}
7 document.write(fake(input));
8 document.write(cleanse(uinput));

• Secrets stored in the source code

1 var foo = ’secret’;
2 var x = decrypt(foo,data);
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We trust our developers, i.e., we are

focusing on finding “obvious” bugs.

© 2015 SAP SE. All Rights Reserved. Page 12 of 27



SAST at SAP

ABAP

Java

C

JavaScript

Others

• Since 2010, mandatory for all SAP products

• Multiple billions lines analyzed

• Constant improvement of tool configuration

• SAST tools used at SAP:

Language Tool Vendor

ABAP CVA (SLIN_SEC) SAP
JavaScript Checkmarx CxSAST Checkmarx

C/C++ Coverity Coverity
Others Fortify HP

• Further details:
Deploying Static Application Security Testing on a Large
Scale. In GI Sicherheit 2014. Lecture Notes in Informatics,
228, pages 91-101, GI, 2014.
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So Everything is Secure Now, Right?

“ Our tool reports all vulnerabilities in your software – you only need to fix them and you
are secure.

Undisclosed sales engineer from a SAST tool vendor.

Yes, this tools exists! It is called Code Assurance Tool (cat):
• The cat tool reports each line, that might contain a vulnerability:

• It supports also a mode that reports no false positives:
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Combining Multiple Security Testing Methods and Tools

Client Application 

Web Browser 

Server Application 

Runtime Container 

Backend Systems 

• Risks of only using only SAST
• Wasting effort that could be used more wisely

elsewhere
• Shipping insecure software

• Examples of SAST limitations
• Not all programming languages supported
• Covers not all layers of the software stack
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A Risk-based Test Plan

Select from a 
list of 

predefined 
application 

types 

Implementation 
detao;s ,e.g., 
programming 
languages, 
frameworks 

Priority of SAP 
Security 

Requirements 

Security 
Test 
Plan 

RISK ASSESMENT  

(e.g., SECURIM, Threat Modelling, OWASP ASVS) 
• Combines multiple security testing methods, e.g.,

code scans, dynamic analysis, manual penetration
testing or fuzzing

• Selects the most efficient test tools and test cases
based on the risks and the technologies used in the
project

• Re-adjusts priorities of test cases based on identified
risks for the project

• Monitors false negative findings in the results of risk
assessment
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SAP’ Secure Software Development Lifecycle (S2DL)

Figure: SAP SSDL
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SAP’ Secure Software Development Lifecycle (S2DL)
Security Testing Plan and Security Testing Report

7 

Security Test 

Plan 

Security 

Validation Report 

Start of development Shipment decision 

Training 
Risk 

Identification 
Plan Security 

Measures 
Secure 

development 
Security 
testing 

Security 
Validation 

Security 
Response 

Security Test 

Report 

Security Measure Plan 

Security Testing Plan 

•Based on Security Risk 
Identification and Mitigation 
Report (Threat Modelling, 
SECURIM) 

•Describes planned security testing 
activities 

•Completeness and plausibility 
check by validation or security 
enablement team 

Security Measure Report 

Security Testing Report 

•Result of executed security testing 
activities (e.g., code scan report) 

•Describes deviations from plan 

•Input for validation and operation 
(cloud) 

Figure: SAP SSDL
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Continuously Measure Your Work and Improve Your Setup
But How to Measure and What to Expect?

What we do:
• Externally reported vulnerabilities/found by validation: check why we missed it earlier
• Potential reasons for missing a vulnerability (and actions)

• Vulnerability not detected by our tools (strategy)
• could be detected in principle by our tools

⇒ analyze necessary changes (with tool vendor) and decide if risk justifies effort for enhancing tool
• cannot be detected in principle by our tools

⇒ research for suitable tools and and decide if risk justifies effort for introducing new tool
• Vulnerability can be detected by our tools

• With recent configuration but not configuration at release date
⇒ no immediate actions necessary

• With configuration at release date
⇒ analyze why it was not detected and take further actions

What we expect
• Issues not covered by current tool configuration should increase (ideally to 100%)

What we observe
• Increase of logic-based flaws
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Penetration Tests at the End of Development
. . . test/ensure the security of the developed product, right?

Main purpose of penetration tests at end of development is:

• to check for “flaws” in the the S2DL (and not the product)

• Ideally, they only find:
• no issues that can be fixed/detected earlier (e.g., configuration)

Note, penetration tests in productive environments are different:

• They test the actual configuration

• They test the productive environment (e.g., cloud/hosting)
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False Positives are not Your Biggest Concern
A Pragmatic Solution for Too Many Findings: Prioritize Them

• What needs to be audited

• What needs to be fixed
• as security issue

(response effort)
• quality issue

• Different rules for
• old code
• new code
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Listen to Your Developers: Development Awareness
Developers Should be the Best Friends of Security Experts (not Their Enemies)

We are often talking about a lack of security awareness
and, by that, forget the problem of
lacking development awareness.

Always keep in mind:
Building a a secure system more difficult than finding a successful attack.

We need:

• Easier to use security APIs

• More tools that make it easy to implement system securely

• Frameworks that make it hard to implement insecure systems

• . . .

And, btw, this also holds for DevOps (Cloud)
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Thank you!

http://xkcd.com/327/

http://xkcd.com/327/
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