
Isabelle: Not Only a Proof Assistant

Achim D. Brucker
achim@brucker.ch http://www.brucker.ch/

joint work with Lukas Brügger, Delphine Longuet, Yakoub Nemouchi, Frédéric Tuong, Burkhart Wolff

Proof Assistants and Related Tools - The PART Project
Technical University of Denmark, Kgs. Lyngby, Denmark

September 24, 2015

Isabelle: Not Only a Proof Assistant

Abstract

The Isabelle homepage describes Isabelle as “a generic proof assistant. It allows mathematical
formulas to be expressed in a formal language and provides tools for proving those formulas in a
logical calculus.” While this, without doubts, what most users of Isabelle are using Isabelle for,
there is much more to discover: Isabelle is also a framework for building formal methods tools.

In this talk, I will report on our experience in using Isabelle for building formal tools for high-level
specifications languages (e.g., OCL, Z) as well as using Isabelle’s core engine for new applications
domains such as generating test cases from high-level specifications.
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Motivation

This is only the tip of the iceberg

  Isar

jEdit auto

define Isar
command

datatype packages own code 
generators

Isabelle
kernel

tactic implementation

generate
codesledgehammer

ML Interface

Scala interface

Can we use the “parts below the waterline” to build formal tools?
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Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

UML/OCL in a nutshell

UML

Visual modeling language
Object-oriented development
Industrial tool support
OMG standard
Many diagram types, e.g.,

activity diagrams
class diagrams
. . .

OCL

Textual extension of the UML
Allows for annotating UML diagrams
In the context of class–diagrams:

invariants
preconditions
postconditions

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

accounts
1..*

context Account
inv: 0 <= id

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre

context Account
inv: 0 <= id

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre
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Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Developing formals tools for UML/OCL?
Turning UML/OCL into a formal method

1 A formal semantics of object-oriented data models (UML)

typed path expressions
inheritance
. . .

2 A formal semantics of object-oriented constraints (OCL)

a logic reasoning over path expressions
large libraries
three-valued logic
. . .

3 And of course, we want a tool (HOL-OCL)

a formal, machine-checked semantics for OO specifications,
an interactive proof environment for OO specifications.
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Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Challenges (for a shallow embedding)

Challenge 1:

Can we find a injective, type preserving mapping of
an object-oriented language (and datatypes) into HOL

e:T −→ e :: T
(including subtyping)?

Challenge 2:

Can we support verification in a modular way
(i.e., no replay of proof scripts after extending specifications)?

Challenge 3:

Can we ensure consistency of our representation?
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Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Representing class types

The “extensible records” approach

We assume a common superclass (O).
A tag type guarantees uniquenessby (Otag := classO).
Construct class type as tuple along inheritance hierarchy:

α B := (Otag×oid)×
(
(Atag×String)

×
(
(Btag×Integer)

× α

)

)

O

A

s:String

B

b:Integer

α

Advantages:

it allows for extending class types (inheritance),
subclasses are type instances of superclasses

⇒ it allows for modular proofs, i.e.,
a statement φ(x : : (α B)) proven for class B is still valid after extending class B.

However, it has a major disadvantage:

modular proofs are only supported for one extension per class
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Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Idea: a general universe type

A universe type representing all classes of a class model

supports modular proofs with arbitrary extensions

provides a formalization of a extensible typed object store
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Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

An extensible object store

O O

αO

U
(αO) = O × α

O
⊥

A A βO

αA

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥C C βA

αC

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

U
(αB ,αC ,βO ,βA) = O × (A× (B × αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U3
(αB,αC,βO,βA) ≺ U2

(αB,βO,βA) ≺ U1
(αA,βO) ≺ U0

(αO)
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Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Merging universes

U:

A

Ua:

A

C

Ub:

A B

D

U:

A B

C D

Non-conflicting Merges

U:

A

Ua:

A

C

Ub:

A

B

U:

A

BC

Conflicting Merges
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Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Operations accessing the object store

injections
mkO o = Inl o with type αO O→ U0

αO

projections
getO u = u with type U0

αO → αO O

type casts
A[O] = getO ◦mkA with type αA A→ (A× αA

⊥ + βO) O

O[A] = getA ◦mkO with type (A× αA
⊥ + βO) O→ αA A

. . .

All definitions are generated automatically
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“Checking” subtyping

For each UML model, we have to show several properties:

O

A

s:String

B

b:Integer

subclasses are of the superclasses kind:

isTypeB self

isKindA self

“re-casting”:

isTypeB self

self [A][B] 6= ⊥ ∧ isTypeB (self [A][B][A]
)

monotonicity of invariants, . . .

All rules are derived automatically
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Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

HOL-OCL

HOL-OCL provides:

a formal, machine-checked semantics for OO specifications,
an interactive proof environment for OO specifications.

HOL-OCL is integrated into a toolchain providing:

extended well-formedness checking,
proof-obligation generation,
methodology support for UML/OCL,
a transformation framework (including PO generation),
code generators,
support for SecureUML.

HOL-OCL is publicly available:
http://www.brucker.ch/projects/hol-ocl/.
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Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

The HOL-OCL architecture

Standard ML (PolyML, sml/NJ)

HOL-OCL

Isabelle/HOL

susml

HOL-OCL User Interface (extended Proof General)

Repository

UML/OCL

PO-Manager

Encoder

Code-Gen.

WF-Checks

Model-Trans.
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Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

The HOL-OCL user interface
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The HOL-OCL high-level language

The HOL-OCL proof language is an extension of Isabelle’s Isar language:

importing UML/OCL:

import_model "SimpleChair.zargo" "AbstractSimpleChair.ocl"
include_only "AbstractSimpleChair"

check well-formedness and generate proof obligations for refinement:

analyze_consistency [data_refinement] "AbstractSimpleChair"

starting a proof for a generated proof obligation:

po "AbstractSimpleChair.findRole_enabled"

generating code:

generate_code "java"
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Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

The encoder

The model encoder is the main interface between su4sml and the Isabelle based part of
HOL-OCL. The encoder

declarers HOL types for the classifiers of the model,

encodes

type-casts,
attribute accessors, and
dynamic type and kind tests implicitly declared in the imported data model,

encodes the OCL specification, i.e.,

class invariants
operation specifications

and combines it with the core data model, and

proves (automatically) methodology and analysis independent properties of the model.

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 20

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Tactics (proof procedures)

OCL, as logic, is quite different from HOL (e.g., three-valuedness)

Major Isabelle proof procedures, like simp and auto,
cannot handle OCL efficiently.

HOL-OCL provides several UML/OCL specific proof procedures:

embedding specific tactics (e.g., unfolding a certain level)
a OCL specific context-rewriter
a OCL specific tableaux-prover
. . .

These language specific variants increase the degree of proof for OCL.
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Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Proof obligation generator

A framework for proof obligation generation:

Generates proof obligation in OCL plus minimal meta-language.

Only minimal meta-language necessary:

Validity: |= _, _ |= _
Meta level quantifiers: ∃_. _, ∃_. _
Meta level logical connectives: _ ∨ _, _ ∧ _, ¬_

Examples for proof obligations are:

(semantical) model consistency
Liskov’s substitution principle
refinement conditions
. . .

Can be easily extended (at runtime).

Builds, together with well-formedness checking, the basis for tool-supported methodologies.
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Isabelle tools on top of Isabelle (Add-on) HOL-OCL 2.x

HOL-OCL 2.0 (Featherweight OCL)
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Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

How to ensure system correctness, security, and safety?

(Inductive) Verification Testing

Formal (mathematical) proof

Can show absence of all
failures relative to specification

Specification of based on
abstractions

Requires expertise in Formal
Methods

In industry:
only for highly critical systems
(regulations, certification)

Execution of test cases

Can show failures on real
system

Only shows failures for the
parts of the system

Requires less skills in Formal
Methods

In industry:
widely used
(often > 40% of dev. effort)
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Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Is testing a “poor man’s verification?”
Or: Why should I test if I did a verification and vice versa?

“ Program testing can be used to show the presence of bugs,
but never to show their absence! (Dijkstra)

Assume you can choose between two aircraft for you next travel:

Aircraft A:

Fully formally verified

Total number of flights: 0

Aircraft B:

Fully tested

Total number of flights: 1 000

Which aircraft would you take for your next trip?

Which aircraft would Dijkstra take?
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What should we do?
Vision: Use the Optimal Combination of Verification and Testing in an Integrated Approach
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Observation:

Both methods have their unique advantages

Recommendation:

Use a combination of verification and testing

Our Vision:

An integrated approach for test and verification
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Implementing our vision in Isabelle: HOL-TestGen

An interactive model-based test tool

built upon the theorem prover Isabelle/HOL

specification language: HOL

unique combination of test and proof

verification environment
user controllable test-hypotheses
verified transformations

supports the complete MBT workflow

basis for domain-specific extensions

successfully used in large case-studies

freely available at:
http://www.brucker.ch/projects/hol-testgen/
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The HOL-TestGen architecture

Execution Environment

HOL-TestGen

Isabelle/HOL

Specification

Test Generation 

Test SpecificationSystem Specification 

Verification and Transformation 

Test Executable

System under 
Test

Test Case Generation

Test Data Generation

Test Script (incl. Test 
Oracle)  Generation

Inductive 
Verification

Verified Model 
Transformation

Test Harness
Generated Test Script 

and Test Oracle
Test Adapter

Scheduler 
Control

Scheduler 
Mapping

Seamless combination of
testing and verification

Black-box vs. white-box:

Specification-based black-box test as default
White-box and Grey-box also possible

Unit vs. sequence testing

Unit testing straight forwards
Sequence testing via monadic construction

Coverage:
Path Coverage (on the specification) as default

Scalability:
Verified test transformations can increase testability
by several orders of magnitude
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Excursus: test hypothesis – the difference between test and proof

Idea: We introduce formal test hypothesis “on the fly”
Technically, test hypothesis are marked using the following predicate:

THYP : bool⇒bool
THYP(x) ≡x

Two test hypotheses are common:
Regularity hypothesis: captures infinite data structures (splits), e.g., for lists

[
x = []

]
···
P

∧
a

[
x = [a]

]
···
P

∧
a b h

[
x = [a,b]

]
···
P THYP

(
∀x.k < size x −→ P x

)

P
Uniformity hypothesis: captures test data selection
“Once a system under test behaves correct for one test case, it behaves correct for all test cases”

n) [[ C1 ?x; ...; Cm ?x]] =⇒TS ?x
n+1) THYP((∃ x. C1 x ... Cm x −→TS x) −→(∀ x. C1 x ... Cm x −→TS x))
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Test case generation: an example

theory TestPrimRec
imports Main
begin
primrec

x mem [] = False
x mem (y#S) = if y = x

then True
else x mem S

test_spec:
"x mem S =⇒prog x S"

apply(gen_testcase)

Result:

1. prog ?x1 [?x1]
2. prog ?x2 [?x2,?b2]
3. ?a3 6=?x3 =⇒prog ?x3 [?a3,?x3]
4. THYP(∃ x.prog x [x] −→prog x [x]

...
7. THYP(∀ S. 3 ≤size S −→x mem S −→prog x S)
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Use case: testing firewall policies

DMZ

Internet (extern)

Intranet (intern)
��
��
��
��

��
��
��
��

source destination protocol port action

Internet dmz udp 25 allow
Internet dmz tcp 80 allow

dmz intranet tcp 25 allow
intranet dmz tcp 993 allow
intranet Internet udp 80 allow

any any any any deny

Our goal: Show correctness of the
configuration and
implementation

of active network components

Today: firewalls are stateless packet filters

Our approach also supports (not considered in this talk):
network address translation (NAT)
port translation, port forwarding
stateful firewalls
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HOL model of a firewall policy

A firewall makes a decision based on single packets.

types (α,β) packet
= id ×(α::adr) src ×(α::adr) dest ×βcontent

Different address and content representations are possible.
A policy is a mapping from packets to decisions (allow, deny, . . . ):

types α 7→β= α⇀βdecision
types (α,β) Policy = (α,β) packet 7→unit

Remark: for policies with network address translation:

types (α,β) NAT_Policy = (α,β) packet 7→(α,β) packet set

Policy combinators allow for defining policies:

definition
allow_all_from :: (α::adr) net⇒(α,β) Policy where
allow_all_from src_net = {pa. src pa @src_net} /AU
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The policy

source destination protocol port action

Internet dmz udp 25 allow
Internet dmz tcp 80 allow

dmz intranet tcp 25 allow
intranet dmz tcp 993 allow
intranet Internet udp 80 allow

any any any any deny

definition TestPolicy where
TestPolicy = allow_port udp 25 internet dmz ⊕

allow_port tcp 80 internet dmz ⊕
allow_port tcp 25 dmz intranet ⊕
allow_port tcp 993 intranet dmz ⊕
allow_port udp 80 intranet internet ⊕
DU

where DU is the policy that denies all traffic
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Testing stateless firewalls

The test specification:

test_spec test: “P x =⇒FUT x = Policy x’’

FUT: Placeholder for Firewall Under Test
Predicate P restricts packets we are interested in, e.g.,
wellformed packets which cross some network boundary

Core test case generation algorithm:

compute conjunctive-normal form
find satisfying assignments for each clause (partition)

Generates test data like (simplified):
FUT(1,((8,13,12,10),6,tcp),((172,168,2,1),80,tcp),data)= b(deny()c
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Problems with the direct approach

The direct approach does not scale:

R1 R2 R3 R4

Networks 3 3 4 3
Rules 12 9 13 13
TC Generation Time (sec) 26382 187 59364 1388
Test Cases 1368 264 1544 470

Reason:

Large cascades of case distinctions over input and output
=⇒ However, many of these case splits are redundant
Many combinations due to subnets
=⇒ Pre-partitioning of test space according to subnets

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 37

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Model transformations for TCG

Idea is fundamental to model-based test case generation. E.g.:

if x < −10 then if x < 0 then P else Q else Q
if x < −10 then P else Q

lead to different test cases

The following two policies produce a different set of test cases:

AllowAll dmz internet ⊕ DenyPort dmz internet 21 ⊕ DU

AllowAll dmz internet ⊕ DU
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A typical transformation

Remove all rules

allowing a port between two networks,
if a former rule already denies all the rules between these two networks

fun removeShadowRules2::
where
removeShadowRules2 ((AllowPortFromTo x y p)#z) =

if (DenyAllFromTo x y) ∈ (set z)
then removeShadowRules2 z
else (AllowPortFromTo x y p)#(removeShadowRules2 z)

| removeShadowRules2 (x#y) = x#(removeShadowRules2 y)
| removeShadowRules2 [] = []
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Correctness of the normalisation

Correctness
of the normalization must hold for arbitrary input policies, satisfying certain preconditions

As HOL-TestGen is built upon the theorem prover Isabelle/HOL, we can prove formally the
correctness of such normalisations:

theorem C_eq_normalize:
assumes member DenyAll p
assumes allNetsDistinct p

shows C (list2policy (normalize p)) = C p
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Empirical results

R1 R2 R3 R4

Not Normalized Networks 3 3 4 3
Rules 12 9 13 13
TC Generation Time (sec) 26382 187 59364 1388
Test Cases 1368 264 1544 470

Normalized Rules 14 14 24 26
Normalization (sec) 0.6 0.4 1.1 0.8
TC Generation Time (sec) 0.9 0.6 1.2 0.7
Test Cases 20 20 34 22

The normalization of policies decreases

the number of test cases and

the required test case generation time

by several orders of magnitude.
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Outline

1 Motivation

2 Isabelle tools on top of Isabelle (Add-on)
HOL-OCL 1.x
HOL-OCL 2.x
HOL-TestGen

3 Conclusion

Conclusion

Conclusion

Modern interactive theorem provers can be used as
frameworks for building formal methods tools.

If you “prototype” formal methods tools, consider

to reuse the infrastructure of your theorem prover of choice

Isabelle provides a lot of features:

defining nice syntax for DSLs

defining new top-level commands

developing own tactics

generate code

. . .

There is another nice example: attend the next talk by Sebastian!
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Thank you for your attention!
Any questions or remarks?
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