
Isabelle: Not Only a Proof Assistant

Achim D. Brucker
achim@brucker.ch http://www.brucker.ch/

joint work with Lukas Brügger, Delphine Longuet, Yakoub Nemouchi, Frédéric Tuong, Burkhart Wolff

Proof Assistants and Related Tools - The PART Project
Technical University of Denmark, Kgs. Lyngby, Denmark

September 24, 2015

Isabelle: Not Only a Proof Assistant

Abstract

The Isabelle homepage describes Isabelle as “a generic proof assistant. It allows mathematical
formulas to be expressed in a formal language and provides tools for proving those formulas in a
logical calculus.” While this, without doubts, what most users of Isabelle are using Isabelle for,
there is much more to discover: Isabelle is also a framework for building formal methods tools.

In this talk, I will report on our experience in using Isabelle for building formal tools for high-level
specifications languages (e.g., OCL, Z) as well as using Isabelle’s core engine for new applications
domains such as generating test cases from high-level specifications.

Motivation

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 4

Motivation

This is only the tip of the iceberg

 Isar

jEdit auto

define Isar
command

datatype packages own code
generators

Isabelle
kernel

tactic implementation

generate
codesledgehammer

ML Interface

Scala interface

Can we use the “parts below the waterline” to build formal tools?

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 5

Outline

1 Motivation

2 Isabelle tools on top of Isabelle (Add-on)
HOL-OCL 1.x
HOL-OCL 2.x
HOL-TestGen

3 Conclusion

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

UML/OCL in a nutshell

UML

Visual modeling language
Object-oriented development
Industrial tool support
OMG standard
Many diagram types, e.g.,

activity diagrams
class diagrams
. . .

OCL

Textual extension of the UML
Allows for annotating UML diagrams
In the context of class–diagrams:

invariants
preconditions
postconditions

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

accounts
1..*

context Account
inv: 0 <= id

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre

context Account
inv: 0 <= id

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 7

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Developing formals tools for UML/OCL?
Turning UML/OCL into a formal method

1 A formal semantics of object-oriented data models (UML)

typed path expressions
inheritance
. . .

2 A formal semantics of object-oriented constraints (OCL)

a logic reasoning over path expressions
large libraries
three-valued logic
. . .

3 And of course, we want a tool (HOL-OCL)

a formal, machine-checked semantics for OO specifications,
an interactive proof environment for OO specifications.

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 8

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Challenges (for a shallow embedding)

Challenge 1:

Can we find a injective, type preserving mapping of
an object-oriented language (and datatypes) into HOL

e:T −→ e :: T
(including subtyping)?

Challenge 2:

Can we support verification in a modular way
(i.e., no replay of proof scripts after extending specifications)?

Challenge 3:

Can we ensure consistency of our representation?

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 9

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Representing class types

The “extensible records” approach

We assume a common superclass (O).
A tag type guarantees uniquenessby (Otag := classO).
Construct class type as tuple along inheritance hierarchy:

α B := (Otag×oid)×
(
(Atag×String)

×
(
(Btag×Integer)

× α

)

)

O

A

s:String

B

b:Integer

α

Advantages:

it allows for extending class types (inheritance),
subclasses are type instances of superclasses

⇒ it allows for modular proofs, i.e.,
a statement φ(x : : (α B)) proven for class B is still valid after extending class B.

However, it has a major disadvantage:

modular proofs are only supported for one extension per class

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 10

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Representing class types

The “extensible records” approach

We assume a common superclass (O).
A tag type guarantees uniquenessby (Otag := classO).
Construct class type as tuple along inheritance hierarchy:

α

B :=

(Otag×oid)×
(
(Atag×String)

×
(
(Btag×Integer)

× α

)

)

O

A

s:String

B

b:Integer

α

Advantages:

it allows for extending class types (inheritance),
subclasses are type instances of superclasses

⇒ it allows for modular proofs, i.e.,
a statement φ(x : : (α B)) proven for class B is still valid after extending class B.

However, it has a major disadvantage:

modular proofs are only supported for one extension per class

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 10

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Representing class types

The “extensible records” approach

We assume a common superclass (O).
A tag type guarantees uniquenessby (Otag := classO).
Construct class type as tuple along inheritance hierarchy:

α

B := (Otag×oid)

×
(
(Atag×String)

×
(
(Btag×Integer)

× α

)

)

O

A

s:String

B

b:Integer

α

Advantages:

it allows for extending class types (inheritance),
subclasses are type instances of superclasses

⇒ it allows for modular proofs, i.e.,
a statement φ(x : : (α B)) proven for class B is still valid after extending class B.

However, it has a major disadvantage:

modular proofs are only supported for one extension per class

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 10

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Representing class types

The “extensible records” approach

We assume a common superclass (O).
A tag type guarantees uniquenessby (Otag := classO).
Construct class type as tuple along inheritance hierarchy:

α

B := (Otag×oid)×
(
(Atag×String)

×
(
(Btag×Integer)

× α

)

)

O

A

s:String

B

b:Integer

α

Advantages:

it allows for extending class types (inheritance),
subclasses are type instances of superclasses

⇒ it allows for modular proofs, i.e.,
a statement φ(x : : (α B)) proven for class B is still valid after extending class B.

However, it has a major disadvantage:

modular proofs are only supported for one extension per class

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 10

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Representing class types

The “extensible records” approach

We assume a common superclass (O).
A tag type guarantees uniquenessby (Otag := classO).
Construct class type as tuple along inheritance hierarchy:

α

B := (Otag×oid)×
(
(Atag×String)×

(
(Btag×Integer)

× α

))

O

A

s:String

B

b:Integer

α

Advantages:

it allows for extending class types (inheritance),
subclasses are type instances of superclasses

⇒ it allows for modular proofs, i.e.,
a statement φ(x : : (α B)) proven for class B is still valid after extending class B.

However, it has a major disadvantage:

modular proofs are only supported for one extension per class

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 10

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Representing class types

The “extensible records” approach

We assume a common superclass (O).
A tag type guarantees uniquenessby (Otag := classO).
Construct class type as tuple along inheritance hierarchy:

α B := (Otag×oid)×
(
(Atag×String)×

(
(Btag×Integer)× α

))

O

A

s:String

B

b:Integer

α

Advantages:

it allows for extending class types (inheritance),
subclasses are type instances of superclasses

⇒ it allows for modular proofs, i.e.,
a statement φ(x : : (α B)) proven for class B is still valid after extending class B.

However, it has a major disadvantage:

modular proofs are only supported for one extension per class

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 10

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Idea: a general universe type

A universe type representing all classes of a class model

supports modular proofs with arbitrary extensions

provides a formalization of a extensible typed object store

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 11

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

An extensible object store

O O

αO

U
(αO) = O × α

O
⊥

A A βO

αA

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥C C βA

αC

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

U
(αB ,αC ,βO ,βA) = O × (A× (B × αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U3
(αB,αC,βO,βA) ≺ U2

(αB,βO,βA) ≺ U1
(αA,βO) ≺ U0

(αO)

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 12

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

An extensible object store

O O

αO

U
(αO) = O × α

O
⊥

A

A βO

αA

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥C C βA

αC

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

U
(αB ,αC ,βO ,βA) = O × (A× (B × αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U3
(αB,αC,βO,βA) ≺ U2

(αB,βO,βA) ≺ U1
(αA,βO) ≺ U0

(αO)

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 12

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

An extensible object store

O O

αO

U
(αO) = O × α

O
⊥

A A βO

αA

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥C C βA

αC

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

U
(αB ,αC ,βO ,βA) = O × (A× (B × αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U3
(αB,αC,βO,βA) ≺ U2

(αB,βO,βA) ≺ U1
(αA,βO) ≺ U0

(αO)

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 12

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

An extensible object store

O O

αO

U
(αO) = O × α

O
⊥

A A βO

αA

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

C C βA

αC

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

U
(αB ,αC ,βO ,βA) = O × (A× (B × αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U3
(αB,αC,βO,βA) ≺ U2

(αB,βO,βA) ≺ U1
(αA,βO) ≺ U0

(αO)

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 12

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

An extensible object store

O O

αO

U
(αO) = O × α

O
⊥

A A βO

αA

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥C C βA

αC

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

U
(αB ,αC ,βO ,βA) = O × (A× (B × αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U3
(αB,αC,βO,βA) ≺ U2

(αB,βO,βA) ≺ U1
(αA,βO) ≺ U0

(αO)

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 12

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

An extensible object store

O O

αO

U
(αO) = O × α

O
⊥

A A βO

αA

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥C C βA

αC

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

U
(αB ,αC ,βO ,βA) = O × (A× (B × αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U3
(αB,αC,βO,βA) ≺ U2

(αB,βO,βA) ≺ U1
(αA,βO) ≺ U0

(αO)

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 12

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

An extensible object store

O O

αO

U
(αO) = O × α

O
⊥

A A βO

αA

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥C C βA

αC

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

U
(αB ,αC ,βO ,βA) = O × (A× (B × αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U3
(αB,αC,βO,βA) ≺ U2

(αB,βO,βA) ≺ U1
(αA,βO) ≺ U0

(αO)

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 12

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Merging universes

U:

A

Ua:

A

C

Ub:

A B

D

U:

A B

C D

Non-conflicting Merges

U:

A

Ua:

A

C

Ub:

A

B

U:

A

BC

Conflicting Merges

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 13

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Merging universes

U:

A

Ua:

A

C

Ub:

A B

D

U:

A B

C D

Non-conflicting Merges

U:

A

Ua:

A

C

Ub:

A

B

U:

A

BC

Conflicting Merges

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 13

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Operations accessing the object store

injections
mkO o = Inl o with type αO O→ U0

αO

projections
getO u = u with type U0

αO → αO O

type casts
A[O] = getO ◦mkA with type αA A→ (A× αA

⊥ + βO) O

O[A] = getA ◦mkO with type (A× αA
⊥ + βO) O→ αA A

. . .

All definitions are generated automatically

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 14

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

“Checking” subtyping

For each UML model, we have to show several properties:

O

A

s:String

B

b:Integer

subclasses are of the superclasses kind:

isTypeB self

isKindA self

“re-casting”:

isTypeB self

self [A][B] 6= ⊥ ∧ isTypeB (self [A][B][A]
)

monotonicity of invariants, . . .

All rules are derived automatically

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 15

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

HOL-OCL

HOL-OCL provides:

a formal, machine-checked semantics for OO specifications,
an interactive proof environment for OO specifications.

HOL-OCL is integrated into a toolchain providing:

extended well-formedness checking,
proof-obligation generation,
methodology support for UML/OCL,
a transformation framework (including PO generation),
code generators,
support for SecureUML.

HOL-OCL is publicly available:
http://www.brucker.ch/projects/hol-ocl/.

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 16

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

The HOL-OCL architecture

Standard ML (PolyML, sml/NJ)

HOL-OCL

Isabelle/HOL

susml

HOL-OCL User Interface (extended Proof General)

Repository

UML/OCL

PO-Manager

Encoder

Code-Gen.

WF-Checks

Model-Trans.

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 17

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

The HOL-OCL user interface

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 18

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

The HOL-OCL high-level language

The HOL-OCL proof language is an extension of Isabelle’s Isar language:

importing UML/OCL:

import_model "SimpleChair.zargo" "AbstractSimpleChair.ocl"
include_only "AbstractSimpleChair"

check well-formedness and generate proof obligations for refinement:

analyze_consistency [data_refinement] "AbstractSimpleChair"

starting a proof for a generated proof obligation:

po "AbstractSimpleChair.findRole_enabled"

generating code:

generate_code "java"

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 19

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

The encoder

The model encoder is the main interface between su4sml and the Isabelle based part of
HOL-OCL. The encoder

declarers HOL types for the classifiers of the model,

encodes

type-casts,
attribute accessors, and
dynamic type and kind tests implicitly declared in the imported data model,

encodes the OCL specification, i.e.,

class invariants
operation specifications

and combines it with the core data model, and

proves (automatically) methodology and analysis independent properties of the model.

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 20

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Tactics (proof procedures)

OCL, as logic, is quite different from HOL (e.g., three-valuedness)

Major Isabelle proof procedures, like simp and auto,
cannot handle OCL efficiently.

HOL-OCL provides several UML/OCL specific proof procedures:

embedding specific tactics (e.g., unfolding a certain level)
a OCL specific context-rewriter
a OCL specific tableaux-prover
. . .

These language specific variants increase the degree of proof for OCL.

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 21

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Proof obligation generator

A framework for proof obligation generation:

Generates proof obligation in OCL plus minimal meta-language.

Only minimal meta-language necessary:

Validity: |= _, _ |= _
Meta level quantifiers: ∃_. _, ∃_. _
Meta level logical connectives: _ ∨ _, _ ∧ _, ¬_

Examples for proof obligations are:

(semantical) model consistency
Liskov’s substitution principle
refinement conditions
. . .

Can be easily extended (at runtime).

Builds, together with well-formedness checking, the basis for tool-supported methodologies.

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 22

Outline

1 Motivation

2 Isabelle tools on top of Isabelle (Add-on)
HOL-OCL 1.x
HOL-OCL 2.x
HOL-TestGen

3 Conclusion

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 2.x

HOL-OCL 2.0 (Featherweight OCL)

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 24

Outline

1 Motivation

2 Isabelle tools on top of Isabelle (Add-on)
HOL-OCL 1.x
HOL-OCL 2.x
HOL-TestGen

3 Conclusion

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

How to ensure system correctness, security, and safety?

(Inductive) Verification Testing

Formal (mathematical) proof

Can show absence of all
failures relative to specification

Specification of based on
abstractions

Requires expertise in Formal
Methods

In industry:
only for highly critical systems
(regulations, certification)

Execution of test cases

Can show failures on real
system

Only shows failures for the
parts of the system

Requires less skills in Formal
Methods

In industry:
widely used
(often > 40% of dev. effort)

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 26

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Is testing a “poor man’s verification?”
Or: Why should I test if I did a verification and vice versa?

“ Program testing can be used to show the presence of bugs,
but never to show their absence! (Dijkstra)

Assume you can choose between two aircraft for you next travel:

Aircraft A:

Fully formally verified

Total number of flights: 0

Aircraft B:

Fully tested

Total number of flights: 1 000

Which aircraft would you take for your next trip?

Which aircraft would Dijkstra take?

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 27

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

What should we do?
Vision: Use the Optimal Combination of Verification and Testing in an Integrated Approach

In
fr

a
st

ru
ct

u
re

 &
 C

o
n
fi
g
u
ra

ti
o
n

Application

Operating System

Hypervisor

Server Application

Runtime Container

Operating System

Backend Systems

Observation:

Both methods have their unique advantages

Recommendation:

Use a combination of verification and testing

Our Vision:

An integrated approach for test and verification

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 28

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

What should we do?
Vision: Use the Optimal Combination of Verification and Testing in an Integrated Approach

In
fr

a
st

ru
ct

u
re

 &
 C

o
n
fi
g
u
ra

ti
o
n

Application

Operating System

Hypervisor

Server Application

Runtime Container

Operating System

Backend Systems

Separation Properties

Safety Properties

Observation:

Both methods have their unique advantages

Recommendation:

Use a combination of verification and testing

Our Vision:

An integrated approach for test and verification

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 28

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

What should we do?
Vision: Use the Optimal Combination of Verification and Testing in an Integrated Approach

In
fr

a
st

ru
ct

u
re

 &
 C

o
n
fi
g
u
ra

ti
o
n

Application

Operating System

Hypervisor

Server Application

Runtime Container

Operating System

Backend Systems

Separation Properties

Safety Properties

S
e
p
.
P
ro

p
.

S
p
e
c.

-b
a
se

d
 T

e
st

in
g
 o

f
S
a
fe

ty
 P

ro
p
e
rt

ie
s

Te
st

 S
e
rv

e
r

A
p
p
.

In
te

g
ra

ti
o
n
 T

e
st

Observation:

Both methods have their unique advantages

Recommendation:

Use a combination of verification and testing

Our Vision:

An integrated approach for test and verification

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 28

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Implementing our vision in Isabelle: HOL-TestGen

An interactive model-based test tool

built upon the theorem prover Isabelle/HOL

specification language: HOL

unique combination of test and proof

verification environment
user controllable test-hypotheses
verified transformations

supports the complete MBT workflow

basis for domain-specific extensions

successfully used in large case-studies

freely available at:
http://www.brucker.ch/projects/hol-testgen/

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 29

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

The HOL-TestGen architecture

Execution Environment

HOL-TestGen

Isabelle/HOL

Specification

Test Generation

Test SpecificationSystem Specification

Verification and Transformation

Test Executable

System under
Test

Test Case Generation

Test Data Generation

Test Script (incl. Test
Oracle) Generation

Inductive
Verification

Verified Model
Transformation

Test Harness
Generated Test Script

and Test Oracle
Test Adapter

Scheduler
Control

Scheduler
Mapping

Seamless combination of
testing and verification

Black-box vs. white-box:

Specification-based black-box test as default
White-box and Grey-box also possible

Unit vs. sequence testing

Unit testing straight forwards
Sequence testing via monadic construction

Coverage:
Path Coverage (on the specification) as default

Scalability:
Verified test transformations can increase testability
by several orders of magnitude

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 30

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Excursus: test hypothesis – the difference between test and proof

Idea: We introduce formal test hypothesis “on the fly”
Technically, test hypothesis are marked using the following predicate:

THYP : bool⇒bool
THYP(x) ≡x

Two test hypotheses are common:
Regularity hypothesis: captures infinite data structures (splits), e.g., for lists

[
x = []

]
···
P

∧
a

[
x = [a]

]
···
P

∧
a b h

[
x = [a,b]

]
···
P THYP

(
∀x.k < size x −→ P x

)

P
Uniformity hypothesis: captures test data selection
“Once a system under test behaves correct for one test case, it behaves correct for all test cases”

n) [[C1 ?x; ...; Cm ?x]] =⇒TS ?x
n+1) THYP((∃ x. C1 x ... Cm x −→TS x) −→(∀ x. C1 x ... Cm x −→TS x))

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 31

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Test case generation: an example

theory TestPrimRec
imports Main
begin
primrec

x mem [] = False
x mem (y#S) = if y = x

then True
else x mem S

test_spec:
"x mem S =⇒prog x S"

apply(gen_testcase)

Result:

1. prog ?x1 [?x1]
2. prog ?x2 [?x2,?b2]
3. ?a3 6=?x3 =⇒prog ?x3 [?a3,?x3]
4. THYP(∃ x.prog x [x] −→prog x [x]

...
7. THYP(∀ S. 3 ≤size S −→x mem S −→prog x S)

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 32

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Use case: testing firewall policies

DMZ

Internet (extern)

Intranet (intern)
��
��
��
��

��
��
��
��

source destination protocol port action

Internet dmz udp 25 allow
Internet dmz tcp 80 allow

dmz intranet tcp 25 allow
intranet dmz tcp 993 allow
intranet Internet udp 80 allow

any any any any deny

Our goal: Show correctness of the
configuration and
implementation

of active network components

Today: firewalls are stateless packet filters

Our approach also supports (not considered in this talk):
network address translation (NAT)
port translation, port forwarding
stateful firewalls

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 33

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

HOL model of a firewall policy

A firewall makes a decision based on single packets.

types (α,β) packet
= id ×(α::adr) src ×(α::adr) dest ×βcontent

Different address and content representations are possible.
A policy is a mapping from packets to decisions (allow, deny, . . .):

types α 7→β= α⇀βdecision
types (α,β) Policy = (α,β) packet 7→unit

Remark: for policies with network address translation:

types (α,β) NAT_Policy = (α,β) packet 7→(α,β) packet set

Policy combinators allow for defining policies:

definition
allow_all_from :: (α::adr) net⇒(α,β) Policy where
allow_all_from src_net = {pa. src pa @src_net} /AU

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 34

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

The policy

source destination protocol port action

Internet dmz udp 25 allow
Internet dmz tcp 80 allow

dmz intranet tcp 25 allow
intranet dmz tcp 993 allow
intranet Internet udp 80 allow

any any any any deny

definition TestPolicy where
TestPolicy = allow_port udp 25 internet dmz ⊕

allow_port tcp 80 internet dmz ⊕
allow_port tcp 25 dmz intranet ⊕
allow_port tcp 993 intranet dmz ⊕
allow_port udp 80 intranet internet ⊕
DU

where DU is the policy that denies all traffic
Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 35

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Testing stateless firewalls

The test specification:

test_spec test: “P x =⇒FUT x = Policy x’’

FUT: Placeholder for Firewall Under Test
Predicate P restricts packets we are interested in, e.g.,
wellformed packets which cross some network boundary

Core test case generation algorithm:

compute conjunctive-normal form
find satisfying assignments for each clause (partition)

Generates test data like (simplified):
FUT(1,((8,13,12,10),6,tcp),((172,168,2,1),80,tcp),data)= b(deny()c

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 36

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Problems with the direct approach

The direct approach does not scale:

R1 R2 R3 R4

Networks 3 3 4 3
Rules 12 9 13 13
TC Generation Time (sec) 26382 187 59364 1388
Test Cases 1368 264 1544 470

Reason:

Large cascades of case distinctions over input and output
=⇒ However, many of these case splits are redundant
Many combinations due to subnets
=⇒ Pre-partitioning of test space according to subnets

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 37

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Model transformations for TCG

Idea is fundamental to model-based test case generation. E.g.:

if x < −10 then if x < 0 then P else Q else Q
if x < −10 then P else Q

lead to different test cases

The following two policies produce a different set of test cases:

AllowAll dmz internet ⊕ DenyPort dmz internet 21 ⊕ DU

AllowAll dmz internet ⊕ DU

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 38

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

A typical transformation

Remove all rules

allowing a port between two networks,
if a former rule already denies all the rules between these two networks

fun removeShadowRules2::
where
removeShadowRules2 ((AllowPortFromTo x y p)#z) =

if (DenyAllFromTo x y) ∈ (set z)
then removeShadowRules2 z
else (AllowPortFromTo x y p)#(removeShadowRules2 z)

| removeShadowRules2 (x#y) = x#(removeShadowRules2 y)
| removeShadowRules2 [] = []

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 39

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Correctness of the normalisation

Correctness
of the normalization must hold for arbitrary input policies, satisfying certain preconditions

As HOL-TestGen is built upon the theorem prover Isabelle/HOL, we can prove formally the
correctness of such normalisations:

theorem C_eq_normalize:
assumes member DenyAll p
assumes allNetsDistinct p

shows C (list2policy (normalize p)) = C p

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 40

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Empirical results

R1 R2 R3 R4

Not Normalized Networks 3 3 4 3
Rules 12 9 13 13
TC Generation Time (sec) 26382 187 59364 1388
Test Cases 1368 264 1544 470

Normalized Rules 14 14 24 26
Normalization (sec) 0.6 0.4 1.1 0.8
TC Generation Time (sec) 0.9 0.6 1.2 0.7
Test Cases 20 20 34 22

The normalization of policies decreases

the number of test cases and

the required test case generation time

by several orders of magnitude.

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 41

Outline

1 Motivation

2 Isabelle tools on top of Isabelle (Add-on)
HOL-OCL 1.x
HOL-OCL 2.x
HOL-TestGen

3 Conclusion

Conclusion

Conclusion

Modern interactive theorem provers can be used as
frameworks for building formal methods tools.

If you “prototype” formal methods tools, consider

to reuse the infrastructure of your theorem prover of choice

Isabelle provides a lot of features:

defining nice syntax for DSLs

defining new top-level commands

developing own tactics

generate code

. . .

There is another nice example: attend the next talk by Sebastian!

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 43

Thank you for your attention!
Any questions or remarks?

Conclusion

Related Publications I

Achim D. Brucker, Lukas Brügger, Paul Kearney, and Burkhart Wolff.

Verified firewall policy transformations for test-case generation.
In Third International Conference on Software Testing, Verification, and Validation (ICST), pages 345–354. IEEE Computer Society, 2010.
http://www.brucker.ch/bibliography/abstract/brucker.ea-firewall-2010.

Achim D. Brucker, Lukas Brügger, and Burkhart Wolff.

HOL-TestGen/FW: An environment for specification-based firewall conformance testing.
In Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, International Colloquium on Theoretical Aspects of Computing (ICTAC), number 8049 in Lecture Notes in Computer Science,
pages 112–121. Springer-Verlag, 2013.
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-testgen-fw-2013.

Achim D. Brucker, Lukas Brügger, and Burkhart Wolff.

Formal firewall conformance testing: An application of test and proof techniques.
Software Testing, Verification & Reliability (STVR), 25(1):34–71, 2015.
http://www.brucker.ch/bibliography/abstract/brucker.ea-formal-fw-testing-2014.

Achim D. Brucker, Delphine Longuet, Frédéric Tuong, and Burkhart Wolff.

On the semantics of object-oriented data structures and path expressions.
In Jordi Cabot, Martin Gogolla, István Ráth, and Edward D. Willink, editors, Proceedings of the MoDELs 2013 OCL Workshop (OCL 2013), volume 1092 of CEUR Workshop Proceedings,
pages 23–32. ceur-ws.org, 2013.
http://www.brucker.ch/bibliography/abstract/brucker.ea-path-expressions-2013.

Achim D. Brucker, Frank Rittinger, and Burkhart Wolff.

hol-z 2.0: A proof environment for Z-specifications.
Journal of Universal Computer Science, 9(2):152–172, February 2003.
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-z-2003.

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 45

Conclusion

Related Publications II

Achim D. Brucker and Burkhart Wolff.

hol-ocl – A Formal Proof Environment for UML/OCL.
In José Fiadeiro and Paola Inverardi, editors, Fundamental Approaches to Software Engineering (FASE), number 4961 in Lecture Notes in Computer Science, pages 97–100.
Springer-Verlag, 2008.
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2008.

Achim D. Brucker and Burkhart Wolff.

Extensible universes for object-oriented data models.
In Jan Vitek, editor, ECOOP 2008 – Object-Oriented Programming, number 5142 in Lecture Notes in Computer Science, pages 438–462. Springer-Verlag, 2008.
http://www.brucker.ch/bibliography/abstract/brucker.ea-extensible-2008.

Achim D. Brucker and Burkhart Wolff.

Semantics, calculi, and analysis for object-oriented specifications.
Acta Informatica, 46(4):255–284, July 2009.
ISSN 0001-5903.
http://www.brucker.ch/bibliography/abstract/brucker.ea-semantics-2009.

Achim D. Brucker and Burkhart Wolff.

On theorem prover-based testing.
Formal Aspects of Computing, 25(5):683–721, 2013.
ISSN 0934-5043.
http://www.brucker.ch/bibliography/abstract/brucker.ea-theorem-prover-2012.

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 46

