
This is the author’s version of the work. It is posted at http://www.brucker.ch/bibliography/abstract/bachmann.
ea-security-testing-2014 for your personal use. Not for redistribution. The definitive version was published in DuD - Daten-
schutz und Datensicherheit (38/4), April 2014, Springer Verlag, pp. 257–??, 2014, doi: 10.1007/s11623-014-0102-0.

Ruediger Bachmann and Achim D. Brucker

Developing Secure Software
A Holistic Approach to Security Testing
Building secure software requires a well-selected combination of security
testing techniques during the whole software development lifecycle.

Security vulnerabilities are a serious threat to
software vendors and their customers: they can
result in both monetary loss as well as loss of
reputation. Thus, implementing a rigid secure
software development lifecycle is a competitive
advantage for a software vendor.
A holistic security testing approach must cover
the whole software development lifecycle across
all software products and all security threats.

In this article, we discuss a holistic security
testing approach that was developed at SAP, a
large vendor of enterprise software.

1. Security Testing – An Overview
Most security vulnerabilities are caused by one of
the following four reasons [1, 2]:

bad programming patterns such as missing
checks of user-influenced data that can cause,
e.g., in SQL injections vulnerabilities,
misconfiguration of security infrastructures,
e.g., too permissible access control or weak
cryptographic configurations,
functional bugs in security infrastructures, e.g.,
access control enforcement infrastructures
that inherently do not restrict system access,
logical flaws in the implemented processes,
e.g., resulting in an application allowing cus-
tomers to order goods without paying.
The vast majority of successful attacks against

IT applications do not attack core security primi-
tives such as cryptographic algorithms. Attackers
much more often exploit bad programming or
misconfigurations [1, 2]. Thus, in this article, we
focus on security testing techniques that help to
detected vulnerabilities caused by programming
errors and misconfiguration.

1.1 A Categorization
From a high-level perspective, (security) testing
techniques are often classified as follows:

Black-box-testing vs. white-box-testing: In
black-box-testing, the tested system is used as
a black-box, i.e., no internal details of the sys-
tem implementation are used. In contrast,
white-box-testing takes the internal system de-
tails (e.g., the source code) into account.

Dynamic testing vs. static testing: Traditionally,
testing is understood as a dynamic testing, i.e.,
the system under test is executed and its be-
haviour is observed. In contrast, static testing
techniques analyse a system without executing
the system under test.
Manual testing vs. automated testing: In manu-
al testing the test scenario is guided by a hu-
man while in automated testing the test scenar-
io is executed by a specialized application.
As Figure 1 illustrates, these categories can be

combined, e.g., static code analysis can be classi-
fied as automated, white-box, and static.

Figure 1: Security Testing Techniques

While these categories are important to differ-
entiate security testing techniques, they are not
sufficient to select the most appropriate security
testing strategy for a specific application.

1.2 Selection Criteria
When selecting a security testing method or tool,
we need to consider many aspects, e.g.:

Attack surface: different security testing meth-
ods find different vulnerability types.
Application type: different security testing
methods behave differently when applied to dif-
ferent application types.
Quality of results and usability: security testing
techniques and tools differ in usability (e.g., fix
recommendations) and quality (e.g., false posi-
tives rate).
Supported technologies: security testing tools
usually only support a limited number of tech-
nologies (e.g., programming languages) and if a

http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://dx.doi.org/10.1007/s11623-014-0102-0

tool supports multiple technologies, it does not
necessary support all of them equally well.
Performance and resource utilization: different
tools and methods require different computing
power or different manual efforts.
Costs for licenses, maintenance and support:
besides direct costs, this includes, e.g., effort
for integrating bug-trackers or reporting tools.

In this paper, we will focus on the first two as-
pects which, from a security perspective, are the
most important ones.

2 Security Testing Methods
It is commonly accepted that fixing bugs and
security vulnerabilities late in the software de-
velopment is usually more costly compared to
fixing them as early as possible [3]. Therefore,
security testing techniques should be applied as
early as possible in a secure software develop-
ment lifecycle (see, e.g., [4]) and not, as an after-
thought, during (or shortly before) shipment.

2.1 During Planning and Design
Strictly speaking, the security review of the ar-
chitecture and threat modelling are not security
testing methods. Still, we will discuss them as
they are an important prerequisite for subse-
quent security testing efforts, respectively, the
selection of security testing techniques:

Architecture Security Reviews: A manual review
of the product architecture to ensure that it
fulfils the necessary security requirements.
Prerequisites: architectural model.
Benefit: detecting architectural violations of
the security standard.
Threat modelling is a structured manual analy-
sis of an application specific business case or
usage scenario. This analysis is guided by a set
of precompiled security threats.
Prerequisites: business case or usage scenario
Benefits: identification of threats their impact
and potential countermeasures that are specific
to the development of the software product.
These methods help to identify the attack sur-

face and, thus, the most critical components.
This allows focusing the security testing activi-
ties and, thus, the up-front investment in, e.g.,
threat modelling, will save more effort in later on.

2.2 During Application Development
In development stages in which an application is
not yet executable in a test environment, the fol-
lowing techniques are already applicable:

Static Source Code Analysis (SAST) and Manual
Code Review: Analysis of the application source
code for finding vulnerabilities without actually
executing the application.
Prerequisites: Application source code.

Benefits: Detection of insecure programming,
outdated libraries, and misconfigurations.
Static Binary Code Analysis and Manual Binary
Review: Analysis of the compiled application
(binary) for finding vulnerabilities without ac-
tually executing the application. In general, this
is similar to the source code analysis but is not
as precise and fix recommendation cannot be
provided.
At SAP, static source code analysis is mandato-

ry requirement for all products [5].
2.3 Executable in a Test Environment

At later stages of the development, when the
software can actually be executed, further securi-
ty testing approaches can be applied, e.g.:

Manual or automated Penetration Testing simu-
lates an attacker sending data to the applica-
tion and observes its behaviour.
Benefits: Identification of a wide range of vul-
nerabilities in a deployed application.
Automated Vulnerability Scanners test an ap-
plication for the use of system components or
configurations that are known to be insecure.
For this, pre-defined attack patterns are exe-
cuted as well as system fingerprints are ana-
lysed.
Benefits: Detection of well-known vulnerabili-
ties, i.e., detection of outdated frameworks and
misconfigurations.
Fuzz Testing tools send random data, usually in
larger chunks than expected by the application,
to the input channels of an application to pro-
voke a crashing of the application.
Benefits: Detection of application crashes (e.g.,
caused by buffer overflows) that might be secu-
rity critical.
All these techniques require a deployed and

configured application on an isolated test sys-
tem, including back-ends or external services.

While dynamic techniques usually do not
achieve a similar high coverage of the analysed
application as static approaches, they are partic-
ularly well suited for detecting vulnerabilities
that involve data flows across system (or tech-
nology) boundaries.

2.4 System Operation and Maintenance
During the operation of an application, the secu-
rity testing techniques discussed in the last sec-
tion can be applied to ensure that the system
configuration is still secure and that assumptions
(e.g., a virus protection shall be installed or a
correct authorization concept is implemented)
are not violated accidentally. Additionally, pas-
sive security testing techniques that monitor
system behaviour or analyse systems logs (e.g.,
monitoring system, intrusion detection systems)
are generally recommended.

From a software maintenance perspective, the
security testing of patches is particularly im-
portant: patches need to be security tested thor-
oughly (i.e., against all possible attacks and all
system configurations the patch can be applied)
to ensure that a customer that fix bugs in their
system are not, accidentally, exposed to new vul-
nerabilities.

3 Application Types
As a thorough security analysis of an application
requires the analysis in the context of the system
landscape the application is used in, we need to
have a closer look on the different applications
types. The product portfolio form a ranges soft-
ware vendor, such as SAP, often ranges from ra-
ther small applications (e.g., a mobile App) to
complex multi-tiered client-server applications.
Figure 2 illustrates the most common applica-
tions types that we will discuss in the following in
more detail.

Figure 2: Stand-Alone, 2-Tier-, 3-Tier- Architecture

3.1 Client and Stand-alone Applications
The emphasis lies on the following subtypes: Mo-
bile vs. desktop and native vs. non-native. Based
on the structure (e.g., native implementation,
large JavaScript parts, large HTML parts, browser
plugin-based) different test recommendations
can be derived.

3.2 Mobile Applications
Mobile applications and infrastructures have par-
ticular characteristics like local storage on a mo-
bile client, password entry, location based data
(GPS), different usability aspects, device man-
agement. Moreover, mobiles usually contain a lot
of privacy relevant data both from personal as
well as business life.

3.3 Application Servers
Application servers are one layer of multi-tier
architectures. Pure application servers without
any applications are hardly developed and

shipped. Tomcat for instance always contains
management and administration applications.

3.4 Storage
Storage (e.g., database servers) provides persis-
tence for data which is stored in a certain form
(e.g., as key-value pairs or as tables in a relational
database). The data can be accessed and manipu-
lated via well-defined interfaces.

3.5 Three-tiered Architecture
This is one representative of a multi-layer archi-
tecture. This document only focusses on 3 layers
since it is sufficient to cover all necessary securi-
ty testing aspects.

3.6 Two-tiered Architecture
From a client perspective there is no difference
between two-, three- or multi-tier. Two-tier appli-
cations – compared to three tiers – bring data-
base and application server closer together.

3.7 Cloud Applications
From a technical and from a security testing per-
spective similar structures as in multi-tier appli-
cations can be found. Principally a Cloud applica-
tion should implement a strict tenant architec-
tural concept, so that all data and behaviours
performed by one tenant should be isolated from
others. Cloud applications may also be used as a
single tier in wider application deployments; for
example to act as a consumable platform to allow
services and applications to be written above it,
or as a consumable infrastructure to allow plat-
forms to be developed above it.

4 Best Practices
In this section we briefly discuss best practices,
i.e., which combination of security testing tech-
niques should be considered for which application
types.

4.1 Client and Standalone Applications
Nowadays, pure standalone applications are sel-
dom. Most applications allow access to the net-
work. Even if this is not the case, an attacker can
use networking features of the operating system,
e.g., by providing a link to a malicious image
which is automatically opened by an local image
viewer I the user clicks in that link. Thus, while
automated static analysis provides already a very
good coverage of security issues for clients and
standalone applications, we strongly recommend
using fuzz testing for testing the file handling
function as well as functions receiving data from
the network [6].

In addition to this rather general remark, we
would like to address two areas of client applica-
tions in particular:

Today, many client applications are actually
web clients, i.e., written in HTML5/JavaScript.
For these clients, the well-known web vulnera-
bilities (e.g., XSS) need to be considered par-
ticularly which, often, requires additional man-
ual penetration testing.
Client technology seems to change particularly
frequently which often creates periods in which
a technology is already used for building appli-
cations but not yet supported well by automat-
ed security testing tools. In this case, again,
manual security testing needs done in addition.

4.2 Mobile Applications
On the one hand, modern mobile applications are
not significantly different from client and
standalone applications and, thus, the recom-
mendation discussed in Section 4.2 are equally
important for mobile applications. On the other
hand, the usability (limited screen size, lack of a
keyboard) becomes a much more influencing fac-
tor on security. To mitigate this, architectural
review as well as penetration and usability test-
ing should be applied routinely as well.

4.3 Application Servers
An application server is merely a container for
applications that provides network connectively.
As such, security testing of application servers
needs to focus on ensuring that the core network-
ing and security (e.g., access control enforce-
ment, validation of cryptographic certificates) is
implemented correctly. Thus, fuzzing as well as
static code analysis for detecting, e.g., buffer
overflows in the networking stack is particularly
important.
Testing the core security functionality of an ap-
plication server requires usually the development
of dedicated test applications that are used dur-
ing a dynamic penetration test and that, due to
their specific nature, concentrate the penetration
test on the application server itself.

4.4 Sever Applications
A server application, i.e., an application that is
deployed in an application server should be test-
ed using static code analysis. An effective and
efficient static analysis of such applications re-
quires that the interfaces provided by the appli-
cation server are known to the static analysis
tool. Additionally, dynamic tests (in particular
penetration testing and fuzzing) should be used
for ensuring that the interplay of the protection
mechanism of the application server and the ap-
plication itself does not contain vulnerabilities.

4.5 Storage
Storage servers, e.g., database servers, are can
be treated similar to application servers. There
are defined interfaces which pass the data into

the actual storage. Moreover, similar to applica-
tions servers, core security features such as ac-
cess control is usually provided.

Thus, in general, the same general approach
should be followed (see Section 4.4). As storage
servers process data (compared to just passing
data to an application) the overall risk of buffer
overflow related vulnerabilities is much higher.
Consequently, such issues should receive a spe-
cial consideration during static code analysis as
well as during fuzz testing. As storage is, per se,
stateful, dynamic tests (e.g., penetration tests)
need to observe longer system traces which
makes them more complex.

4.6 Three-tiered Architecture
First, a three-tiered application consists out of
the three tiers: client, server, and storage and,
thus, the recommendation discussed in Sections
4.1-4.5 apply here as well.
Second, a thorough security approach for multi-
tiered application requires also a holistic consid-
eration of the complete stack: in particular, we
recommend threat modelling to identify the at-
tack surface and the critical components as well
as the most critical communications paths be-
tween the components. Dynamic testing (e.g.,
penetration testing) should be used for ensuring
the security of the complete stack.

4.7 Two-tiered client server architecture
A two-tiered application is mainly a three-tier
application that tightly integrates the database
tier and the application tier. Thus, the recom-
mendations for three-tier applications apply, in
principle, to a two tier as well. Due to the tight
integration of the application tier and the data-
base tier, a testing of the application and the
database “in isolation” is usually not possible. On
the one hand, this tight integration allows static
analysis tools to more precisely analyse the data-
flow between application and database. On the
other hand the setup for dynamic tests requires
more attention as the risk of modifying applica-
tion data during the tests is, compared to a three-
tier architecture, higher.

4.8 Cloud Applications
With respect to security testing, the speciality of
cloud applications is their provisioning model as
well as its continuous development model. More-
over, cloud applications are usually updated more
frequently (e.g., releasing a new version every two
weeks is rather typical) and updates can be
pushed to customers comparatively easily.

Thus, as first step, the architecture of a cloud
application should be analysed and testing rec-

ommendations for all identified application types
should be followed.

Moreover, the frequent releases are both a
blessing and a curse: on the one hand, security
fixes can be pushed to customers quickly. On the
other hand, security testing needs to be integrat-
ed very smoothly into the development and re-
lease cycle to avoid a slowdown of the release
cycle.

5 Conclusion
Developing software that adheres to high securi-
ty standards requires a holistic approach. The
security testing techniques that we discussed in
his article offer a rich toolbox that supports
software vendors in improving the security of
their products.

While our experience [5] as well as independent
research [7] shows that static code analysis is
the most efficient and effective security testing
method if only one method is applied during
software development, we are convinced that
applying only static source code analysis is not
sufficient. While security testing techniques
complement each other (e.g., there are vulnerabil-
ities that cannot be detected by static source
code analysis that can be detected by penetration
testing), finding many problems at a late stage of
the development (e.g., during a penetration test)
is a clear indication that there are serious prob-
lems in earlier stages.

For reaching a high standard in application se-
curity, a carefully selected combination of testing
techniques is necessary. Selecting the best com-
binations of tools from this toolbox is challeng-
ing. In this article, we only scratched the surface
with respect to rather technical selection criteria.
In reality, many other aspects, such as the re-
quired effort in training and using security test-
ing tools or maintenances costs need to be con-
sidered as well.

It is important to understand that security test-
ing as such is not a guarantee for secure soft-
ware. First, a security testing approach needs to
be turned into a holistic security testing strategy
that is tightly integrated into a secure software
development lifecycle. A successful security test-
ing strategy needs to ensure at least that, for
each developed product, the selection of security
testing techniques is justified, the security test-
ing is carried out properly, the test results are
carefully analysed and weaknesses found are
fixed. It is also recommended to include tests for
detected weaknesses into the regular regression
test activities to ensure that weaknesses are not
re-introduced accidentally. In addition, the deci-
sion taken (e.g., the selection of test methods)

needs to be revised regularly to ensure that the
selected tools and techniques are always the best
possible choice.

Still, even the best security testing strategy
and its careful implementation cannot guarantee
the absence of all security weaknesses. For ex-
ample, other activities a secure software devel-
opment lifecycle needs to cover are security
awareness programs and secure programming
trainings as well as effective security response
process. The latter needs not only to react on
externally reported issues, monitoring publicly
available vulnerability database (e.g., [2]) for
third party components is equally important.

Finally, as we need to accept that the fact that
we will not able to deliver the totally secure prod-
uct, an effective and efficient patch process and
the necessary communication to customers’
needs to be considered.

Acknowledgements
We would like to thank our colleagues Lars

Brueckner, Luca Compagna, Markus Ehrnsperger,
Paul el Khoury, Andrey Hoursanov, Gerold Hueb-
ner, Christian Koschmieder, Benedict Kwok, Hol-
ger Mack, Svetoslav Manolov, Maik Mueller, Phil-
ip Miseldine, Juergen Schneider, Uwe Sodan,
Jochen Wickel, and Christian Wippermann for
valuable comments and suggestions that im-
proved the quality of the paper.

Bibliography
[1] Mitre. 2011 CWE/SANS Top 25 Most Dangerous Soft-

ware Errors. http://cwe.mitre.org/top25/, 2011. Site vis-
ited on 2014-01-06.

[2] National Institute of Standards and Technology (NIST).
National Vulnerability Database. http://nvd.nist.gov/.
Site visited on 2014-01-06.

[3] M.P. Gallaher and B.M. Kropp. The Economic Impacts of
Inadequate Infrastructure for Software Testing. Tech-
nical Report Planning Report 02-03, National Institute of
Standards & Technology, May 2002.

[4] Howard, Michael; Lipner, Steve (June 2006). The Securi-
ty Development Lifecycle: SDL: A Process for Developing
Demonstrably More Secure Software. Microsoft Press.

[5] Achim D. Brucker and Uwe Sodan. Deploying Static Ap-
plication Security Testing on a Large Scale. In GI Sicher-
heit 2014.Lecture Notes in Informatics, GI, 2014.

[6] Patrice Godefroid, Michael Y. Levin, David A. Molnar:
SAGE: whitebox fuzzing for security testing. Commun.
ACM 55(3): 40-44 (2012)

[7] Riccardo Scandariato, James Walden, and Wouter Joos-
en. Static analysis versus penetration testing: a con-
trolled experiment. In Proceedings of the 24th IEEE In-
ternational Symposium on Software Reliability Engineer-
ing,, pages 1–10. IEEE, November 2013.

TY - JOUR
AU - Bachmann, Ruediger
AU - Brucker, Achim D.
PY - 2014/apr/
TI - Developing Secure Software: A Holistic Approach to Security Testing
JO - Datenschutz und Datensicherheit (DuD)
SP - 257
EP - 261
VL - 38
IS - 4
N2 - Security vulnerabilities are a serious threat to software vendors and their customers: they can result in both monetary loss as well as loss of reputation. Thus, implementing a rigid secure software development lifecycle is a competitive advantage for a software vendor. A holistic security testing approach must cover the whole software development lifecycle across all software products and all security threats. In this article, we discuss a holistic security testing approach that was developed at SAP, a large vendor of enterprise software.
UR - http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
L1 - http://www.brucker.ch/bibliography/download/2014/bachmann.ea-security-testing-2014.pdf
UR - http://dx.doi.org/10.1007/s11623-014-0102-0
ID - bachmann.ea:security-testing:2014
ER -

 bachmann.ea:security-testing:2014
 ArticleInAPeriodical
 2014
 apr
 Datenschutz und Datensicherheit (DuD)
 38
 4
 257-261

 Bachmann Ruediger
 Brucker Achim D

 Developing Secure Software: A Holistic Approach to Security Testing
 Security vulnerabilities are a serious threat to software vendors and their customers: they can result in both monetary loss as well as loss of reputation. Thus, implementing a rigid secure software development lifecycle is a competitive advantage for a software vendor. A holistic security testing approach must cover the whole software development lifecycle across all software products and all security threats. In this article, we discuss a holistic security testing approach that was developed at SAP, a large vendor of enterprise software.

@Article{	 bachmann.ea:security-testing:2014,
 author	= {Ruediger Bachmann and Achim D. Brucker},
 title		= {Developing Secure Software: A Holistic Approach to
		 Security Testing},
 journal	= {Datenschutz und Datensicherheit (DuD)},
 month		= apr,
 volume	= {38},
 number	= {4},
 doi		= {10.1007/s11623-014-0102-0},
 pages		= {257--261},
 year		= {2014},
 abstract	= {Security vulnerabilities are a serious threat to software
		 vendors and their customers: they can result in both
		 monetary loss as well as loss of reputation. Thus,
		 implementing a rigid secure software development lifecycle
		 is a competitive advantage for a software vendor.
		
		 A holistic security testing approach must cover the whole
		 software development lifecycle across all software products
		 and all security threats. In this article, we discuss a
		 holistic security testing approach that was developed at
		 SAP, a large vendor of enterprise software.},
 public	= {yes},
 classification= {popular},
 areas		= {security, software},
 pdf		= {http://www.brucker.ch/bibliography/download/2014/bachmann.ea-security-testing-2014.pdf},
 url		= {http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014}
		
}

%0 Journal Article
%T Developing Secure Software: A Holistic Approach to Security Testing
%A Bachmann, Ruediger
%A Brucker, Achim D.
%J Datenschutz und Datensicherheit (DuD)
%D 2014
%8 apr
%V 38
%N 4
%F bachmann.ea:security-testing:2014
%X Security vulnerabilities are a serious threat to software vendors and their customers: they can result in both monetary loss as well as loss of reputation. Thus, implementing a rigid secure software development lifecycle is a competitive advantage for a software vendor. A holistic security testing approach must cover the whole software development lifecycle across all software products and all security threats. In this article, we discuss a holistic security testing approach that was developed at SAP, a large vendor of enterprise software.
%U http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
%U http://www.brucker.ch/bibliography/download/2014/bachmann.ea-security-testing-2014.pdf
%U http://dx.doi.org/10.1007/s11623-014-0102-0
%P 257-261

