
A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 192–??, 2014.
c© 2014 Springer-Verlag. This is the author’s version of the work. It is posted at http://
www.brucker.ch/bibliography/abstract/asim.ea-aniketos-monitoring-2014 by permission
of Springer-Verlag for your personal use.

Security Policy Monitoring of Composite Services

Muhammad Asim
1
, Artsiom Yautsiukhin

2
, Achim D. Brucker

3
, Brett Lempereur

1
, and

Qi Shi
1

1School of Computing and Mathematical Sciences, Liverpool John Moores University, UK

{m.asim, b.lempereur, q.shi}@ljmu.ac.uk
2Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Italy

artsiom.yautsiukhin@iit.cnr.it
3SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany

achim.brucker@sap.com

Abstract. One important challenge the Aniketos platform has to address is the

effective monitoring of services at runtime to ensure that services behave as

promised. A service developer plays the role that is responsible for constructing

service compositions and the service provider is responsible for offering them

to consumers of the Aniketos platform. Typically, service consumers will have

different needs and requirements; they have varying business goals and differ-

ent expectations from a service, for example in terms of functionality, quality of

service and security needs. Given this, it is important to ensure that a service

should deliver for which it has been selected and should match the consumer’s

expectations. If it fails, the system should take appropriate subsequent reactions,

e.g., notifications to the service consumer or service designer.

In this chapter, we present the policy-driven monitoring framework which is

developed as part of the Aniketos project. The monitoring framework allows

different user-specified policies to be monitored simultaneously. The monitor-

ing is performed at the business level, as well as at the implementation level,

which allows for checking the policies of composite services as well as atomic

ones. The framework sends an alarm in case of policy violation to notify the in-

terested parties and triggers re-composition or re-configuration of the service.

Keywords: monitoring, secure service composition, security policy, complex

event processing, SOA, BPMN.

1 Introduction

Applications based on a Service-Oriented Architecture (SOA) are highly dynamic and

liable to change heavily at runtime. These applications are made out of services that

are deployed and run independently, and may change unpredictably after deployment.

Thus, changes may occur to services after deployment and at runtime, which may lead

to a situation where services fail to deliver for which they have been selected and no

longer satisfy user’s expectations. Therefore, there is need to shift towards runtime

monitoring of services [1].

192

http://www.brucker.ch/bibliography/abstract/asim.ea-aniketos-monitoring-2014
http://www.brucker.ch/bibliography/abstract/asim.ea-aniketos-monitoring-2014

One important feature of the Aniketos platform is the effective monitoring of services

at runtime to ensure that services behave as promised. This paper presents a monitor-

ing framework that is based on the runtime monitoring of a composite service to en-

sure that the service behaves in compliance with a pre-defined security policy. Alerts

regarding policy violations are sent as notifications. BPMN [2] has been used for

modelling and specifying composite services, and the Activiti engine [16] as a Busi-

ness Process Management Platform. BPMN is widely used as a modelling notation for

business processes as well as for executing them in a business process engine [3].

Current monitoring methods applied to service execution environments focus on gen-

erating alerts for a specific set of pre-built event-types. However, the dynamic nature

of SOAs also extends to the end-user security requirements. An ideal system might

allow different users to be given the opportunity to apply their own security policies

enforced through a combination of design-time and run-time checks. This might be

the case even where multiple users are accessing the same services simultaneously.

Current monitoring techniques [4, 5, 6, 7] have not been set up with this flexibility in

mind.

In this paper we aim to rectify the above weakness of the existing monitoring work by

developing a novel policy-driven monitoring framework that allows different user-

specified policies to be monitored simultaneously at run-time with the accuracy of a

monitoring system that links directly into the service execution environment.

2 Service Composition: An Example

We will illustrate our approach by using a running example. In this example, we as-

sume that we are a small company that designs, develops, and provides customized

services to customers. Moreover, we assume that our customer wants to have an ap-

plication that provides a location based information service, e.g., based on the current

GPS coordinates of a mobile device or after entering an address. The application

should display information such as the current weather or a map highlighting various

points of interests.

As there are many services available that already provide information such as the

current weather, it is quite a natural approach to build this new application based on

already existing services, e.g.:

 a GeoCoding type service, which takes as input a street address and gets the

associated geographical coordinates;

 a PointOfInterest type service that takes as input the geographical coordi-

nates and returns the places that the end user can be interested in;

 an WeatherForecast type service that takes as input the geographical coordi-

nates and returns the information about the weather observations at the sta-

tion closest to the end user;

 a Map type service that takes as input the geographical coordinates and re-

turns a map showing the position of the end user;

 a WebPageInfoCollector type service that takes as input a set of information

related to a location and returns a web page that shows it.

193

The resulting composite service, named InfoService, takes as input a street address

and returns the web page collecting all the information described above. For more

details about this scenario and its implementation, we refer the reader elsewhere [17].

Fig. 1 presents an overview of the InfoService case study.

Fig. 1. Overview of InfoService Components

3 Policy Language

In the Aniketos project we were looking for a language which could: (i) express secu-

rity properties and policies for hierarchical services; (ii) be expressive enough, clear

and simple in processing at the same time; (iii) be generated by both humans and

software.

We considered several candidates for such kind of language. XACML [9], Event

Calculus [10], PROTUNE [11]. XACML is a general purpose language but hard to

express policies and reason about them. Event Calculus has a complex syntax for

expressing policies for composite services. PROTUNE [17] language has high ex-

pressivity and can be used to specify complex policies in a distributed environment.

The main disadvantages of the method relates to its strength. Because of such enor-

mous expressiveness the language is complex for policy writing and reasoning.

Based on the above analysis, we selected the ConSpec language [12] for our purposes.

The ConSpec language was proposed by the University of Trento and Royal Institute

of Technology in the scope of the S3MS project [15]. Briefly, we can see the lan-

guage as follows (we refer a reader to Aktug and Naliuka [12] for the details):

194

RULE ID ruleId

SCOPE <Session | Multisession>

SECURITY STATE

<bool |int|string> VarName1 = <Value1>

<bool |int|string> VarName1 = <Value1>

<BEFORE | AFTER> event1 PERFORM

Gaurd11->Update11

……

Gaurd1N->Update1N

 …

<BEFORE | AFTER> eventM PERFORM

GaurdM1->UpdateM1

…

GaurdML->UpdateML

Fig. 2. ConSpec Syntax

The tag RULEID simply defines the id of the policy. The tag SCOPE specifies

whether the rule is applied to one specific execution or to all executions of the ser-

vice. The tag SECURITY STATE defines the global variables and their initial values.

Then several events are checked BEFORE or AFTER occurrence. If an event oc-

curred we check guards one by one until find the one which is satisfied. In this case

certain security updates are performed. If no guards are fired for the event, then the

further execution is not permitted (and some further security actions, like notifying

the customer, are triggered). In case no security updates are needed but the further

execution is allowed, there is a special action SKIP which does not do anything but

continues the execution. There is also a possibility for specifying an ELSE statement

for the cases, when the further execution should be allowed even if no guards fired

(we omitted this option here for simplicity).

There are a number of advantages of ConSpec. First, this language was developed for

security purposes and allows guarding possible actions performed by a system (e.g., a

service). It represents behaviour in terms of different events (originally, Java method

calls) that allow policies to be checked at runtime. The policies written in ConSpec

are easily understandable by humans (the language is similar to programming lan-

guages), has comparatively simple semantics, and is easy to learn. ConSpec is an

automata-based language. Although this feature slightly reduces its expressiveness (in

comparison with its predecessor PSLan [13], or other declarative languages as Event-

Calculus [10], XACML [9], PROTUNE [11], etc.), it allows automatic reasoning on

it. For example, in the project we needed to check that requirements desired by a con-

sumer could be fulfilled by a service provider. Furthermore, it is simple to define a

policy decision point for monitoring purposes if automation is available. Finally,

ConSpec defines different scopes of its application. Thus, we may define a policy for

a single execution of a service or multiple executions.

195

Fig. 3. ConSpec Editor

In the scope of the Aniketos project we have created a tool which provides a graphical

user interface for making and changing ConSpec policies. The tool is called a Con-

Spec Editor and has been illustrated in Fig. 3. The tool also converts the policy in a

specified XML format, which simplifies policy processing by the policy decision

point (PDP) of the monitor. The tool checks the correctness of the written policy and

notifies the writer about possible errors.

Moreover, the tool allows creating templates for policies, i.e., a predefined policy

structure, which requires only initialization of input parameters. Thus, templates sig-

nificantly simplify the work with ConSpec rules for inexperienced users, who now

should simply insert context specific values in a selected policy template. Finally, the

tool may be integrated with a service composition framework (e.g., the one shown in

Chapters 4 and 9, and retrieve names of used constructs (e.g., IDs of services) or even

policies themselves.

4 EVENT MODEL

The monitoring framework we propose is built around the concept of events. It is an

event-driven approach that allows the monitoring system to analyse events and react

to certain situations as they occur.

196

Figure 4 displays a simplified version of our proposed event model. This organises

different event types allowing us to reason about and provide a generic way to deal

with them.

Fig. 4. Event Model

The Activiti engine provides an extension on top of the BPMN 2.0 specification al-

lowing Execution Listeners to be defined. These listeners can be configured at the

Process level, Activity level or Transition level in order to generate events. Our event

model is based on two types of process variables: Base Variables and Domain Specif-

ic Variables. Both types of variable are available during the execution of a business

process and could be used for monitoring. The listeners have access to these process

variables and can create events populated using their associated values, sending for

analysis. The Base Variables inherit common attributes from the process itself, e.g.,

the process ID, process name, activity ID, activity name, process start time. For ex-

ample, to monitor the execution time of a particular service composition described as

a BPMN process (possibly using an extension that supports the specification of secu-

rity and trust properties [14]), both process start and end events could be used along

with the common variables: event start time and event end time. However, the Do-

main Specific Variables are user-defined and may build upon the Base Variables. For

example, to analyse the load on a particular service, we could accumulate all start

process events for that service over the last hour. An alert message should be generat-

ed if the number of requests is more than a threshold value in the last hour. This

threshold value is a user-defined attribute falling within the Domain Specific Varia-

bles.

In the following discussion, we try to determine the structure of events that should be

received for analysis. In our proposed framework, an overall process could represent a

composite service and an Activity could represent a service component. Fig. 5 shows

an example of events for a BPMN process executed in a specific order.

197

Fig. 5. Event Flow

In this example, a loan service is comprised of loan calculation and loan approval

tasks. Therefore, it is not possible to define a single structure for monitoring the over-

all process. For example, to monitor an Activity, we cannot wait for the whole process

to complete. The monitoring of an Activity may need only the process ID, Activity

start and end events.

In our proposal, an event structure describes the data and structure associated with an

event. It helps in organizing the data that is required for monitoring. Below we define

the event structure for our proposed monitoring framework.

1) Process level event

processName

eventLevel (processLevelEvent)

eventName (Start or End)

eventTime (Timestamp)

Variable 0...n –domain specific variables

2) Activity level event

processName

activityName (name of the Service or User Task)

eventLevel (activityLevelEvent)

eventType (Service Task or User Task)

eventName (Start or End)

processFlow (used to construct a composition work-flow)

eventTime (Timestamp)

Variable 0...n –domain specific variables

 eventDate (e.g. 2013/04/05)

5 THE MONITORING FRAMEWORK

The general architecture of the monitoring framework that we use to monitor the

BPMN processes is shown in Fig. 6.

198

Fig. 6. Monitoring Framework

During execution, the Activiti engine generates events for the deployed BPMN pro-

cess. The framework consists of an Analyzer that accepts a set of security require-

ments (monitoring policy) for a particular process to be monitored. The monitoring

policy is defined by the service designer. The Analyzer then recovers the monitoring

patterns that are related to the requirements from the monitoring pattern repository

and checks whether the received events are consistent with the patterns and if it is not

then it reports a violation. The monitoring policy is defined using the ConSpec lan-

guage. The components of the monitoring framework are shown in Fig. 6. In the fol-

lowing, we describe the monitoring components:

Event Manager: This module is responsible for gathering events coming from the

Activiti engine and forwards them to the Analyzer. The event manager is composed

of an Event Filter that filters relevant events for compliance monitoring. The Event

Filter relies on a filtering mechanism and acts as a first step to reduce the number of

events that must be considered by the Analyzer.

Monitoring Policy: A set of requirements, specified in ConSpec, that describes what

properties need to be monitored for a particular BPMN process. The monitoring poli-

cies are defined using the Aniketos Service Composition Framework (SCF), see

Chapters 4 and 9.

 Consider the following example where a service designer creates a travel booking

composition that consists of several tasks, such as ordering, booking hotel, booking

flight, payment and invoice, and each task is performed by a component service. The

service designer might want that the payment service component should only be in-

199

voked when it has a trustworthiness value ≥ 90%. This requirement could easily be

specified using the ConSpec language as shown in Fig. 7.

MAXINT 32000

MAXLEN 1000

SESSION session

SECURITY STATE

 int trust_threshold = 0.9;

 string ServiceID=PaymentService;

BEFORE v#activity.start(string id, string type,

string time, string date, string exec)

ServiceID==id && i#Trustworthiness(id) >

trust_threshold-> skip;

Fig. 7. ConSpec rule for Trustworthiness

Monitoring Rule Repository: It is a database of monitoring patterns used for moni-

toring services. The rules defined in the monitoring policy are translated into monitor-

ing rules and are stored in the Monitoring Pattern repository. An example monitoring

pattern might specify that the trustworthiness of a service should be continuously

monitored so that a notification is generated as soon as the value falls below a given

threshold.

Analyzer: It analyses the events coming from the Event Manager by using patterns

stored in the repository. The Analyzer makes use of the monitoring policy to select

the appropriate monitoring patterns for a particular process. Every policy is analysed

according to the ConSpec specification, particular, if a policy has a Scope Session

policy initialised when a service is invoked. The PDP helps in translating ConSpec

policies into monitoring rules for decision making. Upon receiving events from the

Analyzer, the PDP analyses them according to the order of the guard-update state-

ments specified in the policy. The first guard returning “true” fires the corresponding

update (i.e., actions, which have to be performed before continuing of the execution)

and afterwards no more statements are checked. Thus, no conflicts are allowed to

occur. Note that if no guards resulted to “true” (and updates for ELSE are not speci-

fied), this means violation of the policy. If no updates are necessary for some condi-

tions, a special command skip is envisaged.

Notification Module: It is developed as a part of the Aniketos platform and is used

by the monitoring framework to report any violations. The Notification Module is

implemented as a cloud service and is based on a publish-subscribe paradigm that

notifies the entities subscribed about contract violation.

200

6 Conclusion

The presented monitoring framework is tightly integrated into the Aniketos platform

(See Chapter 4) which supports the design-time and runtime aspects of secure and

trustworthy service compositions. The proposed monitoring framework provides a

user friendly interface for service designers to specify their monitoring policies as

ConSpec rules. A policy written in ConSpec is easily to understand and the simplicity

of the language allows comparatively simple semantics. This enables the service de-

signer to easily specify the monitoring requirements for their processes and monitor

them using the framework. The monitoring framework is based on the way relevant

information can be combined from multiple dynamic services in order to automate the

monitoring of business processes and proactively report compliance violations. Alerts

regarding policy violations are sent as notifications which other interested parties

(generally the service composition providers) can subscribe to, allowing them to make

verifications and take decisions and actions.

References

[1] C. Ghezzi and S. Guinea, “Run-time Monitoring in Service Oriented Architectures”, Test and Analy-

sis of Web Services: Springer Berlin Heidelberg, 2007.

[2] OMG, Business Process Model and Notation (BPMN) Version 2.0. 2011.

http://www.omg.org/spec/BPMN/2.0/

[3] T. Rademakers, Activiti in Action: Executable business processes in BPMN 2.0. Manning Publica-

tions, 2012.

[4] L. Baresi, S. Guinea, O. Nano, G. Spanoudakis, “Comprehensive monitoring of BPEL processes”,

IEEE Internet Computing, vol. 14, no. 3, pp. 50-57, May-June 2010.

[5] Z. Haiteng, S. Zhiqing, Z. Hong, “Runtime Monitoring Web Services Implemented in BPEL”, In

International Conference on Uncertainty Reasoning and Knowledge Engineering (URKE), Bali, In-

donesia, volume 1, pages 228-231 (2011).

[6] G. Wu, J. Wei, T. Huang, “Flexible Pattern Monitoring for WS-BPEL through Stateful Aspect Ex-

tension” In: Proc. of the IEEE Intl. Conf. on Web Services (ICWS 2008), Beijing, China. pp. 577–

584 (2008)

[7] L. Baresi, C. Ghezzi, and S. Guinea, "Smart Monitors for Composed Services," in Proceedings of the

2nd International Conference on Service Oriented Computing. (ICSOC 2004), New York, USA,

2004. pp. 193-202.

[8] Aniketos Consortium, Deliverable D9.2: Demonstration material and events from the complete

project, 2012.

[9] eXtensible Access Control Markup Language (XACML) Version 3.0 (http://docs.oasis-

open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf)

[10] M. P. Shanahan, The Event Calculus Explained, in Artificial Intelligence Today, eds. M. J.

Wooldridge and M. Veloso, Springer-Verlag Lecture Notes in Artificial Intelligence no. 1600,

Springer-Verlag, pages 409-430, 1999

[11] P.A. Bonatti, J.L. De Coi, D. Olmedilla, L.Sauro, “PROTUNE: A Rule-based PROvisional TrUst

Negotiation Framework”, 2010.

[12] I. Aktug, K. Naliuka, “ConSpec: A Formal Language for Policy Specification.”, In Proceedings of the

First International Workshop on Run Time Enforcement for Mobile and Distributed Systems , 2007.

[13] U. Erlingsson, “The inlined reference monitor approach to security policy enforcement.,” PhD thesis,

Department of Computer Science, Cornell University, 2004.

201

[14] Achim D. Brucker, “Integrating Security Aspects into Business Process Models,” In it - Information

Technology, 55 (6), pages 239-246, 2013.

[15] S3MS project. Available via http://researchprojects.kth.se/index.php/kb_1/io_9718/io.html

[16] Activiti engine , http://www.activiti.org/

[17] Aniketos Consortium, Deliverable D9.2: Demonstration material and events from the complete

project, 2012.

202

@InBook{	 asim.ea:aniketos-monitoring:2014,
 author	= {Muhammad Asim and Artsiom Yautsiukhin and Achim D. Brucker
		 and Brett Lempereur and Qi Shi},
 title		= {Security Policy Monitoring of Composite Services},
 classification= {invited},
 areas		= {security, software},
 editor	= {Achim D. Brucker and Fabiano Dalpiaz and Paolo Giorgini
		 and Per H{\aa}kon Meland and Erkuden {Rios}},
 booktitle	= {Secure and Trustworthy Service Composition: The Aniketos
		 Approach},
 publisher	= {Springer-Verlag},
 address	= {Heidelberg},
 series	= {Lecture Notes in Computer Science: State of the Art
		 Surveys},
 volume	= {8900},
 public	= {yes},
 isbn		= {978-3-319-13517-5},
 year		= {2014},
 pages		= {192--202},
 pdf		= {http://www.brucker.ch/bibliography/download/2014/asim.ea-aniketos-monitoring-2014.pdf},
 keywords	= {monitoring, secure service composition, security policy,
		 complex event processing, SOA, BPMN},
 abstract	= {One important challenge the Aniketos platform has to
		 address is the effective monitoring of services at runtime
		 to ensure that services behave as promised. A service
		 developer plays the role that is responsible for
		 constructing service compositions and the service provider
		 is responsible for offering them to consumers of the
		 Aniketos platform. Typically, service consumers will have
		 different needs and requirements; they have varying
		 business goals and different expectations from a service,
		 for example in terms of functionality, quality of service
		 and security needs. Given this, it is important to ensure
		 that a service should deliver for which it has been
		 selected and should match the consumer's expectations. If
		 it fails, the system should take appropriate subsequent
		 reactions, e.g., notifications to the service consumer or
		 service designer. In this chapter, we present the
		 policy-driven monitoring framework which is developed as
		 part of the Aniketos project. The monitoring framework
		 allows different user-specified policies to be monitored
		 simultaneously. The monitor- ing is performed at the
		 business level, as well as at the implementation level,
		 which allows for checking the policies of composite
		 services as well as atomic ones. The framework sends an
		 alarm in case of policy violation to notify the interested
		 parties and triggers re-composition or re-configuration of
		 the service.},
 url		= {http://www.brucker.ch/bibliography/abstract/asim.ea-aniketos-monitoring-2014}
		
}

%0 Book Section
%A Asim, Muhammad
%A Yautsiukhin, Artsiom
%A Brucker, Achim D.
%A Lempereur, Brett
%A Shi, Qi
%E Brucker, Achim D.
%E Dalpiaz, Fabiano
%E Giorgini, Paolo
%E Meland, Per Håkon
%E Rios, Erkuden
%B Security Policy Monitoring of Composite Services: The Aniketos Approach
%D 2014
%V 8900
%I Springer-Verlag
%C Heidelberg
%@ 978-3-319-13517-5
%F asim.ea:aniketos-monitoring:2014
%X One important challenge the Aniketos platform has to address is the effective monitoring of services at runtime to ensure that services behave as promised. A service developer plays the role that is responsible for constructing service compositions and the service provider is responsible for offering them to consumers of the Aniketos platform. Typically, service consumers will have different needs and requirements; they have varying business goals and different expectations from a service, for example in terms of functionality, quality of service and security needs. Given this, it is important to ensure that a service should deliver for which it has been selected and should match the consumer?s expectations. If it fails, the system should take appropriate subsequent reactions, e.g., notifications to the service consumer or service designer. In this chapter, we present the policy-driven monitoring framework which is developed as part of the Aniketos project. The monitoring framework allows different user-specified policies to be monitored simultaneously. The monitor- ing is performed at the business level, as well as at the implementation level, which allows for checking the policies of composite services as well as atomic ones. The framework sends an alarm in case of policy violation to notify the interested parties and triggers re-composition or re-configuration of the service.
%K monitoring, secure service composition, security policy, complex event processing, SOA, BPMN
%U http://www.brucker.ch/bibliography/abstract/asim.ea-aniketos-monitoring-2014
%U http://www.brucker.ch/bibliography/download/2014/asim.ea-aniketos-monitoring-2014.pdf
%P 192-202

TY - CHAP
AU - Asim, Muhammad
AU - Yautsiukhin, Artsiom
AU - Brucker, Achim D.
AU - Lempereur, Brett
AU - Shi, Qi
ED - Brucker, Achim D.
ED - Dalpiaz, Fabiano
ED - Giorgini, Paolo
ED - Meland, Per Håkon
ED - Rios, Erkuden
PY - 2014//
BT - Security Policy Monitoring of Composite Services: The Aniketos Approach
T3 - Lecture Notes in Computer Science: State of the Art Surveys
SP - 192
EP - 202
VL - 8900
PB - Springer-Verlag
CY - Heidelberg
KW - monitoring, secure service composition, security policy, complex event processing, SOA, BPMN
N2 - One important challenge the Aniketos platform has to address is the effective monitoring of services at runtime to ensure that services behave as promised. A service developer plays the role that is responsible for constructing service compositions and the service provider is responsible for offering them to consumers of the Aniketos platform. Typically, service consumers will have different needs and requirements; they have varying business goals and different expectations from a service, for example in terms of functionality, quality of service and security needs. Given this, it is important to ensure that a service should deliver for which it has been selected and should match the consumer?s expectations. If it fails, the system should take appropriate subsequent reactions, e.g., notifications to the service consumer or service designer. In this chapter, we present the policy-driven monitoring framework which is developed as part of the Aniketos project. The monitoring framework allows different user-specified policies to be monitored simultaneously. The monitor- ing is performed at the business level, as well as at the implementation level, which allows for checking the policies of composite services as well as atomic ones. The framework sends an alarm in case of policy violation to notify the interested parties and triggers re-composition or re-configuration of the service.
SN - 978-3-319-13517-5
UR - http://www.brucker.ch/bibliography/abstract/asim.ea-aniketos-monitoring-2014
L1 - http://www.brucker.ch/bibliography/download/2014/asim.ea-aniketos-monitoring-2014.pdf
ID - asim.ea:aniketos-monitoring:2014
ER -

 asim.ea:aniketos-monitoring:2014
 BookSection
 Heidelberg
 Springer-Verlag
 2014
 Security Policy Monitoring of Composite Services: The Aniketos Approach
 8900
 192-202

 Asim Muhammad
 Yautsiukhin Artsiom
 Brucker Achim D
 Lempereur Brett
 Shi Qi

 Brucker Achim D
 Dalpiaz Fabiano
 Giorgini Paolo
 Meland Per Håkon
 Rios Erkuden

 One important challenge the Aniketos platform has to address is the effective monitoring of services at runtime to ensure that services behave as promised. A service developer plays the role that is responsible for constructing service compositions and the service provider is responsible for offering them to consumers of the Aniketos platform. Typically, service consumers will have different needs and requirements; they have varying business goals and different expectations from a service, for example in terms of functionality, quality of service and security needs. Given this, it is important to ensure that a service should deliver for which it has been selected and should match the consumer’s expectations. If it fails, the system should take appropriate subsequent reactions, e.g., notifications to the service consumer or service designer. In this chapter, we present the policy-driven monitoring framework which is developed as part of the Aniketos project. The monitoring framework allows different user-specified policies to be monitored simultaneously. The monitor- ing is performed at the business level, as well as at the implementation level, which allows for checking the policies of composite services as well as atomic ones. The framework sends an alarm in case of policy violation to notify the interested parties and triggers re-composition or re-configuration of the service.

