A Framework for **Secure Service Composition**

Madjid Merabti

Achim D. Brucker Francesco Malmignati Qi Shi Bo Zhou

> presented by **Brett Lempereur**

ASE/IEEE International Conference on Information Privacy, Security, Risk and Trust (PASSAT)

2013-09-11

The Aniketos Process

The Aniketos Project

Enable composite services to establish and maintain security and trustworthiness

Goals of the Aniketos platform:

- Design-time discovery, composition and evaluation, threat awareness
- Runtime adaptation or change in service configuration
- Runtime monitoring, detection, notification

Two related dimensions:

- Trustworthiness: Reputation, perception, centralized vs. distributed
- Security properties: Behavior, contracts, interfaces, formal verification

Aniketos Fact-Sheet:

- EU Integrated Project (IP), FP7 Call 5
- Budget: € 13.9 Mio (€ 9.6 Mio funding)
- 42 month (Aug. 2010 Feb. 2014)
- Coordinator: Sintef (Norway)

A Framework for Secure Service Composition

2013-09-11

Outline

- 1 Motivation
- **Analysing Access Control Configurations**
- **Quantifying Service Compositions**
- Conclusion

Modeling Composition Plans using BPMN

- Human-centric tasks
- Automated tasks (services)
- Orchestration of services
- Start/end states
- Logical control flow (if/and/or)
- Error states

A Framework for Secure Service Composition

2013-09-1

Security and Trust Properties in Service Compositions

Access control

- Authenticated users
- Authorization of users

SoD/BoD

- No approval of own travels
- Separation of finding and booking flights

Need-to-Know

- Finding flights: only travel data
- Payment: only price and credit card data

Trust

- Use only trustworthy services
- Trustworthiness may change over time

A Framework for Secure Service Composition

2013-09-11

Outline

ANIKETOS

- 1 Motivation
- 2 Analysing Access Control Configurations
- 3 Quantifying Service Compositions
- 4 Conclusion

How to ensure security, compliance, and trustworthiness at design time and runtime?

The Problem: RBAC with Separation of Duty

Role-based access control (RBAC)

- Subjects are assigned to roles
- Permissions assign roles to tasks (resources)

Separation of duty (SoD)

restrict subjects in executing tasks

We analyze:

Does the RBAC configuration comply to the SoD requirements?

yes: static SoD
no: dynamic SoD

- In case of a compliance violation:
 - change RBAC configuration
 - ensure dynamic enforcement of SoD

A Framework for Secure Service Composition

2013-09-11

10

Security Verification Module (RBAC/SoD Check)

A Framework for Secure Service Composition

2013-09-11

User Interface for the Service Designer

Outline

- 1 Motivation
- 2 Analysing Access Control Configuration
- Quantifying Service Compositions
- 4 Conclusion

The Problem: Selection of the Optimal Composition

- Ranking of service compositions
 - property of the composition
 - compositions provide the same
 - functionality
 - security and trustworthiness
- Ranking according to
 - Availability
 - Costs

Ranking Secure Service Compositions

Calculating the availability:

	Description	Calculation
$\bigcirc \rightarrow \bigcirc$	Sequence	$\prod_{i=1}^n A_i$
(Parallel	$\min(A_1,\ldots,A_n)$
*	Exclusive	A_i

Calculating the costs:

$$C = \sum_{i=1}^{n} C_i$$

A Framework for Secure Service Composition

2013-09-11

A Framework for Secure Service Composition

2013-09-11

Example: Ranking Service Compositions

- Assume the following availability values:
 - Find suitable hotels: 0.99

■ Book the hotel: 0.99

■ Find suitable flights: 0.96

- Book the flight: 0.98
- Get user's credit card data: 0.97
- Undo hotel booking: 0.94

We compute:

$$A = \min(0.99, 0.96) \times 0.97 \times 0.99 \times 0.98 = 0.90$$

■ Assume the weights to 0.72 (availability) and 0.28 (cost)

$$V = 0.72 \times A + 0.28 \times \frac{B - C}{B}$$

Outline

- 1 Motivation
- 2 Analysing Access Control Configurations
- Quantifying Service Compositions
- 4 Conclusion

Conclusion and Outlook

- Secure service compositions require:
 - Design time: modeling, analysis and ranking of secure services
 - Run-time: enforcement, monitoring, service replacement, and re-planning
- Today, we presented design time support for
 - Analysing security properties of service compositions
 - a method for ranking service compositions
- Our work is part of the Aniketos secure Composition Framework
- Further information about Aniketos: http://www.aniketos.eu

A Framework for Secure Service Composition

2013-09-11

Further Readings

A framework for secure service composition.

In ASE/IEEE International Conference on Information Privacy, Security, Risk and Trust (PASSAT). IEEE Computer Society, 2013.

Thank you for your attention!

Any questions or remarks?

Part II

Appendix

The Aniketos Secure Composition Framework

A Framework for Secure Service Composition

2013-09-11

SecureBPMN: Adding Security Specifications

- Access Control
- Delegation
- Separation/Binding of Duty
- Need to Know
- Break Glass

A Framework for Secure Service Composition

2013-09-11

Analyzing (Dynamic | Static) Separation of Duty

Does the access control enforce a separation of duty constraint

■ Translate the composition plan to ASLan

Specify the test goal

```
attack_state sod_securitySod1_1(Subject0,Subject1,Instance1,Instance2)
:= executed(Subject0,task(Request Travel,Instance1)).
    executed(Subject1,task(Approve Budget,Instance2)).
    executed(Subject3,task(Approve Absence,Instance3))
    &not(equal(Subject0,Subject1))
    &not(equal(Subject1,Subject2))
    &not(equal(Subject2,Subject3))
```

- Run the model checker
- Translate the analysis result back to BPMN (visualization)

