
A Framework

for

Secure Service Composition

Achim D. Brucker Francesco Malmignati
Madjid Merabti Qi Shi Bo Zhou

presented by
Brett Lempereur

ASE/IEEE International Conference on
Information Privacy, Security, Risk and Trust

(PASSAT)

2013-09-11

The Aniketos Project
Enable composite services to establish and maintain security and trustworthiness

Goals of the Aniketos platform:

Design-time discovery, composition
and evaluation, threat awareness

Runtime adaptation or change in
service configuration

Runtime monitoring, detection,
notification

Two related dimensions:

Trustworthiness: Reputation,
perception, centralized vs.
distributed

Security properties: Behavior,
contracts, interfaces, formal
verification

Aniketos Fact-Sheet:

EU Integrated Project (IP), FP7 Call 5

Budget: € 13.9 Mio (€ 9.6 Mio funding)

42 month (Aug. 2010 – Feb. 2014)

Coordinator: Sintef (Norway)

http://www.aniketos.eu

ANIKE OS A Framework for Secure Service Composition 2013-09-11 3

The Aniketos Process

Runtime Design-time

Service providers Service developers

Compose

Service end users

Invoke

Component change
Change of threats
Change of environment

Adapt/recompose

Provide

• Discovery and composition
support based on
trustworthiness, security
properties and metrics

• Relevant threat awareness

• Trust and security
monitoring

• Threat notification

•Self-protection
•Trust evaluation
•Security validation

• End user trust
assurance and
acceptance

• Identification of
responsible party

ANIKE OS A Framework for Secure Service Composition 2013-09-11 4

Outline

1 Motivation

2 Analysing Access Control Configurations

3 Quantifying Service Compositions

4 Conclusion

Modeling Composition Plans using BPMN

Human-centric tasks

Automated tasks (services)

Orchestration of services

Start/end states

Logical control flow (if/and/or)

Error states

ANIKE OS A Framework for Secure Service Composition 2013-09-11 6

Security and Trust Properties in Service Compositions
Access control

Authenticated users

Authorization of users

SoD/BoD

No approval of own travels

Separation of finding and booking flights

Need-to-Know

Finding flights: only travel data

Payment: only price and credit card data

Trust

Use only trustworthy services

Trustworthiness may change over time

ANIKE OS A Framework for Secure Service Composition 2013-09-11 7

How to ensure

security,

compliance,

and

trustworthiness

at

design time

and

runtime?

Outline

1 Motivation

2 Analysing Access Control Configurations

3 Quantifying Service Compositions

4 Conclusion

The Problem: RBAC with Separation of Duty
Role-based access control (RBAC)

Subjects are assigned to roles

Permissions assign roles to tasks (resources)

Separation of duty (SoD)

restrict subjects in executing tasks

We analyze:

Does the RBAC configuration
comply to the SoD requirements?

yes: static SoD
no: dynamic SoD

In case of a compliance violation:

change RBAC configuration
ensure dynamic enforcement of SoD

ANIKE OS A Framework for Secure Service Composition 2013-09-11 10

Security Verification Module (RBAC/SoD Check)

ANIKE OS A Framework for Secure Service Composition 2013-09-11 11

User Interface for the Service Designer

ANIKE OS A Framework for Secure Service Composition 2013-09-11 12

Outline

1 Motivation

2 Analysing Access Control Configurations

3 Quantifying Service Compositions

4 Conclusion

The Problem: Selection of the Optimal Composition

Ranking of service compositions

property of the composition
compositions provide the same

functionality
security and trustworthiness

Ranking according to

Availability
Costs

ANIKE OS A Framework for Secure Service Composition 2013-09-11 14

Ranking Secure Service Compositions

Calculating the availability:

Description Calculation

Sequence
∏n

i=1 Ai

Parallel min(A1, . . . ,An)

Exclusive Ai

Calculating the costs:

C =
n∑

i=1

Ci

ANIKE OS A Framework for Secure Service Composition 2013-09-11 15

Example: Ranking Service Compositions

Assume the following availability values:

Find suitable hotels: 0.99

Find suitable flights: 0.96

Get user’s credit card data: 0.97

Book the hotel: 0.99

Book the flight: 0.98

Undo hotel booking: 0.94

We compute:

A = min(0.99,0.96)× 0.97 × 0.99 × 0.98 = 0.90

Assume the weights to 0.72 (availability) and 0.28 (cost)

V = 0.72 × A+ 0.28 × B− C

B

ANIKE OS A Framework for Secure Service Composition 2013-09-11 16

Outline

1 Motivation

2 Analysing Access Control Configurations

3 Quantifying Service Compositions

4 Conclusion

Conclusion and Outlook

Secure service compositions require:

Design time:
modeling, analysis and ranking of secure services
Run-time:
enforcement, monitoring, service replacement, and re-planning

Today, we presented design time support for

Analysing security properties of service compositions
a method for ranking service compositions

Our work is part of the Aniketos secure Composition Framework

Further information about Aniketos: http://www.aniketos.eu

ANIKE OS A Framework for Secure Service Composition 2013-09-11 18

Thank you for your attention!
Any questions or remarks?

Further Readings

Achim D. Brucker, Francesco Malmignati, Madjid Merabti, Qi Shi, and
Bo Zhou.
A framework for secure service composition.
In ASE/IEEE International Conference on Information Privacy, Security,
Risk and Trust (PASSAT). IEEE Computer Society, 2013.

ANIKE OS A Framework for Secure Service Composition 2013-09-11 20

Part II

Appendix

The Aniketos Secure Composition Framework

ANIKE OS A Framework for Secure Service Composition 2013-09-11 22

SecureBPMN: Adding Security Specifications

Subject

UserGroup
0..*

0..* Role0..* 0..*

0..* 0..*

Permission
1..* 0..*

Action

 0..*

 1..*

AuthorisationConstraint

SoD
+max: Integer
+static: Boolean

BoD
+min: Integer
+static: Boolean

1..*

0..*

ItemAwareElementAction

Activity
0..*

AtomicItemAwareElementAction

CompositeItemAwareElementAction
0..*

0..*

NeedToKnow

ResourceAC

0..*

1..*

1..*

0..*

Delegator

Delegation
+maxDepth: Integer
+negotiable: Boolean

SimpleDelegation TransferDelegation

1..1 0..*

1..*

0..*

1..1

0..*

0..* 0..*

Process

Resource

SecurityFlowNode FlowNode FlowElementSecurityFlow
1..* 1

10..*

Obligation

0..*

1..*

Policy

0..*

1..*

0..* 0..*

0..*

1..*

ItemAwareElement

ProcessAction

AtomicProcessAction

CompositeProcessAction
0..*

0..*

ActivityAction

AtomicActiviyAction

CompositeActivityAction
0..*

0..*

Access Control

Delegationl
Compliance (SoD/BoD)

Need to Knowl

Break-Glass

BPMN Meta-Model
Actions

Visualisation

TriggerReset

 0..*

 1

 1

 0..*

 1

 0..*

BaseElement

Access Control

Delegation

Separation/Binding of Duty

Need to Know

Break Glass

ANIKE OS A Framework for Secure Service Composition 2013-09-11 23

Analyzing (Dynamic | Static) Separation of Duty

Does the access control enforce a separation of duty constraint

Translate the composition plan to ASLan

hc rbac_ac(Subject, Role, Task) := CanDoAction(Subject, Role, Task)
:- user_to_role(Subject, Role), poto(Role, Task)

hc poto_T6 := poto(Staff, Request Travel)
hc poto_T6 := poto(Manager, Approve Absence)
hc poto_T7 := poto(Manager, Approve Budget)

Specify the test goal

attack_state sod_securitySod1_1(Subject0,Subject1,Instance1,Instance2)
:= executed(Subject0,task(Request Travel,Instance1)).

executed(Subject1,task(Approve Budget,Instance2)).
executed(Subject3,task(Approve Absence,Instance3))
¬(equal(Subject0,Subject1))
¬(equal(Subject1,Subject2))
¬(equal(Subject2,Subject3))

Run the model checker

Translate the analysis result back to BPMN (visualization)

ANIKE OS A Framework for Secure Service Composition 2013-09-11 24

