
c© 2013 IEEE Computer Society. This is the author’s version of the work. It is posted at http://www.brucker.ch/bibliography/abstract/brucker.ea-framework-2013 by
permission of IEEE Computer Society for your personal use. Not for redistribution. The definitive version was published in International Conference on Information
Privacy, Security, Risk and Trust (PASSAT), pp. 647–652, 2013, doi: 10.1109/SocialCom.2013.97.

A Framework for Secure Service Composition
Achim D. Brucker

SAP AG
Vincenz-Priessnitz-Str. 1

76131 Karlsruhe, Germany
achim.brucker@sap.com

Francesco Malmignati
Selex ES S.p.A

A Finmeccanica Company
Italy

francesco.malmignati@guests.selex-es.com

Madjid Merabti Qi Shi Bo Zhou
Liverpool John Moores University

Liverpool
United Kingdom

{m.merabti, q.shi, b.zhou}@ljmu.ac.uk

Abstract—Modern applications are inherently heterogeneous:
they are built by composing loosely coupled services that are,
usually, offered and operated by different service providers.
While this approach increases the flexibility of the composed
applications, it makes the implementation of security and trust-
worthiness requirements difficult. As the number of security
requirements is increasing dramatically, there is a need for new
approaches that integrate security requirements right from the
beginning while composing service-based applications.

In this paper, we present a framework for secure service
composition using a model-based approach for specifying, build-
ing, and executing composed services. As a unique feature, this
framework integrates security requirements as a first class citizen
and, thus, avoids the “security as an afterthought” paradigm.

I. INTRODUCTION

A service-oriented architecture (SOA) provides a platform
for services that developed by different providers to work
together [23]. The focus of research in SOA has been on the
realisation of service composition in terms of how to construct
the services so that they can work together seamlessly. With
its continuous development, it has been realised lately that
the security issue has become a barrier that hinders wider
application of SOA. Apart from the conventional security
problems that faced by other systems, e. g., confidentiality,
integrity, privacy and so on, the situation in SOA often is
more complicated given the fact that the services are developed
by different providers. Concerns over inconsistent security
policies and configurations must be addressed as top priority.

As part of the work undertaken for the Aniketos project
(http://www.aniketos.eu/), we propose a framework for build-
ing and executing secure and trustworthy service compo-
sitions. The services are modelled and composed using a
toolchain supporting the Business Process Modelling Nota-
tion (BPMN) [19]. A service developer first constructs a
BPMN service composition plan based on his/her functional
requirements. It specifies what are the tasks needed and how
these tasks interact with each other. We extended the BPMN
notations so that certain security requirements can be specified
within the BPMN composition plan as well. After searching
for suitable services in an open marketplace, the abstract
BPMN composition plan will be associated with concrete
services, for each task in the plan. The service composition is
verified and guaranteed to comply with the service developer’s
security requirements before deployment.

Unlike other SOA solutions, our framework takes the secu-
rity requirements into account during the service composition
process. A service developer can specify his security needs
directly in the extended BPMN composition plan so only those
services that satisfy the security requirements will be selected.
In addition, the service developer is also given the flexibility
to set priorities that will be used to quantify and compare
service compositions, from the aspects of availability and cost.
This is particularly useful when the service developer faces a
wide range of choices. To the best of our knowledge, this
work is the first complete SOA platform that not only offers
secure composite services at design-time, but also targets for
the runtime operations.

II. BACKGROUND: SOA AND BPMN

A. Service-Oriented Architecture and Its Security

A service is a unit that provides certain functionality.
The service-oriented architecture (SOA) allows users to reuse
existing services depending on their requirements. Therefore
services can be composed to form a larger application in
an ad hoc manner. SOA platforms provide a foundation for
modelling, planning, searching for and composing services.
They specify the architectures required, as well as providing
tools and support for service composition standards.

To facilitate service composition across different platforms,
service modelling languages are used to describe the business
requirements of a system and system resources. By express-
ing processes, in languages such as the Business Process
Execution Language (BPEL) [20] or the Business Process
Modelling and Notation (BPMN) [19], not only the services
can be easily understood and composed, also the compositions
can be validated against desired criteria and modified to suit
required changes in operation. For describing the web service
interfaces, the Web Services Description Language (WSDL)
evolved as the de-facto standard.

Subsequent standards have been proposed to augment the
basic description of WSDL, to add semantic, behavioural,
and to a limited extent, authentication and security data. For
example, Unified Services Description Language (USDL) [17]
consists of standards that target trust and security, to bridge the
previously-identified vendor divide. However, none of them
tackles the security issue of SOA in the first place.

http://www.brucker.ch/bibliography/abstract/brucker.ea-framework-2013
http://dx.doi.org/10.1109/SocialCom.2013.97
mailto:achim.brucker@sap.com
mailto:francesco.malmignati@guests.selex-es.com
mailto:m.merabti@ljmu.ac.uk
mailto:q.shi@ljmu.ac.uk
mailto:b.zhou@ljmu.ac.uk
http://www.aniketos.eu/

Fig. 1. A composed service for booking flights and hotels.

B. Using BPMN to Construct Service Compositions

The modelling in BPMN is done by expressing business
processes through business models. A BPMN model is an
executable specification of the workflow, i. e., a flowchart
based diagram that captures the basic structure and flow of
activities and data within a business process. From a high-
level perspective, the development of a system using BPMN
is divided into two major phases:

1) During the design phase, a service developer—together
with domain or business experts—designs the process
model, i. e., the service composition plan. This process
model comprises both automatic services, as well as
human interactions with these services.

2) During the deployment phase, the process model is de-
ployed in a business process execution engine, which can
act as a service orchestrator.

This high-level view does not include several other tasks
involved in system development, e. g., the implementation of
actual services and design of user interface.

Figure 1 shows a BPMN diagram modelling a service com-
position that provides a travel booking service to customers.
First, the customer enters his/her flight and hotel preferences
into the system (such kind of user interactions are modelled
by user tasks in BPMN). Next, two web services (modelled
as service tasks) are executed and connected via parallel
gateways. These web services can be operated by different
service providers and, in our example, provide functionalities
for finding suitable hotel and flight information respectively.
Here the parallel gateways ensure that the service which
queries customer’s credit card data will only be executed if
both the Find suitable hotels and Find suitable flights tasks
are terminated successfully. By using exclusive gateways the
service developer is able to indicate that the Book the hotel
task might fail. In case the booking is failed (!booked), an
error boundary event will be reached.

In our simple example, to avoid fraud or price-fixing agree-
ments, we could demand that the services for finding hotels
(flights) and the booking service, are from different service
providers. Moreover, only authenticated users will be allowed
to authorise a booking and the service providers should be
trustworthy. In the next section we will explain our approach to
extend the standard BPMN modelling process so these security
requirements can be accommodated.

III. A SECURE SERVICE COMPOSITION FRAMEWORK

A secure service composition framework should provide
security at both design-time and runtime. At design-time the
service developer will select the optimal set of services that
satisfies both the functional and security requirements put by
the end user. At runtime, a service may become unavailable
due to various reasons and has to be replaced automatically
with alternative services that, at least, offer the same security
and trust guarantees. In addition, the service developer needs to
decide if a given security property should be enforced statically
or dynamically. While a static enforcement creates less over-
head at runtime, it reduces the flexibility of service substitution
or re-composition. In contrast, dynamic enforcement is usually
more flexible but requires more system resources at runtime.
Thus, service developers have to consider economical aspects
as well for realising security and compliance requirements.

To support the service developer in building flexible, secure,
and trustworthy services through composition, we developed
the Aniketos Secure Composition Framework as part of the
Aniketos platform [3].

The Aniketos Secure Composition Framework provides an
Eclipse-based environment (the Service Composition Mod-
eller) to the service developer for refining the composition
plans as well as checking their security and trust properties.
Specifically, the service developer can, among others, use the
following component modules:

• Model Transformation Module: This module infers a
draft composition plan from the functional and security
requirement document that expressed in the Aniketos
Socio-technical Modelling Language [21], by domain
experts together with requirement engineers.

• Secure Composition Planer Module: This module allows
the service developer semi-automatically select the secure
services for a given composition plan (see Section V).
This module uses the Security Verification Module as
well as the Security Property Determination Module.

• Security Verification Module: This module provides for-
mal validation and verification solutions for composed
services (and, not discussed in this paper, atomic ser-
vices [10]). For example, role-based access control and
separation of duty properties (see Section IV) are verified
by the Security Verification Module.

• Security Property Determination Module: This module
provides an uniform interface for accessing security prop-
erties of services. Moreover, this module stores the veri-
fication status of security properties to avoid unnecessary
(expensive) re-verification.

• Service Marketplace: This component registers and stores
the services for open access. Secure Composition Planner
Module selects services from the Service Marketplace.

The Aniketos Secure Composition Framework supports com-
position of services, as well as the transformation from social
to technical modelling of security requirements. It provides
formal verification of these security requirements and helps
the end user to choose the most suitable services.

Fig. 2. Security Validation within the Activiti BPMN Editor

IV. MODELLING AND VERIFYING SECURITY PROPERTIES

In this section, we present an extension of BPMN,
called SecureBPMN, that integrates security specifications into
BPMN. Moreover, we present a validation approach for fine-
grained separation-of-duty and binding-of-duty constraints.

A. Modelling Security Properties in BPMN: SecureBPMN

Modelling security properties, as a first class citizen of
business processes or service composition plans expressed
in BPMN, requires an integrated language for expressing
both security and functional requirements. We address this
need with SecureBPMN, a meta-model-based ([8] discuss
the details of meta-model-based language extensions) security
language that is integrated into the BPMN meta-model [19].
SecureBPMN supports, among others, the specification of:

• Role-based access control (RBAC): SecureBPMN con-
tains a hierarchical role-based access control language
supporting arbitrary constraints on the permissions.

• Permission-level separation and binding of duty:
SecureBPMN models n-ary separation of duty (SoD) and
binding of duty (BoD) as authorisation constraints. This
results in a fine-grained notion of these properties on the
level of single permissions.

• Delegation: SecureBPMN supports the delegation of
tasks with and without transfer of access rights.

• Need-to-know principle: This mainly refers to restrictions
on access to process variables or data objects, given
the process can model internal data-flow as well as the
communication to (external) services.

Due to space limitations, more advanced features of
SecureBPMN, such as the support for break-glass access
control policies (similar to the work of [11]), history-resets
for binding-of-duty for processes with loops (similar to the
work of [5]), or negotiable delegations (in contrast to orders)
are not discussed in this paper.

B. Analysing SecureBPMN Models

As an example, we discuss an analysis method for checking
the consistency between RBAC and SoD/BoD specifications.
Our modular architecture allows to integrate other analysis
approaches easily (for details, see Brucker and Hang [10]).

Supporting SoD together with RBAC raises questions like
“Is the SoD constraint already guaranteed by the RBAC
configuration?” If an RBAC configuration ensures a SoD
constraint, e. g., as two tasks are only executable by different
roles r1, r2 and there is no user ui that is assigned to both
roles r1 and r2, we call this static SoD. Otherwise, we call it
dynamic SoD.

While a static SoD does not need to be enforced at runtime
and, thus, reduces the runtime costs, it requires to re-check
the SoD constraint after each and every modification of the
RBAC configuration (e. g., adding new roles, changing the
role assignment of subjects). In contrast, a dynamic SoD
constraint only requires a runtime check for each access
to certain resources that are constrained by separation of
duty. Therefore dynamic SoDs are more flexible, but require
additional resources and cost more at runtime. To address
these issues, we extend the work of Arsac et al. [4] with
support for n-ary SoD (BoD) constraints on the permission
level (instead of task level). Similar to Arsac et al. [4], we use
the AVANTSSAR tool suite (www.avantssar.eu) to support our
formal analysis at the back-end. Consequently, we translate
the service composition plan and its security requirements
to ASLan [4], i. e., the input language of the AVANTSSAR
tool suite. The choice of ASLan is based on two reasons:
1) the experiments carried out by Arsac et al. [4] show that
ASLan is expressive enough to capture the requirements of
security enriched service compositions and 2) the use of the
same tools allows for developing a commonly-used verification
back-end for different approaches. In fact, we could show
that the analysis can be provided as a cloud-based service
supporting multiple front-ends [12].

In our example (recall Figure 1), to counterfeit fraud or
price-fixing agreements, we assume that the services Find
suitable flights and Book the flight are operated by the same
provider (TravelAgency1). The actual RBAC configuration is
inferred automatically from the information available in the
service marketplace (i. e., the service-level agreements). Our
formal analysis tool will translate the security configuration as
well as the security properties that should be verified into the
formal language ASLan as below (simplified and shortened):
hc rbac_ac(Subject, Role, Task)

:= CanDoAction(Subject, Role, Task)
:- user_to_role(Subject, Role), poto(Role, Task)

hc poto_T6 := poto(TravelAgency1, Find suitable flights)
hc poto_T7 := poto(TravelAgency1, Book the flight)

On the other hand the security goal, e. g., a SoD constraint
between the services Find suitable flights and Book the flight
looks as follows:
attack_state sod_securitySod1_2(Subject0,Subject1,

Instance1,Instance2)
:= executed(Subject0,task(Find suitable flights,Instance1)).

executed(Subject1,task(Book the flight;Instance2))
¬(equal(Subject0,Subject1))

Obviously the security configuration violates the SoD con-
straint as the TravelAgency1 has been put in the position that
can do both searching for flights and booking them. It casts
risks that a dishonest travel agency could prefer flights with

www.avantssar.eu

higher profits over flights that provide better value for money
to the travellers. This is detected by our formal analysis, e. g.,
the verification module returns the following “attack trace”:
1. [w_usertask1(fnat(n0,0,0))]
2. [authorizeTaskExecution(bo,user,usertask1,fnat(n0,0,0))]
3. [h_taskExecution(bo,user,usertask1,fnat(n0,0,0),

in_usertask1,out_usertask1)]
4. [w_parallelgateway1(fnat(n0,0,0))]
5. [w_servicetask1(fnat(n1,0,0)),

w_servicetask2(fnat(n2,0,0))]
6. [authorizeTaskExecution(flight1,flightservice,

servicetask2,fnat(n2,0,0)),
authorizeTaskExecution(travelagency1,travelagency,

servicetask1,fnat(n1,0,0))]
...

15. h_taskExecution(travelagency1, travelagency,
servicetask9,fnat(n8,0,0),
in_servicetask9,out_servicetask9)

This textual representation is not well-suited to practitioners.
Therefore, we provide a user-friendly visualisation at the
service composition level. Figure 2 shows how our prototype
visualises such a violation to the service developer. Here,
the service developer is able to manually step through all
necessary actions that a dishonest travel agency would execute
to violate the SoD constraint.

After such an analysis, the service developer needs to decide
how to mitigate this risk. In general, there are several options,
among them re-design the composition plan, to avoid the
need for a particular separation of duty constraint, instruct
the service composition framework to ensure the selection of
different service providers, or enforce a dynamic separation of
duty at runtime. For this, our prototype can generate configu-
rations for XACML [18] based access control infrastructures.

V. QUANTIFYING AND RANKING SERVICE COMPOSITIONS

The security property modelling and verification techniques
allow the service consumer specify certain security properties
that the service composition has to comply with. In practice,
the number of compositions that sanctify the security require-
ments could still be large. Therefore another dilemma always
faced by the service consumer is to make a choice from the
service composition pools. In this section, we introduce the
mechanism that is used in Aniketos platform for quantifying
and ranking service compositions.

A. Quantifying service compositions by Availability and Cost

Service compositions should be quantified and ranked based
on the property of the composition, rather than just based on
its sub-services. The property of a composition depends not
only on the properties of the sub-services, but also on the way
they have been constructed. As a starting point, we try to solve
this issue from business perspective. In many business cases,
apart from functionality and security, the two factors that have
been mostly considered by service consumers are availability
(service downtime ratio) and cost.

Availability means the available time ratio of a service.
Unexpected shutdown of a service could cause severe damage
to service consumers’ business and service developer’s rep-
utation. Therefore seeking guarantee from service developer
about the service availability is one of the top priories for

TABLE I
RULES TO CALCULATE AVAILABILITY

Description Calculation

Sequence
∏n

i=1 Ai

Parallel min(A1, . . . , An)

Exclusive Ai

service consumers, before they commit to use the service. The
situation gets complicated in service composition because a
composition’s availability is decided by not only the technical
specifications of the sub-services, but also by the structure
of the composition. Take the example of the travel agency
in Figure 1 on page 648, most of the services are placed
in sequential order. That means if one of the sub-service
is not available, the entire composition will stop. Therefore
the availability of sequential tasks is the product of all the
sub-services’ availability value in percentage. In contrast, the
services Find suitable hotels and Find suitable flights are
executed in parallel. It means these two services can be carried
out separately. Nonetheless they still have to be both finished
before the next task Get user’s credit card data can be
executed. Thus for parallel tasks the availability value is the
minimum among them. For services that are exclusive to each
other, the availability of the composition depends on which
service has been eventually used.

Table I shows the rules that we used for calculating the
availability a composite service. Assume in Figure 1 each
service has the following availability value: Find suitable
hotels: 0.99, Find suitable flights: 0.96, Get user’s credit
card data: 0.97, Book the hotel: 0.99, Book the flight: 0.98,
and Undo hotel booking: 0.94. The availability value for a
successful transaction will be calculated as:

A = min(0.99, 0.96)× 0.97× 0.99× 0.98 = 0.90

where A represents availability of the composition.
Comparing to availability, calculating the cost of a service

composition is more straightforward. It is the sum of all the
sub-services’ costs, i. e.:

C =

n∑
i=1

Ci

where C is the cost for the composition and Ci is the cost for
sub-service i.

B. Ranking compositions

In Aniketos we implemented a simple user interface provid-
ing prioritising options so the service consumers can specify
the criteria that they want to use to rank secure service
compositions. It basically allows the service consumer to set
weights on each criterion of availability and cost (Figure 3).
Assume the consumer sets the weights to 0.72 and 0.28
respectively for availability and cost, the overall value V for

Fig. 3. Set Ranking Criteria.

each service composition will be:

V = 0.72×A+ 0.28× B − C

B

where A represents the value of availability, C represents cost
and B represents the consumer’s budget. Apparently higher
value of A and lower value of C will result in greater value
of V . In this way the generated service compositions are not
only security-wise verified by our SecureBPMN extensions,
but also ranked easily based on consumer’s other priorities.

The Aniketos platform targets secure service composition
at both design-time and runtime. Therefore the prioritising
options set by consumer at design-time will be stored in the
consumer’s policy configurations and referred back at runtime.
So the ranking mechanism will still work on behalf of the
consumer at runtime, in case the service composition changes.

VI. CASE STUDIES

We implemented a prototype of the framework based on
the Activiti BPMN tool suite (http://www.activiti.org) and
evaluated this prototype in the context of two industrial case
studies.

A. Case Study 1: e-Government

The e-Government domain provides a real-life scenario
where the usage of composite service is relevant and that can
benefit from the practical application of our framework. In this
scenario a service developer is appointed by a Municipality
to build a web application that allows an interested buyer to
find an available lot in a specific geographical area. Through
this application, lot owners or real estate agents can provide
information about the lots they intend to make available for
sale. The main security concern in this case is to ensure that
the lot information is published in an accurate and transparent
manner.

B. Case Study 2: Future Telecommunication Services

Telecommunication domain is an area of constant change,
where the TLC operators leverage now on web services
paradigm to provide a new set of integrated IT and Telco
services. The competition between the operators is getting in-
tensified as they are looking for enhanced telecommunication
services to further increase their revenue from mobile and
Internet services.

The Aniketos framework effectively comes to help in this
scenario, allowing a TLC operator, as described in Section III,
to compose and expose secure and trustworthy services. A
TLC operator, by exploiting the framework, can discover
service components conforming its security requirements in

the Aniketos Marketplace and then securely expose its network
resources as new web services to its end users.

C. Lesson Learnt

Due to page limitations we only mentioned these case
studies in brief. Our evaluation showed that the discussed
security and compliance requirements can be expressed at
the business process level. Moreover, they are sufficient for
most modelling needs. Still, in particular our telecommu-
nication case study raised the need for various notions of
confidentiality. As such, confidentiality is not (yet) supported
by SecureBPMN; currently, SecureBPMN only supports a very
specific form, the need-to-know principle. Confidentiality, in
terms of requiring encrypted communications between the
different services (tasks) is another important requirement.
Choosing the appropriate encryption technology (in fact, on
technical level, we have to ensure that data is only communi-
cated over authenticated and secure channels) requires making
a multitude of technical decisions (e. g., encryption algorithms,
length of cryptographic keys). As these are merely technical
decisions, we can only record the high-level requirement on
the process level and need to refine them interactively during
the implementation of a secure service composition.

Moreover, our evaluation showed that in practice, most ser-
vice compositions are rather small (e. g., less than 15 services
or tasks). On this scale, our formal analysis usually is able to
validate security or compliance properties within less then 20
seconds. While this is fast enough for the (interactive) design
of service compositions, it is too slow for automatic service
re-compositions at runtime. Therefore the efficient caching,
which needs to be ensured by authenticity and validity, of
validation results is of utmost importance.

VII. CONCLUSION AND RELATED WORK

A. Related Work

There is a large number of literature extending graphical
modelling languages with means of specifying security or
privacy requirements (e. g., [15, 16, 22]). Conceptually, the
closest is SecureUML [16], with which we share the same
sublangue for specifying RBAC. The SecureUML is a meta-
model-based extension of UML that allows for specifying
RBAC-requirements for UML class models and state charts.
There are also various techniques for analysing SecureUML
models, e. g., [6] or [9]. With respect to the validation of
security requirements on the business process level, closely
related works include [24] and [4] that both support the
checking if an access control specification enforces binary
static separation and binding of duty constraints. Determining
the properties of composite service based on its sub-services
is another challenge. [14] calculates the trustworthiness of
composite services based on various factors such as reputations
and qualities of the services. Zhou et al. [27] proposes a
classification method that abstracts and quantifies service com-
positions based on key security aspects such as confidentiality,
integrity and accountability. Some works such as [26] and [25]
try to determine security properties for system-of-systems.

http://www.activiti.org

B. Conclusion and Future Work

We presented the Aniketos Secure Composition Framework
for modelling, analysing, and ensuring secure service compo-
sitions. This framework supports the end-to-end (i. e., ranging
from the requirements elicitation to the actual operation of
the developed system) development of secure and trustworthy
systems. This end-to-end integration is a unique feature of
our approach that not only enables traditional security and
consistency analysis on the model and implementation level,
it also supports economical analysis approaches that allow
the service consumers to decide between different security
solutions based on their availability and costs.

There are several lines of future work, among them the
development of support for system audits, e. g., by integrating
analysis techniques such as [2]. In particular, process mining
approaches appear to be particularly interesting: combining
process mining with our business process animation, i. e., the
visualisation of attack traces, allows interactive investigation of
the deviations of the actual service composition execution with
the intended one. Moreover, we are interested in the integration
analysis techniques that check the internal consistency of
processes, e. g., [13], as well as their reconfiguration, e. g., [1].
Finally, we intend to integrate security testing approaches,
e. g., [7], for validating the compliance of services and (legacy)
back-end systems in a black-box scenario.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant no. 257930 (http://
www.aniketos.eu/).

REFERENCES

[1] van der Aalst, W.M.P., Dumas, M., Gottschalk, F., ter Hofst-
ede, A.H.M., Rosa, M.L., Mendling, J.: Correctness-preserving
configuration of business process models. In: Fiadeiro, J.L.,
Inverardi, P. (eds.) FASE, LNCS, vol. 4961, pp. 46–61. Springer-
Verlag (2008)

[2] Accorsi, R., Wonnemann, C.: Indico: Information flow analysis
of business processes for confidentiality requirements. In:
Cuéllar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM,
LNCS, vol. 6710, pp. 194–209. Springer-Verlag (2010)

[3] Aniketos: Deliverable 5.1: Aniketos platform design and plat-
form basis implementation (2011)

[4] Arsac, W., Compagna, L., Pellegrino, G., Ponta, S.E.: Security
validation of business processes via model-checking. In: Er-
lingsson, Ú., Wieringa, R., Zannone, N. (eds.) ESSoS, LNCS,
vol. 6542, pp. 29–42. Springer-Verlag (2011)

[5] Basin, D., Burri, S.J., Karjoth, G.: Separation of duties as a
service. In: ASIACCS, pp. 423–429. ACM Press (2011)

[6] Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis
of security-design models. Information and Software Technol-
ogy 51(5), 815–831 (2009)

[7] Brucker, A.D., Brügger, L., Kearney, P., Wolff, B.: An approach
to modular and testable security models of real-world health-
care applications. In: SACMAT, pp. 133–142. ACM Press (2011)

[8] Brucker, A.D., Doser, J.: Metamodel-based uml notations for
domain-specific languages. In: Favre, J.M., Gasevic, D.,
Lämmel, R., Winter, A. (eds.) Workshop on Software Language
Engineering (ATEM) (2007)

[9] Brucker, A.D., Doser, J., Wolff, B.: A model transformation
semantics and analysis methodology for SecureUML. In:
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006: Model Driven Engineering Languages and Systems, no.
4199 in LNCS, pp. 306–320. Springer-Verlag (2006)

[10] Brucker, A.D., Hang, I.: Secure and compliant implementation
of business process-driven systems. In: Rosa, M.L., Soffer, P.
(eds.) Joint Workshop on Security in Business Processes (SBP),
LNBIP, vol. 132, pp. 662–674. Springer-Verlag (2012)

[11] Brucker, A.D., Petritsch, H.: Extending access control models
with break-glass. In: Carminati, B., Joshi, J. (eds.) SACMAT,
pp. 197–206. ACM Press (2009)

[12] Compagna, L., Guilleminot, P., Brucker, A.D.: Business process
compliance via security validation as a service. In: Oriol, M.,
Penix, J. (eds.) Testing Tools Track of ICST. IEEE Computer
Society (2013)

[13] Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis
of business process models in BPMN. Information & Software
Technology 50(12), 1281–1294 (2008)

[14] Elshaafi, H., McGibney, J., Botvich, D.: Trustworthiness mon-
itoring and prediction of composite services. In: ISCC, pp.
580–587 (2012)

[15] Jürjens, J., Rumm, R.: Model-based security analysis of the
german health card architecture. Methods Inf Med 47(5), 409–
416 (2008)

[16] Lodderstedt, T., Basin, D.A., Doser, J.: SecureUML: a uml-
based modeling language for model-driven security. In:
Jézéquel, J.M., Hussmann, H., Cook, S. (eds.) UML, no. 2460
in LNCS, pp. 426–441. Springer-Verlag (2002)

[17] Marienfeld, F., Höfig, E., Bezzi, M., Flügge, M., Pattberg, J.,
Serme, G., Brucker, A.D., Robinson, P., Dawson, S., Theilmann,
W.: Service levels, security, and trust. In: Barros, A., Oberle,
D. (eds.) Handbook of Service Description: USDL and its
Methods, chap. 12, pp. 295–326. Springer-Verlag (2012)

[18] OASIS: eXtensible Access Control Markup Language
(XACML), version 2.0 (2005). URL http://docs.oasis-open.
org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip

[19] Object Management Group: Business process model and nota-
tion (BPMN), version 2.0 (2011). Available as OMG document
formal/2011-01-03

[20] Organization for the Advancement of Structured Information
Standards: Web services business process execution language
(BPEL), version 2.0 (2007). Available as OASIS standard

[21] Paja, E., Dalpiaz, F., Poggianella, M., Roberti, P., Giorgini, P.:
Modelling security requirements in socio-technical systems with
sts-tool. In: Kirikova, M., Stirna, J. (eds.) CAiSE Forum, vol.
855, pp. 155–162 (2012)

[22] Rodrı́guez, A., Fernández-Medina, E., Piattini, M.: A BPMN
extension for the modeling of security requirements in business
processes. IEICE - Trans. Inf. Syst. E90-D, 745–752 (2007)

[23] Welke, R., Hirschheim, R., Schwarz, A.: Service-oriented ar-
chitecture maturity. Computer 15(1), 662–674 (2011)

[24] Wolter, C., Meinel, C.: An approach to capture authorisation
requirements in business processes. Requir. Eng. 15(4), 359–
373 (2010)

[25] Zhou, B., Arabo, A., Drew, O., Llewellyn-Jones, D., Merabti,
M., Shi, Q., Waller, A., Craddock, R., Jones, G., Arnold, K.L.Y.:
Data flow security analysis for system-of-systems in a public
security incident. In: ACSF, pp. 8–14 (2008)

[26] Zhou, B., Drew, O., Arabo, A., Llewellyn-Jones, D., Kifayat,
K., Merabti, M., Shi, Q., Craddock, R., Waller, A., Jones, G.:
System-of-systems boundary check in a public event scenario.
In: SoSE (2010)

[27] Zhou, B., Llewellyn-Jones, D., Shi, Q., Asim, M., Merabti,
M., Lamb, D.: Secure service composition adaptation based on
simulated annealing. In: ACSAC, pp. 49–55 (2012)

http://www.aniketos.eu/
http://www.aniketos.eu/
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip
http://www.omg.org/cgi-bin/doc?formal/2011-01-03

	I Introduction
	II Background: SOA and BPMN
	II-A Service-Oriented Architecture and Its Security
	II-B Using BPMN to Construct Service Compositions

	III A Secure Service Composition Framework
	IV Modelling and Verifying Security Properties
	IV-A Modelling Security Properties in BPMN: SecureBPMN
	IV-B Analysing SecureBPMN Models

	V Quantifying and Ranking Service Compositions
	V-A Quantifying service compositions by Availability and Cost
	V-B Ranking compositions

	VI Case Studies
	VI-A Case Study 1: e-Government
	VI-B Case Study 2: Future Telecommunication Services
	VI-C Lesson Learnt

	VII Conclusion and Related Work
	VII-A Related Work
	VII-B Conclusion and Future Work

@InCollection{	 brucker.ea:framework:2013,
 abstract	= {Modern applications are inherently heterogeneous: they are
		 built by composing loosely coupled services that are,
		 usually, offered and operated by different service
		 providers. While this approach increases the flexibility of
		 the composed applications, it makes the implementation of
		 security and trustworthiness requirements much more
		 difficult. As the requirements for security and
		 trustworthiness, in nearly all sectors, are increasing
		 dramatically, there is a need for new approaches that
		 integrate security requirements right from the beginning
		 while composing service-based applications.
		
		 In this paper, we present a framework for secure service
		 composition using a model-based approach for specifying,
		 building, and executing composed services. As a unique
		 feature, this framework integrates security requirements as
		 a first class citizen and, thus, avoids the ``security as
		 an afterthought'' paradigm.},
 keywords	= {secure service composition, BPMN, service modelling,
		 service availability},
 url		= {http://www.brucker.ch/bibliography/abstract/brucker.ea-framework-2013}
		 ,
 author	= {Achim D. Brucker and Francesco Malmignati and Madjid
		 Merabti and Qi Shi and Bo Zhou},
 booktitle	= {International Conference on Information Privacy, Security,
		 Risk and Trust (PASSAT)},
 ieee_booktitle= {International Conference on Social Computing (SocialCom)},
 language	= {USenglish},
 publisher	= {IEEE Computer Society},
 address	= {Los Alamitos, CA, USA},
 title		= {A Framework for Secure Service Composition},
 classification= {conference},
 areas		= {security, software},
 public	= {yes},
 year		= {2013},
 doi		= {10.1109/SocialCom.2013.97},
 pages		= {647--652},
 pdf		= {http://www.brucker.ch/bibliography/download/2013/brucker.ea-framework-2013.pdf},
 talk		= {talk:brucker.ea:framework:2013}
}

%0 Book Section
%T A Framework for Secure Service Composition
%A Brucker, Achim D.
%A Malmignati, Francesco
%A Merabti, Madjid
%A Shi, Qi
%A Zhou, Bo
%B International Conference on Information Privacy, Security, Risk and Trust (PASSAT)
%D 2013
%I IEEE Computer Society
%C Los Alamitos, CA, USA
%G USenglish
%F brucker.ea:framework:2013
%X Modern applications are inherently heterogeneous: they are built by composing loosely coupled services that are, usually, offered and operated by different service providers. While this approach increases the flexibility of the composed applications, it makes the implementation of security and trustworthiness requirements much more difficult. As the requirements for security and trustworthiness, in nearly all sectors, are increasing dramatically, there is a need for new approaches that integrate security requirements right from the beginning while composing service-based applications. In this paper, we present a framework for secure service composition using a model-based approach for specifying, building, and executing composed services. As a unique feature, this framework integrates security requirements as a first class citizen and, thus, avoids the ?security as an afterthought? paradigm.
%K secure service composition, BPMN, service modelling, service availability
%U http://www.brucker.ch/bibliography/abstract/brucker.ea-framework-2013
%U http://www.brucker.ch/bibliography/download/2013/brucker.ea-framework-2013.pdf
%U http://dx.doi.org/10.1109/SocialCom.2013.97
%P 647-652

TY - CHAP
AU - Brucker, Achim D.
AU - Malmignati, Francesco
AU - Merabti, Madjid
AU - Shi, Qi
AU - Zhou, Bo
PY - 2013//
TI - A Framework for Secure Service Composition
BT - International Conference on Information Privacy, Security, Risk and Trust (PASSAT)
SP - 647
EP - 652
PB - IEEE Computer Society
CY - Los Alamitos, CA, USA
KW - secure service composition, BPMN, service modelling, service availability
N2 - Modern applications are inherently heterogeneous: they are built by composing loosely coupled services that are, usually, offered and operated by different service providers. While this approach increases the flexibility of the composed applications, it makes the implementation of security and trustworthiness requirements much more difficult. As the requirements for security and trustworthiness, in nearly all sectors, are increasing dramatically, there is a need for new approaches that integrate security requirements right from the beginning while composing service-based applications. In this paper, we present a framework for secure service composition using a model-based approach for specifying, building, and executing composed services. As a unique feature, this framework integrates security requirements as a first class citizen and, thus, avoids the ?security as an afterthought? paradigm.
UR - http://www.brucker.ch/bibliography/abstract/brucker.ea-framework-2013
L1 - http://www.brucker.ch/bibliography/download/2013/brucker.ea-framework-2013.pdf
UR - http://dx.doi.org/10.1109/SocialCom.2013.97
ID - brucker.ea:framework:2013
ER -

 brucker.ea:framework:2013
 BookSection
 Los Alamitos, CA, USA
 IEEE Computer Society
 2013
 International Conference on Information Privacy, Security, Risk and Trust (PASSAT)
 647-652

 Brucker Achim D
 Malmignati Francesco
 Merabti Madjid
 Shi Qi
 Zhou Bo

 A Framework for Secure Service Composition
 Modern applications are inherently heterogeneous: they are built by composing loosely coupled services that are, usually, offered and operated by different service providers. While this approach increases the flexibility of the composed applications, it makes the implementation of security and trustworthiness requirements much more difficult. As the requirements for security and trustworthiness, in nearly all sectors, are increasing dramatically, there is a need for new approaches that integrate security requirements right from the beginning while composing service-based applications. In this paper, we present a framework for secure service composition using a model-based approach for specifying, building, and executing composed services. As a unique feature, this framework integrates security requirements as a first class citizen and, thus, avoids the “security as an afterthought” paradigm.

