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ABSTRACT
At its origins, OCL was conceived as a strict semantics for
undefinedness, with the exception of the logical connectives
of type Boolean that constitute a three-valued propositional
logic. Recent versions of the OCL standard added a second
exception element, which, similar to the null references in
programming languages, is given a non-strict semantics.

In this paper, we report on our results in formalizing the
core of OCL in higher-order logic (HOL). This formaliza-
tion revealed several inconsistencies and contradictions in
the current version of the OCL standard. These inconsis-
tencies and contradictions are reflected in the challenge to
define and implement OCL tools (e. g., interpreters, code-
generators, or theorem provers) in a uniform manner.

Categories and Subject Descriptors
D3.1.1 [Software]: Programming Languages—Formal Def-
initions and Theory

General Terms
Languages, Standardization, Theory
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1. INTRODUCTION
At its origins [16, 19], OCL was conceived as a strict se-

mantics for undefinedness, with the exception of the log-
ical connectives of type Boolean that constitute a three-
valued propositional logic. Recent versions of the OCL stan-
dard [17, 18] added a second exception element, which, simi-
lar to the null references in programming languages, is given
a non-strict semantics. Unfortunately, this extension results
in several inconsistencies and contradictions. These prob-
lems are reflected in difficulties to define interpreters, code-
generators, specification animators or theorem provers for

.

OCL in a uniform manner and resulting incompatibilities of
various tools. For the OCL community, this results in the
challenge to define a new formal semantics definition OCL

that could replace the “Annex A” of the OCL standard [18].
In the paper “Extending OCL with Null-References” [10]

we explored—based on mathematical arguments and paper
and pencil proofs—a consistent formal semantics that com-
prises two exception elements: invalid (“bottom” in seman-
tics terminology) and null (for “non-existing element”).

This paper is based on a formalization of [10], called“Feath-
erweight OCL,” in Isabelle/HOL [15]. This formalization is
in its present form merely a semantical study and a proof of
technology than a real tool. It focuses on the formalization
of the key semantical constructions, i. e., the type Boolean

and the logic, the type Integer and a standard strict opera-
tor library, and the collection type Set(A) with quantifiers,
iterators and key operators.

The rest of this paper summarizes our experiences and
findings in formalizing a core of OCL 2.3 in Isabelle/HOL.
Thus, this paper serves as an extended abstract of the de-
tailed documents that are available at http://www.brucker.
ch/projects/hol-ocl/Featherweight-OCL/.

2. DESIGN DECISIONS
Featherweight OCL is a formalization of the core of OCL

aiming at formally investigation the relationship between
the different notions of “undefinedness,” i. e., invalid and
null. As such, it does not attempt to define the complete
OCL library. Instead, it concentrates on the core concepts
of OCL as well as the types Boolean, Integer, and typed
sets (Set(T)). Following the tradition of HOL-OCL [5, 7],
Featherweight OCL is based on the following principles:

1. It is an embedding into a powerful semantic meta-
language and environment, namely Isabelle/HOL [15].

2. It is a shallow embedding in HOL; types in OCL were
injectively mapped to types in Featherweight OCL.
Ill-typed OCL specifications cannot be represented in
Featherweight OCL and a type in Featherweight OCL

contains exactly the values that are possible in OCL.
Thus, sets may contain null (Set{null} is a defined
set) but not invalid (Set{invalid} is just invalid).

3. Any Featherweight OCL type contains at least invalid
and null (the type Void contains only these instances).
The logic is consequently four-valued.

4. It is a strongly typed language in the Hindley-Milner
tradition. We assume that a pre-process eliminates all
implicit conversions due to subtyping by introducing
explicit casts (e. g., oclAsType()). The details of such
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a pre-processing are described in [4]. Casts are seman-
tic functions, typically injections, that may convert
data between the different Featherweight OCL types.

5. All objects are represented in an object universe in the
HOL-OCL tradition [6]. Our universe construction also
gives semantics to type casts, dynamic type tests, as
well as functions such as allInstances().

6. Featherweight OCL types may be arbitrarily nested,
e. g., Set{Set{1,2}} = Set{Set{2,1}} is legal and true.
Since there is a null-element in the type Set(A), the
set Set{null, Set{3}} is a legal expression of type
Set(Set(Integer)).

7. For demonstration purposes, the set-type in Feather-
weight OCL may be infinite, allowing infinite quantifi-
cation and a constant that contains the set of all Inte-
gers. Arithmetic laws like commutativity may there-
fore expressed in OCL itself. The iterator is only de-
fined on finite sets.

8. It supports equational reasoning and congruence rea-
soning, but this requires a differentiation of the differ-
ent equalities like strict equality, strong equality, meta-
equality (HOL). Strict equality and strong equality re-
quire a subcalculus, “cp” (a detailed discussion of the
different equalities as well the subcalculus “cp”—for
three-valued OCL 2.0—is given in [8]).

3. FORMAL FOUNDATION
Higher-order Logic (HOL) [1, 12] is a classical logic with

equality enriched by total polymorphic higher-order func-
tions. It is more expressive than first-order logic, e. g., in-
duction schemes can be expressed inside the logic. Pragmat-
ically, HOL can be viewed as “Haskell with Quantifiers.”

HOL is based on the typed λ-calculus, i. e., the terms
of HOL are λ-expressions. Types of terms may be built
from type variables (like α, β, . . . , optionally annotated by
Haskell-like type classes as in α :: order or α :: bot) or type
constructors. Type constructors may have arguments (as
in α list or α set). The type constructor for the function
space ⇒ is written infix: α ⇒ β; multiple applications like
τ1 ⇒ (. . . ⇒ (τn ⇒ τn+1) . . .) have the alternative syntax
[τ1, . . . , τn]⇒ τn+1. HOL is centered around the extensional
logical equality = with type [α, α]⇒ bool, where bool is
the fundamental logical type. We use infix notation: instead
of ( = ) E1 E2 we write E1 = E2. The logical connectives
∧ , ∨ , ⇒ of HOL have type [bool,bool] ⇒ bool, ¬

has type bool ⇒ bool. The quantifiers ∀ . and ∃ . have
type [α ⇒ bool] ⇒ bool. The quantifiers may range over
types of higher order, i. e., functions or sets. The definition
of the element-hood ∈ , the set comprehension { . }, as
well as ∪ and ∩ are standard.

Isabelle is a theorem is generic interactive theorem prov-
ing system; Isabelle/HOL is an instance of the former with
HOL. The Isabelle/HOL library contains formal definitions
and theorems for a wide range of mathematical concepts
used in computer science, including typed set theory, well-
founded recursion theory, number theory and theories for
data-structures like Cartesian products α × β and disjoint
type sums α+β. The library also includes the type construc-
tor τ⊥ := ⊥ | xy : α that assigns to each type τ a type τ⊥
disjointly extended by the exceptional element ⊥. The func-
tion pq : α⊥ ⇒ α is the inverse of xy (unspecified for ⊥).
Partial functions α ⇀ β are defined as functions α ⇒ β⊥
supporting the usual concepts of domain (dom ) and range

(ran ). The library is built entirely by logically safe, con-
servative definitions and derived rules. This methodology is
also applied to HOL-OCL [7] and Featherweight OCL.

4. THE THEORY ORGANIZATION
The semantic theory is organized in a quite conventional

manner in three layers. The first layer, called the denota-
tional semantics comprises a set of definitions of the opera-
tors of the language. Presented as definitional axioms inside
Isabelle/HOL, this part assures the logically consistency of
the overall construction. The second layer, called logical
layer, is derived from the former and centered around the
notion of validity of an OCL formula P for a state-transition
from pre-state σ to post-state σ′, validity statements were
written (σ, σ′) |= P . The third layer, called algebraic layer,
also derived from the former layers, tries to establish a num-
ber of algebraic laws of the form P = P ′; such laws are
amenable to equational reasoning and also help for auto-
mated reasoning and code-generation.

For space reasons, we will restrict ourselves in this paper
to a few operators and make a traversal through all three
layers in order to give a high-level description of our formal-
ization. Especially, the details of the semantic construction
for sets and the handling of objects and object universes
were excluded from a presentation here.

4.1 Denotational Semantics
OCL is composed of 1) operators on built-in data struc-

tures such as Boolean, Integer or Set(A), 2) operators of the
user-defined data-model such as accessors, type-casts and
tests, and 3) user-defined, side-effect-free methods. Concep-
tually, an OCL expression in general and Boolean expressions
in particular (i. e., formulae) that depends on the pair (σ, σ′)
of pre-and post-state. The precise form of states is irrele-
vant for this paper (compare [10]) and will be left abstract
in this presentation. We construct in Isabelle a type-class
null that contains two distinguishable elements bot and null.
Any type of the form (α⊥)⊥ is an instance of this type-class
with bot ≡ ⊥ and null ≡ x⊥y. Now, any OCL type can be
represented by an HOL type of the form:

V(α) := state× state⇒ α :: null .

On this basis, we define V((bool⊥)⊥) as the HOL type for
the OCL type Boolean by and define:

IJinvalid :: V (α)Kτ ≡ bot IJnull :: V (α)Kτ ≡ null

IJtrue :: BooleanKτ = bbtruecc IJfalseKτ = bbfalsecc
IJX.oclIsUndefined()Kτ =

(if IJXKτ ∈ {bot, null} then IJtrueKτ else IJfalseKτ)

IJX.oclIsInvalid()Kτ =

(if IJXKτ = bot then IJtrueKτ else IJfalseKτ)

where IJEK is the semantic interpretation function com-
monly used in mathematical textbooks and τ stands for pairs
of pre- and post state (σ, σ′). Due to the used style of seman-
tic representation (a shallow embedding) I is in fact super-
fluous and defined semantically as the identity; in Isabelle
theories, it is usually left out in definitions to pave the way
for Isabelle to checks that the underlying equations are ax-
iomatic definitions and therefore logically safe. For reasons
of conciseness, we will write δ X for not X.oclIsUndefined()

and υ X for not X.oclIsInvalid() throughout this paper.



On this basis, one can define the core logical operators
not and and as follows:

IJnot XKτ = (case IJXKτ of
⊥ ⇒ ⊥
|b⊥c ⇒ b⊥c
|bbxcc ⇒ bb¬xcc)

IJX and Y Kτ = (case IJXKτ of
⊥ ⇒ (case IJY Kτ of

⊥ ⇒ ⊥
|b⊥c ⇒ ⊥
|bbtruecc ⇒ ⊥
|bbfalsecc ⇒ bbfalsecc)

|b⊥c ⇒ (case IJY Kτ of
⊥ ⇒ ⊥
|b⊥c ⇒ b⊥c
|bbtruecc ⇒ b⊥c
|bbfalsecc ⇒ bbfalsecc)

|bbtruecc ⇒ (case IJY Kτ of
⊥ ⇒ ⊥
|b⊥c ⇒ b⊥c
|bbycc ⇒ bbycc)

|bbfalsecc ⇒ bbfalsecc)

These non-strict operations were used to define the other
logical connectives in the usual classical way: X or Y ≡
(not X) and (not Y ) or X implies Y ≡ (not X) or Y .

The default semantics for an OCL library operator is strict
semantics; this means that the result of an operation f is
invalid if one of its arguments is invalid . For a semantics
comprising null, we suggest to stay conform to the standard
and define the addition for integers as follows:

IJx+yKτ = if IJδ xKτ = bbtruecc ∧ IJδ yKτ = bbtruecc
thenbbddIJxKτee+ ddIJyKτeecc
else⊥

where the operator “+” on the left-hand side of the equation
denotes the OCL addition of type [V((int⊥)⊥), V((int⊥)⊥)]⇒
V((int⊥)⊥) while the “+” on the right-hand side of the equa-
tion of type [int, int]⇒ int denotes the integer-addition from
the HOL library.

4.2 Logical Layer
The topmost goal of the logic for OCL is to define the

validity statement :

(σ, σ′) � P ,

where σ is the pre-state and σ′ the post-state of the under-
lying system and P is a formula. Informally, a formula P is
valid if and only if its evaluation in (σ, σ′) (i. e., τ for short)
yields true. Formally this means:

τ � P ≡
(
IJP Kτ = bbtruecc

)
.

On this basis, classical, two-valued inference rules can be es-
tablished for reasoning over the logical connective, the differ-
ent notions of equality, definedness and validity. Generally
speaking, rules over logical validity can relate bits and pieces
in various OCL terms and allow—via strong logical equality
discussed below—the replacement of semantically equivalent
sub-expressions. The core inference rules are:

τ |= true ¬(τ |= false) ¬(τ |= invalid) ¬(τ |= null)

τ |= not P =⇒ τ¬ |= P

τ |= P and Q =⇒ τ |= P τ |= P and Q =⇒ τ |= Q

τ |= P =⇒ (if P then B1 else B2 endif)τ = B1τ

τ |= not P =⇒ (if P then B1 else B2 endif)τ = B2τ

τ |= P =⇒ τ |= δP τ |= (δX) =⇒ τ |= υX

By the latter two properties it can be inferred that any valid
property P (so for example: a valid invariant) is actually
defined, which allows to infer for terms composed by strict
operations that their arguments and finally the variables oc-
curring in it are valid or defined.

We propose to distinguish the strong logical equality (writ-

ten , ), which follows the general principle that “equals
can be replaced by equals,” from the strict referential equal-
ity (written

.
= ), which is an object-oriented concept

that attempts to approximate and to implement the former.
Strict referential equality, which is the default in the OCL

language and is written simply _ = _ in the standard, is an
overloaded concept and has to be defined for each OCL type
individually; for objects resulting from class definitions, it
is implemented by simply comparing the references to the
objects. In contrast, strong logical equality is a polymorphic
concept which is defined once and for all by:

IJX , Y Kτ ≡ bbIJXKτ = IJY Kτcc

It enjoys nearly the laws of a congruence:

τ |= (x , x)

τ |= (x , y) =⇒ τ |= (y , x)

τ |= (x , y) =⇒ τ |= (y , z) =⇒ τ |= (x , z)

cpP =⇒ τ |= (x , y) =⇒ τ |= (P x) =⇒ τ |= (P y)

where the predicate cp stands for context-passing, a property
that is characterized by P (X) equals λ τ. P (λ . Xτ)τ . It
means that the state tuple τ = (σ, σ′) is passed unchanged
from surrounding expressions to sub-expressions. it is true
for all pure OCL expressions (but not arbitrary mixtures of
OCL and HOL) in Featherweight OCL. The necessary side-
calculus for establishing cp can be fully automated.

The logical layer of the Featherweight OCL rules gives also
a means to convert an OCL formula living in its for-valued
world into a representation that is classically two-valued and
can be processed by standard SMT solvers such as CVC3 [2]
or Z3 [13]. Delta-closure rules for all logical connectives have
the following format, e. g.:

τ |= δx =⇒ (τ |= not x) = (¬(τ |= x))

τ |= δx =⇒ τ |= δy =⇒ (τ |= x and y) = (τ |= x ∧ τ |= y)

τ |= δx =⇒ τ |= δy

=⇒ (τ |= (x implies y)) = ((τ |= x) −→ (τ |= y))

Together with the general case-distinction

τ |= δx ∨ τ |= x , invalid ∨ τ |= x , null ,

which is possible for any OCL type, a case distinction on the
variables in a formula can be performed; due to strictness
rules, formulae containing somewhere a variable x that is
known to be invalid or null reduce usually quickly to con-
tradictions. For example, we can infer from an invariant τ |=
x
.
= y-3 that we have actually τ |= x

.
= y-3 ∧ τ |= δx ∧ τ |=

δy. We call the latter formula the δ-closure of the former.
Now, we can convert a formula like τ |= x>0 or3*y>x*x into
the equivalent formula τ |= x > 0 ∨ τ |= 3*y>x*x and thus



internalize the OCL-logic into a classical (and more tool-
conform) logic. This works—for the price of a potential,
but due to the usually “rich” δ-closures of invariants rare—
exponential blow-up of the formula for all OCL formulas.

4.3 Algebraic Layer
Based on the logical layer, we build a system with simpler

rules which are amenable to automated reasoning. We re-
strict ourselves to pure equations on OCL expressions, where
the used equality is the meta-(HOL-)equality.

Our denotational definitions on not and and can be re-
formulated in the following ground equations:

υ invalid = false υ null = true

υ true = true υ false = true

δ invalid = false δ null = false

δ true = true δ false = true

not invalid = invalid not null = null

not true = false not false = true

(null and true) = null (null and false) = false

(null and null) = null (null and invalid) = invalid

(false and true) = false (false and false) = false

(false and null) = false (false and invalid) = false

(true and true) = true (true and false) = false

(true and null) = null (true and invalid) = invalid

(invalid and true) = invalid

(invalid and false) = false

(invalid and null) = invalid

(invalid and invalid) = invalid

On this core, the structure of a conventional lattice arises:

X and X = X X and Y = Y and X

false and X = false X and false = false

true and X = X X and true = X

X and (Y and Z) = X and Y and Z

as well as the dual equalities for or and the De Morgan rules.
This wealth of algebraic properties makes the understanding
of the logic easier as well as automated analysis possible:
it allows for, for example, computing a DNF of invariant
systems (by clever term-rewriting techniques) which are a
prerequisite for δ-closures.

The above equations explain the behavior for the most-
important non-strict operations. The clarification of the
exceptional behaviors is of key-importance for a semantic
definition the standard and the major deviation point from
HOL-OCL [5, 7], to Featherweight OCL as presented here.
The standard expresses at many places that most operations
are strict, i. e., enjoy the properties (exemplary for _ + _):

invalid + x = invalid x + invalid = invalid

x + null = invalid null + x = invalid

null.asType(X) = invalid

besides “classical” exceptional behavior:

1 / 0 = invalid 1 / null = invalid

null->isEmpty() = true

Moreover, there is also the proposal to use null as a kind
of “don’t know” value for all strict operations, not only in
the semantics of the logical connectives. Expressed in alge-
braic equations, this semantic alternative (this is not Feath-
erweight OCL at present) would boil down to:

invalid + x = invalid x + invalid = invalid

x + null = null null + x = null

1/0 = invalid 1/null = null

null->isEmpty() = null null.asType(X) = null

While this is logically perfectly possible, while it can be
argued that this semantics is “intuitive,” and although we do
not expect a too heavy cost in deduction when computing
δ-closures, we object that there are other, also “intuitive”
interpretations that are even more wide-spread: In classical
spreadsheet programs, for example, the semantics tend to
interpret null (representing empty cells in a sheet) as the
neutral element of the type, so 0 or the empty string, for ex-
ample.1 This semantic alternative (this is not Featherweight
OCL at present) would yield:

invalid + x = invalid x + invalid = invalid

x + null = x null + x = x

1/0 = invalid 1/null = invalid

null->isEmpty() = true null.asType(X) = invalid

Algebraic rules are also the key for execution and compi-
lation of Featherweight OCL expressions. We derived, e. g.:

δ Set{} = true

δ (X->including(x)) = δX and δx

Set{}->includes(x) = (if υ x then false

else invalid endif)

(X->including(x)->includes(y)) =

(if δ X

then if x
.
= y

then true

elseX->includes(y)
endif

else invalid

endif)

As Set{1,2} is only syntactic sugar for

Set{}->including (1)-> including (2)

an expression like Set{1,2}->includes(null) becomes au-
tomatically decidable in Featherweight OCL by a combina-
tion of rewriting and code-generation and execution. The
generated documentation from the theory files can thus be
enriched by numerous “test-statements” like:

value ”τ |=(Set{Set{2, null}} .
= Set{Set{null, 2}})”

which have been machine-checked and which present a high-
level and in our opinion fairly readable information for OCL

tool manufactures and users.

1In spreadsheet programs the interpretation of null varies
from operation to operation; e. g., the average function
treats null as non-existing value and not as 0.



(a) The Isabelle jEdit environment. (b) The generated formal document.

Figure 1: Generating documents with guaranteed syntactical and semantical consistency.

5. A MACHINE-CHECKED ANNEX A
Isabelle, as a framework for building formal tools [21],

provides the means for generating formal documents. With
formal documents we refer to documents that are machine-
generated and ensure certain formal guarantees. In particu-
lar, all formal content (e. g., definitions, formulae, types) are
checked for consistency during the document generation.

For writing documents, Isabelle supports the embedding
of informal texts using a LATEX-based markup language within
the theory files. To ensure the consistency, Isabelle supports
to use, within these informal texts, antiquotations that refer
to the formal parts and that are checked while generating the
actual document as PDF. For example, in an informal text,
the antiquotation @{thm ”not not”} will instruct Isabelle to
lock-up the (formally proven) theorem of name ocl not not
and to replace the antiquotation with the actual theorem,
i. e., not (not x) = x.

Figure 1 illustrates this approach: Figure 1a shows the
jEdit-based development environment of Isabelle with an
excerpt of one of the core theories of Featherweight OCL.
Figure 1b shows the generated PDF document where all an-
tiquotations are replaced. Moreover, the document genera-
tion tools allows for defining syntactic sugar as well as skip-
ping technical details of the formalization.

Thus, applying the Featherweight OCL approach to writ-
ing an updated Annex A that provides a formal semantics of
the most fundamental concepts of OCL would ensure 1. that
all formal context is syntactically correct and well-typed,
and 2. all formal definitions and the derived logical rules are
semantically consistent.

6. LESSONS LEARNED
While our paper and pencil arguments, given in [10], turned

out to be essentially correct, there had also been a lesson to
be learned: If the logic is not defined as a Kleene-Logic, hav-
ing a structure similar to a complete partial order (CPO),
reasoning becomes complicated: several important algebraic
laws break down which makes reasoning in OCL inherent
messy and a semantically clean compilation of OCL formu-
lae to a two-valued presentation, that is amenable to anima-
tors like KodKod [20] or SMT-solvers like Z3 [13] completely
impractical. Concretely, if the expression not(null) is de-

fined invalid (as is the case in the present standard [18]),
than standard involution does not hold, i. e., not(not(A)) =
A does not hold universally. Similarly, if null and null is
invalid, then not even idempotence X and X = X holds. We
strongly argue in favor of a lattice-like organization, where
null represents “more information” than invalid and the
logical operators are monotone with respect to this seman-
tical “information ordering.” However, we do not see any
clear advantage for the “more information” interpretation
for strict operations (see discussion 4.3) and prefer therefore
to remain conform to the requirements of the standard.

Featherweight OCL makes these two deviations from the
standard, builds all logical operators on Kleene-not and
Kleene-and, and shows that the entire construction of our
paper “Extending OCL with Null-References” [10] is then
correct, and the DNF-normalization as well as δ-closure laws
(necessary for a transition into a two-valued presentation of
OCL specifications ready for interpretation in SMT solvers
(see [11] for details) are valid in Featherweight OCL.

7. CONCLUSION AND FUTURE WORK
Featherweight OCL concentrates on formalizing the se-

mantics of a core subset of OCL in general and in particular
on formalizing the consequences of a four-valued logic (i. e.,
OCL versions that support, besides the truth values true

and false also the two exception values invalid and null).
In the following, we outline the necessary steps for turning

Featherweight OCL into a fully fledged tool for OCL, e. g.,
similar to HOL-OCL as well as for supporting test case gen-
eration similar to HOL-TestGen [9]. There are essentially
five extensions necessary:
• extension of the library to support all OCL data types,

e. g., Sequence(T), OrderedSet(T). This formaliza-
tion of the OCL standard library can be used for check-
ing the consistency of the formal semantics (known as
“Annex A”) with the informal and semi-formal require-
ments in the normative part of the OCL standard.
• development of a compiler that compiles a textual or

CASE tool representation (e. g., using XMI or the tex-
tual syntax of the USE tool [19]) of class models. Such
compiler could also generate the necessary casts when
converting standard OCL to Featherweight OCL as well



as providing“normalizations”such as converting multi-
plicities of class attributes to into OCL class invariants.
• a setup for translating Featherweight OCL into a two-

valued representation as described in [11]. As, in real-
world scenarios, large parts of UML/OCL specifications
are defined (e. g., from the default multiplicity 1 of an
attributes x, we can directly infer that for all valid
states x is neither invalid nor null), such a transla-
tion enables an efficient test case generation approach.
• a setup in Featherweight OCL of the Nitpick anima-

tor [3]. It remains to be shown that the standard, Kod-
kod [20] based animator in Isabelle can give a similar
quality of animation as the OCLexec Tool [14]
• a code-generator setup for Featherweight OCL for Is-

abelle’s code generator. For example, the Isabelle code
generator supports the generation of F#, which would
allow to use OCL specifications for testing arbitrary
.net-based applications.

The first two extensions are sufficient to provide a formal
proof environment for OCL 2.3 similar to HOL-OCL while
the remaining extensions are geared towards increasing the
degree of proof automation and usability as well as providing
a tool-supported test methodology for UML/OCL.

Our work shows that developing a machine-checked for-
mal semantics of recent OCL standards still reveals signif-
icant inconsistencies—even though this type of research is
not new. In fact, we started our work already with the
1.x series of OCL. The reasons for this ongoing consistency
problems of OCL standard are manifold. For example, the
consequences of adding an additional exception value to OCL

2.2 are widespread across the whole language and many of
them are also quite subtle. Here, a machine-checked formal
semantics is of great value, as one is forced to formalize all
details and subtleties.

Moreover, the standardization process of the OMG, in
which standards (e. g., the UML infrastructure and the OCL

standard) that need to be aligned closely are developed quite
independently, are prone to ad-hoc changes that attempt to
align these standards. And, even worse, updating a standard
document by voting on the acceptance (or rejection) of iso-
lated text changes does not help either. Here, a tool for the
editor of the standard that helps to check the consistency of
the whole standard after each and every modifications can
be of great value as well.
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