
c© 2011 IEEE Computer Society. This is the author’s version of the work. It is posted at http://www.brucker.ch/bibliography/abstract/brucker.ea-framework-2011
by permission of IEEE Computer Society for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 10th IEEE
International Symposium on Policies for Distributed Systems and Networks (POLICY ’11), pp. 105–112, 2011, doi: 10.1109/POLICY.2011.47.

A Framework for Managing and Analyzing Changes of Security Policies

Achim D. Brucker
SAP Research

Vincenz-Priessnitz-Str. 1
76131 Karlsruhe

Germany
Email: achim.brucker@sap.com

Helmut Petritsch
SAP Research

Vincenz-Priessnitz-Str. 1
76131 Karlsruhe

Germany
Email: helmut.petritsch@sap.com

Abstract—Modern enterprise systems need to comply
to complex security policies. Due to legal regulations such
as Basel II or HIPAA, the enforcement of these security
policies needs to be carefully monitored and analyzed. The
monitoring of complex and often dynamic access control
requirements results in a vast amount of information that
needs to be analyzed both in case of incidents and during
regular audits.

We present an extensible framework for managing
and analyzing security policies during their whole life
cycle. Our framework integrates versioning of policies and
logfiles with policy animation, static analysis, and debug-
ging techniques. For example, this combination allows for
comparing different versions of security policies or the
replaying and animation of system traces based on logfiles.

I. INTRODUCTION

Modern enterprise systems, e. g., for enterprise
resource planning (ERP) or customer relationship
management (CRM) need to enforce a variety of dif-
ferent and complex security policies. Monitoring the
enforcement of the different security policies results in
a large amount of log information (i. e., traced system
events) that is, because of the sheer size, difficult to
analyze. Moreover, today’s enterprises are operating in
a frequently changing environment (e. g., fluctuation
of staff member, restructuring of business units, or
changes in requirements and regulations) resulting in
a significant number of deviations from the intended
system behavior. For example, violations of the security
policies caused, e. g., by wrongly configured systems,
wrongly implemented system polices, systems or users
still following old workflows, active policies that are not
yet reflecting new organizational structures, or new staff
members testing if their account is already enabled.

Additionally, businesses need to comply to regula-
tions such as Basel II [2] or the Health Insurance Porta-
bility and Accountability Act (HIPAA) [16], which can
only partially be enforced at runtime (see, e. g., [13]).
In addition, recent trends, e. g., [4, 11], allowing users
to override access restrictions in a controlled manner,
result in an even larger amount of log information
that needs to be analyzed. Both developments lead to

a significant increase in the costs for manual system
audits [15, 28]. Consequently, there is a large demand
from, e. g., system administrator, auditors, or forensic
experts, for tools supporting the analysis of the compli-
ance to high-level regulations or the analysis of policy
violations. We answer this demand by presenting an
extensible framework for managing and analyzing poli-
cies and the generated logfiles during their whole life
cycle. In particular, our framework allows to compare
and analyze such policies and logfile with various plug-
ins implementing different analysis techniques during
audits and forensics. In more detail, our contributions
are three-fold:

1) A generic framework for managing policies during
their whole life cycle and, in particular, for com-
paring different versions of security policies and
log information using both specialized algorithms
and generally available external tools,

2) A generic framework for analyzing security poli-
cies that includes the animation and replaying,
potentially based on a recorded system state, of
access control requests and analyzing the access
control decision for different policy versions, and

3) A policy debugger which allows to debug XACML
policies by setting break-points on XACML ele-
ments, viewing the current state (e. g., the call
stack, resolved attributes and their values), and
manipulate the value of attributes.

Overall, our framework allows for developing and de-
bugging security policies in isolation. This isolation
helps to ensure that only well-tested configuration are
deployed in the productive environment.

The rest of the paper is structured as follows: After
introducing our running example in Section II, we
present our policy management and analysis framework
in Section III. In Section IV, we present several appli-
cations of our framework. Finally, we discuss related
work and present our conclusions in Section V.

http://www.brucker.ch/bibliography/abstract/brucker.ea-framework-2011
http://dx.doi.org/10.1109/POLICY.2011.47
http://www.brucker.ch/
mailto:"Achim D. Brucker" <achim.brucker@sap.com>
http://petritsch.co.at/
mailto:"Helmut Petritsch" <helmut.petritsch@sap.com>

Table I
RECORDED MEDICAL RECORD ACCESSES FOR HEALTH RECORDS.

evalID version date time user role dept pat.dept patient result

863 139 2010-06-30 18:11 alice nurse neurology neurology davis permit
870 139 2010-06-30 18:13 carol nurse surgery surgery young permit
875 139 2010-06-30 18:13 alice nurse neurology surgery young deny
881 139 2010-06-30 18:17 dave doctor neurology neurology davis permit
894 139 2010-06-30 18:18 alice nurse neurology neurology davis permit
902 139 2010-06-30 18:23 bob doctor surgery surgery johnson permit
914 139 2010-06-30 18:29 dave doctor neurology neurology earp permit
923 139 2010-06-30 18:32 bob doctor surgery neurology davis permit
...
1001 142 2010-07-01 17:54 bob doctor surgery neurology moore permit
1012 142 2010-07-01 17:55 alice nurse neurology neurology moore permit
1023 142 2010-07-01 17:57 carol nurse surgery surgery white permit
1034 142 2010-07-01 17:59 marvin nurse dentistry surgery white deny
1045 142 2010-07-01 18:02 dave doctor neurology neurology moore permit
1067 142 2010-07-01 18:03 marvin nurse dentistry surgery white deny
1078 142 2010-07-01 18:06 bob doctor surgery surgery young permit
1089 142 2010-07-01 18:07 carol nurse surgery surgery miller deny
1100 142 2010-07-01 18:08 carol nurse surgery surgery miller deny
1110 142 2010-07-01 18:08 marvin nurse dentistry surgery miller deny
1117 142 2010-07-01 18:08 alice nurse neurology neurology davis deny
1128 142 2010-07-01 18:10 bob doctor surgery neurology moore permit

II. RUNNING EXAMPLE

In this section, we briefly introduce a running ex-
ample that, on the one hand, illustrates an exemplary
application of our framework and, on the other hand,
introduces the technical background of our work.

In modern enterprise systems, the enforcement of
security policies is usually based on a centrally managed
and administered Policy Decision Point (PDP). The
PDP stores security policies for all secured services
and provides means for evaluating access control re-
quests, i. e., requests asking if a certain users is allowed
to access a certain resource. Policy languages, such
as the eXtensible Access Control Markup Language
(XACML) [24], allow for expressing whether a particular
access should be allowed or not.

Listing 1 presents an excerpt of a security policy
(in simplified XACML) for the management of health
records. In our example, permissions are not only
granted based on role assignments, but are also re-
stricted by constraints: nurses (i. e., members of the role
Nurse) are only allowed to read patient records during
regular working hours (i. e., between 6 am and 8 pm)
and if the patient belongs to the same department.

Table I illustrates a set of (simplified) logfile entries.
During audit or forensics, such logfiles are usually
examined manually for anomalies (e. g., deviations from
the intended behavior). In the following, we assume that
starting on July 1st, working hours are redefined to be
between 6 am and 6 pm. Thus, the security policy needs
to be updated (i. e., in Listing 1 line 10 is changed to
<value>18:00</value>) and this change needs to
be activated on July 1st.

<PolicySet PolicyComb="first-applicable">
2 <Target><Resource>

HealthRecord</Resource></Target>
4 <Policy RuleCombAlg="first-applicable">

<Target><Role>Nurse</Role></Target>
6 <Rule Id="1" Effect="Deny">

<Target/>
8 <Condition><Time-in-range>

<current-time/>
10 <value>20:00</value>

<value>06:00</value>
12 </Time-in-range></Condition>

</Rule>
14 <Rule Id="2" Effect="Permit">

<Target><Action>read</Action></Target>
16 <Condition><String-equal>

<patient-department>
18 <subject-department>

</Condition>
20 </Rule></Policy>

<Policy RuleCombAlg="first-applicable">
22 <Target><Role>Doctor</Role></Target>

<Rule Id="3" Effect="Permit">
24 <Target/></Rule>

</Policy>
26 <Policy><Target/>

<Rule Id="final" Effect="Deny"/>
28 </Policy></PolicySet>

Listing 1. An XACML policy: nurses are allowed to access
health records during the day of patients located on their
department.

Some time after the policy change, an administrator
detects a suspicious large number of denies on July
1st, requiring an analysis, by a security expert, to rule
out the possibility of an attack. By inspecting some of
those requests manually, the security expert recognizes
that some denied requests might also be caused by the

change of the security policy at July 1st, i. e., nurses
still following their old schedule. Using our framework,
the security expert does not need to analyze every
single request manually. Instead, the security expert can
load the old policy, re-execute the recorded requests,
eliminate requests permitted by the old policy, and
analyze the remaining denied accesses. This allows
the security specialist to focus on the most important
requests, i. e., shielding those requests that are caused
by nurses that are not yet used to the new working
hours. The remaining denies are nearly all caused by
user marvin, indicating a misbehaving user, leading
to further, concrete investigations. As a next step the
security specialist may chose select all (denied and
permitted) access by user marvin around July 1st.

In the rest of the paper, we present a framework that
allows to support such investigations by supporting the
management and analysis of such changes in both the
security policies and the corresponding logfiles.

III. SECURITY POLICY ANALYSIS AND
MANAGEMENT FRAMEWORK

In this section, we present a framework for manag-
ing and analyzing security policies together with the
recorded system traces (e. g., logfiles). In particular, our
framework supports the management of security policies
during their whole life-cycle.

A. Architecture

Figure 1 illustrates our framework in an exemplary
context of a system following the service-oriented
architecture (SOA) principle (left-hand side of Figure 1).

In SOAs, the security policy is usually enforced by
several Policy Enforcement Points (PEPs) which use
a central Policy Decision Point (PDP) for evaluating
the security policy. In contrast, most information, e. g.,
properties of resources, are only available through the
service which is managing that specific resource. Thus,
if such a property is required during the evaluation of
the policy, the PDP requests its resolution by the con-
text information service, also called Policy Information
Point (PIP). Our framework extends, respectively, adds
the following components (right-hand side of Figure 1):

Versioning Policy Storage: This component provides
a versioning store for policies. Thus, all changes
of the policy are recorded. In the following, we
assume that the security policy also contains the
mapping from users to roles.1 Overall, the version-
ing policy storage allows for managing, selecting
and comparing different versions of a policy. For
example, this allows for creating and testing a new

1If this is not the case, our framework can easily be extended with
a versioning user and role storage.

policy version before it is actually deployed in a
productive system.

Versioning Logfile Storage: This component stores
all access control requests, including the version
of the active policy,2 the access control decision,
obligations, and context attributes with their actual
values. The policy and logfile storage provide
an interface to search for and load elements by
multiple selection criteria.

Policy Decision Point: In our framework, the PDP
needs to be able to load the active policy from the
versioning policy store and, moreover, it needs to
provide the relevant information to the versioning
logfile storage. On the implementation level, the
required functionality can be fully implemented by
a wrapper, i. e., existing PDPs can be integrated.

Workbench: The Security Policies Analysis and Man-
agement Workbench bundles the core components
for the analysis and management of versioned
polices and provides, on a conceptual level, two
user interfaces: the first one (Administrator/Man-
agement User Interface) is dedicated to the man-
agement of policies along their life-cycle. The
second one (Analysis/Audit User Interface) focuses
on the analysis part. While we expect the former
one to be used by regular system administrators,
the latter one will be mainly used by security
experts. In more detail, the workbench comprises
the following modules:
Policy Management : The Policy Management

Component (consisting out of a back-end
service and a dedicated user interface) allows
for the administration of policies. For example,
policies can be modified (i. e., new versions
of policies can be created) and be activated
(i. e., the currently active policy version can be
set) whereon the productive PDP reloads the
currently active policy. For most parts, existing
solutions can be adopted and reused.

Analysis PDP: These PDPs within the workbench
can be used with different policy configurations,
e. g., different versions of the system policy. The
Analysis PDPs operate in a simulated environ-
ment, i. e., not being connected to a real back-
end system.

Analysis PIP: The Analysis PIP acts as context
information service for the Analysis PDPs. As
they do not have a current application context
at analysis time, the Analysis PIP either retrieves
context information from the log storage (i. e.,
as is has been available at runtime) or from the
policy analysis tool.

2Alternatively, the version can be inferred from the timestamp.

Business
Object
Layer

User
Interface
Layer

Application
Layer

Business
Layer

Versioning
Logfile Storage

Versioning
Policy Storage

Security Policy Analysis
and Management Workbench

Administrator/Mangement
User Interface

Analysis/Audit
User Interface

Analysis
PDP

Policy
Analysis

Tool

Policy
Lifecycle

Management

Adaptor Layer

SMT
Solver

Theorem
Prover

SAT
Solver

Model
Checker

Domain
Specific Tools

External Analysis Tools

Data/Role
Mining

Analysis
PIP

Policy
Information

Point

Figure 1. Extended authentication and authorization infrastructure with analysis and forensics workbench.

Policy Analysis: The Policy Analysis (consisting
out of a Policy Analysis Tool and a dedicated
user interface) allows to analyze policies to-
gether with the corresponding logfiles, i. e., ac-
cess information from the versioning storage,
load Analysis PDPs and execute (recorded) re-
quests against those Analysis PDPs.
Moreover, various external analysis tools can
be integrated, ranging from generic to domain
specific tools and algorithms (e. g., [3]). Generic
tools such as model checkers, SMT and SAT
solvers, theorem provers, or data mining tools
may be used to solve complex tasks needed for
an analysis method implemented by the policy
analysis tool. An Adaptor Layer provides an
uniform interface to the analysis tool and for
abstracting from the concrete data formats of the
different externals tools.

The analysis framework can also be used in isolation,
i. e., providing an analysis workbench that is indepen-
dent from the business system.

B. Implementation

Our prototype is based on Sun’s XACML imple-
mentation (http://sunxacml.sourceforge.net/) as a core
PDP implementation and Subversion, or svn for short,
(http://subversion.apache.org/) as underlying versioning
system. We extended the class holding the configuration
information (PDPConfig) using a svn-enabled policy
finder module. This extensions allows the PDP to load
arbitrary policy versions from the versioned policy store.

Replaying access control requests requires to store

the system state at runtime for later evaluation, i. e.,
all information used by the XACML engine has to
be logged. For efficiency reasons, we implement the
logging functionality within the PDP, using aspectJ
(http://www.eclipse.org/aspectj/) to set a pointcut on all
methods resolving attributes. This has two advantages.
First, we do not need to parse the XACML input and
output as a wrapper would have to. Second, third party
libraries providing non-standard attributes or imple-
menting the access of the PIP can be monitored without
additional effort. At runtime, the attributes are collected
by a class managing the current evaluation context
(EvaluationCtx), whereas the log entries are pro-
cessed by another thread, wherewith the logging func-
tionality creates only minimal overhead. We allow the
usage of non-standard attributes and functions, as long
as, first, the attributes are resolved using an implementa-
tion of the abstract AttributeFinderModule class
and, second, functions do not have any side-effects and
do not retrieve external information.

For the Analysis PDP we implemented a class
AttributeFinderModule which retrieves
attributes required for evaluation from the workbench.
Thus, the workbench can decide if the attribute is
retrieved from the logstore, or if the user or an (external)
analysis tool is queried for a value. We also enhanced
the core of the XACML engine. For this, we introduced
a RuntimeInfo class (see Listing 2), responsible for
the management of the source location (i. e., source
file and line number) and runtime information required
for constructing the call stack. Most XACML elements
have a direct representing Java object, e. g., for the

http://sunxacml.sourceforge.net/
http://subversion.apache.org/
http://www.eclipse.org/aspectj/

package com.sun.xacml.debug;
2 interface Locatable{

RuntimeInfo getRuntimeInfo();
4 }

interface IndirectLocatable
6 extends Locatable {

void setRuntimeInfo(RuntimeInfo src);
8 void unsetRuntimeInfo(RuntimeInfo src);

}
10 class RuntimeInfo {

int getLineNumber();
12 String getFileName();

void setCalledFrom(Object o);
14 Object getCalledFrom();

RuntimeInfo getIndirectSourceLocator();
16 }

Listing 2. Java classes added to the XACML core.

policy given in Listing 1 there are four Java objects of
type Rule. Classes representing such elements have
to implement the Locatable interface and retrieve
a RuntimeInfo object during policy loading, which
remains the same at runtime.

In contrast, XACML functions and combining algo-
rithms have to implement the IndirectLocatable
interface as they do not have a direct representing Java
object (e. g., for Listing 1, there is only one Java object
representing the first-applicable combining algorithms).
Thus, instead of creating a RuntimeInfo at policy
loading time, this object is created at runtime (using
the getIndirectSourceLocator() method) de-
pending on the context they are executed in. As recur-
sive calls are permitted, for IndirectLocatable
elements both set and unset method have to be called.

Creating the call stack at runtime requires three
modifications of the core XACML engine: First, the
used policy finder module has to write the source
file and line information into the RuntimeInfo
object. Second, a RuntimeInfo object has to be
created whenever a IndirectLocatable object
is evaluated. Third, we use aspectJ pointcuts to re-
trieve all evaluation events. This is used to call the
setCalledFrom(Object o) method and therefore
to create the call stack and to provide the workbench
with notifications (event) before and after each evalua-
tion of an XACML element.

IV. APPLICATION

After a brief introduction of the necessary prelimi-
naries, we discuss several analysis techniques that are
supported by our framework.

A. Preliminaries

In the following, we describe the content of the
versioning logfile storage (recall the exemplary logfile

presented in Table I), i. e., a single log entry le as
follows as an n-tupel:

le = (ideval , idpolicy , date, time,model)

where
• id eval describes the unique evaluation id,
• idpolicy describes the version of the policy that

was active during the creation of this entry. In
the following, we assume that there exists a partial
order ≤p on policy versions.

• date describes the date on which the entry was
created. Naturally, there is a total order ≤ on
dates values.

• time describes the time on which the entry was
created. Naturally, there is a total order ≤ on
time values.

• model describes the security model specific entries
of the log-entry, i. e., in our example,

model = (user , role,

depstaff, deppatient, patient , result) .

Moreover, we define selection functions that allow for
accessing specific elements of such an n-tupel. For
example,

getIdpolicy (ideval , idpolicy , date, time,model)

= idpolicy .

This allows us to describe the versioning logfile storage
LS . as a set of log entries, e. g., lei ∈ LS .

B. Selecting Ranges of Log-entries

One basic step for analysis is the selection of ranges
of log-entries along multiple selection criteria such as
recorded within a certain period of time, accessing a
specific resource, evaluating to a specific result, contain-
ing a specific context attribute value, etc. For example,{

le ∈ PS | (getDate le = 2010-06-30
∨ getDate le = 2010-07-01)
∧ getPatient le = white)

∧ getResult le = permit)
}

selects all successful access attempts to the record of
the patient white between June 30th and July 1st.

C. Interactive Exploration of Policies

A very important step during the development of
technical security policies is the validation that the
technical security policy implements the high-level se-
curity goals. Interactively exploring the policy is a first
approach that helps to convince oneself that certain
security goals are fulfilled. Our framework allows to
execute an access control request against a Analysis PDP

running, for example, the test version of a new policy.
During the evaluation of such an explorative request, the
user is prompted for any missing attribute value (e. g.,
the system time or the department of the patient). Thus,
the user can directly simulate access control requests
with respect to a specific system configuration.

D. Replaying Access Control Requests

Access control requests can be evaluated in a simu-
lated environment, i. e., the requests are evaluated in an
environment which simulates the system state at record-
ing time. But, our workbench also allows to modify the
environment as needed for an analysis, i. e., simulating
an environment for testing the behavior under a different
situation. Thus, our replaying facility allows not only to
reproduce an access control decision that was taken in
a given situation, it also allows to simulate arbitrary
environments. This allows, for example, to re-evaluate
a recorded request under a different policy, e. g., based
on an log entry

le = (1089, 142, 2010-07-01, 18:07,
carol, nurse, surgery, surgery,miller, deny)

we can construct the access control requests

(1089, 139, 2010-07-01, 18:07,
carol, nurse, surgery, surgery,miller)

and

(1089, 142, 2010-07-01, 18:07,
carol, nurse, surgery, surgery,miller)

that will help us to understand if, for this specific
request, the policy versions 139 and 142 result in a
different access control decision.

But, not only the policy version may be changed,
also the availability and values of recorded attributes,
i. e., everything which defines the environment of the
evaluation. For example, one may test if request 1089
would have been permitted an hour earlier, i. e., if

le = (1089, 142, 2010-07-01, 17:07,
carol, nurse, surgery, surgery,miller)

would have resulted in a permit decision.

E. Debugging

Debugging tools are a well known and widely used
technique for investigating program errors, helping the
user to understand the execution flow of a program to
find and eliminate bugs.

Similar to this, we provide a debugger for XACML,
which allows to define breakpoints for the evaluation
of every XACML element. When the system is halted

at such a break-point, one can browse the current state
of the evaluation, i. e., the call stack, look for resolved
attributes or even manipulate their values, etc. This
allows, for example, to figure out, if a specific rules is
evaluated or why a specific target match does not match.
Of course, the interactive exploration of policies and the
replaying of access control requests can be combined
with the policy debugger.

F. Policy Animation
In the following we show how symbolic input-

partitioning [5, 10] (i. e., the computation of equivalence
classes), can be used for providing support for policy an-
imations. With policy animation, we refer to techniques
that allow to abstractly evaluate access control requests,
i. e., requests are evaluated with abstract attribute rep-
resentations instead of concrete values. This allows for
evaluating access control requests without the need of
resolving attributes from an actual system context or a
recorded system state.

We use HOL-TESTGEN [6] as an external anal-
ysis tool for implementing the policy animation. In
more detail, we integrate the input partitioning of
HOL-TESTGEN as follows: we extended the combining
algorithms used within the Analysis PIP in such a
way that they support the partial evaluation of access
control requests, i. e., the evaluation of rules and policies
for which not all attributes can be resolved. Using
those extended combining algorithms, we generate a
constraint describing the rule being evaluated (including
the indented effect of that rule). This constraint (called
test specification in HOL-TESTGEN) is transferred to
HOL-TESTGEN which is used for computing the par-
titions (equivalence classes) for each attribute. In case
of XACML, the test specification needs to consider the
different rule and policy combining algorithms.

The formalization of security policies in
HOL-TESTGEN (see [8, 9] for details) allows for
handling a large set of attribute types and functions
defined over them—without the need of converting
those datatypes into bit-vectors. For example, recall
the time-in-range function from Listing 1, which
takes three input parameters (time: x, m, n) and
checks, if the first parameter x is within the second and
the third (i. e., m ≤ x ≤ n, whereas time ranges may
span over midnight, e. g., x = 23:00 is within the time
range m = 20:00 to n = 06:00). As HOL-TESTGEN
is extensible using higher-order logic, which is quite
similar to a functional programming language, the
translation into a test-specification is straight-forward:

PUT x = timeInRange 20 6 t −→ deny

where PUT represents the policy under test and where
the security policy formalization of HOL-TESTGEN
defines the function timeInRange as follows:

definition
timeInRange :: ” int ⇒ int ⇒ int ⇒ bool”
where
”timeInRange frm to time
= (({frm, to , time} ⊆{0 .. 24})”
∧ (if frm < to
then (frm ≤ time) ∧ (time ≤ to)
else ((frm ≤ time) ∧ (time ≤24)

∨ (0 ≤ time) ∧ (time ≤ to)))) ”

We also need to consider the rule, respectively, pol-
icy combining algorithms. Thus, the complete test-
specification looks as follows:

PUT x =
firstApplicable [firstApplicable

[timeInRange 20 6 t −→ deny, λ x. permit],
λ x. deny]

Which results in the following three equivalence classes:
1) 6 < time < 20 results in a permit
2) 0 ≤ time ≤6 results in a deny
3) 20 ≤ time ≤24 results in a deny

For a fully automated solution, HOL-TESTGEN can also
generate concrete test-data, i. e., select a representative
ground value for each equivalence class.

G. Discussion

The discussed analysis techniques cannot only be
used in isolation. For example, when replaying an access
control request, attributes may be missing (i. e., they are
not resolvable from the logstore). In such a situation,
combining the replay with other analysis techniques
may help to analyze this situation in more detail: First,
using the interactive policy exploration allows for query-
ing the user for a concrete value of the missing attribute.
Second, the policy animation allows for providing a set
of equivalence classes of missing attributes to the user
and, third, missing attributes may serve as a natural
break-point for the policy debugging.

The basic techniques used for implementing our
framework allow for the implementation of further
functionalities. For example, the pointcuts for retrieving
all evaluation events (see Section III-B) can also be
used for collecting detailed runtime information about
the policy evaluation, which, e. g., may be used for
optimizing the performance of the policy evaluation
(e. g., similar to [22]).

V. RELATED WORK AND CONCLUSION

A. Related Work

There is a large body of literature presenting static
analysis [1, 3, 12, 18, 20, 21], dynamic analysis [14]
analysis, or specification-based test case generation
techniques [7, 14] of security policies. Many of those
techniques can be integrated into our framework and,

moreover, can profit from the detailed versioning of
policies and logfiles our framework provides. For exam-
ple, integrating the Alloy Analyzer [19] into our frame-
work seems to be very attractive as there are several
analysis methods for security policies that are based
on Alloy, e. g., for the development of conflict-free
role-based access control policies [27], or conformance
testing [17].

There are several analysis tools for XACML-policies,
e. g., [12, 23]. Although only supporting a small subset
of XACML, Magrave [12] is an interesting candidate for
providing additional functionality for analyzing differ-
ences between various versions of a policy.

B. Conclusion

We presented an extensible framework for managing
and analyzing security policies that helps to answer
the challenges of modern enterprise systems which
have to, in an ever-changing environment, comply to
complex security policies and compliance regulations.
As a unique feature, our framework allows to load and
compare different versions of policies as well as access
control requests executed within the system (including
requested runtime information and results), to analyze
them with various plug-ins implementing different anal-
ysis techniques during audits and forensics.

The flexibility of our frameworks allows for the con-
tinuous integrating of both dynamic and static analysis
and, thus, combining the strengths of both techniques.
Thus, we see the integration of further techniques for
analyzing and transforming of security policies as a
main line for future work. Besides extending the current
portfolio of analysis tools, e. g., with access control
approaches that rely on post-hoc audits such as break-
glass [4, 26] or optimistic security [25], we see the inte-
gration of tools for comparing and optimizing policies,
e. g., [1, 7, 21], as particularly promising.

ACKNOWLEDGMENTS

The research leading to these results has received
funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under grant no. 257930.

REFERENCES

[1] M. Backes, G. Karjoth, W. Bagga, and M. Schunter.
Efficient comparison of enterprise privacy policies. In
H. Haddad, A. Omicini, R. L. Wainwright, and L. M.
Liebrock, editors, SAC, pages 375–382, New York, NY
USA, 2004. ACM Press. doi: 10.1145/967900.967983.

[2] Basel Committee on Banking Supervision. Basel II:
International convergence of capital measurement and
capital standards. Technical report, Bank for Inter-
national Settlements, Basel, Switzerland, 2004. URL
http://www.bis.org/publ/bcbsca.htm.

[3] D. Basin, M. Clavel, J. Doser, and M. Egea. Automated
analysis of security-design models. Information and

http://dx.doi.org/10.1145/967900.967983
http://www.bis.org/publ/bcbsca.htm

Software Technology, 51(5):815–831, 2009. ISSN 0950-
5849. doi: 10.1016/j.infsof.2008.05.011. Special Issue
on Model-Driven Development for Secure Information
Systems.

[4] A. D. Brucker and H. Petritsch. Extending access
control models with break-glass. In B. Carminati and
J. Joshi, editors, ACM symposium on access control
models and technologies (SACMAT), pages 197–206. ACM
Press, 2009. doi: 10.1145/1542207.1542239.

[5] A. D. Brucker and B. Wolff. Symbolic test case gener-
ation for primitive recursive functions. In J. Grabowski
and B. Nielsen, editors, Formal Approaches to Testing
of Software, number 3395 in Lecture Notes in Com-
puter Science, pages 16–32. Springer-Verlag, 2004. doi:
10.1007/b106767.

[6] A. D. Brucker and B. Wolff. HOL-TESTGEN: An inter-
active test-case generation framework. In M. Chechik
and M. Wirsing, editors, Fundamental Approaches to
Software Engineering (FASE09), number 5503 in Lecture
Notes in Computer Science, pages 417–420. Springer-
Verlag, 2009. doi: 10.1007/978-3-642-00593-0 28.

[7] A. D. Brucker, L. Brügger, P. Kearney, and B. Wolff.
Verified firewall policy transformations for test-case gen-
eration. In Third International Conference on Software
Testing, Verification, and Validation (ICST), pages 345–
354. 2010. doi: 10.1109/ICST.2010.50.

[8] A. D. Brucker, L. Brügger, M. P. Krieger, and B. Wolff.
HOL-TESTGEN 1.5.0 user guide. Technical Report 670,
ETH Zurich, Apr. 2010.

[9] A. D. Brucker, L. Brügger, P. Kearney, and B. Wolff. An
approach to modular and testable security models of real-
world health-care applications. In ACM symposium on
access control models and technologies (SACMAT). ACM
Press, 2011.

[10] J. Dick and A. Faivre. Automating the generation and se-
quencing of test cases from model-based specifications.
In J. Woodcock and P. Larsen, editors, Formal Methods
Europe 93: Industrial-Strength Formal Methods, volume
670 of Lecture Notes in Computer Science, pages 268–
284, Heidelberg, Apr. 1993. Springer-Verlag.

[11] A. Ferreira, R. Cruz-Correia, L. Antunes, P. Farinha,
E. Oliveira-Palhares, D. Chadwick, and A. Costa-Pereira.
How to break access control in a controlled manner.
In Proceedings of the IEEE International Symposium on
Computer-Based Medical Systems (CBMS), pages 847–
854, 2006. doi: 10.1109/CBMS.2006.95.

[12] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and
M. C. Tschantz. Verification and change-impact analysis
of access-control policies. In G.-C. Roman, W. G.
Griswold, and B. Nuseibeh, editors, ICSE, pages 196–
205, New York, NY USA, 2005. ACM Press. doi:
10.1145/1062455.1062502.

[13] C. Fox and P. Zonneveld. IT Control Objectives for
Sarbanes-Oxley: The Role of IT in the Design and Imple-
mentation of Internal Control Over Financial Reporting.
IT Governance Institute, Rolling Meadows, IL, USA,
2nd edition, Sept. 2006.

[14] S. K. Ghai, P. Nigam, and P. Kumaraguru. Cue: a frame-
work for generating meaningful feedback in XACML.
In Proceedings of the 3rd ACM workshop on Assurable
and usable security configuration, SafeConfig ’10, pages
9–16, New York, NY USA, 2010. ACM Press. doi:
10.1145/1866898.1866901.

[15] A. Ghose. Information disclosure and regulatory com-

pliance: Economic issues and research directions. http:
//ssrn.com/abstract=921770, July 2006.

[16] HIPAA. Health Insurance Portability and Accountability
Act of 1996. http://www.cms.hhs.gov/HIPAAGenInfo/,
1996.

[17] H. Hu and G.-J. Ahn. Enabling verification and con-
formance testing for access control model. In ACM
symposium on Access control models and technologies
(SACMAT), pages 195–204, New York, NY USA, 2008.
ACM Press. doi: 10.1145/1377836.1377867.

[18] G. Hughes and T. Bultan. Automated verification of
access control policies using a sat solver. International
Journal on Software Tools for Technology, 10:503–
520, October 2008. ISSN 1433-2779. doi: 10.1007/
s10009-008-0087-9.

[19] D. Jackson. Alloy: a lightweight object modelling
notation. ACM Transactions on Software Engineering and
Methodology, 11(2):256–290, 2002. ISSN 1049-331X.
doi: 10.1145/505145.505149.

[20] V. Kolovski, J. Hendler, and B. Parsia. Analyzing web
access control policies. In Proceedings of the 16th
international conference on World Wide Web, WWW
’07, pages 677–686, New York, NY USA, 2007. ACM
Press. doi: 10.1145/1242572.1242664.

[21] D. Lin, P. Rao, E. Bertino, and J. Lobo. An approach to
evaluate policy similarity. In V. Lotz and B. M. Thurais-
ingham, editors, SACMAT, pages 1–10, New York, NY
USA, 2007. ACM Press. doi: 10.1145/1266840.1266842.

[22] A. X. Liu, F. Chen, J. Hwang, and T. Xie. XEngine:
A fast and scalable XACML policy evaluation engine.
In Proceedings of the International Conference on Mea-
surement and Modeling of Computer Systems (Sigmet-
rics), Annapolis, Maryland, June 2008.

[23] M. Mankai and L. Logrippo. Access control poli-
cies: Modeling and validation. In Conférence Interna-
tionale sur les Nouvelles Technologies de la Repartition
(NOTERE), pages 85–91, 2005.

[24] OASIS. eXtensible Access Control Markup
Language (XACML), version 2.0, 2005. URL
http://docs.oasis-open.org/xacml/2.0/XACML-2.
0-OS-NORMATIVE.zip.

[25] D. Povey. Optimistic security: A new access control
paradigm. In Proceedings of the 1999 workshop on new
security paradigms, pages 40–45, New York, NY USA,
1999. ACM Press. doi: 10.1145/335169.335188.

[26] L. Rostad and O. Edsberg. A study of access con-
trol requirements for healthcare systems based on audit
trails from access logs. In Annual Computer Security
Applications Conference (ACSAC), pages 175–186, Los
Alamitos, CA, USA, 2006. IEEE Computer Society. doi:
10.1109/ACSAC.2006.8.

[27] A. Schaad and J. D. Moffett. A lightweight approach
to specification and analysis of role-based access con-
trol extensions. In Proceedings of the seventh ACM
symposium on Access control models and technologies,
SACMAT ’02, pages 13–22. ACM Press, 2002. doi:
10.1145/507711.507714.

[28] L. Sneller and H. Langendijk. Sarbanes Oxley Sec-
tion 404 Costs of Compliance: a case study. Corpo-
rate Governance: An International Review, 15(2):101–
111, 2007. URL http://econpapers.repec.org/RePEc:bla:
corgov:v:15:y:2007:i:2:p:101-111.

http://dx.doi.org/10.1016/j.infsof.2008.05.011
http://dx.doi.org/10.1145/1542207.1542239
http://dx.doi.org/10.1007/b106767
http://dx.doi.org/10.1007/b106767
http://dx.doi.org/10.1007/978-3-642-00593-0_28
http://dx.doi.org/10.1109/ICST.2010.50
http://dx.doi.org/10.1109/CBMS.2006.95
http://dx.doi.org/10.1145/1062455.1062502
http://dx.doi.org/10.1145/1062455.1062502
http://dx.doi.org/10.1145/1866898.1866901
http://dx.doi.org/10.1145/1866898.1866901
http://ssrn.com/abstract=921770
http://ssrn.com/abstract=921770
http://www.cms.hhs.gov/HIPAAGenInfo/
http://dx.doi.org/10.1145/1377836.1377867
http://dx.doi.org/10.1007/s10009-008-0087-9
http://dx.doi.org/10.1007/s10009-008-0087-9
http://dx.doi.org/10.1145/505145.505149
http://dx.doi.org/10.1145/1242572.1242664
http://dx.doi.org/10.1145/1266840.1266842
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip
http://dx.doi.org/10.1145/335169.335188
http://dx.doi.org/10.1109/ACSAC.2006.8
http://dx.doi.org/10.1109/ACSAC.2006.8
http://dx.doi.org/10.1145/507711.507714
http://dx.doi.org/10.1145/507711.507714
http://econpapers.repec.org/RePEc:bla:corgov:v:15:y:2007:i:2:p:101-111
http://econpapers.repec.org/RePEc:bla:corgov:v:15:y:2007:i:2:p:101-111

	I Introduction
	II Running Example
	III Security Policy Analysis and Management Framework
	III-A Architecture
	III-B Implementation

	IV Application
	IV-A Preliminaries
	IV-B Selecting Ranges of Log-entries
	IV-C Interactive Exploration of Policies
	IV-D Replaying Access Control Requests
	IV-E Debugging
	IV-F Policy Animation
	IV-G Discussion

	V Related Work and Conclusion
	V-A Related Work
	V-B Conclusion

@InProceedings{	 brucker.ea:framework:2011,
 author	= {Achim D. Brucker and Helmut Petritsch},
 title		= {A Framework for Managing and Analyzing Changes of Security
		 Policies},
 booktitle	= {IEEE International Symposium on Policies for Distributed
		 Systems and Networks (POLICY)},
 classification= {conference},
 areas		= {security},
 year		= {2011},
 month		= jun,
 abstract	= {Modern enterprise systems need to comply to complex
		 security policies. Due to legal regulations such as Basel
		 II or HIPAA, the enforcement of these security policies
		 needs to be carefully monitored and analyzed. The
		 monitoring of complex and often dynamic access control
		 requirements results in a vast amount of information that
		 needs to be analyzed both in case of incidents and during
		 regular audits.
		
		 We present an extensible framework for managing and
		 analyzing security policies during their whole life cycle.
		 Our framework integrates versioning of policies and
		 logfiles with policy animation, static analysis, and
		 debugging techniques. For example, this combination allows
		 for comparing different versions of security policies or
		 the replaying and animation of system traces based on
		 logfiles.},
 publisher	= {IEEE Computer Society},
 address	= {Los Alamitos, CA, USA},
 keywords	= {security policies, versioning, runtime monitoring},
 pdf		= {http://www.brucker.ch/bibliography/download/2011/brucker.ea-framework-2011.pdf},
 doi		= {10.1109/POLICY.2011.47},
 pages		= {105--112},
 isbn		= {978-0-7695-4330-7/11},
 public	= {yes},
 url		= {http://www.brucker.ch/bibliography/abstract/brucker.ea-framework-2011}
		
}

%0 Conference Proceedings
%T A Framework for Managing and Analyzing Changes of Security Policies
%A Brucker, Achim D.
%A Petritsch, Helmut
%B IEEE International Symposium on Policies for Distributed Systems and Networks (POLICY)
%D 2011
%8 jun
%I IEEE Computer Society
%C Los Alamitos, CA, USA
%@ 978-0-7695-4330-7/11
%F brucker.ea:framework:2011
%X Modern enterprise systems need to comply to complex security policies. Due to legal regulations such as Basel II or HIPAA, the enforcement of these security policies needs to be carefully monitored and analyzed. The monitoring of complex and often dynamic access control requirements results in a vast amount of information that needs to be analyzed both in case of incidents and during regular audits. We present an extensible framework for managing and analyzing security policies during their whole life cycle. Our framework integrates versioning of policies and logfiles with policy animation, static analysis, and debugging techniques. For example, this combination allows for comparing different versions of security policies or the replaying and animation of system traces based on logfiles.
%K security policies, versioning, runtime monitoring
%U http://www.brucker.ch/bibliography/abstract/brucker.ea-framework-2011
%U http://www.brucker.ch/bibliography/download/2011/brucker.ea-framework-2011.pdf
%U http://dx.doi.org/10.1109/POLICY.2011.47
%P 105-112

TY - CONF
AU - Brucker, Achim D.
AU - Petritsch, Helmut
PY - 2011/jun/
TI - A Framework for Managing and Analyzing Changes of Security Policies
BT - IEEE International Symposium on Policies for Distributed Systems and Networks (POLICY)
SP - 105
EP - 112
PB - IEEE Computer Society
CY - Los Alamitos, CA, USA
KW - security policies, versioning, runtime monitoring
N2 - Modern enterprise systems need to comply to complex security policies. Due to legal regulations such as Basel II or HIPAA, the enforcement of these security policies needs to be carefully monitored and analyzed. The monitoring of complex and often dynamic access control requirements results in a vast amount of information that needs to be analyzed both in case of incidents and during regular audits. We present an extensible framework for managing and analyzing security policies during their whole life cycle. Our framework integrates versioning of policies and logfiles with policy animation, static analysis, and debugging techniques. For example, this combination allows for comparing different versions of security policies or the replaying and animation of system traces based on logfiles.
SN - 978-0-7695-4330-7/11
UR - http://www.brucker.ch/bibliography/abstract/brucker.ea-framework-2011
L1 - http://www.brucker.ch/bibliography/download/2011/brucker.ea-framework-2011.pdf
UR - http://dx.doi.org/10.1109/POLICY.2011.47
ID - brucker.ea:framework:2011
ER -

