Encoding Object-oriented Datatypes in HOL:
Extensible Records Revisited
The HOL-OCL Expierence

Achim D. Brucker

achim@brucker.ch http://www.brucker.ch/

Isabelle Developers Workshop (IDW 2010)
Cambridge, UK, 17th June 2010

achim@brucker.ch
http://www.brucker.ch/
http://isabelle.in.tum.de/nominal/activities/idw10/idw.html

Outline

Introduction
An extensible Encoding of Object-oriented Data Models in HOL
HOL-OCL

1 Outlook and Conclusion

el Siypriiadl Formaal et

Our Vision:

Tool Supported Formal Methods for (Model-driven) Software Development

Proof

Test Validation
Obligations Harness 1
N
Model Mo(;:i(\a/l—A'fpali/'SIs Program
Transformation and veritication
ArgoUML (HOL-OCL) Cc#
+OCL
SecureUML/OGL [estie manual
or
UML/OGL Vode! Code
(XMmI) ode !
Repository Code Generation _/\
Generator
(sudsml) AC
Config
Design Model Transformation Verification and Testing and
Phase Phase Code-generation Phase Deployment Phase

him D. Brucker [Encoding Object-oriented Datatypes in HOL:

IDW 2010

Our Vision:

Tool Supported Formal Methods for (Model-driven) Software Development

Generic
SecureUML
ArgoUML-plugin

Proof

Test Validation
Obligations Harness 1
N
Model Mo(;:i(\a/l—A'fpali/'SIs Program
Transformation and veritication
ArgoUML (HOL-OCL) Cc#
+OCL
SecureUML/OGL [estie manual
or
UML/OGL Vode! Code
(XMmI) ode !
Repository Code Generation _/\
Generator
(sudsml) AC
Config
Design Model Transformation Verification and Testing and
Phase Phase

Code-generation Phase

him D. Brucker [Encoding Object-oriented Datatypes in HOL:

Deployment Phase

IDW 2010

Our Vision:

Tool Supported Formal Methods for (Model-driven) Software Development

Proof

Obligations

Code Generator
SecureUML, UML, OCL

Java, C#, Junit, XACML, USE, ...

Test Validation
Harness 1

Model Mo(;:i?/l—A'fpali/'sis Program
Transformation ang veriricalgry
ArgoUML (HOL-OCL) Cc#
+OCL
HOL-TestGen P
SecureUML/OGL est Data manual
or
UML/OGL Vode! Code
(XMmI) ode !
Repository Code ceneratcn \/\
(sudsml) Generator AC
Config
Design Model Transformation Verification and Testing and
Phase Phase Code-generation Phase Deployment Phase

him D. Brucker [Encoding Object-oriented Datatypes in HOL:

IDW 2010

Our Vision:

Tool Supported Formal Methods for (Model-driven) Software Development

Transformations:
SecureUML -> UML/OCL
UML/OCL -> UML/OCL

Proof

Test Validation
Obligations Harness 1
N
Model Mo(;:i?/l—A'fpali/'SIs Program
Transformation and veritication
ArgoUML (HOL-OCL) Cc#
+OCL
SecureUML/OGL [estie manual
or
UML/OGL Vode! Code
(XMmI) ode !
Repository Code ceneratcn \/\
Generator
(sudsml) AC
Config
Design Model Transformation Verification and Testing and
Phase Phase Code-generation Phase Deployment Phase

him D. Brucker [Encoding Object-oriented Datatypes in HOL:

IDW 2010

Our Vision:

Tool Supported Formal Methods for (Model-driven) Software Development

Methodologies:
Well-formedness checking

Proof-obligation ger
Proof Test Validation
Obligations Harness 1
N
Model Mr?c(jj(\all_rAif?ali/iSIs Program
Transformation a erificatio
ArgoUML (HOL-OCL) C#
+OCL
SecureUML/OGL [estie manual
or
UML/OGL Vode! Code
(XMmI) ode !
Repository Code ceneratcn \/\
(sudsml) Generator AC
Config
Design Model Transformation Verification and Testing and
Phase Phase Code-generation Phase Deployment Phase

him D. Brucker [Encoding Object-oriented Datatypes in HOL:

IDW 2010

Our Vision:

Tool Supported Formal Methods for (Model-driven) Software Development

HOL-OCL
formal analysis

formal verification

Proof

Test Validation

Obligations Harness 1
N
Model Mr?gsll_rAif?ali/isﬁ Program
Transformation a erificatio
ArgoUML (HOL-OCL) C#
+OCL
SecureUML/OGL [estie manual
or
UML/OGL Vode! Code
(XMmI) ode !
Repository Code ceneratcn \/\
(sudsml) Generator AC
Config
Design Model Transformation Verification and Testing and
Phase Phase Code-generation Phase Deployment Phase

him D. Brucker [Encoding Object-oriented Datatypes in HOL:

IDW 2010

Our Vision:

Tool Supported Formal Methods for (Model-driven) Software Development

HOL-TestGen
model-based unit test

ArgoUML

sequence testing

mgations

Model
Transformation

Model-Analysis
and Verification
(HOL-OCL)

HOL-TestGen

Test Validation
Harness 1
N
Program
C#
+OCL

5

SecureUML/OGL [estie manual
or
UML/OGL Vode! Code
(XMmI) ode !
Repository Code ceneratcn \/\
(sudsml) Generator AC
Config
Design Model Transformation Verification and Testing and
Phase Phase Code-generation Phase Deployment Phase

him D. Brucker [Encoding Object-oriented Datatypes in HOL:

IDW 2010

Our Vision:

Tool Supported Formal Methods for (Model-driven) Software Development

Foundations of
of an interactive theorem prover

Proof

Obligations

for object—oriented models.

Test Validation
Harness 1

Model Modd%I—A_fpali/'sis Program
Transformation ancd veritication
ArgoUML (OL=OFelL) c#
+OCL
SecureUML/OGL [estie manual
or
UML/OGL Vode! Code
(XMmI) ode !
Repository Code Generation _/\
(sudsml) Generator AC
Config
Design Model Transformation Verification and Testing and
Phase Phase Code-generation Phase Deployment Phase

him D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

el Siypriiadl Formaal et

UML/OCL in a Nutshell

= UML

Visual modeling language
Object-oriented development
Industrial tool support
OMG standard
Many diagram types, e. g.,
activity diagrams
class diagrams

m OCL

Textual extension of the UML
Allows for annotating UML
diagrams

In the context of class-diagrams:

invariants
preconditions
postconditions

context Account D\
inv: 0 <= id
\

\
\

Account

& balance:Integer
@ id:Integer

1..%
= getId():Integer laccounts
= getBalance():Integer
= deposit(a:Integer):Boolean
= withdraw(a:Integer):Boolean

\
\
\

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a
and id = id@pre

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010 4

sl Supporied] Epmael Mtihods
Developing Formals Tools for UML/OCL?

Turning UML/OCL into a formal method

A formal semantics of object-oriented data models (UML)

typed path expressions
inheritance

A formal semantics of object-oriented constraints (OCL)

a logic reasoning over path expressions
large libraries
three-valued logic

Bl And of course, we want a tool (HOL-0OCL)

a formal, machine-checked semantics for OO specifications,
an interactive proof environment for OO specifications.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

An extensible Encoding of Object-oriented Data Models in HOL

Challenges (for a shallow embedding)

m Challenge 1:
Can we find a injective, type preserving mapping of
an object-oriented language (and datatypes) into HOL
eeT — exT
(including subtyping)?

m Challenge 2:

Can we support verification in a modular way
1(i. e., no replay of proof scripts after extending specifications)?

m Challenge 3:

Can we ensure consistency of our representation?

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

sible Encoding of Object-oriented Data Models in HOL

Representing Class Types

m The “extensible records” approach

We assume a common superclass (0).
A tag type guarantees uniquenessby (Otqq := classO).

Construct class type as tuple along inheritance hierarchy:

m Advantages:
it allows for extending class types (inheritance),
subclasses are type instances of superclasses
it allows for modular proofs, i.e.,
a statement ¢(x :: (a« B)) proven for class B is still valid
class B.

m However, it has a major disadvantage:

I
A
A
= s:String

;

B

= b:Integer

after extending

modular proofs are only supported for one extension per class

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL:

IDW 2010

sible Encoding of Object-oriented Data Models in HOL

Representing Class Types

m The “extensible records” approach

We assume a common superclass (0).
A tag type guarantees uniquenessby (Otqq := classO).

Construct class type as tuple along inheritance hierarchy:

B:=

m Advantages:
it allows for extending class types (inheritance),
subclasses are type instances of superclasses
it allows for modular proofs, i.e.,
a statement ¢(x :: (a« B)) proven for class B is still valid
class B.

m However, it has a major disadvantage:

I
A
A
= s:String

;

B

= b:Integer

after extending

modular proofs are only supported for one extension per class

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL:

IDW 2010

sible Encoding of Object-oriented Data Models in HOL

Representing Class Types

m The “extensible records” approach

We assume a common superclass (0).
A tag type guarantees uniquenessby (Otqq := classO).

Construct class type as tuple along inheritance hierarchy:

B := (Oyyq x0id)

m Advantages:
it allows for extending class types (inheritance),
subclasses are type instances of superclasses
it allows for modular proofs, i.e.,
a statement ¢(x :: (a« B)) proven for class B is still valid
class B.

m However, it has a major disadvantage:

I
A
A
= s:String

;

B

= b:Integer

after extending

modular proofs are only supported for one extension per class

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL:

IDW 2010

sible Encoding of Object-oriented Data Models in HOL

Representing Class Types

m The “extensible records” approach

We assume a common superclass (0).
A tag type guarantees uniquenessby (Otqq := classO).
Construct class type as tuple along inheritance hierarchy:

B := (Oyaq x0id) x ((Atag xString)

m Advantages:
it allows for extending class types (inheritance),
subclasses are type instances of superclasses
it allows for modular proofs, i. e.,
a statement ¢(x :: (a B)) proven for class B is still valid
class B.

m However, it has a major disadvantage:
modular proofs are only supported for one extension pe

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL:

I
A
A
= s:String

;

) B

= b:Integer

after extending

r class

IDW 2010

sible Encoding of Object-oriented Data Models in HOL

Representing Class Types

m The “extensible records” approach

We assume a common superclass (0).
A tag type guarantees uniquenessby (Otqq := classO).
Construct class type as tuple along inheritance hierarchy:

B := (Oyqg x0id) x ((Atag xString) x ((Btag xInteger)

m Advantages:
it allows for extending class types (inheritance),
subclasses are type instances of superclasses
it allows for modular proofs, i. e.,
a statement ¢(x :: (a« B)) proven for class B is still valid
class B.

m However, it has a major disadvantage:
modular proofs are only supported for one extension pe

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL:

I
A
A
= s:String

;

) =

= b:Integer

after extending

r class

IDW 2010

sible Encoding of Object-oriented Data Models in HOL

Representing Class Types

m The “extensible records” approach

We assume a common superclass (0).
A tag type guarantees uniquenessby (Otqq := classO).
Construct class type as tuple along inheritance hierarchy:

a B = (O x0id) x ((Atag xString) x ((Btag xInteger) x a

m Advantages:
it allows for extending class types (inheritance),
subclasses are type instances of superclasses
it allows for modular proofs, i. e.,
a statement ¢(x :: (a« B)) proven for class B is still valid
class B.

m However, it has a major disadvantage:
modular proofs are only supported for one extension pe

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL:

I
A
A
= s:String

;

) =

= b:Integer

o

(o4

after extending

r class

IDW 2010

An extensible Encoding of Object-oriented Data Models in HOL

Idea: A General Universe Type

A universe type representing all classes of a class model
m supports modular proofs with arbitrary extensions

m provides a formalization of a extensible typed object store

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

sible Encoding of Object-oriented Data Models in Hi

An Extensible Object Store

g = Ulaoy = O xa]

Achim D. B [Encoding Object-oriented Datatypes in HOL: IDW 2010

An extensible Encoding of Object-oriented Data Models in HOL

An Extensible Object Store

% Ueny = O x o)

LE
N
A

Achim D. Bru [Encoding Object-oriented Datatypes in HOL: IDW 2010

An extensible Encoding of Object-oriented Data Models in HOL

An Extensible Object Store

Ulaoy = 0 xla

=
(=]

’ZJI(D‘A)BD) =0x (Axal+p%),

[l

>

u]
)]
I
"
it

Achim D. Bru [Encoding Object-oriented Datatypes in HOL: IDW 2010 9

An extensible Encoding of Object-oriented Data Models in HOL

An Extensible Object Store

Ulaoy = 0 xla

’ZJI(D‘A)BD) =0 x(Ax

>l
=
=

A
B Uln o pry = 0 (Ax

=+

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL:

+8°).

+ B

An extensible Encoding of Object-oriented Data Models in HOL

An Extensible Object Store

’U‘()ao) =0xal

U =0

>l

A
B fu%aa’ﬁu,ﬁ,«) =0x (A x

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL:

+8°).

+ B

An extensible Encoding of Object-oriented Data Models in HOL

An Extensible Object Store

’U‘()ao) =0xal

U =0

>l

A
B fu%aa’ﬁu,ﬁ,«) =0x (A x

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL:

+ B

U o e po gy = O % (Ax (Bl + (Cxal +), + f°).

An extensible Encoding of Object-oriented Data Models in HOL

An Extensible Object Store

Ulaoy = 0 xla

Ui oy = O < (Ax e+ B
ﬁA U?

\
N
gy = 0 % (4« (B +).
3
Ui ac.po,pay

:OX(AX(BXOCf+(CXle+BA))L+ﬁO)l
(Z’l:zaB’aC’lgU’ﬁA) < (Z’[%‘xB’ﬂU’ﬁA) < (Lll(aA,ﬁO) < (u(()a“)

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL:

[m]

(=3

IDW 2010

An extensible Encoding of Object-oriented Data Models in HOL

Merging Universes

u: [\ (e

[I=H~1T=]

Non-conflicting Merges

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL:

IDW 2010

10

An extensible Encoding of Object-oriented Data Models in HOL

Merging Universes

u: [\ (e

[=H=11l=]

Non-conflicting Merges

5

[¢

I
; 4
- <O [EE

Conflicting Merges

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

10

An extensible Encoding of Object-oriented Data Models in HOL

Operations Accessing the Object Store

m injections

mko o =1Inlo with type a0 fl,[go
m projections
getou=u with type U’y — a0
m type casts
Ajo] = geto o mky with type a® A > (A x a’ + g°) 0
O[a] = geta omko with type (A x a’ + /30) 0> atA
m.

All definitions are generated automatically

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

An extensible Encoding of Object-oriented Data Models in HOL

Does This Really Model Object-orientation?

For each UML model, we have to show several properties:

m subclasses are of the superclasses kind:

% isTypeg self
I isKindy self
= siString| w “re-casting’™:
Z% isTypeg self
B
= b:Integer self[A] [B] FLA ISTYPCB (Self[A] [B] [A])

®m monotonicity of invariants, ...

All rules are derived automatically

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

An extensible Encoding of Object-oriented Data Models in HOL

This is only the beginning ...

m Type-safety of “object-type accessors” needs further processing.
m Encoding invariants requires (co-)-inductive definitions.

m Solution: encoding based on three levels:

weakly typed data types
strongly typed data types (and support for operations)
constrained data modes

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

An extensible Encoding of Object-oriented Data Models in HOL

Encoding Attribute Accessors

Assume a class Node with an attribute next:

Unsafe access (reference, value, or 1):
self. next'”) = (fstosnd o snd o fst) "base self”
Type-safe access (typed object, value, or 1):
£()

self.next) =) . 8 Node ifo(self. next(®)) =,
1 otherwise.

B Semantically-safe access (object satisfying invariant, value, or 1):

self . next? =\ ¢ self next)if o - Sfelf next® eRnode
otherwise.

where £y,4. is the (co-) inductively defined characteristic kind set of class
Node.
Encoding Object-oriented Datatypes in HOL: IDW 2010 14

An extensible Encoding of Object-oriented Data Models in HOL

An multi-level object-oriented datatype-package

) New Datatypes

=5 Object store ocL Datatypes
(universe) (library)
Extensible Dit}ixt[}}pes
Object St with Un-
yect Store defindness
stk ' '
% unction: aption Objectwith

ocL Formulae

Operations

Object Store with Three-valued
Method

. Logic
Invocation

An extensible Encoding of Object-oriented Data Models in HOL

Case Studies (Datatype Package)

m Importing object-oriented models:

Invoice eBank Company R&L

classes 3 8 7 13
specification (lines) 149 114 210 520
generated theorems 647 1444 1312 2516
time (in seconds) 12 42 49 136

m The core library takes about 20 minutes (1200 secconds) to built

m Extensionality saves about 20 minutes on each import

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

An extensible Encoding of Object-oriented Data Models in HOL

Challenges (Revisited)

m Challenge 1: Can we find a injective, type preserving mapping of an
object-oriented language (and datatypes) into HOL?
Yes, our encoding is even bijective.

m Challenge 2: Can we support verification in a modular way (i. e., no replay
of proof scripts after extending specifications)?
Yes, a specific form of extensionality can be supported.

m Challenge 3: Can we ensure consistency of our representation?
Yes, by using a conservative embedding (deriving all rules).

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

HOL-OCL

B HOL-OCL provides:
a formal, machine-checked semantics for OO specifications,
an interactive proof environment for OO specifications.

® HOL-OCL is integrated into a toolchain providing:

extended well-formedness checking,

proof-obligation generation,

methodology support for UML/OCL,

a transformation framework (including PO generation),
code generators,

support for SecureUML.

B HOL-OCL is publicly available:
http://www.brucker.ch/projects/hol-ocl/.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

http://www.brucker.ch/projects/hol-ocl/

The HOL-OCL User Interface

File Edit Opt\ons Buf'fers Tools Preview LaTeX Command X-Symbol Help

=@ EE YN =
\begln{small}

“1stinput st ing[style=oc|] {company .ocl }
end {smal |}

@ E

“pegin{figura}
scentering
winc|udegraphics[scale= . 6] {company }
weaption{é company Class Diagramm' |abel {Tig:company_classdiag)}
send{igurell
o

load_xmi "company_ocl . xmi"
thm Company.Person. inv. inv_19_def

lemma "F Company .Ferson. inv self — Company.Person. inv. inv_19 el "
apply (simp acd: Company . Person. inv_def
company - Person. inv. inv_19_def)

80% (45,14y SWN-27978 (Isar script [PDFLaTel/F] MMM ¥5:holocl/s Scriptingi-——-6:35 2.39
\< sync>thm Compary . Person. iny. inv_19_defi \<“swnci
Person. inv.inv19 =
AzelT. % p2 e OclAllInstances
=elf « (% pl e OclAl [Instances
self o ({p1 "¢° p2) —
(Company . Person. |astMame pl *<>° Company.Person. lastName p2)y [

EJ a0l (auto)

|-1:—- sresponses AT (6,101} (response)--—-6:35 2.39 Mail

Achim D. B i [Encoding Object-oriented Datatypes in HOL: IDW 2010

The HOL-OCL High-level Language

The HOL-OCL proof language is an extension of Isabelle’s Isar language:
m importing UML/OCL:

import_model "SimpleChair.zargo" "AbstractSimpleChair.ocl"
include_only "AbstractSimpleChair"

m check well-formedness and generate proof obligations for refinement:

analyze_consistency [data_refinement] "AbstractSimpleChair"

m starting a proof for a generated proof obligation:

po "AbstractSimpleChair.findRole_enabled"

m generating code:

generate_code "java"

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

20

The HOL-OCL Architecture

HOL-OCL User Interface (extended Proof General)

| Repository | | WE-Checks |

PO-Manager

| Code-Gen. | |Model—Trans.|

Isabelle/HOL

| Standard ML (PolyML, sml/NJ)

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

21

Outlook and Conclusion

The HOL-OCL Architecture (Next Generation)

UML/OCL HOL-OCL
Modelling * Jnterface
Tool
Encoder
Repository
Model-Trans.
Code UML/OCL
Generator WE-Checks
Scala-Interface SML-Interface
Isabelle/HOL | Lo-Encoder || PO-Manager

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

Outlook and Conclusion

Conclusion

m Technical challenges:

parsing and typing (!) concrete syntax can be slow

debugging simplifier setups is painful

defining new X-Symbol syntax is quite limited (compared to TEX)
Best practice for communicating with external tools is missing

m Conclusion

Isabelle is a framework for developing formal tools
(even for tools where Isabelle not seen by the end-user)
The Scala-Layer enables many new features, e.g.,

Integration of new interaction paradigms

Isabelle can be (smoothly) integrated with external tools and libraries

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

23

Thank you for your attention!

Any questions or remaks?

Bibliography I

[Achim D. Brucker, Jirgen Doser, and Burkhart Wolff.
An MDA framework supporting OCL.

Electronic Communications of the EASST, 5, 2006.

8 Achim D. Brucker.
An Interactive Proof Environment for Object-oriented Specifications.
PhD thesis, ETH Zurich, March 2007.
ETH Dissertation No. 17097.

@ Achim D. Brucker and Burkhart Wolff.
HOL-OCL — A Formal Proof Environment for UML/OCL.

In José Fiadeiro and Paola Inverardi, editors, Fundamental Approaches to
Software Engineering (FASE08), number 4961 in Lecture Notes in Computer
Science, pages 97-100. Springer-Verlag, 2008.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010 25

Bibliography II

@ Achim D. Brucker and Burkhart Wolff.
An extensible encoding of object-oriented data models in HOL.

Journal of Automated Reasoning, 41:219-249, 2008.

@ Achim D. Brucker and Burkhart Wolff.
Extensible universes for object-oriented data models.

In Jan Vitek, editor, ECOOP 2008 - Object-Oriented Programming, number 5142
in Lecture Notes in Computer Science, pages 438-462. Springer-Verlag, 2008.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010 26

Part1

Appendix

The HOL-OCL Architecture (Details)
The Encoder

The model encoder is the main interface between sugsml and the Isabelle
based part of HOL-OCL. The encoder
m declarers HOL types for the classifiers of the model,
m encodes
type-casts,
attribute accessors, and
dynamic type and kind tests implicitly declared in the imported data
model,
m encodes the OCL specification, i. e.,
class invariants
operation specifications
and combines it with the core data model, and

m proves (automatically) methodology and analysis independent properties
of the model.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010 28

The HOL-OCL Architecture (Details)

The Library

The HOL-OcCL library
m formalizes the built-in operations of UML/OCL,
m comprises over 10 000 definitions and theorems,

m build the basis for new, OCL specific, proof procedures,

m provides proof support for (formal) development methodologies.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

29

The HOL-OCL Architecture (Details)

Tactics (Proof Procedures)

m OCL, as logic, is quite different from HOL (e. g., three-valuedness)
m Major Isabelle proof procedures, like simp and auto,

cannot handle OCL efficiently.
m HOL-ocCL provides several UML/OCL specific proof procedures:

embedding specific tactics (e. g., unfolding a certain level)
a OCL specific context-rewriter
a OCL specific tableaux-prover

These language specific variants increase the degree of proof for OCL.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010 30

The HOL-OCL Architecture (Details) sugsml

sugsml — Overview

sugsml is a UML/OCL (and SecureUML) model repository providing

m a database for syntactic elements of UML core, namely class models and
state machines as well as OCL expressions.

m support for SecureUML.

m import of UML/OCL models in different formats:

XMI and ArgoUML (class models and state machines)
OCL (plain text files)
USE (plain text files describing class models with OCL annotations)

a template-based code generator (export) mechanism.
an integrated framework for model transformations.

a framework for checking well-formedness conditions.

a framework for generating proof obligations.

an interface to HOL-OCL (encoder, po manager).

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010 31

The HOL-OCL Architecture (Details) sugsml

sugsml — Code Generators

sugsml provides a template-based code generator for
m Java, supporting
class models and state machines

OCL runtime enforcement
SecureUML

m C#, supporting

class models and state machines
SecureUML

m USE

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

The HOL-OCL Architecture (Details) sugsml

sugsml — Model Transformations

sugsml provides a framework for model transformation that
m supports the generation of proof obligations
m can be programmed in SML.

Currently, the following transformations are provided:

® a family of semantic preserving transformations for converting
associations (e. g., n-ary into binary ones)

m a transformation from SecureUML/ComponentUML to UML/OCL.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010 33

sugsml
sugsml — Well-formedness Checks

su4sml provides an framework for extended well-formedness checking:
m Checks if a given model satisfies certain syntactic constraints,
m Allows for defining dependencies between different checks

m Examples for well-formedness checks are:

restricting the inheritance depth
restringing the use of private class members
checking class visibilities with respect to member visibilities

m Can be easily extended (at runtime).

Is integrated with the generation of proof obligations.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

The HOL-OCL Architecture (Details) sugsml

sugsml - Proof Obligation Generator

sugsml provides an framework for proof obligation generation:

m Generates proof obligation in OCL plus minimal meta-language.

® Only minimal meta-language necessary:

Validity: = _, _E _
Meta level quantifiers: 3_. _,3_. _
Meta level logical connectives: _v _, _A

-

S

m Examples for proof obligations are:
(semantical) model consistency
Liskov’s substitution principle
refinement conditions

Can be easily extended (at runtime).

Builds, together with well-formedness checking, the basis for
tool-supported methodologies.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

35

Outline

@ Mechanized Support for Model Analysis Methods

Mechanized Support for Model Analysis Methods

Motivation

Observation:
m UML/OCL is a generic modeling language:

usually, only a sub-set of UML is used and
there is no standard UML-based development process.

m Successful usage of UML usually comprises

a well-defined development process and
tools that integrate into the development process.

Conclusion:

m Formal methods for UML-based development should

support the local UML development methodologies and
integrate smoothly into the local toolchain.

A toolchain for formal methods should provide
tool-support for methodologies.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010 37

IV BN P2 BN IR T B Y (IO WIS TRV 3l Well-formedness Checking: Enforcing Syntactical Requirements

Well-formedness of Models

Well-formedness Checking
m Enforce syntactical restriction on (valid) UML/OCL models.
m Ensure a minimal quality of models.

m Can be easily supported by automated tools.

Example

m There should be at maximum five inheritance levels.

m The Specification of public operations may only refer to public class
members.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

IV ENIPZS NI IR T @ Y (O WG RIS TRV Sl Proof Obligations: Enforcing Syntactical Requirements

Proof Obligations for Models

Proof Obligation Generation
m Enforce semantical restriction on (valid) UML/OCL models.
m Build the basis for formal development methodologies.

m Require formal tools (theorem prover, model checker, etc).

m Liskov’s substitution principle.

m Model consistency

m Refinement.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010 39

IV ENIPZS NI IR T @ Y (O WG RIS TRV Sl Proof Obligations: Enforcing Syntactical Requirements

Proof Obligations: Liskov’s Substitution Principle

Liskov substitution principle

Let g(x) be a property provable about objects x of type T. Then q(y) should
be true for objects y of type S where S is a subtype of T.

For constraint languages, like OCL, this boils down to:
m pre-conditions of overridden methods must be weaker.
m post-conditions of overridden methods must be stronger.
Which can formally expressed as implication:
m Weakening the pre-condition:

sub
op pre op pre

m Strengthening the post-condition:

sub
Oppost - Oppost

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

Y6 NP2 BN T IR T Y (WG B VS TRV 3 Il Proof Obligations: Enforcing Syntactical Requirements

Proof Obligations: Liskov’s Substitution Principle

Rectangle
context Rectangle::setWidth(w:Integer):0clVoid ﬁ & width:Integer

pre: w >= 0 -{& height:Integer
post: self.width = w setHeight (h:Integer):0clVoid
= setWidth(w:Integer):0clVoid

7

context Square::setWidth(w:Integer):0clVoid D§T SUlalic

pre: w >= 0 . setHeight (h:Integer):0clVoid
post: self.width = w and self.height=w = setWidth(w:Integer):0clVoid

m Weakening the pre-condition:

(w >= 8) — (w >= 0)

m Strengthening the post-condition:

(self.width = w and self.height = w) — (self.width = w)

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010 41

Mechanized Support for Model Analysis M O Formal Methodologies for UML/OCL

Methodology

A tool-supported methodology should

m integrate into existing toolchains and processes,
m provide a unified approach, integrating ,

syntactic requirements (well-formedness checks),
generation of proof obligations,
means for verification (proving) or validation, and of course

m all phases should be supported by tools.

A package-based object-oriented refinement methodology.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010 42

Mechanized Support for Model Analy / S Formal Methodologies for UML/OCL

Refinement — Motivation

Support top-down development from an abstract model to
a more concrete one.

m We start with an abstract transition system

SYSabs = (Uabs’ initabs, Opabs)

m We refine each abstract operation op
to a more concrete one: op_ .
m Resulting in a more concrete transition system

SYSconc = (Ucono initconc, Opconc)
m Such refinements can be chained:

SYS; ~r SYS, ~r +er ~ SYS,

E.g., from an abstract model to one that supports code generation.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

43

IV ENTPZS BN ST Y I E WG RS TRVl Formal Methodologies for UML/OCL

Refinement: Well-formedness

If package B refines a package A, then
one should be able to
substitute every usage of package A with package B.

For each public class c of A, B must provide a corresponding public class

c.

Types of public attributes and public operations (arguments and return
type) must be either basic datatypes or public classes.

For each public class ¢ of A, we require that the corresponding class ¢’ of
B provides at least

public attributes with the same name and
public operations with the same name.

B The types of corresponding and attributes and operations are compatible.

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

44

IV ENTPZS BN ST Y I E WG RS TRVl Formal Methodologies for UML/OCL

Refinement: Proof Obligations — Consistency

A transition system is consistent if:

m The set of initial states is non-empty, i. e.,
do. o € init

m The state invariant is satisfiable, i. e.,
the conjunction of all invariants is invariant-consistent:

do. o EinviAdo. o Einvy A Ado. 0 Einv,

m All operations op are implementable, i. e.,
for each satistying pre-state there exists a satisfying post-state:

V Opre € 2, 5€lf, i1y ..., . Opre pre,, —

3 Opost € Z, result. (Opre, Opost) F post,,

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010 45

IV ENTPZS BN ST Y I E WG RS TRVl Formal Methodologies for UML/OCL

Refinement: Proof Obligations — Implements

m Given an abstraction relation R : P(0,ps X 0conc)
relating a concrete state S and an abstract states T.

m A forward refinement S =X¢ T = po, (S, R, T) A po,(S, R, T)
requires two proof obligations po, and po,.

m Preserve Implementability (po,):

po,(S,R, T) = Vo, €pre(S),o. € V.
(04,0.) € R —> o, e pre(T)

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010 46

IV ENTPZS BN ST Y I E WG RS TRVl Formal Methodologies for UML/OCL

Refinement: Proof Obligations — Refines

m Given an abstraction relation R : P(0,ps X 0conc)
relating a concrete state S and an abstract states T.

m A forward refinement S =X¢ T = po, (S, R, T) A po,(S, R, T)
requires two proof obligations po, and po,.

m Refinement (po,):

VAR
0Pg ror N
___________ ™ Jq
\\ ’

R = R

P0,(S,R,T) =Vo, cpre(S),o. € V. ocr. (04,0,) € R

Ao, al)Ey T—> 30l € V. (04,0,) Epr SA (04,00) €R

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

47

IV ENTPZS BN ST Y I E WG RS TRVl Formal Methodologies for UML/OCL

Refinement Example: Abstract Model

AbstractSimpleChairl

Person
= name:String

0..1|session
Session

= name:String

= findRole(p:Person) :Role [speaker | [Chair
I] I]

L 1 L 1

context Session::findRole(person:Person):Role
pre: self.participates.person->includes(person)
post: result=self.participants->one(p:Participant |
p.person = person).role
and self.participants = self.participants@pre
and self.name = self.name@pre

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

48

IV ENTPZS BN ST Y I E WG RS TRVl Formal Methodologies for UML/OCL

Refinement Example: Concrete Model

ConcreteSimpleChair

{ordered}
Person el
= name:String 0. . x——]

0..%|sessions

Hearer CoCair
{ordered} é §<}—1{ !

0..*|participants

Session
- 2 i 0..%
= name:String -
sessions

= findRole(p:Person):Role [Speaker | [Chair |
1 [
]

1
L 1

context Session::findRole(person:Person):Role
pre: self.participants->includes(peson)
post: result = roles.at(participants.index0f(p))

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

49

Mechanized Support for Model Analysis Methods

Formal Methodologies for UML/OCL

Refinement Example: Theory Sketch

theory SimpleChairRefinement imports OCL_methodology begin
import_model "SimpleChair.zargo" "SimpleChair.ocl"

refine "AbstractSimpleChair" "ConcreteSimpleChair"

po Refinement.findRole

Vo epre S,0’ € pre T. Rgession 0 0 self self’
Vo epre S,0€pre T. Rperson 0 a’ pp’
Vo epre S,0 € pre T. Ry, 0 0’ result result’

AbstractSimpleChair. Session. findRole self p result
cRs ConcreteSimpleChair. Session. findRole self’ p’ result’

apply(...)
discharged

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

Outline

Applications of HOL-OCL

Simple Consistency Analysis I

Person
= age:Integer

person

driversLicense|0..1

DriversLicense

@ licenseClass:String

context Person
inv AllPersonsWithDriversLicenseAdult:
self.driversLicense->notEmpty ()
implies self.age > 17

inv AllLicenseOwnersAdult:

context DriversLicense
person.age > 17

Figure: A simple model of vehicles and licenses

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010 52

Simple Consistency Analysis II

lemma
assumes "7 = (Vehicles.Person.driversLicense(
Vehicles.DriversLicense.person self)) . IsDefined ()"
and "7 = (Vehicles.Person.age
(Vehicles.DriversLicense.person self)) . IsDefined()
shows "7 = Person.inv.AllPersonsWithDriversLicense Adult (
Vehicles.DriversLicense.person self)
— 7 = DriversLicense.inv.AllLicenseOwnersAdult self"
apply(auto elim!: OclImpliesE)
apply(cut_tac prems)
apply(auto simp: inv.AllPersonsWithDriversLicenseAdult_def
inv.AllLicenseOwnersAdult_def
elim!: OcllmpliesE SingletonSetDefined)

"

done

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

VISR R (ORI [iskov’s Substitution Principle

Liskov’s Substitution Principle I

context A::m(p:Integer):Integer
pre: p > 0
post: result > 0

context A::m(p:Integer):Integer
pre: p >= 0
post: result = pxp + 5

-- The following constraints overrides the specification for
-- m(p:Integer):Integer that was originally defined in
-- class A, i.e., C is a subclass of A.
context C::m(p:Integer):Integer
pre: p >=20
post: result > 1 and result = px*xp+5

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010 54

VISR R (ORI [iskov’s Substitution Principle

Liskov’s Substitution Principle II

import_model "overriding.zargo" "overriding.ocl"

generate_po_liskov "pre"
generate_po_liskov "post”

po "overriding. OCL_liskov—po_lIsk_pre-1"
apply(simp add: A.m_Integer_Integer.pre1_def
A.m_Integer_Integer.pre1.pre_o_def
C.m_Integer_Integer.pre1_def
C.m_Integer_Integer.pre1.pre_o_def
A.m_Integer_Integer.pre1.pre_1_def)
apply(ocl_auto)
discharged

Achim D. Brucker [Encoding Object-oriented Datatypes in HOL: IDW 2010

	Introduction
	Tool Supported Formal Methods

	An extensible Encoding of Object-oriented Data Models in HOL
	HOL-OCL
	Outlook and Conclusion
	Bibliography
	Appendix
	The HOL-OCL Architecture (Details)
	su4sml

	Mechanized Support for Model Analysis Methods
	Well-formedness Checking: Enforcing Syntactical Requirements
	Proof Obligations: Enforcing Syntactical Requirements
	Formal Methodologies for UML/OCL

	Applications of HOL-OCL
	Model Consistency and Wellformedness
	Consistency Analysis
	Liskov's Substitution Principle

