
c© 2010 ACM. This is the author’s version of the work. It is
posted at http://www.brucker.ch/bibliography/abstract/
kohler.ea-caching-2010 by permission of ACM for your personal
use. Not for redistribution. The definitive version was published in Inter-
national Workshop on Security Measurements and Metrics
(MetriSec), pp. 1–8, 2010, doi: 10.1145/1853919.1853930.

Access Control Caching Strategies

An Empirical Evaluation

Mathias Kohler
SAP Research

Vincenz-Priessnitz-Str. 1
76131 Karlsruhe

Germany
mathias.kohler@sap.com

Achim D. Brucker
SAP Research

Vincenz-Priessnitz-Str. 1
76131 Karlsruhe

Germany
achim.brucker@sap.com

ABSTRACT
Modern enterprise systems comprise a fine-grained enforce-
ment of complex access control policies. Consequently, the
efficient evaluation of security policies is a significant fac-
tor for the overall system performance. Moreover, modern
enterprise systems are inherently based on process and work-
flow models. These models enable new approaches for im-
proving the performance of security evaluations.

Caching is widely used for improving the performance and
the reliability of systems. The dynamic nature of today’s
workflow systems, both in terms of changing workflows and
in terms of dynamic security policies impose particular chal-
lenges on the caching of access control decisions.

We present a caching strategy that exploits business pro-
cess models for avoiding cache misses. Moreover, we provide
a detailed performance analysis of different caching strate-
gies for static and dynamic aspects of access control policies,
providing the required metrics for informed design decisions.

Categories and Subject Descriptors
D.4.6 [Software]: Operating Systems—Security and Pro-
tection

General Terms
Security, Performance, Access Control

Keywords
Business Process Security, Access Control, Caching

1. INTRODUCTION
Modern business process-driven enterprise systems, e. g.,

for enterprise resource planning (ERP) or customer relation-
ship management (CRM), comprise, on different levels, a
large number of access control enforcement points (PEPs).

.

As such, the time needed for evaluating access control deci-
sions may significantly influence a user’s experience in using
such systems. While delays of 100 ms are perceived as a
minor interruption, delays of more than one second signifi-
cantly impact on the flow of thoughts [16]. State of the art
industrial workflow systems execute hundreds of thousands
of business process tasks in parallel. Modern enterprise sys-
tems are inherently based on process and workflow mod-
els. These model-centric systems enable new approaches for
caching strategies improving the performance of, e. g., secu-
rity evaluations.

Caching access control decisions is one way of increasing
the system performance and, thus, minimizing the delays
that users observe. There is a wealth of literature discussing
both generic (e. g., [5, 11, 15]), i. e., independent of the appli-
cation area, and access control specific (e. g., [2, 4, 6, 12, 20])
caching strategies. None of them, however, makes use of
the underlying process and workflow models. ProActive
Caching [13, 14], in contrast, is to our knowledge the first
workflow specific caching strategy which exploits the busi-
ness process and workflow models for avoiding cache misses.

Metrics are a prerequisite for comparing different caching
strategies and, thus, for allowing system designers to choose
the optimal solution for a specific system. Both, the per-
formance and the cache size, in relation to different process
types and security policy types, provide metrics for com-
paring access control caching strategies. In this paper, we
present and analyze ProActive Caching according to per-
formance improvements and provide a detailed comparison
with other approaches for caching role-based and dynamic
access control decisions in business process-driven systems.
In particular, we compare generic caching strategies against
caching strategies developed to specifically cache access con-
trol decisions, i. e., SAAMRBAC and ProActive Caching.
SAAMRBAC [20] is a caching strategy developed for systems
which rely on role-based access control (RBAC) [17]. More-
over, we present a novel combination of ProActive Caching
with the other caching strategies.

Our contributions are three-fold: Firstly, we analyze and
present the performance tests for several access control
caching strategies. Secondly, we present a novel, two-leveled
caching strategy combining existing caching strategies for
dynamic access control policies with strategies for static ac-
cess control policies. Thirdly, we present a generic caching
architecture for caching access control decisions in business
process-driven systems, which is well suited for performing
above mentioned performance measurements.

http://www.brucker.ch/bibliography/abstract/kohler.ea-caching-2010
http://www.brucker.ch/bibliography/abstract/kohler.ea-caching-2010
http://dx.doi.org/10.1145/1853919.1853930
http://www.makohler.de/
mailto:"Mathias Kohler" <mathias.kohler@sap.com>
http://www.brucker.ch/
mailto:"Achim D. Brucker" <achim.brucker@sap.com>

Request
Travel

Approve
Travel

Approve
Budget

Notify
RequestorSoD3

SoD1

SoD2

Staff

Manager

Manager

Figure 1: A simple travel approval process

Figure 2: An exemplary General Worklist (GWL).

2. PROCESS EXECUTION
Modern enterprise systems are usually process-driven,

i. e., the behavior of the system is based on executing pro-
cess models by a workflow engine. A workflow engine, e. g.,
JBoss jBPM [18], executes processes based on their abstract
model. Fig. 1 illustrates a simple example of a process for
approving travel requests: a staff member may issue a travel
request, which needs to be approved by her manager and a
manager approving the travel budget. Afterwards, the re-
questing user is notified if her request is granted or not. The
execution of a task may be user-centric or automatic. In the
later case, the system executes a task without user interac-
tion; in the former case, a human is responsible for executing
a task, i. e., the user has to claim the task to work it off.

The General Worklist (GWL), also called Universal
Worklist (UWL), is the main interaction point for user-
centric process execution. Fig. 2 shows a GWL presenting
the list of tasks to the users from which she selects the tasks
she is able to claim. Usually, a user may only claim a small
fraction of all tasks available in the system. Tasks may not
be claimable based on a lack of required access rights. For in-
stance, assume a system allowing for enforcing access control
restrictions based on both, a hierarchical role-based access
control (RBAC) [17] model and dynamic separation of duty
requirements (DSoD). RBAC allows to specify roles (i. e.,
groups of users) that are allowed to execute (claim) a task.
We assume two roles “Staff” and “Manager” whereas every
“Manager” is also a member of the role “Staff.” Thus, in our
example (see Fig. 1), every member of the staff can issue a
travel request, but only managers can approve them. In fact,
each travel request needs to be approved by two managers,
one of them taking the responsibility for the budget. Of
course, we want to ensure that no user is able to approve his
own travel requests. This requires that the requesting user
and both approving managers are pairwise different. The
evaluation whether a user may perform one of the approval
tasks must be evaluated during runtime and depends on the
tasks the user already performed.

Dynamic access control constraints require that the abil-
ity of a user to claim a task needs to be checked for every
task each time the GWL is displayed—as the context en-

Cache
for

Access Control
Decisions

Business
Object
Layer

User
Interface
Layer

Business
Layer

Figure 3: Process-driven systems

abling a user claiming it might have changed since she en-
tered the GWL the last time. The number of tasks in the
GWL mainly depends on the number of process instances
running in the system. If 300 process instances are active,
each of them having at least one but possibly multiple active
tasks would result in more than 300 active task instances.
If only 30% of them are in a status ready to be assigned,
meaning they would show up in the GWL, access control
checks for about 100 tasks must be performed every time
a worklist is displayed for a user. An access control check
requires about 20 ms to 40 ms which results in a delay of two
to four seconds every time the GWL is displayed.

3. AN AC CACHING ARCHITECTURE
Modern enterprise systems are multi-layered comprising a

user interface (UI) layer, a business layer, and a business ob-
ject layer (see Fig. 3). A business process management sys-
tem (BPMS) links all three layers; within service-oriented
architectures, however, all of them are directly accessible.
Hence, during process execution, access control takes place
at various layers. The UI layer contains the GWL and real-
izes the above described access checks for displaying a work-
list. The business layer is responsible for process and task
management. Independent from the GWL, it must check
user requests according to process and task executions. The
business object layer provides encapsulated functionality to
back-end systems using business objects. At this level it
must be checked, whether a user is allowed to access a re-
spective business object.

In large enterprise systems access control enforcement usu-
ally follows the request-response paradigm: a Policy Deci-
sion Point (PDP) answers the access control requests from
one or several Policy Enforcement Points (PEP) which in
turn enforce these access decisions within the BPMS. Given
the three layers, each of them may contain one or more PEPs
enforcing decisions from the PDP.

We extend this standard architecture for enterprise sys-
tems with a caching component. This component caches
access control decisions issued by the PDP for accelerating
the evaluation of future access requests. Thus, the caching
component acts as a proxy between the different PEPs and
the PDP. Furthermore, the caching component may issue
access requests to the PDP on its own discretion to realize
ProActive Caching. This architecture does not depend on
the implemented caching strategy: generic caching strate-
gies (e. g., [5, 11, 15]) can be as easily integrated as access
control specific ones (e. g., [2, 4, 6, 12, 14, 20]).

4. PROACTIVE CACHING
The core idea of ProActive Caching (PAC) [13, 14] is to

improve the system performance, especially for user-centric
tasks, by exploiting the knowledge about possible system
behavior (e. g., process and workflow models).

The objective of PAC is to optimize the availability of
cache entries by anticipating which access control request
evaluations are required during the execution of a business
process. This allows us to pre-evaluate access requests and
store the respective access decisions such that they are avail-
able when needed and, thus, even first-time queries can be
answered from the cache. In its essence, PAC uses the pro-
cess and workflow models to anticipate and pre-evaluate all
access control requests occurring during the execution of a
business process and store the respective access decisions
in a cache (The heuristics for updating cache entries are
described in [14].). Recall our travel approval process (see
Fig. 1) and assume that Alice is requesting a travel (i. e., she
claims an instance of the task “Request Travel”). In this sit-
uation, we can already pre-evaluate, for all potential users,
access requests for the two immediate upcoming approval
tasks, i. e., “Approve Travel” and “Approve Budget.” Recall,
opening the GWL requires access checks for all available
tasks in the system. If a manager Bob accesses the GWL
to claim “Approve Travel,” the respective access decisions for
showing the tasks he may claim are already available. This
reduces the time for displaying the worklist from several sec-
onds to a few hundred milliseconds.

Furthermore, PAC enables to cache access decisions based
on policy constraints which rely on dynamic context infor-
mation (e. g., time of day, execution history). The evaluation
of dynamic constraints (e. g., DSoD) depends on the current
system state, i. e., in such scenarios the PDP is not stateless.
The problem with cached access decisions based on dynamic
constraints is that they may become invalid over time. This
means the same access request evaluation might have a dif-
ferent result if the context information changed in between
the two requests, making already cached access decisions in-
valid and obsolete. Overall, the update strategies of PAC
ensure (see [14] for details) that, at any time, all cached ac-
cess control entries are valid with respect to both the active
access control policy and current system state.

In our example, Bob may not perform both approval tasks.
Hence, if Bob already performed “Approve Budget,” any
cached access decision granting Bob to perform the second
approval task “Approve Travel” becomes invalid. ProActive
Caching deals with invalid decisions by constantly monitor-
ing the status of the BPMS and revoking or updating them
pro-actively if necessary. With the assignment of Bob to
“Approve Budget” it is clear all function calls on business ob-
jects to execute the task will be done on Bob’s behalf and re-
sponsibility. Hence, with the assignment, all access requests
for function calls on the business objects are pre-evaluated
such that they are available upon their request.

5. PROCESS EXECUTION CACHING

5.1 A Classification of Caching Approaches
Caching approaches for business process-driven systems

can be categorized into: 1. strategies that are optimized for
a specific caching domain (e. g., caching of access control de-
cisions) versus strategies that are designed for caching arbi-
trary data and 2. strategies that are optimized for workflow

g
en

er
ic

sp
ec

ifi
c

a
cc

es
s

co
n
tr

o
l

m
o
d
el

generic specific
workflow and process model

SC

PACSAAM hybrid SAAM

hybrid SC

Figure 4: A taxonomy of caching approaches

ProActive Cache

Static Cache

Access Request Access Decision

Policy Decision

Point

1
.
L

e
v

e
l

2
.
L

e
v

e
l

Stores

Dynamic Access Decisions

upon Events

Stores

Static Access Decisions

upon Occurence

Figure 5: A multi-leveled caching architecture

management systems (i. e., inherently exploiting process or
workflow models) versus strategies that are designed for ar-
bitrary systems. In this paper, we will discuss the following
basic caching approaches for caching access control decisions
in business process-driven systems (see Fig. 4):

1. standard caching (SC). In a standard cache, each ac-
cess decision response which is not found in the cache
is evaluated by the PDP and its response stored in
the cache, optimizing identical requests in the future.
As SC was developed as a generic caching strategy, it
neither exploits specific features of the access control
model used nor of any underlying process models.

2. secondary and approximate authorization model
(SAAM), in particular, SAAMRBAC [20], is optimized
for caching decisions for RBAC models. SAAM uses
already cached access decisions to infer further access
decisions which have not yet been cached. Inferred
decisions are called approximate decisions. Hence,
also new requests which did not appear yet can
possibly be answered by a cache look-up. SAAM
exploits specifics of the RBAC access control model
but is not tailored for business process-driven systems.

3. ProActive Caching (PAC) is especially developed with
both process-driven environments and dynamic secu-
rity requirements in mind. PAC pre-evaluates access
decisions according to a caching heuristic based on
both the deployed process models and the access con-
trol model used. The pre-evaluated access control de-
cisions are stored in the cache.

SC and SAAM are designed for caching static access con-
trol decisions. As dynamic access control policies (e. g.,
DSoD constraints) are required more often [8–10] by busi-
ness regulations such as Basel II [1], we also present a com-
bination of the different caching approaches, i. e., hybrid
caching strategies. They use PAC for the dynamic aspects
of the security policy (i. e., as a kind of first-level cache)
and either SC or SAAM for the static parts of the policy
(i. e., as a kind of second-level cache). In its essence, such
hybrid caching strategies can be implemented by using a
PAC as proxy which transparently forwards all static re-
quests to the underlying cache optimized for static security

policies. Thus, hybrid caching can be understood as variant
of a multi-leveled caching approach using SC or SAAM as
first-level cache and PAC as second-level cache (see Fig. 5).

5.2 Experimental Results
We compare the different caching strategies based on our

GWL scenario motivated in Sect. 2: we simulate a process-
driven enterprise system and measure the time spend in eval-
uating access control requests that are required for display-
ing a user’s GWL. In more detail, we use an implementation
of the architecture discussed in Sect. 3. We configured the
system with various process models taken from the set of
reference models for SAP’s R/3 systems [7]. Notably, we en-
riched these process models with a role-based security policy
and, depending on the experiment, with DSoD constraints.
In our experiment, we simulate the user-driven execution of
several instances of the different business processes in par-
allel and measure the time for evaluating all access control
requests that are required for displaying the GWL. For a
single process execution, we simulate a scenario in which a
user calls her GWL, selects (claims) a task to work on and
successfully finishes this task. Thereafter, she works on the
upcoming tasks until the process is finished.

For this scenario, we consider different numbers of pro-
cess instances, ranging from 25 to 300 instances executed
in parallel. All process instances are based on four differ-
ent process definitions (having up to 25 tasks) selected from
SAP’s reference models. Our security configuration com-
prises 100 users, 20 roles, and about 8000 permissions. For
each process definition, we assigned two roles that are al-
lowed to instantiate a process definition and every user is a
member of five randomly chosen roles. As in human-centric
workflows every task has to be assigned to a user via the
worklist, the GWL is at least displayed once for each task
instance. For example, for 25 process instances of medium
sized process definitions (each having about 7 tasks) results
already in at least 175 worklist calls in total. We used this
setting for all experiments we report on in this paper and,
for all tests, we used a standard server (3.4 GHz Intel Xeon
CPU, 8 GiB of RAM).

In the following, we first have a look on static access con-
trol requests (comparing no caching, SC, SAAM, and PAC)
and, afterwards, we add dynamic access control requests
(comparing no cache, SC, SAAM, PAC, and hybrid caching).

5.3 Static Access Control
Fig. 6 summarizes the comparison of executing our sce-

nario using no caching, SC, SAAM, PAC with static access
control policies. The average time required for evaluating a
single access control request (see Fig. 6a) without caching
slightly increases with the number of process instances run-
ning in parallel. PAC, in contrary, is independent hereof.
Moreover, PAC results in a much faster evaluation of access
control requests, always remaining faster than 1 ms (while
no caching results in evaluation times between 27 ms and
38 ms). A similar behavior is observed for the average time
required for displaying the GWL (see Fig. 6b).

With an increasing number of parallel process instances,
both SC and SAAM converge to PAC’s low response time.
This behavior is due to the fact, that with more processes
running in parallel, the likelihood that an access control re-
quest is already cached increases. This assumption is verified
by the hit rate of the different caching strategies (see Fig. 6c)

which converges to 100% for SAAM and SC. Our experi-
ments support the results of Wei et al. [20]: in comparison
to SC, SAAM converges significantly faster to the response
time of PAC.

Fig. 7 shows the different times for displaying the GWL
using box-plots: the heights of the fine lines above and below
the boxes show the minimal and maximal time required to
display a worklist. The boxes start and end with the lower
and upper quartiles of the required times. Additionally, the
graphs show the experiments’ median values, illustrating the
maximum time a user has to wait in 50% of all cases.

Displaying the worklist using no caching (see Fig. 7a)
takes for 300 process instances almost 8 s in 75% of all cases.
As the median is close to the upper box limit, we conclude
that only a few cases take significantly longer. In fact, our
data shows that in up to 99% of all cases the user has to
wait up to 8.5 s.

For SC (see Fig. 7b) a user waits up to 700 ms for the work-
list to display. The probability that a user has to wait more
than 100 ms, however, decreases with increasing number of
process instances. This is substantially faster compared to
the implementation without caching (see Fig. 7a) where de-
lays in the range of seconds are normal for the average case.

For SAAM (see Fig. 7c) the maximal time is lower as for
SC and does not exceed 250 ms. Especially the cases for 300
process instances are very dense with an upper box limit at
about 17 ms to display a worklist. Our data shows that in
93% of all cases the required time remains below 50 ms.

The times for PAC (Fig. 7d) are always less than 16 ms.
Comparing the tests starting from 25 up to 300 process in-
stances the average values to display the worklist even in-
crease. This is due to PAC’s caching strategy which results
in a nearly 100% cache hit rate (cf. Fig. 6c). Hence, nearly all
access requests required to display a worklist are answered
by the cache (rather than by the PDP) such that the time
to display the worklist is the sum of all cache lookups.

5.3.1 Discussion.
The results show that for static environments caching is

very effective in reducing the response time for access re-
quests. Notably, even the standard cache for small scenarios
already decreases the average access time to half of the time
required in implementations without cache.

Further, in our experience both caching strategies devel-
oped for static environments (standard caching and SAAM)
are easy to implement and achieve, already with a compar-
atively small amount of process instances, a benefit compa-
rable to the PAC. Moreover, standard caching and SAAM
require a warm-up phase for filling the cache. During this
warm-up phase, the response time of the system may be
considerably higher. The maximum values in Fig. 7 also
confirm this observation.

While the PAC implementation requires a higher effort,
it results in a system which can ensure response times re-
maining below a critical time of, in our case, 2 ms. This is
due to the fact, that PAC does not have a warm-up phase
(as it pre-evaluates access requests) and thus, the deviation
of times needed for evaluation is small. Albeit, we need to
invest additional system resources for pre-computing cache
entries that might never be used.

Furthermore, caching comes at a cost: for all caching vari-
ants we have to store the cached access control decisions in
memory. Fig. 6d illustrates the maximal number of cache en-

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

0 50 100 150 200 250 300

a
vg

. r
e

sp
o

n
se

 ti
m

e
 f

o
r

re
q

u
e

st
s

[m
s]

of process instances running in parallel

no cache
SC
SAAM
PAC

(a) Average access time

0

1000

2000

3000

4000

5000

6000

7000

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

av
g.

 t
im

e
 t

o
 d

is
p

la
y

w
o

rk
lis

t
[m

s]
(n

o
 c

ac
h

e)

av
g.

 t
im

e
 t

o
 d

is
p

la
y

w
o

rk
lis

t
[m

s]
(S

C
, S

A
M

, P
A

C
)

of process instances running in parallel

SC
SAAM
PAC
no cache

(b) Average time for worklist display

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300

ca
ch

e
h

it
 r

a
te

number of processes running in parallel

SC

SAAM

PAC

(c) Hit rate

0

20

40

60

80

100

120

140

160

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300

n
u

m
b

e
r

o
f

ca
ch

e
 e

n
tr

ie
s

(S
A

A
M

)

n
u

m
b

e
r

o
f

ca
ch

e
 e

n
tr

ie
s

(S
C

, P
A

C
)

of process instances running in parallel

SC

PAC

SAAM

(d) Maximum cache size

Figure 6: Static Access Control: Overview

0,00

2000,00

4000,00

6000,00

8000,00

10000,00

12000,00

14000,00

16000,00

18000,00

25 50 75 100 150 200 250 300

ti
m

e
 t

o
 d

is
p

la
y

 w
o

rk
li
s
t

[m
s
]

of process instances

(a) GWL No Cache

0

100

200

300

400

500

600

700

800

25 50 75 100 150 200 250 300

ti
m

e
 t

o
 d

is
p

la
y

 w
o

rk
li
s
t

[m
s
]

of process instances

(b) GWL SC

0

50

100

150

200

250

300

25 50 75 100 150 200 250 300

ti
m

e
 t

o
 d

is
p

la
y

 w
o

rk
li
s
t

[m
s
]

of process instances

(c) GWL SAAM

0

2

4

6

8

10

12

14

16

18

25 50 75 100 150 200 250 300

ti
m

e
 t

o
 d

is
p

la
y

 w
o

rk
li
s
t

[m
s
]

number of process instances

(d) GWL PAC

Figure 7: Static Access Control: GWL

tries for SC and PAC (left y-axis) and SAAM (right y-axis).
The graph shows that already for small scenarios, the heuris-
tics used by PAC result in pre-evaluating and caching nearly
all access control decisions beforehand. In contrast, SAAM
requires a much smaller number of cache entries. One has
to take into account, however, that this comparison ignores

the fact, that the cache entries of SAAM are typically larger
than the cache entries of PAC and SC. Measuring the mem-
ory consumption reveals that SAAM requires approximately
half the memory as PAC or SC for large scenarios.

In conclusion, all caching strategies tested generate a
strong impact with respect to a system’s response time com-

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

0 50 100 150 200 250 300

av
g.

 r
e

sp
o

n
se

 ti
m

e
fo

r
re

q
u

e
st

 [m
s]

of process instances running in parallel

no cache
SC
SAAM
PAC
hybrid SC
hybrid SAAM

(a) Average access time

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300

ca
ch

e
 h

it
 r

a
te

of process instances running in parallel

SC
SAAM
PAC
hybrid SC
hybrid SAAM

(b) Hitrate

Figure 8: Average access time and hitrate for sce-
narios with dynamic policies (DSoD)

pared to systems without caching. If a system requires a
guaranteed response time PAC seems to be most suited and
the additional effort required for PAC seems for to pay off.
Moreover, this already proves the additional benefits of ex-
ploiting process and workflow models for caching the access
on static system resources.

5.4 Dynamic Access Control
In the following, we enrich our scenario with dynamic

access control requirements, i. e., policies with DSoD con-
straints: overall, 40% of the tasks of a process definition
are affected by a DSoD constraint. DSoD constraints rely
on dynamic context information. A cache storing access
decisions which are based on the evaluation of DSoD con-
straints, hence, needs to be updated if the context changes.
PAC supports such cache updates while SC and SAAM do
not. Applying SC and SAAM in a dynamic environment
requires that no access decisions based on the evaluation
of DSoD constraints are cached. Hence, we specifically for-
ward all access requests which require DSoD constraints to
be evaluated directly to the PDP for regular evaluation. The
information which requests have to be forwarded is available
as it is clear which tasks of the used process definitions are
affected by an DSoD constraint.

Fig. 8a shows the average time it takes for each caching
strategy to evaluate an access request. Similar to the static
scenario, the response time for no caching increases with the
number of process instances. SC and SAAM tend to stabilize
in our experiments at a level around 16 ms. The reason for
this behavior is that dynamic access control decisions are
not cached and, hence, every dynamic access request must
be evaluated by the PDP. The cache hit rate of SC and
SAAM (see Fig. 8b) roughly converges against a value equal

processes PAC [s] Hyb. SC [s] Hyb. SAAM [s]

25 119 26 24
50 127 30 31
75 135 42 41
100 145 44 46
150 161 61 61
200 173 66 68
250 192 70 84
300 214 81 85

Table 1: Comparing cache management efforts

to the probability that an access request is not affected by
a DSoD constraint.

PAC shows a similar behavior as in the static scenario.
This, however, comes not for free as the strategy requires
that anticipated access requests during a process execution
are pre-evaluated, independent whether these cached deci-
sions will be used afterwards. We measured the additional
effort required. Tab. 1 illustrates the results, i. e., showing
the total time (in seconds) solely required for cache man-
agement by pre-evaluating anticipated access requests. The
time for cache management for PAC ranges from 119 s to
214 s given the respective parallel execution of 25 to 300
process instances.

The pre-evaluations of PAC include both static and dy-
namic access requests which causes overhead. To reduce this
overhead we introduce hybrid caching. Hybrid caching com-
bines static caching strategies with the proactive strategy
(cf. Sect. 5.1). We distinguish between Hybrid SC (combin-
ing SC and PAC) and Hybrid SAAM Caching (combining
SAAM and PAC). The idea in both cases is that for static ac-
cess requests the static caching strategies are used (which do
not require additional effort for cache management); for the
dynamic access requests the cache and cache-update strate-
gies of PAC are used.

Fig. 8a shows that the static parts of hybrid caches still
require a certain time until access requests can directly be
answered from the cache. The cache hit rate, however, con-
verges against 100% with increasing number of process in-
stances (see Fig. 8b). This is fact for both cases, combin-
ing SC and PAC or SAAM and PAC. Also, it can be seen
that given any number of process instances, the hybrid ver-
sions are always faster than their static counterparts. Tab. 1
shows that we achieved our main goal for hybrid caching:
the reduction of the cache management. The time for cache
management for the hybrid caching strategies is required to
update its proactive cache for dynamic requests.

The box-plots of Fig. 9 illustrate the different times it
takes to display the worklist with caching and, as reference,
without caching (see Fig. 9a). The latter shows that display-
ing the worklist takes significantly more time if compared
to static environments. This is the case as the evaluation of
dynamic access constraints, i. e., DSoD constraints generally
require the additional effort to fetch and evaluate dynamic
context information, leading to a longer request evaluation
time—compared to requests evaluated based on standard
role-based policies.

The box-plots for the SC (see Fig. 9b) and SAAM (see
Fig. 9c) show that the time to display the worklist increases
with the number of instances in a system, rather than de-
creasing as it is the case in the static environment. This
behavior, again, results from the fact, that dynamic access
requests are always regularly evaluated. Given 200 and more

0

5000

10000

15000

20000

25000

25 50 75 100 150 200 250 300

ti
m

e
 t

o
 d

is
p

la
y

 w
o

rk
li
s
t

[m
s
]

of process instances (incl. dynamic constraints)

(a) GWL No Cache

0

2000

4000

6000

8000

10000

12000

14000

25 50 75 100 150 200 250 300

ti
m

e
 t

o
 d

is
p

la
y

 w
o

rk
li
s
t

[m
s
]

of process instances (incl. dynamic constraints)

(b) GWL SC

0

2000

4000

6000

8000

10000

12000

14000

25 50 75 100 150 200 250 300

ti
m

e
 t

o
 d

is
p

la
y

 w
o

rk
li
s
t

[m
s
]

of process instances (incl. dynamic constraints)

(c) GWL SAAM

0

5

10

15

20

25

30

25 50 75 100 150 200 250 300

ti
m

e
 t

o
 d

is
p

la
y

 w
o

rk
li
s
t

[m
s
]

of process instances (incl. dynamic constraints)

(d) GWL PAC

0

200

400

600

800

1000

1200

1400

25 50 75 100 150 200 250 300

ti
m

e
 t

o
 d

is
p

la
y

 w
o

rk
li
s
t

[m
s
]

of process instances (incl. dynamic constraints)

(e) GWL Hybrid SC

0

100

200

300

400

500

600

25 50 75 100 150 200 250 300

ti
m

e
 t

o
 d

is
p

la
y

 w
o

rk
li
s
t

[m
s
]

of process instances (incl. dynamic constraints)

(f) GWL Hybrid SAAM

Figure 9: Dynamic Access Control: GWL

process instances the difference between SC and SAAM is
very small; the times required for the regular evaluation of
dynamic access requests clearly dominate results.

The PAC remains the fastest strategy within the com-
plete tested scenario. The worklists can be displayed after
a maximum of 23 ms. The two hybrid caches behave simi-
lar compared to SC and SAAM in the static environments
(compare Fig. 9b with Fig. 7b and Fig. 9c with Fig. 7c). The
box-plots show, however, that the static parts of the caches
require time to fill the cache. This warm-up period leads
to possible times above 1 s in case of Hybrid SC and above
300 ms in case of Hybrid SAAM. In both cases, however,
those spikes are quite rare as in 90% of all cases the time to
display the worklist lies below 230 ms and 50 ms.

5.4.1 Discussion.
Overall, our experiments show that in dynamic environ-

ments the use of process and workflow models can increases
the overall system performance. In particular, caching ap-
proaches that exploit these models perform significantly
better than workflow and process model independent ap-
proaches such as SC or SAAM. In more detail, already a
considerably low amount of dynamic constraints (in our sce-

narios only 40% of the total resources were affected) result in
a significant impact on response times. Dynamic access re-
quests cannot be cached and, hence, lead to increased cache
misses. We expect that in future, the general amount of
dynamic security constraints will rather increase than de-
crease. An increasing amount of dynamic constraints would
lead to further increasing response times if no caching or
static caching strategies are used.

In contrast, PAC can still ensure that the response times
remain below a certain critical time, given the system allows
to detect context changes which can be used to update the
cache. In our experience, the additional effort PAC requires
for its cache management sums up to, e. g., 214 s for 300 pro-
cess instances (cf. Tab. 1). Of special interest are the results
for two-level caching architectures combining both static and
dynamic caching strategies. Using the PAC update strategy
for dynamic access decisions as first level cache enables the
use of a static caching strategies in dynamic environments as
second level cache. Also in this case, however, the combined
caches have a warm-up phase leading to situations where
the time to display the worklist is up to ten times above the
average time of the same scenario.

Based on the results for dynamic environments we can
conclude that for systems requiring a guaranteed response
time, again PAC should be preferred and the additional ef-
fort required remains within a reasonable range. In all other
cases a mixture between established caching strategies for
static environments combined with the update strategy of
the PAC seem the preferred choice. Again, if a combination
with the tested SAAM strategy is considered, the systems
static policies should be based on RBAC.

6. CONCLUSION AND FUTURE WORK
Although there is a large body of literature concerned

with improving the access control decisions in IT sys-
tems in general, and using caching approaches in particu-
lar (e. g., [2, 4, 6, 12, 13]), none of them compares the dif-
ferent approaches on a common ground. While Turkmen
and Crispo [19] compare the performance of different PDP
implementations, our work, is to our knowledge, the first
comparison of different caching strategies on a uniform im-
plementation. Our empirical results show that using caching
strategies that exploit the underlying process and workflow
models significantly improve response times. With the tests
it also became clear that caching strategies have different
drawbacks, depending whether used in static or dynamic en-
vironments and respective static or dynamic access control
constraints. Our hybrid caching approach combines strate-
gies such that drawbacks from one strategy can be compen-
sated by the strengths of another one, and vice versa.

While we only tested scenarios for caching access control
decisions, we are convinced that this also holds for caching
other types of information such as internal or external con-
text information (e. g., the availability of resources or ma-
chines, or specific data objects from back-end systems, etc.)
that are required for performing a specific task.

We see several lines of future research: First, different
dynamic aspects of business applications need to be consid-
ered. For example, induced by changes in the distribution
of process types being active (e. g., payroll processes are
executed only once every month). Second, strategies that
guarantee a bounded cache size, e. g., based on the least-
frequently used principle, should be integrated into the dif-
ferent caching strategies. While this will decrease the overall
performance, it prevents the unlimited growth of the cache
which could occur in highly dynamic scenarios. Third, the
most efficient caching strategies (PAC and SAAM) depend
on the underlying access control model. Thus, it seems to
be interesting to extend our comparison to further access
control models (e. g., Bell-LaPadula [3]). While for SAAM
there exists already a variant supporting Bell-LaPadula [6],
the heuristics for PAC [14] need to be adapted.

References
[1] Basel II: International convergence of capital measure-

ment and capital standards. http://www.bis.org/

publ/bcbsca.htm, 2004.

[2] L. Bauer, S. Garriss, and M. K. Reiter. Distributed
proving in access-control systems. In Security and Pri-
vacy, pages 81–95. IEEE Computer Society, 2005.

[3] D. E. Bell and L. J. LaPadula. Secure computer sys-
tems: A mathematical model, volume II. In Journal of
Computer Security 4, pages 229–263, 1996.

[4] K. Borders, X. Zhao, and A. Prakash. CPOL: high-
performance policy evaluation. In V. Atluri, C. Mead-
ows, and A. Juels, editors, Computer and Communica-
tions Security, pages 147–157. ACM Press, 2005.

[5] H.-T. Chou and D. J. DeWitt. An evaluation of buffer
management strategies for relational database systems.
In VLDB, pages 127–141. VLDB Endowment, 1985.

[6] J. Crampton, W. Leung, and K. Beznosov. The sec-
ondary and approximate authorization model and its
application to Bell-LaPadula policies. In SACMAT,
pages 111–120. ACM Press, 2006.

[7] T. Curran, G. Keller, and A. Ladd. SAP R/3 business
blueprint: understanding the business process reference
model. Prentice-Hall, Inc., 1998.

[8] M. Evered and S. Bögeholz. A case study in access
control requirements for a health information system.
In ACSW Frontiers, pages 53–61. Australian Computer
Society, Inc., 2004.

[9] J. Hu and A. C. Weaver. Dynamic, context-aware ac-
cess control for distributed healthcare applications. In
Pervasive Security, Privacy and Trust, 2004.

[10] V. Kapsalis, L. Hadellis, D. Karelis, and S. Koubias. A
dynamic context-aware access control architecture for
e-services. Computers & Security, 25(7):507–521, 2006.

[11] R. Karedla, J. S. Love, and B. G. Wherry. Caching
strategies to improve disk system performance. Com-
puter, 27(3):38–46, 1994.

[12] G. Karjoth. Access control with IBM Tivoli access man-
ager. ACM Transactions on Information and System
Security, 6(2):232–257, 2003.

[13] M. Kohler and A. Schaad. Proactive access control for
business process-driven environments. In Annual Com-
puter Security Applications Conference, 2008.

[14] M. Kohler, A. D. Brucker, and A. Schaad. Proactive
caching: Generating caching heuristics for business pro-
cess environments. In CSE, pages 207–304. IEEE Com-
puter Society, Aug. 2009.

[15] N. Megiddo and D. S. Modha. ARC: A self-tuning, low
overhead replacement cache. In USENIX FAST, pages
115–130. USENIX Association, 2003.

[16] J. Nielsen. Usability Engineering. Academic Press,
1993.

[17] R. S. Sandhu, D. F. Ferraiolo, and D. R. Kuhn. The
NIST model for role-based access control: towards a
unified standard. In RBAC, pages 47–63. ACM Press,
2000.

[18] The JBoss Group. jBPM. http://www.jboss.com/

products/jbpm, 2008.

[19] F. Turkmen and B. Crispo. Performance evaluation of
XACML PDP implementations. In SWS, pages 37–44.
ACM Press, 2008.

[20] Q. Wei, J. Crampton, K. Beznosov, and M. Ripeanu.
Authorization recycling in RBAC systems. In SAC-
MAT, pages 63–72. ACM Press, 2008.

http://www.bis.org/publ/bcbsca.htm
http://www.bis.org/publ/bcbsca.htm
http://www.jboss.com/products/jbpm
http://www.jboss.com/products/jbpm

	1 Introduction
	2 Process Execution
	3 An AC Caching Architecture
	4 ProActive Caching
	5 Process Execution Caching
	5.1 A Classification of Caching Approaches
	5.2 Experimental Results
	5.3 Static Access Control
	5.3.1 Discussion.

	5.4 Dynamic Access Control
	5.4.1 Discussion.

	6 Conclusion and Future Work

@InCollection{	 kohler.ea:caching:2010,
 author	= {Mathias Kohler and Achim D. Brucker},
 booktitle	= {International Workshop on Security Measurements and
		 Metrics (MetriSec)},
 language	= {USenglish},
 title		= {Caching Strategies: An Empirical Evaluation},
 year		= {2010},
 classification= workshop,
 areas		= {security, software},
 public	= {yes},
 pdf		= {http://www.brucker.ch/bibliography/download/2010/kohler.ea-caching-2010.pdf},
 abstract	= {Modern enterprise systems comprise a fine-grained
		 enforcement of complex access control policies.
		 Consequently, the efficient evaluation of security policies
		 is a significant factor for the overall system performance.
		 Moreover, modern enterprise systems are inherently based on
		 process and workflow models. These models enable new
		 approaches for improving the performance of security
		 evaluations.
		
		 Caching is widely used for improving the performance and
		 the reliability of systems. The dynamic nature of today's
		 workflow systems, both in terms of changing workflows and
		 in terms of dynamic security policies impose particular
		 challenges on the caching of access control decisions.
		
		 We present a caching strategy that exploits business
		 process models for avoiding cache misses. Moreover, we
		 provide a detailed performance analysis of different
		 caching strategies for static and dynamic aspects of access
		 control policies, providing the required metrics for
		 informed design decisions.},
 isbn		= {978-1-4503-0340-8},
 pages		= {1--8},
 location	= {Bolzano, Italy},
 doi		= {10.1145/1853919.1853930},
 publisher	= {ACM Press},
 address	= {New York, NY, USA},
 url		= {http://www.brucker.ch/bibliography/abstract/kohler.ea-caching-2010}
		
}

%0 Book Section
%T Caching Strategies: An Empirical Evaluation
%A Kohler, Mathias
%A Brucker, Achim D.
%B International Workshop on Security Measurements and Metrics (MetriSec)
%D 2010
%I ACM Press
%C New York, NY, USA
%@ 978-1-4503-0340-8
%G USenglish
%F kohler.ea:caching:2010
%X Modern enterprise systems comprise a fine-grained enforcement of complex access control policies. Consequently, the efficient evaluation of security policies is a significant factor for the overall system performance. Moreover, modern enterprise systems are inherently based on process and workflow models. These models enable new approaches for improving the performance of security evaluations. Caching is widely used for improving the performance and the reliability of systems. The dynamic nature of today?s workflow systems, both in terms of changing workflows and in terms of dynamic security policies impose particular challenges on the caching of access control decisions. We present a caching strategy that exploits business process models for avoiding cache misses. Moreover, we provide a detailed performance analysis of different caching strategies for static and dynamic aspects of access control policies, providing the required metrics for informed design decisions.
%U http://www.brucker.ch/bibliography/abstract/kohler.ea-caching-2010
%U http://www.brucker.ch/bibliography/download/2010/kohler.ea-caching-2010.pdf
%U http://dx.doi.org/10.1145/1853919.1853930
%P 1-8

TY - CHAP
AU - Kohler, Mathias
AU - Brucker, Achim D.
PY - 2010//
TI - Caching Strategies: An Empirical Evaluation
BT - International Workshop on Security Measurements and Metrics (MetriSec)
SP - 1
EP - 8
PB - ACM Press
CY - New York, NY, USA
N2 - Modern enterprise systems comprise a fine-grained enforcement of complex access control policies. Consequently, the efficient evaluation of security policies is a significant factor for the overall system performance. Moreover, modern enterprise systems are inherently based on process and workflow models. These models enable new approaches for improving the performance of security evaluations. Caching is widely used for improving the performance and the reliability of systems. The dynamic nature of today?s workflow systems, both in terms of changing workflows and in terms of dynamic security policies impose particular challenges on the caching of access control decisions. We present a caching strategy that exploits business process models for avoiding cache misses. Moreover, we provide a detailed performance analysis of different caching strategies for static and dynamic aspects of access control policies, providing the required metrics for informed design decisions.
SN - 978-1-4503-0340-8
UR - http://www.brucker.ch/bibliography/abstract/kohler.ea-caching-2010
L1 - http://www.brucker.ch/bibliography/download/2010/kohler.ea-caching-2010.pdf
UR - http://dx.doi.org/10.1145/1853919.1853930
ID - kohler.ea:caching:2010
ER -

