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Abstract. Automated test data generation is an important method for
the verification and validation of UML/OCL specifications. In this paper,
we present an extension of DNF-based test case generation methods to
class models and recursive query operations on them. A key feature of our
approach is an implicit representation of object graphs avoiding a repre-
sentation based on object-id’s; thus, our approach avoids the generation
of isomorphic object graphs by using a concise and still human-readable
symbolic representation.
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1 Introduction

Automated test data generation is an important application domain for OCL
specifications. Instead of verifying concrete code via a Hoare-Calculus for a spe-
cific programming language against OCL method contracts—a technique devel-
oped in detail for OCL in [9, 11]—test generation can be a more light-weighted
(but logically less safe) formal method to reveal errors both in specification and
implementations. A particular advantage of black-box testing is that implemen-
tations may consist of arbitrary mixtures of (dirty) programming languages.

In this paper, we will adapt existing specification-based testing techniques to
UML/OCL, i. e., an object-oriented specification formalism centered around the
concept of an object-graph as state, state-transitions described by class-models
and state-charts (which we will ignore here), and a type system based on sub-
typing and inheritance. The work presented here is based on the previous work
on a formal UML/OCL semantics [7, 11] and attempts to develop, in contrast to
prior works such as [4], a comprehensive test-generation method for the complete
language and for realistic test-scenarios. Overall, our contribution consists in:
1. the extension of specification-based test generation methods to the world of

object-oriented specifications,
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2. a deductive, theorem-prover based test data generation from OCL specifica-
tions including language features such as recursive query-operations, and

3. a particular representation of object-graph classes by our novel concept of an
alias closure; rather than representing the explicit object graphs we represent
the object identity by an equivalence relation.

This paper is written with hindsight to the HOL-TestGen system [10], into
which we will implement the technique presented here in a future step. This im-
plies that our technique must fit to the underlying logical framework Isabelle/HOL
(an embedding of UML/OCL has been presented in [11]), and that it can be or-
ganized into the generation phases of HOL-TestGen.

2 A Gentle Introduction to a Formal OCL 2.2 Semantics

In this section, we briefly present a formal semantics for OCL 2.2 [20], see [7]
for details. With respect to the syntax, we use the mathematical notation of
HOL-OCL [8] which allows for a concise presentation of OCL constraints.

2.1 Higher-Order Logic

Higher-order Logic (HOL) [12] is a classical logic with equality enriched by total
parametrically polymorphic higher-order functions. It is more expressive than
first-order logic, e. g., induction schemes can be expressed inside the logic. Prag-
matically, HOL can be viewed as a typed functional programming language like
Haskell extended by logical quantifiers.

HOL is based on the typed λ-calculus, i. e., the terms of HOL are λ-expressions.
Types of terms may be built from type variables (like α, β, . . . , optionally anno-
tated by Haskell-like type classes as in α :: order or α :: bot) or type constructors
(like bool or nat). Type constructors may have arguments (as in α list or α set).
The type constructor for the function space ⇒ is written infix: α⇒ β; multiple
applications like α1 ⇒ (. . . ⇒ (αn ⇒ αn+1) . . .) have the alternative syntax
[α1, . . . , αn] ⇒ αn+1. HOL is centered around the extensional logical equality
_ = _ with type [α, α]⇒ bool, where bool is the fundamental logical type. We
use infix notation: instead of (_ = _) E1 E2 we write E1 = E2. The logical con-
nectives _∧_, _∨_, _⇒ _ of HOL have type [bool,bool]⇒ bool, ¬_ has type
bool ⇒ bool. The quantifiers ∀_._ and ∃_._ have type [α ⇒ bool] ⇒ bool.
The quantifiers may range over types of higher order, i. e., functions or sets.

The type discipline rules out paradoxes such as Russel’s paradox in untyped
set theory. Sets of type α set can be defined isomorphic to functions of type
α ⇒ bool; the definition of the elementhood _ ∈ _, the set comprehension
{_._}, _ ∪_ and _ ∩_ is then standard.

2.2 Valid Transitions and Evaluations

We recall that OCL expressions form a typed assertion language whose syn-
tactic elements are composed of (a) operators on built-in data structures such
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as Boolean or collection types like Set or Bag, (b) operators of the user-defined
data-model such as attribute accessors, type-casts and tests, and (c) user-defined,
potentially recursive, side-effect-free method calls.

The topmost goal of the formal semantics for OCL expressions is to define
the notion of a valid transition over states of a system; even concepts like object
invariants can be derived from this notion. Let σ be a pre-state and σ′ a post-
state and let φ be a Boolean OCL expression, then we write

(σ, σ′) � φ

for “the transition from σ to σ′ is valid in φ.” A formula φ is valid if and only if its
evaluation in the transition τ = (σ, σ′) yields true. As all types in HOL-OCL are
extended by the special element ⊥ denoting undefinedness, we define formally:

τ � φ ≡
(
IJφK τ = xtruey

)
.

In OCL, the evaluation of all expressions can result in an undefinedness ele-
ment called invalid which we will write ⊥ for short. The test for definedness
(not _ .oclIsInvalid()) will be written ∂_ and is defined by ∂ X ≡ not (X ,
⊥). Here, _ , _ denotes the strong equality, which is a reflexive, symmetric and
transitive congruence relation; therefore, the strong equality allows for substi-
tuting equals with equals in any OCL expression, even if the expressions are
undefined. In contrast, the standard equality in OCL, i. e. _ .

= _, is strict, which
means x .

= ⊥ is strongly equal to ⊥ .
= x which is strongly equal to ⊥.

Since all operators of the assertion language depend on the context τ and
results can be ⊥, all expressions can be viewed as evaluations from τ to a type
α⊥. All types of expressions are of a form captured by the type abbreviation:

V(α) = σ × σ ⇒ α⊥ ,

where σ × σ stands for the type of a pair of system states (i. e., the type of τ).

2.3 Semantics of Object Invariants and Operation Contracts

The OCL semantics [20, Annex A] uses different interpretation functions for
invariants and pre-conditions; instead, we achieve their semantic effect by a
syntactic transformation _pre which replaces all accessor functions _. i by their
counterparts _. i @pre. For example, (self . i > 5)pre is just (self . i @pre > 5). The
operation _ .allInstances() is also substituted by its @pre counterpart. Thus,
we can re-formulate the semantics of the two OCL top-level constructs, invariant
specification and method specification, as follows:

IJcontext c : C inv n : φ(c)Kτ ≡
τ � (C .allInstances()->forall(x|φ(x))) ∧
τ � (C .allInstances()->forall(x|φ(x)))pre

(1)

The standard forbids expressions containing @pre constructs in invariants or
preconditions syntactically; thus, mixed forms cannot arise. Since operations
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have strict semantics in OCL, we have to distinguish for a specification of an op
with the arguments a1, . . . , an the two cases where all arguments are defined
(and self is non-null), or not. In the former case, a method call can be replaced
by a result that satisfies the contract, in the latter case the argument is ⊥:

IJcontext C :: op(a1, . . . , an) : T

pre φ(self , a1, . . . , an)

post ψ(self , a1, . . . , an, result)Kτ ≡ ∀s, x1, . . . , xn.
∆(s, x1, . . . , xn) ∧ τ � φ(s, x1, . . . , xn)pre
−→ τ � ψ(s, x1, . . . , xn, s.op(x1, . . . , xn))

∧ ¬∆(s, x1, . . . , xn) −→ τ � s.op(x1, . . . , xn) , ⊥

(2)

where ∆(s, x1, . . . , xn) is an abbreviation for τ � s 6, null ∧ τ � ∂ s ∧ τ �
∂ x1 ∧ . . . τ � ∂ xn. This definition captures the two cases: if the arguments of an
operation are defined and, moreover, self is not null, the result of a method call
must satisfy the specification; otherwise the operation will be strict and return
invalid ⊥. By these definitions an OCL specification, i. e., a sequence of invariant
declarations and operation contracts, can be transformed into a set of (logically
conjoined) statements which is called the context Γτ . The theory of an OCL
specification is the set of all valid transitions τ � φ that can be derived from
Γτ . For the logical connectives of OCL, a conventional Gentzen-style calculus
for pairs of the form Γτ ` φ can be developed that allows for inferring valid
transitions from Γτ by deduction (cf. [11]). Due to the inclusion of arithmetic,
any calculus for OCL is necessarily incomplete. It is straight-forward to extend
our notion of context to multi-transition contexts such as:

Γ ≡
{
(σ, σ′) � φ, (σ′, σ′′) � ψ

}
such that we can reason over systems executing several transitions.

2.4 Strict Operations and Their Role in Reasoning

The OCL standard [20] defines most operations as strict, not just the special
case of the strict equality x .

= y mentioned earlier. Overall, we have the rule

f(x1, . . . ,⊥, . . . , xn) , ⊥. (3)

A notable exception from this rule are the logical connectives, which are a
three-valued strong Kleene-logic; e. g., ⊥ and false , false and analogously
⊥ or true , true. Overall, using a three-valued logic is a burden if a sim-
ple compilation of OCL to standard automated theorem provers is envisaged.
Looking at the wealth of tools (that are specialized for two-valued logics) like
Kodkod [22] or Z3 [17], this is perceived as a major drawback of OCL by many.

The methodology of OCL (in particular the strictness of most operations and
the fact that most OCL expressions, e. g., invariants, are, by definition, defined)
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enforces that a reduction to a two-valued representation is always possible; it
suffices to apply the case-distinction:

τ � φ(⊥) ∨ (τ � ∂ E ∧ τ � φ(E)) (4)

exhaustively to all sub-expressions E (the τ � φ(⊥)-parts will either reduce
quickly due to Fact 3 to τ � ⊥ which is just false or again be subject to Fact 4).
The result are formulae of the form: τ � ∂ E1 ∧ · · · ∧ τ � ∂ En ∧ τ � φ or just
∆φ∧τ � φ for short. In this form—called ∆-long-form—all implicit definednesses
in a valid OCL-formula are made explicit. We call the process of constructing a
∆-long-form ∆-saturation. We do not distinguish between {τ � E1∧τ � E2}∪Γ
and {τ � E1, τ � E2} ∪ Γ .

This process can be optimized: if we have, for example, as consequence of
an invariant τ � f(a) .

= b in our context Γ (meaning that it holds and, thus,
evaluates to true), we can infer that τ � ∂ f(a) and τ � ∂ b. From there, we can
further infer τ � ∂ a (if f is strict). The same holds for the common connective
τ � X and Y (but not for _ or _). Once that the implicit knowledge on
definedness is established, rules of the following form can be applied:

τ � not X = ¬τ � X if τ � ∂ X
τ � X or Y = τ � X ∨ τ � Y if τ � ∂ X and τ � ∂ Y
τ � X and Y = τ � X ∧ τ � Y if τ � ∂ X and τ � ∂ Y

τ � X
.
= Y = τ � X , Y if τ � ∂ X and τ � ∂ Y

By applying this form of equations to Γ and φ, we transform them into sets
of judgments of the form τ � φ, i. e., perfect two-valued statements that can be
treated by conventional SMT solvers like Z3 (provided that we add an appropriate
background theory that axiomatizes the basic operations of the OCL language).

3 Running Example: Linked Lists

In this section, we present a small UML/OCL specification that will serve as a
running example for our test case generation technique. We will also discuss the
translation of OCL into HOL and discuss the implicit invariants of this example.

3.1 Singly-Linked Lists

Fig. 1 illustrates our running example of a singly-linked list: the list stores in-
tegers as data and links between nodes are modeled by an association. As a
node does not necessarily need to have a successor, the association end next has
multiplicity 0..1. An invariant of the class states that the integers are stored
in a descending order in the list. We specify an operation insert that adds an
integer to the list. The postcondition of the insert operation states that the
set of integers stored in the list in the post-state is the set of stored integers in
the pre-state extended by the argument. For defining the set of integers stored
in the list, we separately specify the recursive query operation contents().
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context Node
inv: next <> null implies i > next.i

context Node:: contents (): Set(Integer)
post: result = if next = null

then Set{i}
else next.contents()->including(i)

context Node:: insert(x:Integer)
post: contents () = contents@pre()->including(x)

Node
i:Integer

contents():Set(Integer)
insert(x:Integer)

next0..1

Fig. 1. A Singly-linked list specified in OCL (excerpt)

In the following, we will describe how to build Γτ from this OCL specifica-
tion via the semantic definitions. We will add to Γτ semantic presentations of
the specification which are already in a “massaged format” suitable for test case
generation later. Since the transition is not changing in the rest of this paper,
we will assume one global transition τ (understood to be relative to the spec-
ification of this example); we will drop the index and abbreviate τ � φ to just
� φ. In our test case generation approach, we assume that all diagrammatic
constraints over the class model are represented as OCL expressions (for details,
see [15]). For example, associations are usually represented by collection-valued
class attributes together with OCL constraints expressing the multiplicity.

3.2 Translating Invariants into Recursive HOL-Predicates

The example in Fig. 1 only includes one explicit invariant. The multiplicity con-
straints in the class model constitute invariants semantically. For our example,
the multiplicity constraints could be expressed as follows in OCL:

inv: (next = null or next <> null) and i <> null

In the following, we will assume that attributes and arguments that have a basic
datatype (e. g., Integer) have a multiplicity of 1..1, i. e., they cannot be null.
Thus we can simplify the invariant representing the multiplicity constraints to:

inv: (next = null or next <> null)

This simplification improves the readability of the formulae in this paper and is
not a fundamental restriction of our approach.

For our purposes it will be convenient to convert invariants to recursive predi-
cates and add them to Γ , paving the way for the exploration of input parameters
by simply unfolding them rather than making them, based on Fact 1, lengthy
arguments over .allInstances(). Of course, not any recursive predicate is con-
sistent; however these recursive predicates can be derived from the invariants by
using a greatest fixed-point construction and proving that the body of the invari-
ant is monotone—the reader interested in the details is referred to HOL-OCL [9]
where this is done automatically (albeit for OCL 2.0, i. e., without null):
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∀ self. � ∂ self ∧ � self 6 .= null −→ � invNode(self)
⇐⇒ � self.next .

= null ∨ (� self.next 6 .= null
∧ � self.i > self.next.i ∧ � invNode(self.next))

Additionally to this recursive predicate, we add to Γ the fact that any defined
non-null object will satisfy this invariant:

∀ self. � ∂ self ∧ � self 6 .= null −→ � invNode(self)

Our recursive definitions are a conjunction of the explicit invariant and the
multiplicity constraints of our example; we used ∆-short form in order not to
clutter up our presentation too much, i. e., facts like � ∂ self.i were omitted.
The invariant invNode @pre expresses well-formedness in a pre-state:

∀ self. � ∂ self ∧ � self 6 .= null
−→ � invNode@pre(self) ⇐⇒ � self.next@pre .

= null
∨ (� self.next@pre 6 .= null ∧ � invNode@pre(self.next@pre)

∧ � self.i@pre > self.next@pre.i@pre)

3.3 Translating Contracts into HOL

Given the fact that � (true)pre just collapses to true, the formulae that we add
to Γ is the straight-forward simplification of the semantics rule Fact 2:

∀ self. ∆(self) −→ � self.contents () ,
if self.next .

= null then Set{i}
else self.next.contents()->including(i)

∧ ¬∆(self) −→ � self.contents () , ⊥

where ∆(self) is a short-cut for � ∂ self ∧ � self 6 .= null. The variant for
contents@pre() looks as follows:

∀ self. ∆(self) −→ � self.contents@pre () ,
if self.next@pre .

= null then Set{i}
else self.next@pre.contents@pre()->including(i)

∧ ¬∆(self) −→ � self.contents@pre () , ⊥

4 Test Generation

In the specification-based testing, we are interested in testing the formula φ—
called test specification—in the statement:

Γ ` φ

instead of proving it (the ` is interpreted as implication). We are interested in
test specifications which contain calls to operations s.op(a1,...,an); the core of
the technique consists in selecting arguments consistent with the specification Γ
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and the semantic rules for the operations of OCL, executing the implementation
of op and checking if the result validates φ. We follow the classical approach
of transforming the test specification into a disjunctive normal form (DNF),
extended by invariant-handling and the treatment of recursive definitions, which
corresponds to partitioning the input space of the operation(s).

Another class of case distinctions arises from aliasing ; i. e., the fact that two
object references can designate the same object, i. e., s.next.next is in fact iden-
tical to s due to a cycle in the object graph. Aliasing is a crucial phenomenon in
object-oriented systems. It is likely that a system behaves differently depending
on the aliasing relationships among the objects it handles. Therefore we will add
further case distinctions to the specification under analysis that distinguish dif-
ferent aliasing relationships. We will refer to this transformation as alias closure.

4.1 Test Specifications: Getting Started

Depending on the specific test purposes, there are various ways to test a system:
a test could be concerned with the normal behavior of operations, which will
be the default considered here, or with exceptional behavior (what happens if
the precondition is not satisfied?), or with operation sequences, e. g., (σ, σ′) �
φ ∧ (σ′, σ′′) � ψ. It is even conceivable to express in test specifications the
sharing of pre-state and post-state or different parameters; in our specification,
the implementation of insert can have a copying semantics (all object-contents
in the list were copied to freshly generated objects) as well as a sharing semantics.

Since OCL expressions cannot have side-effects, properties of non-query op-
erations like insert cannot be expressed inside OCL. We therefore suggest to
present the test specification directly in HOL. Thus, following Fact 2, we have
for the case of a “normal behavior unit test”:

∆(s,x) −→ � s.contents () .
= s.contents@pre()->including(x)

∧ ¬∆(s,x) −→ � s.insert(x) , ⊥

where s is a free variable for which we look for solutions that meet all possible
constraints (arising from the context Γ , but also locally in φ). Since (∆ −→
A) ∧ (¬∆ −→ B) is equivalent to (∆ ∧A) ∨ (¬∆ ∧B) and the latter is closer to
a DNF, we rewrite our test specification and have:

∆(s,x) ∧ � s.contents () .
= s.contents@pre()->including(x)

∨ ¬∆(s,x) ∧ � s.insert(x) , ⊥

which boils down to:

∆(s,x) ∧ � s.contents () .
= s.contents@pre()->including(x)

∨ � s .
= null ∧ � s.insert(x) , ⊥

∨ � x .
= ⊥ ∧ � s.insert(x) , ⊥

Here, we can already apply unit propagation in clauses and extract the two
test cases: � null.insert(x) , ⊥ and � s.insert(⊥) , ⊥ which essen-
tially test the corner-cases imposed by the semantics of OCL.
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4.2 Test Hypotheses

The test cases � null.insert(x) , ⊥ and � s.insert(⊥) , ⊥ give also
some deeper insight into testing. Test cases are classes of concrete tests, i. e., the
ground instances (e. g., � null.insert(0) , ⊥ or � null.insert(1) , ⊥) of
these formulae . Overall, a test case for an operation op in a DNF is a conjoint:

� φ1(x1, . . . , xn) ∧ · · · ∧ � φn(x1, . . . , xn)

where at least one φi depends on op. In test cases, we can partition the clauses
into two groups: in oracles O, i. e., those � φi(x1, . . . , xn) that depend on op,
and in constraints C, i. e., all others. Constructing a test boils down to finding a
solution, i. e., a ground substitution for x1, . . . , xn, that satisfies all constraints
in C, while the test proceeds by executing the implementation of op for this
solution and check if the oracles evaluate to true.

Logically, this means that we made the assumption “if there is an input vector
(x1, . . . , xn) satisfying all constraints, and if this input passes the oracle execu-
tion, the oracles will pass for all inputs satisfying the constraints.” This type of
assumption underlying a test is called a uniformity hypothesis written:

(∃x1, . . . , xn. C(x1, . . . , xn) ∧O(x1, . . . , xn))

−→ (∀x1, . . . , xn. C(x1, . . . , xn) −→ O(x1, . . . , xn))

While this is the most fundamental testing hypothesis, there are other useful
ones that help to establish case distinctions used in specification-based tests. A
notable other well-known form of a testing hypothesis is the regularity hypothesis:

(∀x1, . . . , xn.|x1, . . . , xn| < k ∧ C(x1, . . . , xn) −→ O(x1, . . . , xn))

−→ (∀x1, . . . , xn. C(x1, . . . , xn) −→ O(x1, . . . , xn))

or in other words: whenever we tested all data up to a given complexity measure
(like size of collections) k, we assume that the execution of op satisfies the
specification. In the context of OCL testing, there is a similar form of regularity
hypothesis: here, we will implicitly argue over the bound k on the number of
different objects in a state that has been used for the tests.

4.3 Unfolding

For generating a set of test cases, we start with the test specification given above,
restricted to the part where s is defined and not null.

∆(s,x) ∧ � s.contents () .
= s.contents@pre()->including(x)

This test specification does not show any explicit case distinctions. Rather, the
case distinctions are hidden in the recursive specification of contents().

The invariants over the different arguments of the operation (including s)
must be taken into account for the generation of relevant test cases. In our ex-
ample, only ordered lists can occur in pre-states and post-states of the insert
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operation. Adding these invariants as constraints over the pre-states or post-
states reduces the number of test cases derived from the test specification by
removing as many non-satisfiable clauses as possible before the test data selec-
tion. Because of the facts contained in Γ , we obtain:

∀ self. � ∂ self ∧ � self 6 .= null −→ � invNode(self)

These invariants can be inserted at any time during the unfolding process.
For instance, we can already insert the invariant for the pre-states and post-

states of the insert operation, knowing that s is defined and not null:

∆(s,x) ∧ � invNode@pre(s) ∧ � invNode(s)
∧ � s.contents () .

= s.contents@pre()->including(x)

To enrich this condition with explicit case distinctions, we unfold the operation
calls and invariants by replacing them with their specification: an operation call
will be replaced with its contract and an invariant with its definition, which is
allowed here since we have ∆(s, x). For the sake of readability, we do not replace
the contents operation calls directly with their contract but rather conjoin the
contract with the existing formulae. We obtain the following conditions:

∆(s,x)
∧ (� s.next@pre .

= null
∨ (� s.next@pre 6 .= null
∧ � s.i@pre > s.next@pre.i@pre ∧ � invNode@pre(s.next@pre )))

∧ (� s.next .
= null

∨ (� s.next 6 .= null ∧ � s.i > s.next.i ∧ � invNode(s.next )))
∧ � s.contents () .

= s.contents@pre()->including(x)
∧ � s.contents () , if s.next .

= null then Set{s.i}
else s.next.contents()->including(s.i)

∧ � s.contents@pre () ,
if s.next@pre .

= null then Set{s.i@pre}
else s.next@pre.contents@pre()->including(s.i@pre)

A second refinement step could be performed by unfolding the invariants and
the operation calls a second time: we could insert the invariant definitions again
and instantiate the operation contract for the contents operation with s.next
(correspondingly for the pre-state).

The unfolding process and invariant insertion can be stopped at any time,
once the refinement is sufficient according to the tester’s needs. Then, the DNF
of the obtained formula is generated to enumerate the different test cases coming
from case distinction. The DNF obtained for the previous formula is the following,
leading to four clauses distinguishing whether s.next and s.next@pre are null.

(∆(s, x)
∧ � s.next .

= null
∧ � s.next@pre .

= null
∧ � s.contents () .

= s.contents@pre()->including(x)
∧ � s.contents () , Set{s.i}
∧ � s.contents@pre () , Set{s.i@pre })
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∨ (∆(s, x)
∧ � s.next 6 .= null ∧ � s.i > s.next.i ∧ � invNode(s.next)
∧ � s.next@pre .

= null
∧ � s.contents () .

= s.contents@pre()->including(x)
∧ � s.contents () , s.next.contents()->including(s.i)
∧ � s.contents@pre () , Set{s.i@pre })

∨ (∆(s, x)
∧ � s.next .

= null
∧ � s.next@pre 6 .= null ∧ � s.i@pre > s.next@pre.i@pre
∧ � invNode@pre(s.next@pre)
∧ � s.contents () .

= s.contents@pre()->including(x)
∧ � s.contents () , Set{s.i}
∧ � s.contents@pre () , s.next@pre.contents@pre ()

->including(s.i@pre))
∨ (∆(s, x)
∧ � s.next 6 .= null ∧ � s.i > s.next.i ∧ � invNode(s.next)
∧ � s.next@pre 6 .= null ∧ � s.i@pre > s.next@pre.i@pre
∧ � invNode@pre(s.next@pre)
∧ � s.contents () .

= s.contents@pre()->including(x)
∧ � s.contents () , s.next.contents()->including(s.i)
∧ � s.contents@pre () , s.next@pre.contents@pre ()

->including(s.i@pre))

The first case boils down (due to constant propagation and set reasoning) to:

∆(s, x) ∧ � s.next .
= null ∧ � s.next@pre .

= null
∧ � s.i , s.i@pre ∧ � s.i , x

All other cases are not yet “ground” enough and contain application redexes like
� invNode(s.next) for further invariant unfolding. The derivation

∆(s, x)
∧ � s.next 6 .= null ∧ � s.i > s.next.i ∧ � invNode(s.next)
∧ � s.next@pre .

= null
∧ � s.next.contents()->including(s.i) .

= Set{s.i@pre}
->including(x)

for the second case expands to:

(∆(s, x)
∧ � s.next 6 .= null ∧ � s.i > s.next.i ∧ � s.next.next .

= null
∧ � s.next@pre .

= null
∧ � s.next.contents()->including(s.i) .

= Set{s.i@pre}
->including(x))

∨ (∆(s, x)
∧ � s.next 6 .= null ∧ � s.i > s.next.i
∧ � s.next.i > s.next.next.i ∧ � s.next.next 6 .= null
∧ � invNode(s.next.next)
∧ � s.next@pre .

= null
∧ � s.next.contents()->including(s.i) .

= Set{s.i@pre}
->including(x))
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While the second sub-case is unsatisfiable since it asserts that the insertion
increases the list length by two, the first sub-case reduces to:

∆(s, x)
∧ � s.next 6 .= null ∧ � s.i > s.next.i ∧ � s.next.next .

= null
∧ � s.next@pre .

= null
∧ � Set{s.next.i}->including(s.i) .

= Set{s.i@pre}
->including(x)

which, due to set reasoning, corresponds to a test case in which the inserted
element x is not already in the list. The test cases still containing an occurrence
of the invariance predicate correspond to the class of “yet to be tested” test cases.

4.4 Alias Closure

Unfolding and invariant insertion represent only a first step of the exploration
of the specification by case distinction. There is another implicit case distinction
that needs to be considered, since the two references s and s.next could actually
refer to the same object, due to a cycle in the object graph. We should then
distinguish the cases where s.next , s and where s.next 6, s. In the same
way, we should distinguish the cases s.next@pre , s and s.next@pre 6, s.

To handle these four cases in the test case generation, we add the following
tautology, called alias distinction, to the unfolding of our test specification:

(� s.next , s ∨ � s.next 6, s)
∧ (� s.next@pre , s ∨ � s.next@pre 6, s)

In the cases s.next , s and s.next@pre , s, the invariants evaluate
to false due to the strict inequality, thus only the cases s.next 6, s and
s.next@pre 6, s remain. Computing the DNF in our example leads to al-
most the same formula as in the previous subsection, where � s.next 6, s ∧
� s.next@pre 6, s is added to each conjoint.

In the general case, the alias closure of a formula is the conjoint of the tau-
tologies p , q ∨ p 6, q for all the references p and q occurring in the formula
(all other reference pairs are not relevant for case-splitting; so when we decided
to unfold the invariants to a certain depth, we also made a decision on the maxi-
mum path-sizes and finally the maximum number of nodes in a state). Formally,
let Path(ϕ) be the set of path-expressions (references) occurring in a formula ϕ.
We define AliasClosure(ϕ) as the set of formulae

{ p , q ∨ p 6, q | p, q ∈ Path(ϕ) ∧ p non-identical to q }

This produces all possible objects graphs, instead of only tree-like structures.

4.5 Generating Test Object-Graphs from Test Cases

Finally, ground instantiations of the underlying object model (i. e., in our exam-
ple, instances of singly-linked lists) need to generated. For example, a concrete
state-pair τ = (σ, σ′) that can be given for test case
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Table 1. Sample set of resulting test cases

List in pre-state Inserted element List in post-state

3 3 3

5 9 9 5

6 1 1 6 1

6 3 5 6 5 3

8 5 1 5 8 5 1

7 6 5 9 9 7 6 5

∆(s, x) ∧ � s.next 6 .= null ∧ � s.i > s.next.i
∧ � s.next.next .

= null ∧ � s.next@pre .
= null

∧ � Set{s.next.i}->including(s.i) .
= Set{s.i@pre}

->including(x)

and the ground instance s.insert(2) of the operation call insert() is:

σ = { oid0 7→ Li = 3, next = null M}
σ′ = { oid0 7→ Li = 3, next = oid1M, oid1 7→ Li = 2, next = nullM}

which describes the requirement that inserting 2 into the list that only contains
the element 3 should result in the sorted singly-linked list that contains the
elements 3 and 2. Table 1 shows a sample set of test cases resulting from an
unfolding of the test specification up to a list length of 3. For every list length
there are two test cases: one for the case that the inserted element is already in
the list and one for the case of an actual insertion.

5 Integrating the Technique in HOL-TestGen

HOL-TestGen [10] is a specification and test case generation environment ex-
tending the interactive theorem prover Isabelle/HOL [18]. The HOL-TestGen
method is two-staged: first, the original formula is partitioned into test cases by
transformation into a normal form called test theorem. Second, the test cases
are analyzed for ground instances (the test data) satisfying the constraints of
the test cases. Particular emphasis is put on the control of explicit test hypothe-
ses. Finally, HOL-TestGen supports the generation of test drivers that allow
for validating that an implementation fulfills its abstract specification. As such,
developing UML/OCL support for HOL-TestGen, including its integration into
a formal model-driven development toolchain, e. g., [6], enables the validation
that an implementation fulfills the test specifications given in UML/OCL.

Extending HOL-TestGen with support for OCL creates certain challenges:
the unfolding of OCL invariants introduces a new kind of splitting rule that
needs to be supported efficiently by the splitter algorithm of HOL-TestGen.
Moreover, HOL-TestGen does not yet support conjoint clauses that have no
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reference to the program under test (resulting in a failure during test data form
computation). This is motivated by the fact that we cannot generate test drivers
for such conjoint clauses. In the future, the generated test drivers could either
silently drop such test cases or, following the OCL semantics, test for a deadlock.

6 Related and Future Work

6.1 Related Work

While there are several works that discuss specification-based test case genera-
tion based on UML/OCL models, none of them supports the three-valuedness of
OCL. The most closely related works [1, 2, 4, 24] are all inspired by the seminal
work of Dick and Faivre [13] and, thus, share the idea of using symbolic DNF
computation for partitioning the input space. Moreover, there are works using
sequence diagrams as an input for test case generation, e. g., [16], or pairwise
testing of OCL contracts, e. g., [19]. Finally, Gogolla et al. [14] apply random-
testing strategies for analyzing properties of OCL specifications.

For program-based tests, there are two test data generators that apply sym-
bolic techniques: Korat [5] and Java Pathfinder [23]. Korat [5] generates from
preconditions and a bound on the number of nodes of data structures, an in-
put partitioning by a combination of symbolic execution and (simple) constraint
solving. The idea of integrating a symbolic state deeply inside the execution en-
vironment, i. e., inside a Java virtual machine (JVM) as suggested in JPF-SE [3]
(a successor of Java Pathfinder [23]), substantially improved the approach and
inspired systems such as Pex [21] (a model-based testing tools for the .net).

6.2 Future Work

HOL-TestGen’s generation strategies are geared towards inductively generated
data (such as enumeration types, or lists and sets). In this paper, we have shown
how co-inductively generated data such as object graphs can be tackled. The de-
scribed translation is a pre-computation step, but it remains to provide new tac-
tical infra-structure to implement the unfolding strategies and the alias closure.
The concrete model-generation for the resulting specification is a standard-game
for SMT-based model-construction generators in HOL-TestGen.
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