
c© 2010 IEEE Computer Society. This is the author’s version of the work. It is posted at http://www.brucker.ch/bibliography/abstract/brucker.ea-firewall-2010 by permission of
IEEE Computer Society for your personal use. Not for redistribution. The definitive version was published in Proceedings of the Third International Conference on Software Testing,
Verification, and Validation (ICST), pp. 345–354, 2010, doi: 10.1109/ICST.2010.50.

Verified Firewall Policy Transformations
for Test Case Generation

Achim D. Brucker∗, Lukas Brügger†, Paul Kearney‡, and Burkhart Wolff§
∗SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany

Email: achim.brucker@sap.com
† Information Security, ETH Zurich, 8092 Zurich, Switzerland1

Email: lukas.bruegger@inf.ethz.ch
‡Security Futures Practice, BT Innovate & Design, Adastral Park, Ipswich, UK

Email: paul.3.kearney@bt.com
§Université Paris-Sud, Parc Club Orsay Université, 91893 Orsay Cedex, France2

Email: wolff@lri.fr

Abstract—We present an optimization technique for model-
based generation of test cases for firewalls. Starting from a
formal model for firewall policies in higher-order logic, we derive
a collection of semantics-preserving policy transformation rules
and an algorithm that optimizes the specification with respect
of the number of test cases required for path coverage. The
correctness of the rules and the algorithm is established by formal
proofs in Isabelle/HOL. Finally, we use the normalized policies to
generate test cases with the domain-specific firewall testing tool
HOL-TESTGEN/FW.

The resulting procedure is characterized by a gain in efficiency
of two orders of magnitude. It can handle configurations with
hundreds of rules such as frequently occur in practice.

Our approach can be seen as an instance of a methodology to
tame inherent state-space explosions in test case generation for
security policies.

Keywords-Security testing, model-based testing

I. INTRODUCTION

Firewalls suffer from the same quality problems as other
complex software, but mature products from established and
trusted vendors are generally trustworthy and any vulner-
abilities tend to be found and patched relatively quickly.
Given this situation, is there need for anyone other than
firewall manufacturers, independent labs, and organizations
with critical security requirements to test firewalls? The answer
is “yes,” because the off-the-shelf product must be configured
with a rule set that implements an appropriate security policy
to create a working firewall. The likelihood of a security
vulnerability arising from misconfiguration is much greater
than from a bug the software itself:

“NSA found that inappropriate or incorrect security
configurations (most often caused by configuration
errors at the local base level) were responsible for
80 percent of Air Force vulnerabilities.” [1, p. 55]

As firewalls tend to have complicated configurations, this
seems to be particularly true for them. Furthermore, firewall
policies and hence rule sets change with time. Often, changes

1This work was supported by BT Group plc.
2This work was partially supported by the Digiteo Foundation.

are implemented by adding rules, resulting in ever-growing
complexity, which increases the probability of errors and
the challenge of finding them. Thus, there is a continuing
need to re-validate that the configured firewall complies with
the security policy, and the importance and difficulty of this
increases with time. While it is useful to verify the rule set
by inspection helped by such analysis tools as are available,
this is no substitute for actually testing that the firewall really
behaves as specified by the security policies from which the
rule set is derived.

To appreciate the potential consequences of errors in appar-
ently trustworthy network components, consider this recent
incident in which an inexperienced administrator coupled
with an intolerance of certain widely used routers to long
autonomous system paths, led to a partial Internet break-down:

“On Monday, February 16, 2009, a misconfigured
router from SuproNet, a Czech Internet Service
Provider, caused high increases in Border Gateway
Protocol (BGP) updates as well as isolated outages
for Internet services around the world.” [2]

In [3], we presented a model-based testing technique for
network components such as routers or firewalls. Based on
a formal model of networks, packets, and security policies,
our HOL-TESTGEN system automatically generates test-sets
covering all the partitions of the underlying disjunctive normal
form (DNF), at least for small policies. In this paper, we
concentrate on improving the effectiveness of our approach
to make it more feasible for larger applications. Even modest
size companies will have firewalls with several hundred rules.
While it is possible that these rule sets could be partitioned
into largely independent “virtual firewalls”, scalability is an
important property for any practically-relevant test-generation
technique. Constructing systematic tests on security policies
leads inevitably to large cascades of case distinctions over
input and output. The situation is worse if the underlying state
is evolving over time (as in stateful firewalls).

A careful analysis of the constraint resolution process of
HOL-TESTGEN loaded with the firewall policy theory de-

http://www.brucker.ch/bibliography/abstract/brucker.ea-firewall-2010
http://dx.doi.org/10.1109/ICST.2010.50
http://www.brucker.ch/
http://www.infsec.ethz.ch/people/lukasbru/
http://www.infsec.ethz.ch/people/wolffb/
mailto:"Achim D. Brucker" <achim.brucker@sap.com>
mailto:"Lukas Br�gger" <lukas.bruegger@inf.ethz.ch>
mailto:"Paul Kearney" <paul.3.kearney@bt.com>
mailto:"Burkhart Wolff" <wolff@lri.fr>

scribed in [3] revealed that many case-splits are concerned
with intra-subnet communication and are in fact redundant
for the overall problem of communication between networks
across a firewall. Since redundant cases can already be de-
tected syntactically on a sequence of policy rules, this gives
rise to the idea of a normalization of policies before the actual
case-splitting is executed.

Our contributions are three-fold: first, we present a firewall
policy transformation that: a) eliminates redundant (shadowed)
rules, b) groups rules along the subnet-hierarchy, and c) pro-
duces tests only between pairs of networks. Second, we show
the correctness of our firewall policy transformation formally
using Isabelle/HOL, and define a function in higher-order logic
(also shown to be correct) that applies the rules to achieve a
normal form. And, third, we show in several case studies, that
this policy transformation increases the efficiency of test case
generation by at least two orders of magnitude.

The rest of the paper is structured as follows: After an
introduction to the HOL-TESTGEN approach (Section II) and
our formal firewall model (Section III), we present a number
of policy transformations in Section IV and a normalization
procedure in Section V. Both sections include a formal proof
of correctness. The paper concludes with an empirical evalu-
ation and a general discussion of the methodology.

II. FORMAL AND TECHNICAL BACKGROUND

A. Isabelle and Higher-order Logic

Isabelle [4] is a generic theorem prover; new object logics
can be introduced by specifying their syntax and natural de-
duction inference rules. Among other logics, Isabelle supports
Higher-order logic (HOL) [5, 6].

HOL is a classical logic with equality, based on typed total
higher-order functions; the type discipline rules out paradoxes
such as Russel’s paradox in untyped set theory. As a term
language, HOL is based on the typed λ-calculus—i. e. the terms
of HOL are λ-expressions. Types of terms may be built from
type variables (like α, β, . . .) or type constructors (like bool
or nat). Type constructors may have arguments (as in α list
or α set). The type constructor for the function space, ⇒, is
written infix: α⇒ β; multiple applications like τ1 ⇒ (. . .⇒
(τn ⇒ τn+1) . . .) have the alternative syntax [τ1, . . . , τn] ⇒
τn+1. HOL is centered around the extensional logical equality,
_ = _ with type [α, α]⇒ bool, where bool is the fundamental
logical type. We use infix notation: instead of (_ = _) E1 E2

we write E1 = E2. The logical connectives _ ∧ _, _ ∨ _,
_ → _ of HOL have type [bool,bool] ⇒ bool, ¬_ has type
bool⇒ bool. The quantifiers ∀ _._ and ∃ _._ have type [α⇒
bool]⇒ bool; thus, quantifiers may range over types of higher
order, i. e. functions. This core language can easily be extended
in a logically-safe way by Cartesian products (written (a, b)
of type α× β), sets (with operators such as membership _ ∈
_ :: [α, α set] ⇒ bool, the set comprehension {_._} :: (α ⇒
bool) ⇒ α set, _ ∪ _, _ ∩ _ :: [α set, α set] ⇒ α set) and
lists (with operators such as hd and tl and the concatenation
@ :: [α list, α list] ⇒ α list). The HOL library comprises a
theory of maps to model partial functions. They are written

as α ⇀ β, which is a type synonym for α ⇒ β option,
where β option is a datatype consisting of the two elements
None and Someβ. Over those, the usual concepts of override
_ ++ _ :: [α ⇀ β,α ⇀ β] ⇒ α ⇀ β, domain dom f and
range ran f are introduced.

B. The HOL-TestGen System

HOL-TESTGEN is an interactive, i. e. semi-automated, test
tool for specification-based tests built upon Isabelle/HOL. We
briefly review main concepts and outline the standard work-
flow. The latter is divided into five phases: 1) writing the test
theory, i. e. a collection of basic types and auxiliary functions
formalizing the problem domain, 2) writing the test specifica-
tion, TS, specifying the concrete property to be tested, 3) the
test case generation phase, i. e. an automated conversion of TS
into a sequence of test cases, TC, (or: partitions) representing
classes of possible input, 4) the test data generation phase,
where concrete members are constructed for the TC, and 5)
the test execution phase where HOL-TESTGEN generates a
test script driving the actual testing. Once a test theory is
completed, documents can be generated that represent a formal
test plan, including test theory, test specifications, configura-
tions of the test data and test script generation commands.
The plan may also include proofs for rules that support the
overall process and can be processed either in batch mode or
interactively, and optionally the results of the test execution.

The core of the test case generation procedure lies in
case splittings up to a certain depth for each free or uni-
versally quantified (input) variable in the test specification;
depth and form of the case split depend on the type of
the variable. The resulting test cases, TCi, have the form
C1 x ∧ · · · ∧ Cn x→ P (put x), where put is a place-holder
for the program under test, x the input vector and P the oracle
or postcondition telling that the output of put complies to the
test specification. Test data generation from test cases boils
down to a constraint resolution process finding an x satisfying
the constraints Ci. The reader interested in more details over
theory and implementation is referred to [7, 8].

III. MODELING FIREWALLS IN HOL REVISITED

In this section, we introduce our model of firewall policies
and present a formal theory for them. For space limitations,
however, we will restrict ourselves to the case of stateless
firewalls, also called stateless packet filters. The model of
stateful firewall policies is presented in [8].

A. A Formal Firewall Model

A message from network A to network B is split into several
packets that contain the content of the message and routing
information. The routing information of a packet mainly
contains its source and its destination address. A stateless
firewall filters traffic passing from one network to another
based on that routing information and the policy used. The
policy describes which packets should be accepted and which
should be rejected.

Internet (extern) Intranet (intern)

DMZ

Figure 1. A simple firewalling scenario.

source destination protocol port action

Internet DMZ smtp 25 accept
Internet DMZ http 80 accept
intranet DMZ smtp 25 accept

DMZ intranet smtp 25 accept
intranet DMZ imaps 993 accept
intranet Internet http 80 accept

any any any any deny

Table I
A SIMPLE FIREWALL POLICY

Figure 1 illustrates a widely-used setup of a firewall,
separating three networks: the external Internet, the internal
network that has to be protected (intranet), and an intermediate
network, the demilitarized zone (DMZ). The DMZ is usually
used for servers (e. g. the Web server and the Mail server)
that should be accessible both from the outside (Internet) and
the from internal network (intranet) and thus are governed by a
more relaxed policy than the intranet. Table I shows a firewall
policy as it can be found in security textbooks. Such a policy
description uses a first-fit matching strategy, i. e. the first match
overrides later ones. For example, a packet from the Internet
to the intranet is rejected (it only matches the last line of the
table), whereas an smtp-packet from the intranet to the DMZ is
accepted (third line of Table I). Lines in such a table are also
called rules; together, they describe the policy of a firewall.
We will use the terms policy and rules synonymously.

1) Packets and Networks: As a prerequisite, we need a
formal model of packets and networks. As we do not want to
depend on a specific representation of addresses, we introduce
the abstract types (α :: adr) src and (α :: adr) dest for
the source and destination address. Here, α :: adr restricts
the types that can be used to instantiate α to members of
the (unconstrained) type class adr. Further, we introduce
β content for the content (payload) of a packet and id for
the a unique identifier of a packet. The type of a packet can
be defined as:

types (α, β) packet = id × (α ::adr) src

× (α :: adr) dest × β content (1)

Further, we define projectors, e. g. getId, for accessing the
components of a packet. We model networks, or just nets, as
sets of sets of addresses, i. e.

types α net = (α ::adr) set set (2)

For checking whether a given address is part of a network, we
define the following operator:

definition _ @ _ :: (α ::adr)⇒ α net⇒ bool
where a @ S ≡ ∃s ∈ S. (a ∈ s) (3)

2) Address Representations: So far, we have left the con-
crete address format generic; our model allows different rep-
resentations. Some of them were presented in [3]. Here, we
concretize one possible address format, namely IPv4 addresses
together with ports. In this setting, an address consists of a 32
bit number, represented as four-tuple of Integers, and a port.

types ip = int× int× int× int
port = int
ipv4 = ip×port

(4)

As we only model the transport layer, i. e., TCP/IP, we do not
model application level protocols, e. g. http, explicitly. Overall,
application level protocols are, on this level, only visible by the
destination port, e. g., http packets usually have a destination
port 80.

3) The Firewall Policy: From an abstract point of view, a
policy is a partial function of packets to decisions, e. g. deny
or accept labelled with translated input data. The datatype:

datatype α out = acceptα | denyα (5)

for decisions allows for modeling the modifications of return
packets; thus, our model can capture address-translation tech-
niques (such as network address translation (NAT)), realized
by some firewalls, as well by providing suitable combinators.
The type of a policy follows directly from this:

types
(α, β) policy = (α, β) packet ⇀ ((α, β) packet) out

(6)

where α ⇀ β denotes partial functions (recall Section II-A).
Moreover, the override operator for partial functions

(_ ++ _) allows several rules to be combined to form a policy.
For example, r2 ++ r1 combines the rules r1 and r2, where
r1 overrides (has higher precedence than) r2. We can then
define several rule combinators that substantially simplify the
formalization of a concrete policy. For example, the usual
“catch-all” rule for denying all traffic is expressed as:

definition deny_all :: (α, β) policy
where deny_all p ≡ Some(deny p)

(7)

Many other combinators for restricting traffic based on a
packet’s source and destination can already be defined on this
abstraction level. A rule allowing all packets coming from
network s can be defined as

definition
allow_all_from::α net⇒ (α, β) policy

where
allow_all_from s ≡ Some(allow_all �{

p|(getSrc p)@s
})

(8)

where _ �_ is the restriction operator on partial functions.

B. Modeling a Policy

Our abstract firewall model presented in the last section,
allows for the direct formalization of the informal policy given

in Table I. First we have to define the subnets of type ipv4 net
based on their IP address ranges, e. g.:

intranet ≡
{{(

(a, b, c, d), p
)∣∣∣ (a = 172) ∧ (b = 168)

}}
and

dmz ≡
{{(

(a, b, c, d), p
)∣∣∣ (a = 172)
∧(b = 16) ∧ (c = 70)

}}
.

We can then define the rules of our policy. Using the
provided combinators, this can be done in a similar way to
that used with many firewall configuration tools. The only
slight difference is that in our scenario, the rules are treated
backwards. The policy shown in Table I is represented in our
combinator language as follows:

definition

Policy ≡ deny_all

++ allow_port_from_to intranet internet 80

++ allow_port_from_to intranet dmz 993

++ allow_port_from_to dmz intranet 25

++ allow_port_from_to intranet dmz 25

++ allow_port_from_to internet dmz 80

++ allow_port_from_to internet dmz 25

C. Testing Stateless Firewalls: Direct Approach

The test specification for the stateless firewall case is now
within reach: we just state that the firewall under test (fut) has
the same filtering function behavior as our policy:

testspec test: fut x = Policy x (9)

Usually, this test specification will be extended by predicates
ensuring that only valid test data (e. g. no negative numbers in
the IP addresses) will be generated, and that the content fields
will be set to some default value content. Another predicate
can ensure that only packets which cross network boundaries
are considered.

Applying our test case generation (recall Section II-B), we
get 72 test cases. Among them are the following two, where
the first is a packet meant to be rejected by the firewall, while
the second one should be passed unchanged:

1) fut(12, ((7, 13, 12, 10), 6), ((172, 168, 2, 1), 80), content)
= Some(deny(12, ((7, 13, 12, 10), 6), ((172, 168, 2, 1), 80)

content))
2) fut(8, ((172, 168, 12, 13), 12), ((172, 16, 70, 10), 25),

content) = Some(accept(8, ((172, 168, 12, 13), 12),
((172, 16, 70, 10), 25), content))

The Some is a consequence of our representation of policies as
partial functions, and means here that the mapping is defined
for this packet. The test data could then be fed into a real
firewall test driver. Overall, testing stateless packet filters is
quite similar to classical unit testing of stateless software.

IV. TRANSFORMING POLICIES

Policy transformations are functions that map policies to
policies. We decided to represent policy transformations as
syntactic rules; this choice paves the way for expressing the
entire normalization process inside HOL by functions manip-
ulating abstract policy syntax. For the sake of conciseness,
however, we will introduce only a few core combinators.

datatype
(α, β) Comb = DenyAll | DenyFromTo α α

| AllowPort α α β
| Conc((α, β) Comb) ((α, β) Comb)

(10)

Moreover, we introduce the infix notation, _ ⊕ _, for the
constructor Conc _ _. Next, we define a semantic interpreta-
tion, C, from “syntactic” combinators to the “semantic” ones
presented in the previous section:

fun C::(ipv4 net,port) Comb⇒ (ipv4,Content) Policy
where
C DenyAll = deny_all
C (DenyFromTo x y) = deny_all_from_to x y
C (AllowPort x y p) = allow_port_from_to x y p
C (x⊕ y) = C x++ C y

(11)

For the sake of simplicity, we fix here the address and content
representation of a packet. However, the transformation works
equally well for other representations. From these definitions
follows a natural way to define and prove the correctness of
a transformation. For example, the semantics of the following
two policies is equivalent:

lemma redundant_allowPort:
C (AllowPort x y p⊕DenyFromTo x y)
= C (DenyFromTo x y)

(12)

The proof essentially involves applying the semantic interpre-
tation function and unfolding the definitions of the semantic
operators.

A. Elementary Transformation Rules

A large collection of elementary policy transformation rules
can be proved correct in a similar way. For example, we can
show that a shadowed rule is redundant (Equation 13), the
⊕ operator is associative (Equation 14), and, in many cases,
commutativity holds (Equation 15-Equation 17):

C (a⊕DenyAll) = C DenyAll (13)
C((a⊕ b)⊕ c) = C(a⊕ (b⊕ c)) (14)
C(AllowPort x y a⊕AllowPort x y b)

= C(AllowPort x y b⊕AllowPort x y a)
(15)

C(DenyFromTo x y ⊕DenyFromTo u v)
= C(DenyFromTo u v ⊕DenyFromTo x y)

(16)

dom(C a) ∩ dom(C b) = {} =⇒ C(a⊕ b) = C(b⊕ a)
(17)

B. Complex Transformation Rules

Elementary rules can be organized to compute entire normal
forms on policies. Instead of implementing these computations
inside the prover (i. e. by a tactic program), we can define these
functions entirely inside HOL, which gives us the possibility
to prove their termination and completeness formally. In fact,
we need nine such complex transformation rules for our nor-
malization (see Section V). In our paper we will present just
one in more detail, namely the sorting phase transformation;
the interested reader is referred to the HOL-TESTGEN project
page to see the complete proofs.

The sorting phase is formalized as a function mapping
combinator lists to combinator lists by sorting them according
to the following principles:
• If there is a DenyAll, it should be at the first place.
• Rules dealing with the same set of networks should be

grouped together, with the DenyFromTo’s coming before
the AllowPort’s.

The semantic correctness of this transformation holds only
under certain conditions that have to be established by previous
phases of the normalization.

The sorting function itself is a slightly adapted version of
a standard function from the Isabelle library. The ordering
relation however, has to be defined appropriately according to
our problem domain:

fun insort where
insort a l [] = [a]
insort a l (x#xs) = if smaller a x l

then a#x#xs
else x#(insort a l xs)

(18)

fun sort where
sort l [] = []
sort l (x#xs) = insort x l (sort l xs)

(19)

fun(sequential) smaller where
smaller DenyAll x l = true
smaller x DenyAll l = false
smaller x y l = (x = y) ∨
if bothNet x = bothNet y
then case y of DenyFromTo a b
⇒ x = DenyFromTo b a | _⇒ true

else pos (bothNet x) l ≤ pos(bothNet y) l)

(20)

Here, bothNet returns the set of the source and destination
network of a rule, and pos returns the position of an element
within a list. The variable l is a list of network sets. The
ordering of this list determines which group of rules is treated
as smaller than another. According to the requirements given
to the smaller relation, the concrete ordering of this list is
irrelevant. However, we will usually need the requirement that
all the sets of network pairs of a policy are in this list. This
requirement is formalized in a predicate called all_in_list.

First, we have to provide a proof that after applying sort
using this smaller relation, we will get a sorted list. The main
prerequisites for this proof are that the relation is transitive,
reflexive, and antisymmetric. This is true as long as all the

network pairs that appear in the policy are in the list l.
Next, we have to prove that this transformation is semantics-
preserving. We make the following assumptions about the
input policy:
• singleComb: The policy is given as a list of single rules.
• allNetsDistinct: All the networks are either equal or

disjoint.
• wellformed_policy1: There is exactly one DenyAll and

it is at the first position.
• wellformed_policy3: The domain of an AllowPort rule

is disjoint from all the rules appearing on the right of it.
In the next section, we show that these conditions do always
hold at that specific point in our normalization algorithm. To
facilitate the proofs, we further define a matching function that
returns Some r for the first rule r in a policy p that matches
packet x and None otherwise.

fun mr_rev where
mr_rev a (x#xs) = if a ∈ dom(C x)

then (Some x)
else (mr_rev a xs)

mr_rev a [] = None

(21)

definition matching_rule where
matching_rule a x ≡ mr_rev a (rev x)

(22)

To prove our main theorem, the semantic correctness of sort,
we apply an indirect approach. We show that for all packets
x, and for all policies p and s that satisfy the conditions listed
above, and that have the same set of rules (but not necessarily
in the same order), the first rule that matches x in p is the
same as in s. If we can additionally prove that the sorting
function preserves these conditions, we can establish the main
theorem:

lemma C_eq_Sets_mr:
assumes sets_eq: set p = set s
and wp1_p: wellformed_policy1 p
and wp1_s: wellformed_policy1 s
and wp3_p: wellformed_policy3 p
and wp3_s: wellformed_policy3 s
and aND: allNetsDistinct p
and SC: singleComb p

shows matching_rule x p = matching_rule x s

a) Proof Sketch.: A case distinction over
matching_rule x p results in two cases: this expression can
either be None or Some y:

1) None. This case is shown by contradiction. As there is
a DenyAll which matches all packets, the matching rule
of x cannot be None.

2) Some y. This is shown by case distinction on y, i. e.
on the matching rule. By our definition of the Comb
datatype, there are four possibilities:
• DenyAll: If the matching rule is DenyAll, there is no

other rule in p which matches, as it is necessarily the
last considered rule. Thus, as the two sets are equal,
there is no other rule in s that matches either. As

DenyAll is in s, this has to be the matching rule in
s.

• DenyFromTo a b: If this is the matching rule in
p, there cannot be another rule in p that matches:
as the networks are disjoint and the only DenyAll
is the last considered rule, the only possibility is
an AllowPort a b c, for some c. However, due to
wellformed_policy3, such a rule can only be on the
right of the matching rule as their domains are not
disjoint. But if it were on the right, the allow-rule
would be the matching rule. Thus there is no such rule.
Since such a rule does not exist in p, it does not exist
in s either. As DenyFromTo a b is in s, this has to
be the matching rule in s.

• AllowPort a b c: This sub-proof is very similar: The
only alternative rule which could match is the corre-
sponding DenyFromTo a b, but if this rule appears
on the right of the matching rule, this would contradict
the wellformedness conditions. Therefore, this has to
be the matching rule also in s.

• a ⊕ b: This case is ruled out by the wellformedness
conditions.

The formal proof of this lemma can be found in the appendix.
Our main correctness theorem of the sorting phase is

presented as follows:

lemma C_eq_sorted: assumes ail: all_in_list p l
and wp1: wellformed_policy1 p
and wp3: wellformed_policy3 p
and aND: allNetsDistinct p
and SC: singleComb p
shows C (list2policy(sort l p)) = C(list2policy p)

We thus have a sorting algorithm for policies that is proven
to be semantics-preserving given that some well-specified
conditions hold for the input policy.

V. NORMALIZING POLICIES

The sorting phase is only one part of the full normalization,
which is organized into nine phases in total. We impose the
following two restrictions on the input policies:
• Each policy must contain a DenyAll rule. If this restric-

tion were to be lifted, the insertDenies phase would have
to be adjusted accordingly.

• For each pair of networks n1 and n2, the networks are
either disjoint or equal. If this restriction were to be lifted,
we would need some additional phases before the start
of the normalization procedure presented below. This rule
would split single rules into several by splitting up the
networks such that they are all pairwise disjoint or equal.
Such a transformation is clearly semantics-preserving and
the condition would hold after these phases.

As a result, the procedure generates a list of policies, in which:
• each element of the list contains a policy which com-

pletely specifies the blocking behavior between two net-
works, and

• there are no shadowed rules.

This result is desirable since the test case generation for rules
between networks A and B is independent of the rules that
specify the behavior for traffic flowing between networks C
and D. Thus, the different segments of the policy can be
processed individually. The normalization procedure does not
aim to minimize the number of rules. While it does remove
unnecessary ones, it also adds new ones, enabling a policy to
be split into several independent parts. The full procedure can
be written as follows:

definition
normalize p ≡ (removeAllDuplicates ◦ insertDenies

◦ separate ◦(sort (Nets_List p))
◦ removeShadowRules2
◦ remdups ◦ removeShadowRules3
◦ removeShadowRules1 ◦policy2list) p

(23)

The normalization procedure consists of nine transformation
functions that are processed in sequence. In the following, we
discuss the nine phases and their preconditions in more detail.
These preconditions are necessary to establish the correctness
theorem for the overall procedure:

theorem C_eq_normalize:
assumes a1: member DenyAll p

and a2: allNetsDistinct p
shows C(list2policy(normalize p)) = C p

The proof of this theorem combines the local correctness
results of the single phases (e. g. the sorting phase result
described in the previous section) while discharging their pre-
conditions using invariance properties of the previous phases.
The nine phases are:

1) policy2list: transforms a policy into a list of single rules.
The result does not contain policies composed via _⊕ _,
i. e. the property singleComb is established.

2) removeShadowRules1: removes all the rules that appear
in front of a DenyAll. The transformation preserves
singleComb and establishes wellformed_policy1, stating
that there is a DenyAll in front of the policy.

3) removeShadowRules3: removes all rules with an empty
domain; they never match any packet. It maintains all
previous invariants and does not establish any required
new one.

4) remdups: removes duplicate rules. Only the last one of
the list remains. As policies are evaluated from right
to left, it can easily be shown that this transformation
preserves the semantics.

5) removeShadowRules2: removes all rules allowing the
traffic on a specific port between two networks, where
an earlier rule already denies all the traffic between
them. This function maintains the earlier invariants, and
establishes wellformed_policy3, the invariant necessary
for the sorting function to be correct. It ensures that the
domain of an AllowPort rule is disjoint from all the rules
appearing on the right of it.

6) sort: maintains (see previous section) the previous invari-
ants and, besides the sorted invariant, also establishes an

important new one: the rules are grouped according to the
two networks they consider. As already mentioned, the
order of the grouped rules is considered to be irrelevant
to correctness. However, a user-defined ordering might
give room for further optimizations. This can be done
very easily by stating manually a list with sets of network
pairs. All properties and side-conditions are still valid as
long as we can prove that this list contains all the sets of
network pairs appearing in the policy.

7) separate: transforms the list of single combinators into
a list of policies. Each of those policies contains all the
rules between two networks (in both directions). While
singleComb is invalidated by this transformation, all the
others are maintained. We do get two important additional
properties:
• OnlyTwoNets: Each policy treats at most two different

networks.
• separated: The domains of the policies are pairwise

disjoint (except from DenyAll). This follows from the
fact that the rules were already grouped.

8) insertDenies: is the only phase where additional rules
are inserted. In front of each policy, we add the two
rules denying all traffic between those two networks in
both directions. As we add new rules here, the proof
of semantic equivalence is relatively involved. The main
part consists in proving that separated is maintained
with this transformation. This phase is only semantics-
preserving because of the initial requirement that the
policy has a DenyAll. Only after this phase, the traffic
between two networks is characterized completely by the
corresponding policy.

9) removeAllDuplicates: removes superfluous duplicate
DenyFromTo’s introduced by the previous phase.

After the last phase, we get a list of policies that satisfies
the requirements stated in the beginning of this section. Using
the correctness of the phases, it is straightforward to prove
semantic equivalence of the full procedure. The individual
elements of the returned list are policies on their own and
can be processed individually by HOL-TESTGEN. Thus, the
set of test cases for the full policy is decomposed into the set
of the test cases of all the smaller policies.

A. An Example

In the following we show the effect of the normalization
procedure on our small example policy. The original policy
contains 7 rules restricting the traffic between three networks:

definition
Policy ≡ DenyAll

⊕AllowPort intranet internet 80
⊕AllowPort intranet dmz 993
⊕AllowPort dmz intranet 25
⊕AllowPort intranet dmz 25
⊕AllowPort internet dmz 80
⊕AllowPort internet dmz 25

After applying the normalization procedure, we get:

10

100

1000

ETH 1
ETH 2

ETH 3
R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10

nu
m

be
r

of
te

st
ca

se
s

unnormalized policy normalized policy

Figure 2. The normalization of policies decreases the number of test cases
by several orders of magnitude.

1) DenyAll
2) DenyFromTo intranet internet
⊕ DenyFromTo internet intranet
⊕AllowPort intranet internet 80

3) DenyFromTo intranet dmz
⊕DenyFromTo dmz intranet
⊕AllowPort intranet dmz 993
⊕AllowPort dmz intranet 25
⊕AllowPort intranet dmz 25

4) DenyFromTo internet dmz
⊕DenyFromTo dmz internet
⊕AllowPort internet dmz 80
⊕AllowPort internet dmz 25

Now, there are four policies with a total of 13 rules. The
number of generated test cases shrinks from 92 to 17, the
time required to generate them from 40 to about 2 seconds.
It is important to note that in general we do not generate a
policy for those partitions which do not have a rule in the
initial policy. They are treated only by the catch-all rule. This
might easily be changed if that turned out to be useful - either
by adjusting the insertDenies phase or by adding a new phase
right after that one.

VI. EMPIRICAL RESULTS

In this section, we report on several case studies that show
the benefit of policy normalization with respect to both the
number of test cases generated and the runtime required for
generating those test cases.

In a first experiment, we explored the impact of policy
normalization on the overall time required for generating test
cases (see Table II) on both policies that are actually used at
ETH Zürich and randomly generated ones. The most important
result is that while the overall number of rules can increase
during normalization, the overall time required for generating
test cases is significantly smaller after normalization, even if
we include the time needed for normalization. While for some
policies, the test case generation took more than 24 hours,
the required time for normalizing the policy and generating
test cases for the normalized policy is only a few seconds.
The overall increase in the number of rules can be explained
by the fact that during normalization, segment-specific deny
rules need to be inserted. The significant reduction of test

ETH 1 ETH 2 ETH 3 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Not Normalized Networks 4 6 3 2 3 4 4 4 3 5 5 6 6
Rules 11 9 12 13 9 5 7 13 13 8 15 5 10
TC Generation Time (sec) >24h 22 26382 10 187 6 9 59364 1388 646 >24h 8 >24h
Test Cases — 100 1368 72 264 54 66 1544 470 358 — 54 —

Normalized Rules 17 16 14 8 14 11 10 24 26 17 28 11 25
Segments 6 5 4 2 4 5 3 7 4 6 9 5 9
Normalization (sec) 0.5 0.3 0.6 0.5 0.4 0.2 0.3 1.1 0.8 0.3 1.4 0.2 0.8
TC Generation Time (sec) 0.8 0.7 0.9 0.5 0.6 0.3 0.4 1.2 0.7 0.7 1.4 0.4 0.8
Test Cases 22 22 20 12 20 12 14 34 22 22 38 14 32

Table II
TEST CASE GENERATION FOR FIREWALL POLICIES UTILIZING NORMALIZATION.

0

100

200

300

400

500

600

50 100 150 200 250 300nu
m

be
r

of
ru

le
s

(n
or

m
al

iz
ed

)

number of rules (unnormalized)

5 networks 10 networks 25 networks

Figure 3. The size (number of rules) of a policy after normalization increases
with both the number of rules in the unnormalized policy and the number of
networks.

case generation time can be explained by the fact that after
segmentation, each segment specific policy is much smaller
and less complex. As the normalization of policies reduces
the number of test cases significantly (see Figure 2), the time
needed for executing a test on an implementation is also
reduced substantially.

The generation of test cases for larger policies in reasonable
time, is only possible after normalization. Thus, we investi-
gated the effect of normalization in isolation. Table III shows
the normalization results for randomly generated policies with
different sizes both in the number of rules and the number of
networks covered (see also Figure 3). All policies start with
a DenyAll rule and one in every five rules is a DenyFromTo.
If the number of rules is small related to the number of net-
works, the number of rules after normalization increases quite
significantly as there are a lot of additional DenyFromTo’s
to be inserted. In the opposite case, it decreases a lot, as
many of those rules will be removed during normalization.
The time needed for the normalization primarily depends upon
the number of networks and on the number of rules.

We also generated test cases for one segment (i. e. a normal-
ized policy between exactly two networks) in isolation: the test
case generation for a policy with 50 rules only takes about 3
minutes and more than 100 rules can still be processed in less
than an hour. Thus, test case generation for very large policies
seems to be feasible, even though policy normalization can
increase the overall number of rules.

VII. CONCLUSION AND RELATED WORK

A. Related Work

Several approaches for specification-based testing of fire-
walls have been proposed. El-Atawy et al. [9, 10] present a
policy segmentation technique. They also give some measure-
ments to the segments such that important segments can be
tested more rigorously. Jürjens and Wimmel [11] propose a
specification-based testing of firewalls that employs a formal
model of the network and automatically derives test cases.
Unfortunately, the test case generation technique is not really
described, and the tested configurations appear small. Appar-
ently, it does not apply any policy transformation technique.
Bishop et al. [12] describe a formal model of protocols in
HOL. However, their level of abstraction is much lower than
ours; therefore, it is much less suited for testing of policy
conformance. Marmorstein and Kearns [13] propose a policy-
based host classification which can be used to detect errors and
anomalies in a firewall policy. A common feature of all these
approaches is, that they do not address the transformation of
the specification, i. e. the policy.

In contrast, transforming security policies, e. g. ones based
on XACML [14], to improve their overall runtime performance
is a well-known technique [15, 16]. This approach also been
extended to other policy languages. In particular, Liu et al. [16]
present algorithms based on decision-diagrams, that minimize
the number of rules of a firewall policy. We are not aware of
any attempt to formally verify the correctness of the policy
transformation technique.

Dssouli et al. [17] have already introduced a notion of
testability for communication protocols using a specification
based on finite state machines. They present a method for
designing communication protocols that are “easy” to test.
The closest related work is that of Harman et al. [18], which is
further developed in, e. g. [19–21]. They introduce the concept
of testability transformations, i. e. source-to-source transfor-
mations of programs that increase their testability. Similar to
our work, the goal of these transformations is minimization
of the test cases required to achieve full test coverage (with
respect to a given test adequacy criterion). While their work
is based on transformation of the source code, i. e. the system
under test, we transform a formal specification, which makes

Rules 51 51 51 101 101 101 201 201 201 301 301 301
Networks 5 10 25 5 10 25 5 10 25 5 10 25

Partitions 11 32 48 11 41 86 11 46 147 11 46 188
Rules 52 105 136 69 154 251 89 223 438 115 283 600
Average 5 3 3 7 4 3 9 5 3 11 6 3
Time[s] 18 63 37 50 367 626 155 1897 8260 404 3184 44415

Table III
THE SIZE OF A NORMALIZED POLICY MAINLY DEPENDS ON THE NUMBER OF RULES IN RELATION TO THE NUMBER OF NETWORKS.

our approach applicable in black-box testing scenarios.
Moreover, we provide a uniform, tool-supported approach

for formally analyzing and transforming a test-specification,
and generating test cases for an implementation. And last but
not least, our approach is based on a formal proof that the
applied testability transformation preserves semantics.

B. Conclusion and Future Work
Harman [20] discusses a list of open problems in testability

transformations. With our work, we make a significant con-
tribution to the final problem in his list: testability transfor-
mations for specification-based testing. In particular, we have
presented a testability translation for model-based generation
of test cases for firewalls. Moreover, we proved formally the
correctness, i. e. semantics preservation, of transformations
within the same framework used for test case generation. In
HOL-TESTGEN/FW, we believe we have developed the first
domain-specific test tool to integrate the specification, formal
analysis, transformation, and test case generation of firewall
policies.

Besides applying test case generation to other kind of
security domains, e. g. [22], we see several productive lines
of future work. In [8], we used sequence testing techniques
for testing stateful firewalls using HOL-TESTGEN. On the
theoretical side, developing formal testability transformations
for sequence testing seems to be particularly appealing. This
work would address the second to last problem of [20]: testa-
bility transformations for specifications based on finite-state
machines. Moreover, considering testability transformations
that do not preserve the semantics of the specifications, as
suggested by Harman et al. [21], requires the development
of new test hypotheses. Here, the integrated approach of
HOL-TESTGEN allows for the formal computation and analysis
of such hypotheses. Finally, the relation between testability
transformation and fault models needs to be investigated
further.

On the practical side, several extensions are envisaged:
first, our integrated test-harness generator could be config-
ured for generating test data in a format that is suitable
for packet injection tools. This would allow for testing the
conformance of deployed firewalls. Second, following model-
driven approaches, e. g. [23], our policy specification can be
used for generating configurations of different firewall imple-
mentations. This would allow the use of HOL-TESTGEN/FW
for testing, optimization (both with respect of testability and
performance), and configuration of real firewalls. And thirdly,

integration of HOL-TESTGEN/FW with standard firewall con-
figuration tools would increase their appeal to end-users. Like
the second approach, this would allow a policy specification
language to be used for test and configuration of a real firewall.

REFERENCES

[1] “Securing cyberspace for the 44th presidency,” Center
for Strategic and International Studies (CSIS), Tech. Rep.,
2008.

[2] “Misconfigured router causes increased BGP traffic and
isolated outages for internet services,” http://tools.cisco.
com/security/center/viewAlert.x?alertId=17657, 2009.

[3] A. D. Brucker, L. Brügger, and B. Wolff, “Model-based
firewall conformance testing,” in Testcom/FATES 2008, ser.
LNCS, K. Suzuki and T. Higashino, Eds. Springer-Verlag,
2008, no. 5047, pp. 103–118.

[4] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL—
A Proof Assistant for Higher-Order Logic, ser. LNCS.
Springer-Verlag, 2002, vol. 2283.

[5] A. Church, “A formulation of the simple theory of types,”
Journal of Symbolic Logic, vol. 5, no. 2, pp. 56–68, 1940.

[6] P. B. Andrews, Introduction to Mathematical Logic and
Type Theory: To Truth through Proof, 2nd ed. Kluwer
Academic Publishers, 2002.

[7] A. D. Brucker and B. Wolff, “Symbolic test case gen-
eration for primitive recursive functions,” in Formal Ap-
proaches to Testing of Software, ser. LNCS, J. Grabowski
and B. Nielsen, Eds. Springer-Verlag, 2004, no. 3395,
pp. 16–32.

[8] ——, “Test-sequence generation with HOL-TESTGEN –
with an application to firewall testing,” in TAP 2007: Tests
And Proofs, ser. LNCS, B. Meyer and Y. Gurevich, Eds.
Springer-Verlag, 2007, no. 4454, pp. 149–168.

[9] A. El-Atawy, K. Ibrahim, H. Hamed, and E. Al-Shaer,
“Policy segmentation for intelligent firewall testing,” in
NPSec 05. IEEE Computer Society, 2005, pp. 67–72.

[10] A. El-Atawy, T. Samak, Z. Wali, E. Al-Shaer, F. Lin,
C. Pham, and S. Li, “An automated framework for
validating firewall policy enforcement,” in POLICY ’07.
IEEE Computer Society, 2007, pp. 151–160.

[11] J. Jürjens and G. Wimmel, “Specification-based testing
of firewalls,” in Ershov Memorial Conference, ser. LNCS,
D. Bjørner, M. Broy, and A. V. Zamulin, Eds., vol. 2244.
Springer-Verlag, 2001, pp. 308–316.

[12] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith,
and K. Wansbrough, “Engineering with logic: HOL spec-

http://tools.cisco.com/security/center/viewAlert.x?alertId=17657
http://tools.cisco.com/security/center/viewAlert.x?alertId=17657

ification and symbolic-evaluation testing for TCP imple-
mentations,” in POPL, J. G. Morrisett and S. L. P. Jones,
Eds. ACM Press, 2006, pp. 55–66.

[13] R. Marmorstein and P. Kearns, “Firewall analysis with
policy-based host classification,” in LISA. USENIX
Association, 2006, pp. 4–4.

[14] “eXtensible Access Control Markup Language
(XACML), version 2.0,” 2005. [Online]. Avail-
able: http://docs.oasis-open.org/xacml/2.0/XACML-2.
0-OS-NORMATIVE.zip

[15] P. Miseldine, “Automated XACML policy reconfiguration
for evaluation optimisation,” in Software Engineering
for Secure Systems (SESS), B. D. Win, S.-W. Lee, and
M. Monga, Eds. ACM Press, 2008, pp. 1–8.

[16] A. X. Liu, E. Torng, and C. Meiners, “Firewall com-
pressor: An algorithm for minimizing firewall policies,”
in IEEE Conference on Computer Communications (Info-
com), 2008.

[17] R. Dssouli, K. Karoui, K. Saleh, and O. Cherkaoui,
“Communications software design for testability: speci-
fication transformations and testability measures,” Infor-
mation and Software Technology, vol. 41, no. 11-12, pp.
729–743, 1999.

[18] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer,
A. Baresel, and M. Roper, “Testability transformation,”
IEEE Trans. Softw. Eng., vol. 30, no. 1, pp. 3–16, 2004.

[19] R. M. Hierons, M. Harman, and C. Fox, “Branch-
coverage testability transformation for unstructured pro-
grams,” Comput. J., vol. 48, no. 4, pp. 421–436, 2005.

[20] M. Harman, “Open problems in testability transforma-
tion,” in Software Testing Verification and Validation
Workshop (ICSTW), 2008, pp. 196–209.

[21] M. Harman, A. Baresel, D. Binkley, R. M. Hierons,
L. Hu, B. Korel, P. McMinn, and M. Roper, “Testabil-
ity transformation - program transformation to improve
testability,” in Formal Methods and Testing, ser. LNCS,
R. M. Hierons, J. P. Bowen, and M. Harman, Eds., vol.
4949. Springer-Verlag, 2008, pp. 320–344.

[22] A. D. Brucker and B. Wolff, “A verification approach
for applied system security,” International Journal on
Software Tools for Technology Transfer (STTT), vol. 7,
no. 3, pp. 233–247, 2005.

[23] A. D. Brucker, J. Doser, and B. Wolff, “An MDA frame-
work supporting OCL,” Electronic Communications of the
EASST, vol. 5, 2006.

APPENDIX

theorem C_eq_Sets_mr:
assumes sets_eq: " set p = set s"
and SC: "singleComb p"
and wp1_p: "wellformed_policy1_new p"
and wp1_s: "wellformed_policy1_new s"
and wp3_p: "wellformed_policy3 p"
and wp3_s: "wellformed_policy3 s"
and aND: " allNetsDistinct p"
shows "matching_rule x p = matching_rule x s"

proof (cases "matching_rule x p")
case None

have DA: "DenyAll ∈set p" using wp1_p
by (auto simp: wp1_aux1aa)

have notDA: "DenyAll /∈set p" using None
by (auto simp: DAimplieMR)

thus ? thesis using DA by (contradiction)
next
case (Some y) thus ? thesis

proof (cases y)
have tl_p : "p = DenyAll#(tl p)"

by (metis wp1_p wp1n_tl)
have tl_s : "s = DenyAll#(tl s)"

by (metis wp1_s wp1n_tl)
have tl_eq : " set (tl p) = set (tl s)"

by(metis tl . simps(2) WP1n_DA_notinSet foo2 mem_def sets_eq
wellformed_policy1_charn wp1_aux1aa wp1_eq wp1_p wp1_s)

{ case DenyAll
have mr_p_is_DenyAll:
"matching_rule x p = Some DenyAll" by (simp add: DenyAll Some)
hence x_notin_tl_p : "∀ r. r ∈ set (tl p) −→ x /∈ dom (C r)"

using wp1_p by (auto simp: mrDenyAll_is_unique)
hence x_notin_tl_s : "∀ r. r ∈ set (tl s) −→ x /∈ dom (C r)"

using tl_eq by auto
hence mr_s_is_DenyAll:
"matching_rule x s = Some DenyAll" using tl_s

by (auto simp: mr_first)
thus ? thesis using mr_p_is_DenyAll by simp

}{ case (DenyFromTo a b)
have mr_p_is_DAFT:
"matching_rule x p = Some (DenyFromTo a b)"
by (simp add: DenyFromTo Some)

have DA_notin_tl:
"DenyAll /∈ set (tl p)"
by (metis WP1n_DA_notinSet wp1_p)

have mr_tl_p: "matching_rule x p = matching_rule x (tl p)"
by (metis Comb.simps(1) DenyFromTo Some mrConcEnd tl_p)

have dom_tl_p: "
∧

r. r ∈ set (tl p) ∧ x ∈ dom
(C r) =⇒ r = (DenyFromTo a b)"

using wp1_p aND SC wp3_p mr_p_is_DAFT
by (auto simp: rule_charnDAFT)

hence dom_tl_s:
"
∧

r. r ∈ set (tl s) ∧ x ∈ dom (C r)
=⇒ r = (DenyFromTo a b)" using tl_eq by auto

have DAFT_in_tl_s: "DenyFromTo a b ∈set (tl s)"
using mr_tl_p by (metis DenyFromTo mrSet mr_p_is_DAFT tl_eq)

have x_in_dom_DAFT: "x ∈dom (C (DenyFromTo a b))"
by (metis mr_p_is_DAFT DenyFromTo mr_in_dom)

hence mr_tl_s_is_DAFT: "matching_rule x (tl s)
= Some (DenyFromTo a b)"

using DAFT_in_tl_s dom_tl_s by (auto simp: mr_charn)
hence mr_s_is_DAFT: "matching_rule x s = Some (DenyFromTo a b)"

using tl_s
by (metis DA_notin_tl DenyFromTo EX_MR mrDA_tl

mr_p_is_DAFT not_Some_eq tl_eq
wellformed_policy1_new.simps(2))

thus ? thesis using mr_p_is_DAFT by simp
}{ case (AllowPort a b c)

have wp1s: "wellformed_policy1 s" by (metis wp1_eq wp1_s)
have mr_p_is_A: "matching_rule x p = Some (AllowPort a b c)"

by (simp add: AllowPort Some)
hence A_in_s: "AllowPort a b c ∈ set s" using sets_eq
by (auto intro : mrSet)

have x_in_dom_A: "x ∈dom (C (AllowPort a b c))"
by (metis mr_p_is_A AllowPort mr_in_dom)

have SCs: "singleComb s" using SC sets_eq
by (auto intro : SCSubset)

hence ANDs: "allNetsDistinct s" using aND sets_eq SC
by (auto intro : aNDSetsEq)

hence mr_s_is_A: "matching_rule x s = Some (AllowPort a b c)"
using A_in_s wp1s mr_p_is_A aND SCs wp3_s x_in_dom_A
by (simp add: rule_charn2)

thus ? thesis using mr_p_is_A by simp
} case (Conc a b) thus ? thesis by (metis Some mr_not_Conc SC)
qed

qed

http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip

	I Introduction
	II Formal and Technical Background
	II-A Isabelle and Higher-order Logic
	II-B The HOL-TestGen System

	III Modeling Firewalls in HOL Revisited
	III-A A Formal Firewall Model
	III-B Modeling a Policy
	III-C Testing Stateless Firewalls: Direct Approach

	IV Transforming Policies
	IV-A Elementary Transformation Rules
	IV-B Complex Transformation Rules

	V Normalizing Policies
	V-A An Example

	VI Empirical Results
	VII Conclusion and Related Work
	VII-A Related Work
	VII-B Conclusion and Future Work

	Appendix

@InCollection{	 brucker.ea:firewall:2010,
 author	= {Achim D. Brucker and Lukas Br{\"u}gger and Paul Kearney
		 and Burkhart Wolff},
 booktitle	= {Third International Conference on Software Testing,
		 Verification, and Validation (ICST)},
 language	= {USenglish},
 title		= {Verified Firewall Policy Transformations for Test-Case
		 Generation},
 year		= {2010},
 categories	= {holtestgen},
 classification= {conference},
 areas		= {security, formal methods},
 public	= {yes},
 isbn		= {978-0-7695-3990-4},
 location	= {Paris, France},
 pages		= {345--354},
 doi		= {10.1109/ICST.2010.50},
 abstract	= {We present an optimization technique for model-based
		 generation of test cases for firewalls. Based on a formal
		 model for firewall policies in higher-order logic, we
		 derive a collection of semantics-preserving policy
		 transformation rules and an algorithm that optimizes the
		 specification with respect of the number of test cases
		 required for path coverage. The correctness of the rules
		 and the algorithm is established by formal proofs in
		 Isabelle/HOL. Finally, we use the normalized policies to
		 generate test cases with the domain-specific firewall
		 testing tool HOL-TestGen/FW.
		
		 The resulting procedure is characterized by a gain in
		 efficiency of two orders of magnitude and can handle
		 configurations with hundreds of rules as occur in practice.
		
		 Our approach can be seen as an instance of a methodology to
		 tame inherent state-space explosions in test case
		 generation for security policies.},
 keywords	= {security testing, model-based testing},
 pdf		= {http://www.brucker.ch/bibliography/download/2010/brucker.ea-firewall-2010.pdf},
 url		= {http://www.brucker.ch/bibliography/abstract/brucker.ea-firewall-2010}
		
}

%0 Book Section
%T Verified Firewall Policy Transformations for Test-Case Generation
%A Brucker, Achim D.
%A Brügger, Lukas
%A Kearney, Paul
%A Wolff, Burkhart
%B Third International Conference on Software Testing, Verification, and Validation (ICST)
%D 2010
%@ 978-0-7695-3990-4
%G USenglish
%F brucker.ea:firewall:2010
%X We present an optimization technique for model-based generation of test cases for firewalls. Based on a formal model for firewall policies in higher-order logic, we derive a collection of semantics-preserving policy transformation rules and an algorithm that optimizes the specification with respect of the number of test cases required for path coverage. The correctness of the rules and the algorithm is established by formal proofs in Isabelle/HOL. Finally, we use the normalized policies to generate test cases with the domain-specific firewall testing tool HOL-TestGen/FW. The resulting procedure is characterized by a gain in efficiency of two orders of magnitude and can handle configurations with hundreds of rules as occur in practice. Our approach can be seen as an instance of a methodology to tame inherent state-space explosions in test case generation for security policies.
%K security testing, model-based testing
%U http://www.brucker.ch/bibliography/abstract/brucker.ea-firewall-2010
%U http://www.brucker.ch/bibliography/download/2010/brucker.ea-firewall-2010.pdf
%U http://dx.doi.org/10.1109/ICST.2010.50
%P 345-354

TY - CHAP
AU - Brucker, Achim D.
AU - Brügger, Lukas
AU - Kearney, Paul
AU - Wolff, Burkhart
PY - 2010//
TI - Verified Firewall Policy Transformations for Test-Case Generation
BT - Third International Conference on Software Testing, Verification, and Validation (ICST)
SP - 345
EP - 354
KW - security testing, model-based testing
N2 - We present an optimization technique for model-based generation of test cases for firewalls. Based on a formal model for firewall policies in higher-order logic, we derive a collection of semantics-preserving policy transformation rules and an algorithm that optimizes the specification with respect of the number of test cases required for path coverage. The correctness of the rules and the algorithm is established by formal proofs in Isabelle/HOL. Finally, we use the normalized policies to generate test cases with the domain-specific firewall testing tool HOL-TestGen/FW. The resulting procedure is characterized by a gain in efficiency of two orders of magnitude and can handle configurations with hundreds of rules as occur in practice. Our approach can be seen as an instance of a methodology to tame inherent state-space explosions in test case generation for security policies.
SN - 978-0-7695-3990-4
UR - http://www.brucker.ch/bibliography/abstract/brucker.ea-firewall-2010
L1 - http://www.brucker.ch/bibliography/download/2010/brucker.ea-firewall-2010.pdf
UR - http://dx.doi.org/10.1109/ICST.2010.50
ID - brucker.ea:firewall:2010
ER -

