
F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 157–165, 2010.
c© 2010 Springer-Verlag. This is the author’s version of the work. It is posted at http://www.brucker.
ch/bibliography/abstract/brucker.ea-efficient-2010 by permission of Springer-Verlag for your per-
sonal use. The definitive version was published with doi: 10.1007/978-3-642-11747-3_12.

Idea: Efficient Evaluation of
Access Control Constraints

Achim D. Brucker and Helmut Petritsch

SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
{achim.brucker, helmut.petritsch}@sap.com

Abstract Business requirements for modern enterprise systems usually
comprise a variety of dynamic constraints, i. e., constraints that require
a complex set of context information only available at runtime. Thus,
the efficient evaluation of dynamic constraints, e. g., expressing separa-
tion of duties requirements, becomes an important factor for the overall
performance of the access control enforcement.
In distributed systems, e. g., based on the service-oriented architecture

(SOA), the time for evaluating access control constraints depends signif-
icantly on the protocol between the central Policy Decision Point (PDP)
and the distributed Policy Enforcement Points (PEPs).
In this paper, we present a policy-driven approach for generating cus-

tomized protocol for the communication between the PDP and the PEPs.
We provide a detailed comparison of several approaches for querying
context information during the evaluation of access control constraints.

Key words: distributed policy enforcement, XACML, access control

1 Introduction

Business regulations, e. g., Basel II [3] or the Sarbanes-Oxley Act [16], often re-
quire the enforcement of dynamic or context-aware access control policies [9, 17],
for example, (dynamic) separation-of-duties. As many widely used policy lan-
guages, e. g., [6, 15], are not supporting such context requirements as first class
citizens, they are usually encoded as access control constraints [7]. For example,
XACML [15], PERMIS [6], or SecureUML [4] are supporting access control con-
straints. By definition, these constraints depend on context information such as
attributes of a resource (e. g., its owner, last modification date, shipping desti-
nation) and, as such, are not amenable for caching access control decisions [12].
Thus, an efficient attribute retrieval becomes even more important; astonishingly
this is left unspecified in many policy frameworks, e. g., XACML [1] or EPAL [2].

In distributed systems following the service-oriented architecture (SOA), busi-
ness services are provided by orchestrating a set of loosely coupled technical
services. Still, authentication and authorization rely on centralized components:
single sign on implementations authenticate users within highly distributed sys-
tems using a centralized authority. Moreover, while access control policies are
enforced by distributed Policy Enforcement Points (PEPs), the central Policy

http://www.brucker.ch/bibliography/abstract/brucker.ea-efficient-2010
http://www.brucker.ch/bibliography/abstract/brucker.ea-efficient-2010
http://dx.doi.org/10.1007/978-3-642-11747-3_12
http://www.brucker.ch/
http://www.petritsch.co.at
mailto:"Achim D. Brucker" <achim.brucker@sap.com>
mailto:"Helmut Petritsch" <helmut.petritsch@sap.com>

158 A.D. Brucker and H. Petritsch

Decision Point (PDP) evaluates the underlying access control requests. Such
a centrally managed and administered PDP stores access control policies for all
secured services. For evaluation of dynamic constraints, attributes need to be re-
solved (i. e., accessible) at runtime within the PDP. Albeit, often the resolution
of attributes can only be done within the service (i. e., its PEP) requesting the
policy evaluation. Thus, resolving attributes often requires substantial network
communication between the centralized PDP and the various distributed PEPs.
All PDP implementations we are aware of are based on an iterative approach.
In contrast, we propose to optimize the required communication overhead by
using a static policy analysis that allows for sending all attributes required for
a specific access control request at once.

Our contributions are three-fold: first, we present an approach for pre-com-
puting the required attributes for evaluating access control constraints, second,
we analyze and present the performance tests for several attribute resolution
strategies for distributed enterprise systems, and, third, we give guidance on
choosing an optimal resolution strategy based on multiple criteria.

2 Efficient Attribute Resolution

2.1 Context Attributes

Context attributes can be classified with respect to the runtime environment in
which they can be resolved efficiently. For example, while information about the
accessed object is usually only available in the context of the service issuing the
access control request, information about a user (e. g., his roles) are often only
available within the PDP. Thus, attributes can be categorized into:
PDP attributes are only available within the centralized security infrastruc-

ture, i. e., the PDP. The information about role hierarchy membership is,
usually, an example for this kind of information.

Service attributes are only available within the client application or service,
e. g., owner of a resource, specific attributes of a resource (e. g., balance of a
bank account) or number of threads running on the application server.

Global attributes are equally resolvable from either the PDP or the services.
For example, this is the case for attributes that need to be resolved by an
additional service, e. g., the single sign-on or identity provider.

While in common implementations such a classification is left implicit, we pro-
pose to use such a classification explicitly.

2.2 Attribute Resolution Strategies

There exist several approaches for the resolution of context attributes during the
evaluation of access control requests. Fig. 1 illustrates the approaches we will
discuss in the following. These sequence diagrams only illustrate the resolution
of service attributes, i. e., within the PEP. The resolution of global or PDP at-
tributes using a Policy Information Point (PIP) or context provider is left out.

http://www.brucker.ch/
http://www.petritsch.co.at

Idea: Efficient Evaluation of Access Control Constraints 159

(a) The “trial and error” strategy. (b) Resolving attributes using a PIP.

(c) PEP-prefetch. (d) PDP-prefetch.

Fig. 1. Different strategies for resolving context attributes.

Trial and error: The PDP requests the required attributes from the PEP using
an iterative approach (see Fig. 1a). If the evaluation of an access control
request requires a service attribute, the PDP returns a missing attribute
message back to the client. As the PDP is stateless, the initial request has
to be re-send by the PEP until all required attributes are supplied.

PIP: The PIP is responsible for resolving all types of attributes (see Fig. 1b).
For example, the PIP queries the service or PEP over an additional Web
service interface, which requires this interface be reachable from the PIP.

For increasing the performance of access control requiring the resolution of
context attributes, we propose to pre-compute the set of required attributes using
a static analysis of the policy together with one of the following two strategies:

PEP Prefetch: Using a pre-computed look-up-table mapping access control
request to the (potentially over-approximated) set of required service at-
tributes, the PEP can easily determine which attributes could be required
during the evaluation of a concrete access control request. Thus, the PEP
resolves as much services attributes that are potentially required and sends
them, proactively, together with the initial request to the PDP (see Fig. 1c).

PDP Prefetch: By deploying the pre-computed look-up-table only in the cen-
tral PDP implementation, we avoid the need of customizing the various PEPs.
As the PDP can easily check which service attributes might be necessary for
a specific access control request, the PDP is able to request (in its first an-
swer) all potentially required attributes at once. Therefore the number of
evaluation attempts required is strictly bound to two and does not depend
on the number of attributes required (see Fig. 1d).

160 A.D. Brucker and H. Petritsch

2.3 Pre-computing Attribute Sets

In the following, we briefly discuss the steps required for pre-computing the
mapping from access control requests to set of service attributes required by the
two approaches based on pre-fetching. We assume that service attributes are not
used within the core policy language, e. g., in case of XACML within the target
match.

On an abstract level, a security policy P is a mapping of rules to access
control decisions (e. g., deny or allow). For example, in case of RBAC with access
control constraints, a rule is a four-tuple (g, r, a, c) where g is the required role,
r is the resource, a is the action on that resource, and c is a constraint (i. e., a
Boolean expression over context attributes). An access control request is a triple
(u′, r′, a′) where u′ is the requesting user, r′ is the resource the user is requesting
access for executing action a′. Moreover, we say a rule (g, r, a, c) matches a
request (u′, r′, a′) if and only if, the user u′ is a member of the role g, both
r = r′ and a = a′ hold, and the access control constraint c′ evaluates to true.

For PDP Prefetch, we need to compute a mapping from triple (g, r, a) to the
set of potentially required service attributes. Given a policy P ,
1. for each rule (g, r, a, c) in the policy, we compute a four-tuple (g, r, a, As(c))

where As(c) is the set of service attributes that are syntactically referenced
in the access control constraint c.

2. we group the set of four-tuples (g, r, a, As(c)) with respect to their lexico-
graphic order of group, resource, and action (i. e., the triple (g, r, a)).

3. in each group from the previous step, we build die union of all required sets
of service attributes, e. g., given

{
(g, r, a, As(c1)), . . . , (g, r, a, As(cn))

}
, we

compute the triple (g, r, a,
⋃

1≤i≤n As(ci)).
4. we use the consolidated set of triples as input for initializing the hash-table

used in the PDP implementation.
For the PEP Prefetch strategy, we compute analogously a mapping from resource-
action tuples to the set of required service attributes.

While for policy written in an high-level language (e. g., SecureUML [4]) the
set of attributes can be computed exactly, for complicated technical policies
(e. g., XACML using various policy sets together with different policy combining
algorithms) an over-approximation seems to be a good compromise avoiding the
need for the semantical analysis of the given policy. For policy languages sup-
ported by a model-driven-security toolchain, e. g., [5], the required configurations
(or even the complete PEP implementation) can be generated automatically.

3 Empirical Results

3.1 Scenario

We evaluate how the different strategies for resoling context attributes behave
in three different scenarios, whereas these three scenarios differ in the size of the
policies and the requirement to resolve service attributes:

http://www.brucker.ch/
http://www.petritsch.co.at

Idea: Efficient Evaluation of Access Control Constraints 161

Scenario I: This scenario uses a relatively small policy consisting out of 200
rules for ten resources, 50 users that are mapped onto fifteen roles, about
0.5 service attributes are resolved per access control request.

Scenario II: Compared to scenario I, this scenario has an increased likelihood
that service attributes need to be resolved (about 1.8 per request), the policy
has 500 rules for ten resources, 200 users are mapped onto 40 roles.

Scenario III: This scenario uses a large policy with 5000 rules for 100 resources,
restricting the access of 800 users mapped to 100 roles. The policies exten-
sively use service attributes, causing that an average access control request
requires the resolution of over six service attributes.

For every scenario, we generated the policy, the user-group assignments, the
required configurations, and a set of 2000 test requests. Attributes are resolved to
a configurable random value. Generating the access control list explicitly allows
for deterministic repetition of our benchmarks ensuring the comparability of the
results for the different resolution strategies.

3.2 Experimental Results

We compare the different resolution strategies using a distributed prototype
based on the Sun’s XACML implementation (http://sunxacml.sourceforge.
net) running on standard hardware. The PDP offers a Web service interface
for the client PEPs and we use the AttributeFinderModule of XACML for
implementing the PIPs used by the PDP.

First, for each attribute resolution strategy we compare the average response
times for each scenario (see Fig. 2a). In general, this time reflects a significant
portion of the time a system needs for reacting on a users actions. Second, we
analyze the average network load, i. e., the amount of data transmitted during
an access control request (see Fig. 2b).

For a small scenario (i. e., scenario I), we do not observe a significant dif-
ference in both the average response time and the average network traffic (see
Fig. 2). For larger policies (i. e., scenario II), PDP Prefetch and PIP require twice
as long as PEP Prefetch and the trial and error strategy takes more than four
times longer. A similar behavior can be observed in scenario III.

Overall, PEP Prefetch is the fastest approach in all scenarios. Interestingly,
the PIP is in scenario three faster than PDP Prefetch, although the PIP has to
execute on average six Web service calls back to the client, compared to one
additional XACML request done by PDP Prefetch.

The average network traffic shows a similar behavior: PEP Prefetch results in
the minimal amount of network traffic per access control request. Both the trail
and error strategy and the PIP are resulting in an increased network traffic that
does grow larger than linear with respect to the increase of the number service
attribute that need to be resolved. Thus, the overhead caused by Web service
calls seems to exceed the overhead of sending additional attributes.

Further, we compare the average response time depending on the number
of (required) service attributes. Fig. 3 shows that the overhead caused by PEP

http://sunxacml.sourceforge.net
http://sunxacml.sourceforge.net

162 A.D. Brucker and H. Petritsch

0
20
40
60
80

100
120
140

Szenario I Szenario II Szenario III

av
g.

re
sp

on
se

ti
m

e
[m

s]

PEP Prefetch
PDP Prefetch

Context Provider
Trial and Error

(a) Comparing the average response time
per request in milliseconds.

0
0.5

1
1.5

2
2.5

3
3.5

4

Szenario I Szenario II Szenario III

ne
tw

or
k

lo
ad

[k
B

/r
eq

ue
st

]

PEP Prefetch
PDP Prefetch

Context Provider
Trial and Error

(b) Comparing the average network load
(i. e., traffic in kilobytes).

Fig. 2. Comparing the average response times and the overall network traffic for
the different usage scenarios and resolution strategies.

0
5

10
15
20
25
30
35

0 1 2 3 4

av
g.

re
sp

on
se

ti
m

e
[m

s]

number of service attributes required

PEP Prefetch
PDP Prefetch

Context Provider
Trial and Error

(a) Scenario I: average response time.

0
20
40
60
80

100
120
140
160
180

0 1 2 3 4 5 6 7 8 9

av
g.

re
sp

on
se

ti
m

e
[m

s]

number of service attributes required

PEP Prefetch
PDP Prefetch

Context Provider
Trial and Error

(b) Scenario II: average response time.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11

av
g.

re
sp

on
se

ti
m

e
[m

s]

number of service attributes required

PEP Prefetch
PDP Prefetch

Context Provider
Trial and Error

(c) Scenario III: average response time.

0
5

10
15
20
25
30
35
40
45

PEP
Prefetch

PDP
Prefetch

Context
Provider

Trial
and Error

av
g.

re
sp

on
se

ti
m

e
[m

s]

No Attr. PDP Attr. All Attr.

(d) Comparing different attribute typs.

Fig. 3. Comparing response times based on (effective) required service at-
tributes, and comparing scenarios without attributes.

http://www.brucker.ch/
http://www.petritsch.co.at

Idea: Efficient Evaluation of Access Control Constraints 163

Prefetch causes only minor delay in contrast to the three other approaches. In
scenario I (Fig. 3a), PDP Prefetch results in the worst response time for one
resolved service attribute. Albeit, it remains on this level for two and more
service attributes. In contrast, the trial and error strategy has a similar response
time as the PDP Prefetch approach for one service attribute, but the response
time increases nearly linear with additionally required attributes.

For larger policies, i. e., scenario II and III, the size of the policy seems not
to have a significant effect on how the different approaches behave relatively to
each other (see Fig. 3b and Fig. 3c). Here, the PEP Prefetch strategy enjoys the
fastest response time, which, moreover, also does not depend on the number of
attributes required during the request evaluation.

Marshaling and unmarshaling the XACML (i. e., XML) seems to be a time
consuming task: first, compared to Web service requests the effort for handling
XACML seems to be very high. While for both the PDP Prefetch and the trail
and error approach the same number of Web service requests are executed, the
trial and error approach has a significantly slower response time.

Fig. 3d compares variants of scenario II using policies where all attributes
are resolved on the PDP (i. e., causing no network overhead and delay), and
without any attributes (except group resolution). As expected, using no service
attributes is significantly faster. The four approaches differ only in service reso-
lution significantly. The resolution of evaluation of local attributes (i. e., within
the PDP) results in a minor overhead.

4 Discussion

Overall, our proposed resolution strategies (i. e., PEP Prefetch and PDP Prefetch)
do not eliminate or replace the concept of PIPs. For resolving global or PDP
attributes, a context provider directly attached to the PDP should be used.

The PEP Prefetch strategy for resolving context attributes from service side,
produces only little overhead. Thus, even in scenarios rarely using service at-
tributes, our approach is the fastest implementation—leading to the best user
experience, i. e., fast response time of the system. The main drawback of the PEP
Prefetch strategy is the fact that it requires an update of the PEP configuration
whenever the security policy (i. e., the set of rules) requires additional service
attributes for evaluation. The PDP Prefetch strategy overcomes this drawback
while being only resulting in slightly higher response times and network traffic.
As our implementation allows to use the PEP Prefetch strategy with a fallback
strategy (PDP Prefetch or trial and error, e. g., for the time the updates need
to be distributed to all PEPs after a policy update), we propose to use the PEP
Prefetch strategy with a fallback strategy as a general solution.

Overall, the overhead for marshaling and unmarshaling XACML requests en-
coded in XML seems to be very high. Unfortunately, our experiments cannot
give hints if this is an implementation specific or a general problem. Thus, a

164 A.D. Brucker and H. Petritsch

more efficient implementation may increase the overall performance in general
and the performance of the PDP Prefetch approach in particular.

We assume that resolving attributes is possible with low costs. We think that
this is a reasonable assumption (i. e., many attributes required will be assigned
to or available within the current context of the access control request, e. g.,
owner of the accessed resource as attribute or property of the resource itself).
Nonetheless, this cannot be guaranteed for all attributes. Especially for the con-
text provider approach, this assumption is problematic: as the call back to the
service is asynchronous, the resolution is not executed within the context of the
access control request. Thus, the performance and costs of the resolution de-
pends mainly on the underlying application: an intelligent session handling may
allow a fast access of the request context and, therefore, allow the resolution
with nearly the same costs as from within the context itself.

Classifying the attribute types depending in which parts of the overall system
landscape they can be resolved efficiently seems to be a valuable add-on to
existing policy frameworks. Overall, such a classification avoids, first, the need
to transport any kind of status from the client over PDP and PIP to the attribute
resolving component of the client. Second, in the context of the access control
request they are for usual accessible without or with low costs.

5 Conclusion and Future Work

Work on improving the performance of PDPs in distributed service-oriented en-
vironments mainly focuses on three aspects: first, providing highly efficient PDP
implementations for static policies (e. g., [13]), second, optimizing the evaluation
performance by optimizing, statically, the policy (e. g., [14]). Third, while there
is a large body of literature, e. g., [8, 10, 11], on improving the performance of
security frameworks using caching strategies, only proactive caching [11, 12] ad-
dresses the caching of dynamic access control properties. Still, proactive caching
is only able to cache dynamic access control constraints if they are first-class
citizens of the underlying access control language.

As pre-computing the set of required attributes significantly helps in reducing
both the delays caused by resolving context attributes and the overall network
traffic, combining access control caching strategies with the attribute resolution
approaches presented in this paper seems to be an attractive option for improving
the overall performance of today’s enterprise systems.

Furthermore, the performance overhead caused by encoding requests in XACML
needs to be explored: either by switching to a different XACML policy decision
engine, e. g., [13] or by looking at different policy decision languages and evalu-
ation techniques.

Acknowledgments. This work has been supported by the German “Federal
Ministry of Education and Research” in the context of the projects “SoKNOS”
and “Polytos.” The authors are responsible for the content of this publication.

http://www.brucker.ch/
http://www.petritsch.co.at

Idea: Efficient Evaluation of Access Control Constraints 165

References

[1] Anderson, A.H.: A comparison of two privacy policy languages: EPAL and XACML.
In: ACM workshop on Secure Web services (SWS), pp. 53–60. ACM Press (2006).
doi: 10.1145/1180367.1180378

[2] Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise privacy
authorization language (EPAL 1.2). Tech. rep., IBM (2003). http://www.zurich.
ibm.com/security/enterprise-privacy/epal

[3] Basel Committee on Banking Supervision: Basel II: International convergence of
capital measurement and capital standards. Tech. rep., Bank for International
Settlements, Basel, Switzerland (2004). http://www.bis.org/publ/bcbsca.htm

[4] Basin, D.A., Doser, J., Lodderstedt, T.: Model driven security: From UML models
to access control infrastructures. ACM Transactions on Software Engineering and
Methodology 15(1), 39–91 (2006). doi: 10.1145/1125808.1125810

[5] Brucker, A.D., Doser, J., Wolff, B.: AnMDA framework supporting OCL. Electronic
Communications of the EASST 5 (2006).

[6] Chadwick, D., Zhao, G., Otenko, S., Laborde, R., Su, L., Nguyen, T.A.: PERMIS:
a modular authorization infrastructure. Concurrency and Computation: Practice
& Experience 20(11), 1341–1357 (2008). doi: 10.1002/cpe.v20:11

[7] Chen, H., Li, N.: Constraint generation for separation of duty. In: ACM symposium
on access control models and technologies (SACMAT), pp. 130–138. ACM Press
(2006). doi: 10.1145/1133058.1133077

[8] Crampton, J., Leung, W., Beznosov, K.: The secondary and approximate autho-
rization model and its application to Bell-LaPadula policies. In: ACM symposium
on access control models and technologies (SACMAT), pp. 111–120. ACM Press
(2006). doi: 10.1145/1133058.1133075

[9] Kapsalis, V., Hadellis, L., Karelis, D., Koubias, S.: A dynamic context-aware access
control architecture for e-services. Computers & Security 25(7), 507–521 (2006).
doi: 10.1016/j.cose.2006.05.004

[10] Karjoth, G.: Access control with IBM Tivoli access manager. ACM Transactions
on Information and System Security 6(2), 232–257. ACM Press (2003). doi: 10.
1145/762476.762479

[11] Kohler, M., Brucker, A.D., Schaad, A.: ProActive Caching: Generating caching
heuristics for business process environments. In: Conference on Computational
Science and Engineering (CSE), vol. 3, pp. 207–304. IEEE Computer Society (2009).
doi: 10.1109/CSE.2009.177.

[12] Kohler, M., Schaad, A.: Pro active access control for business process-driven envi-
ronments. In: Annual Computer Security Applications Conference (ACSAC) (2008)

[13] Liu, A.X., Chen, F., Hwang, J., Xie, T.: XEngine: A fast and scalable XACML pol-
icy evaluation engine. In: Conference on Measurement and Modeling of Computer
Systems (Sigmetrics). (2008)

[14] Miseldine, P.L.: Automated XACML policy reconfiguration for evaluation optimi-
sation. In: Software engineering for secure systems (sess), pp. 1–8. ACM Press
(2008). doi: 10.1145/1370905.1370906

[15] OASIS: eXtensible Access Control Markup Language (XACML) 2.0 (2005). http:
//docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip

[16] Sarbanes, P., Oxley, G., et al.: Sarbanes-Oxley Act of 2002. 107th Congress Report,
House of Representatives, 107–610 (2002)

[17] Schaad, A., Spadone, P., Weichsel, H.: A case study of separation of duty properties
in the context of the Austrian “eLaw” process. In: ACM symposium on applied com-
puting (SAC), pp. 1328–1332. ACM Press (2005). doi: 10.1145/1066677.1066976

http://dx.doi.org/10.1145/1180367.1180378
http://www.zurich.ibm.com/security/enterprise-privacy/epal
http://www.zurich.ibm.com/security/enterprise-privacy/epal
http://www.bis.org/publ/bcbsca.htm
http://dx.doi.org/10.1145/1125808.1125810
http://dx.doi.org/10.1002/cpe.v20:11
http://dx.doi.org/10.1145/1133058.1133077
http://dx.doi.org/10.1145/1133058.1133075
http://dx.doi.org/10.1016/j.cose.2006.05.004
http://dx.doi.org/10.1145/762476.762479
http://dx.doi.org/10.1145/762476.762479
http://dx.doi.org/10.1109/CSE.2009.177
http://dx.doi.org/10.1145/1370905.1370906
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip
http://dx.doi.org/10.1145/1066677.1066976

	Idea: Efficient Evaluation of Access Control Constraints
	Achim D. Brucker and Helmut Petritsch
	1 Introduction
	2 Efficient Attribute Resolution
	2.1 Context Attributes
	2.2 Attribute Resolution Strategies
	2.3 Pre-computing Attribute Sets

	3 Empirical Results
	3.1 Scenario
	3.2 Experimental Results

	4 Discussion
	5 Conclusion and Future Work

@InCollection{	 brucker.ea:efficient:2010,
 author	= {Achim D. Brucker and Helmut Petritsch},
 booktitle	= {International Symposium on Engineering Secure Software and
		 Systems (ESSoS)},
 language	= {USenglish},
 editor	= {F. Massacci and D. Wallach and N. Zannone},
 publisher	= {Springer-Verlag},
 address	= {Heidelberg},
 series	= {Lecture Notes in Computer Science},
 title		= {Idea: Efficient Evaluation of Access Control Constraints},
 year		= {2010},
 pages		= {157--165},
 number	= {5965},
 doi		= {10.1007/978-3-642-11747-3_12},
 isbn		= {978-3-642-11746-6},
 classification= {conference},
 areas		= {security, software},
 public	= {yes},
 abstract	= {Business requirements for modern enterprise systems
		 usually comprise a variety of dynamic constraints, i.e.,
		 constraints that require a complex set of context
		 information only available at runtime. Thus, the efficient
		 evaluation of dynamic constraints, e.g., expressing
		 separation of duties requirements, becomes an important
		 factor for the overall performance of the access control
		 enforcement.
		
		 Especially in highly distributed systems, e.g., systems
		 based on the service-oriented architecture (SOA) paradigm,
		 the time for evaluating access control constraints depends
		 significantly on the protocol between the central policy
		 decision point (PDP) and the distributed policy enforcement
		 points (PEP).
		
		 In this paper, we present an policy-driven approach for
		 generating customized protocol for the communication
		 between the PDP and the pep. Moreover, we provide a
		 detailed comparison of several approaches for querying
		 context information during the evaluation of access control
		 constraints.},
 keywords	= {distributed policy enforcement, XACML, access control},
 pdf		= {http://www.brucker.ch/bibliography/download/2010/brucker.ea-efficient-2010.pdf},
 ps		= {http://www.brucker.ch/bibliography/download/2010/brucker.ea-efficient-2010.ps.gz},
 url		= {http://www.brucker.ch/bibliography/abstract/brucker.ea-efficient-2010}
		
}

%0 Book Section
%T Idea: Efficient Evaluation of Access Control Constraints
%A Brucker, Achim D.
%A Petritsch, Helmut
%E Massacci, F.
%E Wallach, D.
%E Zannone, N.
%B International Symposium on Engineering Secure Software and Systems (ESSoS)
%D 2010
%N 5965
%I Springer-Verlag
%C Heidelberg
%@ 978-3-642-11746-6
%G USenglish
%F brucker.ea:efficient:2010
%X Business requirements for modern enterprise systems usually comprise a variety of dynamic constraints, i.e., constraints that require a complex set of context information only available at runtime. Thus, the efficient evaluation of dynamic constraints, e.g., expressing separation of duties requirements, becomes an important factor for the overall performance of the access control enforcement. Especially in highly distributed systems, e.g., systems based on the service-oriented architecture (SOA) paradigm, the time for evaluating access control constraints depends significantly on the protocol between the central policy decision point (PDP) and the distributed policy enforcement points (PEP). In this paper, we present an policy-driven approach for generating customized protocol for the communication between the PDP and the pep. Moreover, we provide a detailed comparison of several approaches for querying context information during the evaluation of access control constraints.
%K distributed policy enforcement, XACML, access control
%U http://www.brucker.ch/bibliography/abstract/brucker.ea-efficient-2010
%U http://www.brucker.ch/bibliography/download/2010/brucker.ea-efficient-2010.pdf
%U http://dx.doi.org/10.1007/978-3-642-11747-3_12
%P 157-165

TY - CHAP
AU - Brucker, Achim D.
AU - Petritsch, Helmut
ED - Massacci, F.
ED - Wallach, D.
ED - Zannone, N.
PY - 2010//
TI - Idea: Efficient Evaluation of Access Control Constraints
BT - International Symposium on Engineering Secure Software and Systems (ESSoS)
T3 - Lecture Notes in Computer Science
SP - 157
EP - 165
IS - 5965
PB - Springer-Verlag
CY - Heidelberg
KW - distributed policy enforcement, XACML, access control
N2 - Business requirements for modern enterprise systems usually comprise a variety of dynamic constraints, i.e., constraints that require a complex set of context information only available at runtime. Thus, the efficient evaluation of dynamic constraints, e.g., expressing separation of duties requirements, becomes an important factor for the overall performance of the access control enforcement. Especially in highly distributed systems, e.g., systems based on the service-oriented architecture (SOA) paradigm, the time for evaluating access control constraints depends significantly on the protocol between the central policy decision point (PDP) and the distributed policy enforcement points (PEP). In this paper, we present an policy-driven approach for generating customized protocol for the communication between the PDP and the pep. Moreover, we provide a detailed comparison of several approaches for querying context information during the evaluation of access control constraints.
SN - 978-3-642-11746-6
UR - http://www.brucker.ch/bibliography/abstract/brucker.ea-efficient-2010
L1 - http://www.brucker.ch/bibliography/download/2010/brucker.ea-efficient-2010.pdf
UR - http://dx.doi.org/10.1007/978-3-642-11747-3_12
ID - brucker.ea:efficient:2010
ER -

