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Abstract. Many software companies still seem to be reluctant to use
formal specifications in their development processes. Nevertheless, the
trend towards implementing critical business applications in distributed
environments makes such applications an attractive target for formal
methods. Additionally, the rising complexity also increases the willing-
ness of the development teams to apply formal techniques.
In this paper, we report on our experiences in formally specifying several
core components of one of our commercially available products. While
writing the formal specification, we experienced several issues that had
a noticeable consequences on our work. While most of these issues can
be attributed to the specific method and tools we have used, we do
consider some of the problems as more general, impeding the practical
application of formal methods, especially by non-experts, in large scale
industrial development.
Keywords: ASM, industrial case study, formal specification.

1 Introduction

In this paper, we report on experiences we made with writing a formal speci-
fication for certain aspects of an application that had been designed and built
by one of our product groups. Given the actual time and resource constraints,
we did not attempt to write a full-fledged specification that would allow us to
(semi-)automatically prove system properties, but rather opted for an executable
specification that would help us gaining further insights into the behavior of the
system via proper simulation runs. This both seemed feasible and desirable, es-
pecially since the target application has to operate in a cluster environment
where testing and debugging is notoriously difficult.

Based on the experiences we had made in previous research [4], we decided
to use abstract state machines (ASMs) [7] for our formalization. In more detail,
we created a set of specifications where the refined version could eventually be
executed in CoreASM [13]. Since CoreASM comes with built-in support for literate
specifications (similar to literate programming [15]), we wrote a document that
contained extensive documentation explaining the specification. The final version
of that document accumulated to roughly 130 pages containing approximately
3 200 lines of CoreASM specification (code).
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During the course of writing this specification we stumbled across several
issues that had a noticeable influence on our work in general and the resulting
specification in particular. While most of them can be clearly attributed to the
method and tools we used, some of them seem to show more general problems
that cannot be avoided by simply changing the underlying formal method. In
this sense, we believe that our case study outlines several challenges that need
to be tackled to foster the application of formal software specification methods
in industrial product development environments.

The rest of the paper is organized as follows: In Sec. 2, we start with a short
description of the application that we want to specify followed by an outline
of the approach we have taken to eventually arrive at an executable formal
specification. We then address the issues we have witnessed during the course of
writing the specification in Sec. 3 and, finally, we conclude in Sec. 4.

2 Case Study: Distributed Object Management

In this section, we give an abstract description of the component we have spec-
ified formally. This component is part of an enterprise application that is built
by one of our product development teams. Moreover, we briefly summarize the
requirements that constrained the developers while designing and implementing
the application.

2.1 The Problem: Consistent Distributed Object Management

In its essence, the application under consideration implements an event-condition-
action rule engine [17], where events are represented as object state changes,
conditions are formulated as expressions on object attributes, and actions lead
to further changes in object states. To efficiently compute the actions that need
to be executed on events, the engine uses a modified version of the Rete algo-
rithm [14] that propagates object state deltas through Rete networks. The actual
implementation is multi-threaded, so access and updates to objects need to be
coordinated among a potentially large set of threads running concurrently.

If the engine runs in a non-distributed setting, i. e., a single application in-
stance, optimistic locking provides exclusive read/write access to the different
objects. The engine, however, may be deployed in a cluster variant, where mul-
tiple application instances are running on different server nodes. In this case, we
need to consistently coordinate object access across these engine instances.

Although the overall cluster size may be fixed, the system exhibits dynamic
behavior in that application instances may start or stop during the overall life-
time of the cluster. Thus, we need mechanisms to deal with variations in the
cluster topology, especially in the case of unexpected changes due to application
or cluster node failures.
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2.2 The Solution: Object Ownership and Cluster Failover
Management

The implemented system does not use a distributed locking protocol, but rather
tries to coordinate object access among different instances by maintaining meta
information, called object ownership, in a shared data structure.

The solution needs to guarantee exclusive object ownership, i. e., at most one
application instance may work with an object at any point in time. Thus, any
application instance that wants to access or modify an object needs to success-
fully acquire ownership for that object from its current owner. As scalability is
an important property of the overall system, the data structure that keeps track
of ownership information is not maintained by a central instance, but managed
in a distributed manner: Each application instance is responsible for managing
ownership information for a fixed subset of all objects and is called authoritative
indexer1 for this set of objects. Fig. 1a illustrates a scenario with three appli-
cation instances A, B, and C: instance A is authoritative indexer for objects 1
and 2, B for objects 3 and 4, and C for objects 5 and 6. Objects do not need to
be owned by their authoritative indexer. In our example, object 1 is owned by
instance B, object 6 by instance A, while all other objects are unused.
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(a) Instance A is authoritative indexer
for object 1 and 2, instance B for 3 and
4, and instance C for 5 and 6. Object
1 is owned by instance B, object 6 by
instance A, while all other objects are
unused.
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(b) After instance C has left, instance A
and B agree on a cluster of size 2, with A
being authoritative indexer for objects 1 to
3, and instance B for objects 4 to 6. In-
stance B is informed that object 6 is owned
by instance A.

Fig. 1. An example of a cluster distributed over several application instances

If an instance wants to acquire ownership for an object, it does so by always
contacting the authoritative indexer of that object, not the current owner (if
there is any). This approach has two advantages: first, the protocol requires at
most two message exchanges; one from the requesting instance to the author-
itative indexer and one from the authoritative indexer to the current owner. And

1 Indexer refers to the fact that objects have unique identifiers that serve as an index
into this data structure.
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second, each cluster instance is able to compute all authoritative indexer by itself
once it has learned the cluster topology after a successful join of the cluster.

If cluster topology changes, ownership and authoritative indexer information
needs to be redistributed among all cluster members. Ownership information
is propagated via a restructuring protocol that, upon successful completion, is
supposed to ensure two (mutually independent) properties:

1. all participating instances will agree on the same view (i. e., size and topol-
ogy) of the cluster, which allows each instance to locally compute the same
authoritative indexer for any object.

2. each instance will know current ownership for its authoritative set of objects.

To illustrate this, recall our example in Fig. 1a. If instance C leaves the
cluster, instance A and B will eventually agree on a new cluster of size 2, with A
being authoritative indexer for objects 1, 2, and 3, and instance B for objects 4,
5, and 6. Furthermore, instance B has to be informed that object 6 is owned by
instance A. So far, that information had been maintained by the leaving instance
C. Fig. 1b illustrates the resulting cluster topology.

While each instance maintains its local view of the cluster, there is one dedi-
cated master instance providing the current view of the cluster to new instances
joining the cluster. Using a dedicated master avoids (cluster) discovery protocols,
but requires explicit means for master election, including recovery mechanisms
in case the current master instance may leave the cluster unexpectedly due to
an application or server node failure. In those cases, the remaining instances will
compete against each other regarding mastership and the failing parties will try
to join the cluster in the usual way.

2.3 Additional Implementation Constraints

Application development, especially in large software companies, rarely happens
in isolation. Overall, it has to obey various requirements and boundary conditions
imposed by application frameworks and platforms and programming models that
are already used. These constraints often have a noticeable effect on the resulting
solution architecture. In this section, we briefly review those aspects that also
had a significant impact on our formal specification work.

Avoid additional functionality by reusing existing frameworks. Rather
than building dedicated functionality into the runtime environment, the devel-
opment team was urged to implement functionality by reuse existing software
frameworks and components as much as possible. While it is, e. g., desirable to
have a central facility for storing cluster meta data, like information on the cur-
rent cluster topology or on the current master instance, much like [11], the given
cluster implementation does not foresee such mechanisms. Therefore, the team
opted for named communication channels implemented using the Java Naming
and Directory Interface (JNDI).
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Minimize Central Knowledge while Avoiding Redundancy. Centralized
knowledge requires additional synchronization among the cluster participants
and increases the communication overhead among them. Furthermore, any form
of centralized knowledge introduces bottlenecks and threatens system availability
should the central instance stop working properly. A common practice to increase
system availability is redundancy (e. g., via replication [12]), but such a feature
is not part of the underlying runtime platform. Therefore the decision was made
to solely rely on local meta information (i. e., object ownership) per instance
which needs to be synchronized whenever the cluster topology changes (which
is expected to happen rarely).

Global Synchronization via Locks. Whenever an operation requires syn-
chronization among the instances in a cluster, the initiating party needs to en-
force that by acquiring a global lock maintained by a central lock server (i. e.,
a central infrastructure component). Master election is an example for such an
operation. In fact, there is no real election going on and no elaborated agreement
protocol is used; instead, being able to become the master is just bound to the
ability to acquire a global, exclusive master lock from the central lock server.

Synchronous Mode of Operation. Although the platform provides different
means of communication for application instances running on a cluster, any
protocol-related communication is implemented as synchronous remote method
invocation (RMI) calls since that required less changes in the code base when
moving from a stand-alone to a cluster-enabled version.

Continuous Operation during Restructuring. Obviously, the restructur-
ing protocol for updating meta information on object ownership is one of the
most critical parts of the overall solution. A defensive approach would proba-
bly try to block any other interfering operations (like object requests) during
cluster restructuring until the system has reached a stable state again. But over-
all performance had been given higher priority leading to a significantly more
complicated restructuring protocol.

2.4 Formal Specification

Ideally, we would have started with that formal specification, proven its correct-
ness, and then iteratively refined it into executable code. Unfortunately, the real
project settings were different and the development team had already designed
and implemented a first version. Given that, we opted for a rather practical ap-
proach: our goal was to reverse-engineer the implementation into an executable
specification that would allow us to simulate the system behavior in enough
detail to detect any discrepancies between the desired and the implemented
behavior. The initial plan was to focus on robustness of the protocol against
communication failures. During our work, we followed a two-staged approach:
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Table 1. An overview of the modules of the ASM specification

Module Lines Rules Functions

Control ASM States 50 0 1
Cluster Master 161 12 10
Protocol Messages 138 0 25
Cluster Membership and Object Management 1 796 114 159
Object Requests 128 10 3
Cluster Environment (Notification) 328 19 31
Lock Management 141 7 19
Message Passing 362 12 56
Control Flow 88 10 5
Control State Handling 63 5 9

Total 3 255 189 318

1. We started with a high-level abstract specification on paper to capture the
essence of the functional features. This abstract specification was used as our
primary communication and discussion medium with the development team
to clarify our understanding of the overall system architecture and behavior
and to discuss remaining open issues.

2. Once that abstract specification had reached a critical mass, we began to
manually refine it towards an executable specification. After that, we up-
dated both versions in parallel while trying to keep the overall structure and
naming conventions aligned. Although this does by no means replace any
sort of formal proof of the correctness of our refinement, it eventually helped
us correcting errors in the abstract specification that surfaced through sim-
ulation runs of the executable specification.

Given the dynamic nature of the application, we decided to model the system
as an asynchronous multi-agent ASM . With this, we came fairly close to the
implementation where the parallelism induced by multiple Java threads was
mapped to a set of agents with dedicated functionality. As a positive side-effect,
this also led to a more modular specification.

Within a time-period of six months, we spent 80 person days to write a multi-
agent CoreASM specification that eventually consists of ten modules. Tab. 1
provides some details on the complexity of those modules. Out of these ten
modules, the first four resemble the basic functionality outlined in Sec. 2.2. The
fifth module, Object Requests, has been added to trigger random object access
requests and thus simulate updates on ownership information. The next three
modules provide functionality available via application frameworks (see Sec. 2.3),
while the last two have been introduced to provide “syntactical sugar” when it
comes to specifying complex control state machines. As the numbers show, we
ended up with roughly 20% additional effort not providing core functionality,
but is required to realistically model the implemented system behavior.
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Table 2. The different agents per node and their number of control states

Agent Control States

Object Requester 8
Object Request Processor 5
Node Failure Handling 22
Meta Data Management 15
Joining a Cluster 22
Leaving a Cluster 24

For each cluster node, we have six agents performing different tasks in the
overall protocol and each agent is modeled as a control state ASM (see Tab. 2).
Since some of the control states are shared between these agents, the overall
number of distinct states is 79.

Specification 1.1 presents invariants (in CoreASM notation) which must hold
whenever a cluster is considered in a stable state, i. e., no nodes are in the process
of joining or leaving the cluster: As the names imply, we want to assert that, at
any point in time, object ownership information is “in sync” and “valid” across
the cluster. Synchronized information requires that, for each object, its author-
itative indexer and its current owner share that view. Ownership information is
considered valid if the current owner is still a member of the current cluster.

derived IndicesInSync =
forall node in RunningNodes () holds IndexInSync(node)

derived IndicesAreValid =
forall node in RunningNodes () holds IndexIsValid(node)

derived IndexInSync(node) =
forall oid in [1.. OID_MAX] holds SlotInSync(node , oid)

derived SlotInSync(node , oid) =
node = authIndexer(oid , node) implies

OWNER(OWNER(node , oid), oid) = OWNER(node , oid)

derived IndexIsValid(node) =
forall oid in [1.. OID_MAX] holds SlotIsValid(node , oid)

derived SlotIsValid(node , oid) =
node = authIndexer(oid , node) implies

OWNER(node , oid) memberof RunningNodes ()

Specification 1.1. Cluster Protocol Invariants
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2.5 Simulation Results

Given the specification above, a rough estimate shows that the state space re-
quired by a explicit state model checker is the range of 1050. Thus, we rather went
for simulating dedicated scenarios, instead explicit brute-force model checking.

As with any other distributed coordination protocol, it soon became clear
that we needed to simulate protocol runs for exceptional cases, especially situa-
tions where nodes leave the cluster unintentionally. When we started our work,
we thought we would need to spend most of our efforts into simulating mes-
sage transmission errors. But after several talks with the development team it
turned out that the system takes a fairly defensive approach for dealing with
such errors: most of the time, a message transmission failure will lead to a node
restart. Thus, we decided to focus on exploring the alternative paths with regard
to cluster topology changes and failover handling.

As it turned out, the modularity of the specification came in very handy
and we were able to factor out parts of the overall protocol complexity, like,
e. g., object request handling. With this simplifications, we eventually ended
up with a streamlined simulation scenario that revealed a bug in the initial
implementation, not yet discovered by any standard testing procedures: While
investigating the failover handling during changes of the cluster topology, we
realized that the original failover protocol was based upon a faulty assumption,
namely that notifications in the case of failure would be sent immediately after
a node failure. As this notification is sent by the runtime environment and, thus,
not controlled by the application, one can easily think of scenarios where this is
not true. Just assume that the notification is delayed while a new node is starting
up in parallel during that delay. Then, that node will become the master of a
new cluster that would just consist of that one node. If the delayed notification
is then passed on to the remaining nodes from the old cluster, they will try to
become master, will all fail, and thus do nothing, assuming that the (unknown)
winner will perform the outstanding restructuring. Since the new master is not
aware of the old cluster, no repair will happen and we will end up with two
independent clusters operating in parallel.

This undesired behavior can be reliably reproduced with the following ab-
breviated simulation scenario.2 We start by setting up a cluster with two nodes.
Furthermore, we specify a distinct id for a third node that will be started at a
later stage and will become the new master of the new cluster.

if (scenarioPhase = 0) then {
nodeList = ["N1", "N2"]
newMasterNode = "N3"

scenarioPhase = 1
}

2 We have omitted some variable and rule declarations. The overall simulation script
is 89 lines long.
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Once these nodes are running, we know that the cluster has reached a stable
state. We now disable node failure detection, by suspending the corresponding
agents.

if (scenarioPhase = 1) then {
if (AllNodesRunning ()) then {

SuspendNodeFailureHandlers ()
scenarioPhase := 2
clusterIsStable := true

}
}

After failure detection has been disabled, we forcefully shutdown the current
master node.

if (scenarioPhase = 2) then {
killedMaster := MasterNode ()
remove NodeID(MasterNode ()) from nodeList
SignalNodeShutdown(MasterNode (), true)
scenarioPhase := 3
clusterIsStable := false

}

As soon as the old master node is down, we start up the third node. Failure
detection is still disabled, i. e., the remaining node in the old cluster is still not
informed about the fact that the old master has left the cluster.

if (scenarioPhase = 3) then {
if (NodeIsDown(killedMaster )) then {

AddNode ()
add newMasterID to nodeList
scenarioPhase := 4

}
}

Once the new master has joined the cluster and there is a (new) master in
that cluster, we resume the agents that will handle node failures.

if (scenarioPhase = 4) then {
if (MasterNode () != undef

and HasJoinedCluster(newMasterID )) then {
ResumeElemLossHandlers ()
scenarioPhase := 5

}
}

As a result of the previous step, the one remaining node of the old cluster
will try to become master, but will fail (since the new node has taken over mas-
tership). Assuming that another node from the old cluster has become master,
it will do nothing. Once the remaining and the new master node have resumed



26 M. Altenhofen and A.D. Brucker

normal operation, we declare the cluster as stable again. But now the invariant
IndicesInSync does not hold anymore3.

if (scenarioPhase = 5) then {
if (AllNodesRunning ()) then {

clusterIsStable := true
scenarioPhase := 6

}
}

3 Lessons Learned

Although we have ultimately reached our goal, it turned out to be more difficult
than we expected. Some of the issues we have faced can clearly be attributed to
the method we have used, while other seem to reveal more general problems.

3.1 Method-Related Issues

Notation and Execution Semantics. As noted above, all protocol-related
communication is implemented as synchronous RMI calls, which means that
the calling thread will block until the answer has been received from the callee.
Translating this blocking behavior into ASM turned out to be difficult. At the
abstract level, we finally ended up with extending the standard semantics by
introducing an await construct (see [2] for details) and, moreover, provided
additional control state diagrams for further explanation.

Alas, this approach could not be taken for the executable specification since
that would have required substantial changes in the existing CoreASM runtime.
Instead, we transformed the corresponding rules and state diagrams from the
abstract specification into proper control state ASMs. To increase readability,
we ultimately developed a set of ASM macros that allowed us to use a more
concise notation, as the following example shows:

rule JoinCluster = {
StepInto(@PrepareJoin , {startingUp , registerAtMaster })
StepInto(@Rearrange , {arrangeCall })
StepInto(@Commit , {rearrangeCompleted })

}

Here, the StepInto macro has the following semantics: If the control state
of the agent is a member of the state set specified in the second argument,
the program of that agent shall be overridden by the rule element specified in
3 In the implementation, an authoritative indexer claims ownership for all unassigned
objects within its range. In our scenario, the new master—as the sole member of the
new cluster—will claim membership for all objects, which conflicts with ownership
information maintained by the old node.



Practical Issues with Formal Specifications 27

the first argument. In other words, the first line in the example states that the
agent should “step into” PrepareJoin if its control state is either startingUp
or registerAtMaster.

Missing Scope for Locations. Although the ASM method provides a detailed
classification scheme for functions and locations [7], we missed a way to restrict
the scope or visibility of a location to an individual agent or a well-defined subset
of agents. This feature would have allowed us to make constraints that exist in
the implementation already visible (and checkable) at the specification level.

In Sec. 2.2, we outlined that the system requires “shared” information to
operate correctly, but that implies that each application instance maintains its
local copy of that information and any changes need to be propagated among
the instances via proper message exchanges. Without having a way to attribute
information as being “private” to an instance (similar to private fields in object-
oriented languages), one could easily introduce errors in the specification by
accidentally accessing such private information in other contexts.

Missing Tool Support for Refinements. As the name suggests, abstract
specifications should provide a high-level view capturing the essential function-
ality of a system. We took the freedom to “abstract away” implementation related
issues during the initial phase of our work. Compared to that, the executable
specification had to spell out all the details that we had left out in the abstract
specification. That constitutes a large refinement and should have probably been
broken up into several steps. Unfortunately, none of the tool sets that were avail-
able to us does provide any support for controlled refinements.

Faced with that problem, we again took a rather pragmatic approach: we
tried to establish a strong linkage on the syntactical level by staying as close
as possible to the naming conventions and signatures introduced in the abstract
specification although we could have used a more concise notation in some cases.
There are, e. g., abstract rules which are parametrized with a node referring
to the application server node which will process a request. In the executable
specification, we do have functions that establish a unique relationship between
an agent and such a server node. Given that relationship, the node parameter
in the CoreASM rule signature is redundant, but has been retained to keep the
rule signatures synchronized.

Reusable Specification Modules. When writing our specification, we of-
ten encountered situations in which we needed to specify common concepts
(e. g., asynchronous communication channels) that, with respect to our target,
we would classify as “infrastructure.” Based on our experiences with program-
ming languages that are equipped with large, thoroughly tested libraries of com-
mon data structures and algorithms, we often felt the need for similar libraries
of well-proven, generic specifications of common software engineering artifacts.
Consequently, we tried to make our specification as re-usable as possible; still,
we cannot claim that our specification can be easily reused in other contexts
than our own. We believe that is partially due to our own lack of experience
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in writing modular ASM specification and partially due to the lack of generic
modules in ASM. Finally, while systems like Isabelle [18] or Coq [6] provide a
large variety of re-usable libraries formalizing mathematical concepts, we still
see a lack of similar libraries for data-structures, algorithms, and high-level
components (e. g., of-the-shelf middleware components). Besides being the basis
for further formalization work, such libraries of standard components and algo-
rithms could also serve as means for learning how to write good specifications.
Thus, we would especially encourage initiatives collecting and maintaining formal
specifications for software artifacts, similar to “The Archive of Formal Proofs”
(http://afp.sourceforge.net) for Isabelle.

3.2 Tool- and Process-Related Issues

While the topics above can be attributed to the specific method we have chosen,
we also see deficits when it comes to development tools and processes used and
established in industrial environments.

Insufficient Support for Literate Specifications. Within our work, we have
experimented with the literate specification feature in CoreASM: We embedded
the executable specification into a document written in OpenOffice.org (http:
//www.openoffice.org) which should allow us to use the full power of a modern
desktop publishing system to improve the comprehensiveness of the formal part
with diagrams, cross-references, etc. The CoreASM runtime engine is able to
extract the specification part from such a document and directly execute it.

While this loose coupling seems flexible and elegant at first sight, it has
proven inferior in both usability and efficiency: On one hand, an editing en-
vironment that is unaware of the specification language syntax lacks many
of the sophisticated features, like syntax highlighting, auto-completion, etc.,
found in modern, integrated development environments, such as Eclipse (http:
//www.eclipse.org). On the other hand, having no real feedback loop between
the editing front-end and the runtime back-end unnecessarily prolongs the round
trip for error corrections in comparison to state-of-the-art development tools. In
hindsight, we would prefer a tight integration into existing tool environments
over such loosely coupled tool chains.

Although there are first examples of tools that strive for better integration
into existing environments, e. g., the Rodin platform (http://www.event-b.
org/platform.html) for Event-B [1], support for literate specifications still
seems to be lacking behind. We still see a tendency to follow the tradition to
treat a formal specification as part of an (academic) publication. In Rodin, e. g.,
there is no easy way to export a machine specification other than exporting it to
LATEX (via a separate plug-in). But for large-scale application development, we
need a way to make a formal specification a living document within the overall
development life-cycle.

Debugging Support. When writing specifications one often has to cope with
situations similar to programming. Like programs, specifications may have bugs,
and finding these bugs may require a deeper inspection of what is going on. While

http://afp.sourceforge.net
http://www.openoffice.org
http://www.openoffice.org
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http://www.event-b.org/platform.html
http://www.event-b.org/platform.html
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simulation support primarily asks for ways to steer execution runs and have a
way to observe the externally visible state changes, debugging support would
extend this towards the possibility to fully explore the state of the specification
execution.4 Such a fine-grained specification animation helps, on the one hand,
in convincing oneself (and, in our case, also the developers) that the formal
specification captures the informal requirements and, on the other hand, it allows
for finding the inconsistencies (“bugs”) in the specification in an early stage.

For example, we envision support for executing deterministically specified
traces within the animation environment while being able to set breakpoints for
examining the system state (e. g., variables, messages sent). As a first step in that
direction, our experiences in simulating ASM runs in CoreASM resulted in the
development of a scripting language for CoreASM that is discussed elsewhere [3].
Overall, this scripting language allows for deterministically provoking the bug
described in Sec. 2.5 by performing the following steps automatically:

1. Start a cluster with two nodes and wait until it has reached a stable state.
2. Disable node failure notification.
3. Stop the master node.
4. Once the master node is done, start a new node.
5. Once that new node has finished building the new cluster, enable node failure

notification.

In our experience, such “scripted” traces are also very helpful in communicating
with the developer of the analyzed product.

Combining Formal and Semi-formal Development Processes. Whereas
formal methods are far from being deeply integrated into our software develop-
ment process, semi-formal methods, e. g., in the form of UML or BPMN are used
routinely. Therefore, these already existing, semi-formal specifications should be
reused in a tool-supported way. This could be done either by providing formal
methods tool for these languages and integrating them into model-driven devel-
opment processes (e. g., similar to [9,8]) or by generating specifications in the
formal language of choice. Such generated specifications could describe, on the
one hand, the environment, and on the other could serve as the basis for a formal
high-level system specification.

Lack of Commercially Applicable Tools. While being a completely non-
technical issue, we experience amazingly often the situation in which the soft-
ware license of a tool prevented its use—even for case-studies. Either, while being
available for download, the tools did not have any licensing information (which,
at the end, forbids their use) or because the use in a commercial environment
is excluded explicitly in the license terms (and, furthermore, no option for ob-
taining a commercial license is provided). Thus we would like to encourage tool
4 Lacking that feature in CoreASM, we fell back to the “traditional” way of debugging
by augmenting the specification with logging statements. In the final version, roughly
10% of the whole specification are dedicated to produce meaningful execution traces.
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developers to state their intended license terms clearly. In our experience, this
is especially important to advertise the use of formal methods in environments
that are not able (either due to a lack of resources or expertise) to develop their
own tools. For example, today’s (rare) use of formal methods at SAP is too
diverse to suggest a concrete formal toolchain (and specification language) to
our product groups. Thus, we would like to use formal tools from external ven-
dors, similar to our uses of development tools (e. g., for Java development) from
external vendors. Consequently, we see a higher chance to educate our product
groups in using SAT or SMT solvers5 for specific problems than writing formal
specification of whole software components.

4 Conclusion

Fully automated tools, that apply formal methods without the need for an ex-
plicit specification (neither of the underlying software system or of the proper-
ties to be analyzed), e. g., Polyspace (http://www.mathworks.com/products/
polyspace/) or Coverty (http://www.coverty.com/), can be used by non-
experts in formal methods [19]. Similar experiences are reported for automated
tools that only require light-weight specifications (e. g., based on pre-, postcon-
ditions and invariants) on the level of source code annotations that enjoy a deep
integration into the development life-cycle, e. g., [5].

In our experience, the use of formal specifications, within an industrial soft-
ware development process for business software, using languages like ASM [7],
B [1], or Z [20], is still a challenge. While we do not see a fundamental problem
in requiring an expert for the (potential) interactive analysis (e. g., verifying sys-
tem properties), non-experts should be able to document, write, type-check, and
animate (execute) formal specifications and the system properties that should
be verified during an analysis. Overall, to achieve this goal, the specification and
animation environment needs to be integrated into modern software develop-
ment tool chains used in industry. Moreover, as software is usually developed
in, potentially distributed teams, support for a collaborative writing of speci-
fications seems to be a necessity. This is in particular true if existing software
development teams work closely together with formal methods experts.

Overall, we see in particular four areas for future research: First, the inte-
gration of collaboration techniques, e. g., wikis6, into environments for writing
specifications would allow for turning formal specifications from nicely format-
ted (academic) papers into living documents. While there are first experiments
in integrating interactive theorem provers into a semantic wiki for generating
formally checked pages [16], we still see this only as a first step. Collaborative
5 At SAP, using SAT solvers, at least for prototypes, seems to be an accepted devel-
opment approach. Nevertheless, due to technological and licensing issues it is still
unclear if a solution based on a SAT solver will make its way into shipped products
or if, during production, they might be replaced by a customized analysis algorithm.

6 There is another interesting aspect to this: wikis have successfully proven that a
simplified notation can significantly extend the user base.

http://www.mathworks.com/products/polyspace/
http://www.mathworks.com/products/polyspace/
http://www.coverty.com/
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scenarios with distributed teams (of developers and formal method experts) may
require sophisticated life-cycle and versioning support that would allow teams
to develop, refine and test several specification variants in parallel.

Second, software changes over time and the same should be true for its ac-
companying documentation and formal specification. Therefore, a tool-supported
process that (automatically) ensures consistency and traceability among all de-
pendent artifacts is, in our opinion, a central cornerstone of the successful ap-
plication of formal specifications in the mainstream software industry.

Third, we would like to stress once again the importance of a library mecha-
nism allowing for both the structuring of specifications and, more importantly,
the reuse of already analyzed specifications. Similar to the component libraries
available for programming language, such libraries need to be easily available
within the regular tool chain (e. g., similar to the handling of Java libraries in
Eclipse), reusable, covering a wide application area (ranging from data struc-
tures, over algorithms and protocols, to high-level specifications of large compo-
nents, e. g., middleware), and, last but not least, available to the public.

Finally, we see a potential for integrating test case generation techniques
(e. g., similar to [10]) into specification and animation environments. This would
allow for both the generation of test cases on the level of the specification and
the generation of test cases on the specification level. While the former allow
for validating that the implementation–including the environment it is executed
in—is a refinement of the specification, the latter can be used for guiding the
animation of the specification.
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