
HOL-TestGen

An Interactive Test-case Generation

Framework

Achim D. Brucker Burkhart Wolff

SAP Research, Vincenz-Priessnitz-Str. , Karlsruhe, Germany

achim.brucker@sap.com

Université Paris-Sud, Parc Club Orsay Université, Orsay Cedex, France

wolff@wjpserver.cs.uni-sb.de

ETAPS

York, th March

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff
mailto:brucker@inf.ethz.ch
mailto:wolff@wjpserver.cs.uni-sb.de

Outline

 Motivation

 Tool-Demo: HOL-TestGen and its Workflow

 Case Studies

 Conclusion

Motivation Motivation

State of the Art

“Dijkstra’s Verdict:”

Program testing can be used to show the presence of bugs, but never to

show their absence.

Is this always true?

Can we bother?

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Motivation Motivation

Our First Vision

Testing and verification may converge,

in a precise technical sense:

specification-based (black-box) unit testing

generation and management of formal test hypothesis

verification of test hypothesis (not discussed here)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Motivation Motivation

Our Second Vision

Observation:
Any testcase-generation technique is based on and limited by

underlying constraint-solution techniques.

Approach:
Testing should be integrated in an environment combining

automated and interactive proof techniques.
the test engineer must decide over, abstraction level, split rules,

breadth and depth of data structure exploration . . .

byproduct: a verified test-tool

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Outline

 Motivation

 Tool-Demo: HOL-TestGen and its Workflow

 Case Studies

 Conclusion

Motivation HOL-TestGen and its Components

Components of HOL-TestGen

HOL (Higher-order Logic):
“Functional Programming Language with Quantifiers”

plus definitional libraries on Sets, Lists, . . .

can be used meta-language for Hoare Calculus for Java, Z, . . .

HOL-TestGen:
based on the interactive theorem prover Isabelle/HOL

implements these visions

Proof General:
user interface for Isabelle and HOL-TestGen

step-wise processing of specifications/theories

shows current proof states

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Motivation HOL-TestGen and its Components

�e System Architecture of HOL-TestGen

test data

test cases

program under test

test harness

test script

test specification

(Test Result)

Test Trace

HOL-TestGen

Isabelle/HOL

SML-systemtest executable

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Outline

 Motivation

 Tool-Demo: HOL-TestGen and its Workflow

 Case Studies

 Conclusion

Tool-Demo: HOL-TestGen and its Workflow

�e HOL-TestGen Workflow

�e HOL-TestGen workflow is basically fivefold:

 Step I: writing a test theory (in HOL)

 Step II: writing a test specification
(in the context of the test theory)

 Step III: generating a test theorem (roughly: testcases)

 Step IV: generating test data
 Step V: generating a test script

And of course:

building an executable test driver

and running the test driver

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Tool-Demo: HOL-TestGen and its Workflow

Step I: Writing a Test�eory

Write data types in HOL:

theory List_test

imports Testing

begin

datatype ’ a list =

Nil (" [] ")

| Cons ’a " ’ a list " (infixr "#")

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Tool-Demo: HOL-TestGen and its Workflow

Step I: Writing a Test�eory

Write recursive functions in HOL:

consts is_sorted :: " (’ a :: ord) list ⇒ bool"

primrec
" is_sorted [] = True"

" is_sorted (x#xs) = case xs of
[] ⇒ True

| y#ys ⇒ ((x < y) ∨ (x = y))

∧ is_sorted xs"

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Tool-Demo: HOL-TestGen and its Workflow

Step II: Write a Test Specification

writing a test specification (TS)

as HOL-TestGen command:

test_spec " is_sorted (prog (l ::(’ a list))) "

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Tool-Demo: HOL-TestGen and its Workflow

Step III: Generating Testcases

executing the testcase generator in form of an Isabelle proof

method:

apply(gen_test_cases "prog")

concluded by the command:

store_test_thm " test_sorting "

. . . that binds the current proof state as test theorem to the name

test_sorting.

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Tool-Demo: HOL-TestGen and its Workflow

Step III: Generating Testcases

�e test theorem contains clauses (the test-cases):

is_sorted (prog [])

is_sorted (prog [?XX])

is_sorted (prog [?XX, ?XX])

is_sorted (prog [?XX, ?XX, ?XX])

as well as clauses (the test-hypothesis):

THYP((∃ x. is_sorted (prog [x])) Ð→ (∀ x. is_sorted (prog [x])))

. . .

THYP((∀ l. < | l | Ð→ is_sorted (prog l))

We will discuss these hypothesises later in great detail.

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Tool-Demo: HOL-TestGen and its Workflow

Step IV: Test Data Generation

On the test theorem,

all sorts of logical massages can be performed.

Finally, a test data generator can be executed:

gen_test_data " test_sorting "

�e test data generator

extracts the testcases from the test theorem

searches ground instances satisfying the constraints (none in the

example)

Resulting in test statements like:

is_sorted (prog [])

is_sorted (prog [])

is_sorted (prog [,])

is_sorted (prog [, ,])

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Tool-Demo: HOL-TestGen and its Workflow

Step V: Generating A Test Script

Finally, a test script or test harness can be generated:

gen_test_script " test_lists . sml" list " prog

�e generated test script can be used to test an implementation,

e.g., in SML, C, or Java

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Tool-Demo: HOL-TestGen and its Workflow

�e Complete Test�eory

theory List_test

imports Main begin
consts is_sorted :: " (’ a :: ord) list ⇒ bool"

primrec " is_sorted [] = True"

" is_sorted (x#xs) = case xs of
[] ⇒ True

| y#ys ⇒ ((x < y) ∨ (x = y))

∧ is_sorted xs"

test_spec " is_sorted (prog (l ::(’ a list))) "

apply(gen_test_cases prog)

store_test_thm " test_sorting "

gen_test_data " test_sorting "

gen_test_script " test_lists . sml" list " prog

end

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Tool-Demo: HOL-TestGen and its Workflow

Testing an Implementation

Executing the generated test script may result in:

Test Results:

Test 0 - *** FAILURE: post-condition false, result: [1, 0, 10]

Test 1 - SUCCESS, result: [6, 8]

Test 2 - SUCCESS, result: [3]

Test 3 - SUCCESS, result: []

Summary:

Number successful tests cases: 3 of 4 (ca. 75%)

Number of warnings: 0 of 4 (ca. 0%)

Number of errors: 0 of 4 (ca. 0%)

Number of failures: 1 of 4 (ca. 25%)

Number of fatal errors: 0 of 4 (ca. 0%)

Overall result: failed

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Tool-Demo: HOL-TestGen and its Workflow

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Outline

 Motivation

 Tool-Demo: HOL-TestGen and its Workflow

 Case Studies

 Conclusion

Case Studies

Red-black trees

Goal:

Test if balancing property is preserved by the red-black tree operations.

part of the SML standard library

widely used internally in the sml/NJ compiler, e.g., for

providing efficient implementation for Sets, Bags, . . . ;

very hard to generate (balanced) instances randomly

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Case Studies

Red-black Trees: Summary

Statistics: test cases were generated

One error found: crucial violation against red/black-invariants

Red-black-trees degenerate to linked list

(insert/search, etc. only in linear time)

Not found within years

Reproduced meanwhile by random test tool

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Case Studies

Case Studies: Stateless Firewalls (Packet Filters)

Goal:

Test if a packet filter (firewall) configuration conforms to a given policy.

A packet filter filters (e.g., rejects or denies) packets based on

source address destination address

protocol

As usual

model firewalls (e.g., networks and protocols) and their policies in

HOL

use HOL-TestGen for test-case generation

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Case Studies

Case Studies: Stateful Firewalls

Goal:

Test if a stateful firewall supports stateful protocols correctly.

Obvervation:

protocols like �p and VoIP have an internal state

and need to be filtered (dynamically) based on their state

Idea:

re-use our state-less model

model an observer using a monadic fold construction

this observers manages the state at the execution time

for many cases, an observer can be generated automatically

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Case Studies

Firewall Testing: Summary

Remark:

Stateless firwalls are a unit testing scenario
Statefull firwalls are a sequence testing scenario

Successful testing if a concrete configuration of a network firewall

correctly implements a given policy

Non-trivial test-case Generation

Non-trivial state-space (IP Adresses)

Sequence testing used for stateful firewalls

Realistic, but amazingly concise model in HOL!

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Outline

 Motivation

 Tool-Demo: HOL-TestGen and its Workflow

 Case Studies

 Conclusion

Conclusion

Conclusion

Approach based on theorem proving

test specifications are written in HOL

functional programming, higher-order, pattern matching

Test hypothesis explicit and controllable by the user

(can be seen as proof-obligations)

Proof-state explosion controllable by the user

Although logically puristic, systematic unit-test of a “real”

compiler library is feasible!

Verified tool inside a (well-known) theorem prover

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Conclusion

Ongoing and Future Work

Ongoing work includes the development of support for:

integration of SAT and SMT Solvers

domain-specific test case generation

theories for simplifying and transforming test theories

Future works could include the development for:

test theories for three-valued specification (e.g., UML/OCL)

integration of unit- and sequence testing approaches

. . .

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

�ank you

for your attention!

Any questions or remarks?

�e HOL-TestGen can be downloaded from:

http://www.brucker.ch/projects/hol-testgen/

(including source, examples, and documentation)

http://www.brucker.ch/projects/hol-testgen/

Bibliography

Bibliography I

Achim D. Brucker, Lukas Brügger, and Burkhart Wolff.

Verifying test-hypotheses: An experiment in test and proof.

Electronic Notes in�eoretical Computer Science, ():–, .
Proceedings of the Fourth Workshop on Model Based Testing (oo).

Achim D. Brucker and Burkhart Wolff.

Symbolic test case generation for primitive recursive functions.

In Jens Grabowski and Brian Nielsen, editors, Formal Approaches to Testing of
So�ware, number in Lecture Notes in Computer Science, pages –.

Springer-Verlag, .

Achim D. Brucker and Burkhart Wolff.

HOL-TestGen .. user guide.

Technical Report , oo Zurich, April .

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Bibliography

Bibliography II

Achim D. Brucker and Burkhart Wolff.

Interactive testing using HOL-TestGen.

In Wolfgang Grieskamp and Carsten Weise, editors, Formal Approaches to
Testing of So�ware, number in Lecture Notes in Computer Science.

Springer-Verlag, .

Achim D. Brucker and Burkhart Wolff.

Test-sequence generation with HOL-TestGen – with an application to firewall

testing.

In Bertrand Meyer and Yuri Gurevich, editors, oo : Tests And Proofs, number

 in Lecture Notes in Computer Science, pages –. Springer-Verlag,

.

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Part I

Appendix

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Further Remarks

In HOL, Sequence Testing and Unit Testing are the same!

�eWhite-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Further Remarks

In HOL, Sequence Testing and Unit Testing are the same!

TS pattern Unit Test:

pre x Ð→ post x(prog x)

�eWhite-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Further Remarks

In HOL, Sequence Testing and Unit Testing are the same!

TS pattern Sequence Test:

accept traceÔ⇒ P(Mfold trace σprog)

�eWhite-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Further Remarks

In HOL, Sequence Testing and Unit Testing are the same!

TS pattern Reactive Sequence Test:

accept trace Ô⇒ P(Mfold trace σ
(observer observer rebind subst prog))

�eWhite-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Modeling Red-black Trees I

Red-Black Trees:

Red Invariant: each red node has a black

parent.

Black Invariant: each path from the root

to an empty node (leaf) has

the same number of black

nodes.

2

5

6

8

datatype
color = R | B

tree = E | T color (α tree) (β :: ord item) (α tree)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Modeling Red-black Trees II

Red-Black Trees: Test�eory

consts
redinv :: tree ⇒ bool

blackinv :: tree ⇒ bool

recdef blackinv measure (λ t . (size t))

blackinv E = True

blackinv (T color a y b) =

((blackinv a) ∧ (blackinv b)

∧ ((max B (height a)) = (max B (height b))))

recdev redinv measure ...

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Red-black Trees: sml/NJ Implementation

2

5

6

8

(a) pre-state

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Red-black Trees: sml/NJ Implementation

2

5 8

6

(b) pre-state: delete “”

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Red-black Trees: sml/NJ Implementation

2

5 8

6

(b) pre-state: delete “”

6

5

2

(c) correct result

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Red-black Trees: sml/NJ Implementation

2

5 8

6

(b) pre-state: delete “”

6

5

2

(c) correct result

5

2

6

(d) result of sml/NJ

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

Red-black Trees: Test Specification

Red-Black Trees: Test Specification

test_spec :
" isord t ∧ redinv t ∧ blackinv t

∧ isin (y :: int) t

Ð→
(blackinv (prog(y , t))) "

where prog is the program under test (e.g., delete).

Using the standard-workflows results, among others:

RSFÐ→ blackinv (prog (, T B E E))

blackinv (prog (−, T B (T R E − E) E))

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

�e State-less Firewall Model I

First, we model a packet:

types (α ,β) packet = " id × protocol × α src × α dest × β content "

where

id: a unique packet identifier, e.g., of type Integer

protocol: the protocol, modeled using an enumeration type (e.g.,

�p, http, smtp)

α src (α dest): source (destination) address, e.g., using IPv:

types
ipv_ip = " (int × int × int × int) "

ipv = " (ipv_ip × int) "

β content: content of a packet

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

�e State-less Firewall Model II

A firewall (packet filter) either accepts or denies a packet:

datatype
α out = accept α | deny

A policy is a map from packet to packet out:

types
(α , β) Policy = " (α , β) packet ⇀ ((α , β) packet) out"

Writing policies is supported by a specialised combinator set

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

State-full Firewalls: An Example (�p)

based on our state-less model:

Idea: a firewall (and policy) has an internal state:

the firewall state is based on the history and the current policy:

types (α ,β ,γ) FWState = "α × (β ,γ) Policy "

where FWStateTransition maps an incoming packet to a new state

types (α ,β ,γ) FWStateTransition =

" ((β ,γ) In_Packet × (α ,β ,γ) FWState) ⇀
((α ,β ,γ) FWState)"

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS

	Motivation
	Motivation
	HOL-TestGen and its Components

	Tool-Demo: HOL-TestGen and its Workflow
	Case Studies
	Conclusion
	Bibliography
	Appendix

