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Motivation Motivation

State of the Art

“Dijkstra’s Verdict:”

Program testing can be used to show the presence of bugs, but never to

show their absence.

Is this always true?

Can we bother?
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Motivation Motivation

Our First Vision

Testing and verification may converge,

in a precise technical sense:

specification-based (black-box) unit testing

generation and management of formal test hypothesis

verification of test hypothesis (not discussed here)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  



Motivation Motivation

Our Second Vision

Observation:
Any testcase-generation technique is based on and limited by

underlying constraint-solution techniques.

Approach:
Testing should be integrated in an environment combining

automated and interactive proof techniques.
the test engineer must decide over, abstraction level, split rules,

breadth and depth of data structure exploration . . .

byproduct: a verified test-tool
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Motivation HOL-TestGen and its Components

Components of HOL-TestGen

HOL (Higher-order Logic):
“Functional Programming Language with Quantifiers”

plus definitional libraries on Sets, Lists, . . .

can be used meta-language for Hoare Calculus for Java, Z, . . .

HOL-TestGen:
based on the interactive theorem prover Isabelle/HOL

implements these visions

Proof General:
user interface for Isabelle and HOL-TestGen

step-wise processing of specifications/theories

shows current proof states
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Motivation HOL-TestGen and its Components

�e System Architecture of HOL-TestGen

test data

test cases

program under test

test harness

test script

test specification

(Test Result)

Test Trace

HOL-TestGen

Isabelle/HOL

SML-systemtest executable
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Tool-Demo: HOL-TestGen and its Workflow

�e HOL-TestGen Workflow

�e HOL-TestGen workflow is basically fivefold:

 Step I: writing a test theory (in HOL)

 Step II: writing a test specification
(in the context of the test theory)

 Step III: generating a test theorem (roughly: testcases)

 Step IV: generating test data
 Step V: generating a test script

And of course:

building an executable test driver

and running the test driver
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Tool-Demo: HOL-TestGen and its Workflow

Step I: Writing a Test�eory

Write data types in HOL:

theory List_test

imports Testing

begin

datatype ’ a list =

Nil ( " [] " )

| Cons ’a " ’ a list " ( infixr "#" )
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Tool-Demo: HOL-TestGen and its Workflow

Step I: Writing a Test�eory

Write recursive functions in HOL:

consts is_sorted :: " (’ a :: ord) list ⇒ bool"

primrec
" is_sorted [] = True"

" is_sorted (x#xs) = case xs of
[] ⇒ True

| y#ys ⇒ ((x < y) ∨ (x = y))

∧ is_sorted xs"
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Tool-Demo: HOL-TestGen and its Workflow

Step II: Write a Test Specification

writing a test specification (TS)

as HOL-TestGen command:

test_spec " is_sorted (prog ( l ::(’ a list ))) "
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Tool-Demo: HOL-TestGen and its Workflow

Step III: Generating Testcases

executing the testcase generator in form of an Isabelle proof

method:

apply( gen_test_cases "prog")

concluded by the command:

store_test_thm " test_sorting "

. . . that binds the current proof state as test theorem to the name

test_sorting.
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Tool-Demo: HOL-TestGen and its Workflow

Step III: Generating Testcases

�e test theorem contains clauses (the test-cases):

is_sorted (prog [])

is_sorted (prog [?XX])

is_sorted (prog [?XX, ?XX])

is_sorted (prog [?XX, ?XX, ?XX])

as well as clauses (the test-hypothesis):

THYP((∃ x. is_sorted (prog [x ])) Ð→ (∀ x. is_sorted (prog [x ])))

. . .

THYP((∀ l.  < | l | Ð→ is_sorted (prog l ))

We will discuss these hypothesises later in great detail.
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Tool-Demo: HOL-TestGen and its Workflow

Step IV: Test Data Generation

On the test theorem,

all sorts of logical massages can be performed.

Finally, a test data generator can be executed:

gen_test_data " test_sorting "

�e test data generator

extracts the testcases from the test theorem

searches ground instances satisfying the constraints (none in the

example)

Resulting in test statements like:

is_sorted (prog [])

is_sorted (prog [])

is_sorted (prog [, ])

is_sorted (prog [, , ])
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Tool-Demo: HOL-TestGen and its Workflow

Step V: Generating A Test Script

Finally, a test script or test harness can be generated:

gen_test_script " test_lists . sml" list " prog

�e generated test script can be used to test an implementation,

e.g., in SML, C, or Java
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Tool-Demo: HOL-TestGen and its Workflow

�e Complete Test�eory

theory List_test

imports Main begin
consts is_sorted :: " (’ a :: ord) list ⇒ bool"

primrec " is_sorted [] = True"

" is_sorted (x#xs) = case xs of
[] ⇒ True

| y#ys ⇒ ((x < y) ∨ (x = y))

∧ is_sorted xs"

test_spec " is_sorted (prog ( l ::(’ a list ))) "

apply( gen_test_cases prog)

store_test_thm " test_sorting "

gen_test_data " test_sorting "

gen_test_script " test_lists . sml" list " prog

end
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Tool-Demo: HOL-TestGen and its Workflow

Testing an Implementation

Executing the generated test script may result in:

Test Results:

Test 0 - *** FAILURE: post-condition false, result: [1, 0, 10]

Test 1 - SUCCESS, result: [6, 8]

Test 2 - SUCCESS, result: [3]

Test 3 - SUCCESS, result: []

Summary:

Number successful tests cases: 3 of 4 (ca. 75%)

Number of warnings: 0 of 4 (ca. 0%)

Number of errors: 0 of 4 (ca. 0%)

Number of failures: 1 of 4 (ca. 25%)

Number of fatal errors: 0 of 4 (ca. 0%)

Overall result: failed
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Tool-Demo: HOL-TestGen and its Workflow
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Case Studies

Red-black trees

Goal:

Test if balancing property is preserved by the red-black tree operations.

part of the SML standard library

widely used internally in the sml/NJ compiler, e.g., for

providing efficient implementation for Sets, Bags, . . . ;

very hard to generate (balanced) instances randomly
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Case Studies

Red-black Trees: Summary

Statistics:  test cases were generated

One error found: crucial violation against red/black-invariants

Red-black-trees degenerate to linked list

(insert/search, etc. only in linear time)

Not found within  years

Reproduced meanwhile by random test tool
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Case Studies

Case Studies: Stateless Firewalls (Packet Filters)

Goal:

Test if a packet filter (firewall) configuration conforms to a given policy.

A packet filter filters (e.g., rejects or denies) packets based on

source address destination address

protocol

As usual

model firewalls (e.g., networks and protocols) and their policies in

HOL

use HOL-TestGen for test-case generation
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Case Studies

Case Studies: Stateful Firewalls

Goal:

Test if a stateful firewall supports stateful protocols correctly.

Obvervation:

protocols like �p and VoIP have an internal state

and need to be filtered (dynamically) based on their state

Idea:

re-use our state-less model

model an observer using a monadic fold construction

this observers manages the state at the execution time

for many cases, an observer can be generated automatically
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Case Studies

Firewall Testing: Summary

Remark:

Stateless firwalls are a unit testing scenario
Statefull firwalls are a sequence testing scenario

Successful testing if a concrete configuration of a network firewall

correctly implements a given policy

Non-trivial test-case Generation

Non-trivial state-space (IP Adresses)

Sequence testing used for stateful firewalls

Realistic, but amazingly concise model in HOL!
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Conclusion

Conclusion

Approach based on theorem proving

test specifications are written in HOL

functional programming, higher-order, pattern matching

Test hypothesis explicit and controllable by the user

(can be seen as proof-obligations)

Proof-state explosion controllable by the user

Although logically puristic, systematic unit-test of a “real”

compiler library is feasible!

Verified tool inside a (well-known) theorem prover
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Conclusion

Ongoing and Future Work

Ongoing work includes the development of support for:

integration of SAT and SMT Solvers

domain-specific test case generation

theories for simplifying and transforming test theories

Future works could include the development for:

test theories for three-valued specification (e.g., UML/OCL)

integration of unit- and sequence testing approaches

. . .
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�ank you

for your attention!

Any questions or remarks?

�e HOL-TestGen can be downloaded from:

http://www.brucker.ch/projects/hol-testgen/

(including source, examples, and documentation)

http://www.brucker.ch/projects/hol-testgen/
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Further Remarks

In HOL, Sequence Testing and Unit Testing are the same!

�eWhite-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)
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Further Remarks

In HOL, Sequence Testing and Unit Testing are the same!

TS pattern Unit Test:

pre x Ð→ post x(prog x)

�eWhite-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)
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Further Remarks

In HOL, Sequence Testing and Unit Testing are the same!

TS pattern Sequence Test:

accept traceÔ⇒ P(Mfold trace σprog)

�eWhite-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)
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Further Remarks

In HOL, Sequence Testing and Unit Testing are the same!

TS pattern Reactive Sequence Test:

accept trace Ô⇒ P(Mfold trace σ
(observer observer rebind subst prog))

�eWhite-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)
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Modeling Red-black Trees I

Red-Black Trees:

Red Invariant: each red node has a black

parent.

Black Invariant: each path from the root

to an empty node (leaf) has

the same number of black

nodes.

2

5

6

8

datatype
color = R | B

tree = E | T color (α tree ) (β :: ord item) (α tree )
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Modeling Red-black Trees II

Red-Black Trees: Test�eory

consts
redinv :: tree ⇒ bool

blackinv :: tree ⇒ bool

recdef blackinv measure (λ t . ( size t ))

blackinv E = True

blackinv (T color a y b) =

(( blackinv a) ∧ ( blackinv b)

∧ ((max B (height a)) = (max B (height b ))))

recdev redinv measure ...
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Red-black Trees: sml/NJ Implementation

2

5

6

8

(a) pre-state

Figure: Test Data for Deleting a Node in a Red-Black Tree
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Red-black Trees: sml/NJ Implementation

2

5 8

6

(b) pre-state: delete “”

Figure: Test Data for Deleting a Node in a Red-Black Tree
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Red-black Trees: sml/NJ Implementation

2

5 8

6

(b) pre-state: delete “”

6

5

2

(c) correct result

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  



Red-black Trees: sml/NJ Implementation

2

5 8

6

(b) pre-state: delete “”

6

5

2

(c) correct result

5

2

6

(d) result of sml/NJ

Figure: Test Data for Deleting a Node in a Red-Black Tree
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Red-black Trees: Test Specification

Red-Black Trees: Test Specification

test_spec :
" isord t ∧ redinv t ∧ blackinv t

∧ isin (y :: int ) t

Ð→
( blackinv (prog(y , t ))) "

where prog is the program under test (e.g., delete).

Using the standard-workflows results, among others:

RSFÐ→ blackinv (prog (, T B E  E))

blackinv (prog (−, T B (T R E − E)  E))
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�e State-less Firewall Model I

First, we model a packet:

types (α ,β) packet = " id × protocol × α src × α dest × β content "

where

id: a unique packet identifier, e.g., of type Integer

protocol: the protocol, modeled using an enumeration type (e.g.,

�p, http, smtp)

α src (α dest): source (destination) address, e.g., using IPv:

types
ipv_ip = " ( int × int × int × int ) "

ipv = " ( ipv_ip × int ) "

β content: content of a packet
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�e State-less Firewall Model II

A firewall (packet filter) either accepts or denies a packet:

datatype
α out = accept α | deny

A policy is a map from packet to packet out:

types
(α , β) Policy = " (α , β) packet ⇀ ((α , β) packet) out"

Writing policies is supported by a specialised combinator set
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State-full Firewalls: An Example (�p)

based on our state-less model:

Idea: a firewall (and policy) has an internal state:

the firewall state is based on the history and the current policy:

types (α ,β ,γ) FWState = "α × (β ,γ) Policy "

where FWStateTransition maps an incoming packet to a new state

types (α ,β ,γ) FWStateTransition =

" ((β ,γ) In_Packet × (α ,β ,γ ) FWState) ⇀
((α ,β ,γ) FWState)"
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