
HOL-TestGen

An Interactive Test-case Generation

Framework

Achim D. Brucker Burkhart Wolff

SAP Research, Vincenz-Priessnitz-Str. ,  Karlsruhe, Germany

achim.brucker@sap.com

Université Paris-Sud, Parc Club Orsay Université,  Orsay Cedex, France

wolff@wjpserver.cs.uni-sb.de

ETAPS 

York, th March 

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff
mailto:brucker@inf.ethz.ch
mailto:wolff@wjpserver.cs.uni-sb.de

Outline

 Motivation

 Tool-Demo: HOL-TestGen and its Workflow

 Case Studies

 Conclusion

Motivation Motivation

State of the Art

“Dijkstra’s Verdict:”

Program testing can be used to show the presence of bugs, but never to

show their absence.

Is this always true?

Can we bother?

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Motivation Motivation

Our First Vision

Testing and verification may converge,

in a precise technical sense:

specification-based (black-box) unit testing

generation and management of formal test hypothesis

verification of test hypothesis (not discussed here)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Motivation Motivation

Our Second Vision

Observation:
Any testcase-generation technique is based on and limited by

underlying constraint-solution techniques.

Approach:
Testing should be integrated in an environment combining

automated and interactive proof techniques.
the test engineer must decide over, abstraction level, split rules,

breadth and depth of data structure exploration . . .

byproduct: a verified test-tool

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Outline

 Motivation

 Tool-Demo: HOL-TestGen and its Workflow

 Case Studies

 Conclusion

Motivation HOL-TestGen and its Components

Components of HOL-TestGen

HOL (Higher-order Logic):
“Functional Programming Language with Quantifiers”

plus definitional libraries on Sets, Lists, . . .

can be used meta-language for Hoare Calculus for Java, Z, . . .

HOL-TestGen:
based on the interactive theorem prover Isabelle/HOL

implements these visions

Proof General:
user interface for Isabelle and HOL-TestGen

step-wise processing of specifications/theories

shows current proof states

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Motivation HOL-TestGen and its Components

�e System Architecture of HOL-TestGen

test data

test cases

program under test

test harness

test script

test specification

(Test Result)

Test Trace

HOL-TestGen

Isabelle/HOL

SML-systemtest executable

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Outline

 Motivation

 Tool-Demo: HOL-TestGen and its Workflow

 Case Studies

 Conclusion

Tool-Demo: HOL-TestGen and its Workflow

�eHOL-TestGen Workflow

�eHOL-TestGen workflow is basically fivefold:

 Step I: writing a test theory (in HOL)

 Step II: writing a test specification
(in the context of the test theory)

 Step III: generating a test theorem (roughly: testcases)

 Step IV: generating test data
 Step V: generating a test script

And of course:

building an executable test driver

and running the test driver

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Tool-Demo: HOL-TestGen and its Workflow

Step I: Writing a Test �eory

Write data types in HOL:

theory List_test

imports Testing

begin

datatype ’ a list =

Nil (" [] ")

| Cons ’a " ’ a list " (infixr "#" )

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Tool-Demo: HOL-TestGen and its Workflow

Step I: Writing a Test �eory

Write recursive functions in HOL:

consts is_sorted :: " (’ a :: ord) list ⇒ bool"

primrec
" is_sorted [] = True"

" is_sorted (x#xs) = case xs of
[] ⇒ True

| y#ys ⇒ ((x < y) ∨ (x = y))

∧ is_sorted xs"

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Tool-Demo: HOL-TestGen and its Workflow

Step II: Write a Test Specification

writing a test specification (TS)

as HOL-TestGen command:

test_spec " is_sorted (prog (l ::(’ a list))) "

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Tool-Demo: HOL-TestGen and its Workflow

Step III: Generating Testcases

executing the testcase generator in form of an Isabelle proof

method:

apply(gen_test_cases "prog")

concluded by the command:

store_test_thm " test_sorting "

. . . that binds the current proof state as test theorem to the name

test_sorting.

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Tool-Demo: HOL-TestGen and its Workflow

Step III: Generating Testcases

�e test theorem contains clauses (the test-cases):

is_sorted (prog [])

is_sorted (prog [?XX])

is_sorted (prog [?XX, ?XX])

is_sorted (prog [?XX, ?XX, ?XX])

as well as clauses (the test-hypothesis):

THYP((∃ x. is_sorted (prog [x])) Ð→ (∀ x. is_sorted (prog [x])))

. . .

THYP((∀ l.  < | l | Ð→ is_sorted (prog l))

We will discuss these hypothesises later in great detail.

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Tool-Demo: HOL-TestGen and its Workflow

Step IV: Test Data Generation

On the test theorem,

all sorts of logical massages can be performed.

Finally, a test data generator can be executed:

gen_test_data " test_sorting "

�e test data generator

extracts the testcases from the test theorem

searches ground instances satisfying the constraints (none in the

example)

Resulting in test statements like:

is_sorted (prog [])

is_sorted (prog [])

is_sorted (prog [, ])

is_sorted (prog [, , ])

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Tool-Demo: HOL-TestGen and its Workflow

Step V: Generating A Test Script

Finally, a test script or test harness can be generated:

gen_test_script " test_lists . sml" list " prog

�e generated test script can be used to test an implementation,

e.g., in SML, C, or Java

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Tool-Demo: HOL-TestGen and its Workflow

�e Complete Test �eory

theory List_test

imports Main begin
consts is_sorted :: " (’ a :: ord) list ⇒ bool"

primrec " is_sorted [] = True"

" is_sorted (x#xs) = case xs of
[] ⇒ True

| y#ys ⇒ ((x < y) ∨ (x = y))

∧ is_sorted xs"

test_spec " is_sorted (prog (l ::(’ a list))) "

apply(gen_test_cases prog)

store_test_thm " test_sorting "

gen_test_data " test_sorting "

gen_test_script " test_lists . sml" list " prog

end

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Tool-Demo: HOL-TestGen and its Workflow

Testing an Implementation

Executing the generated test script may result in:

Test Results:

Test 0 - *** FAILURE: post-condition false, result: [1, 0, 10]

Test 1 - SUCCESS, result: [6, 8]

Test 2 - SUCCESS, result: [3]

Test 3 - SUCCESS, result: []

Summary:

Number successful tests cases: 3 of 4 (ca. 75%)

Number of warnings: 0 of 4 (ca. 0%)

Number of errors: 0 of 4 (ca. 0%)

Number of failures: 1 of 4 (ca. 25%)

Number of fatal errors: 0 of 4 (ca. 0%)

Overall result: failed

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Tool-Demo: HOL-TestGen and its Workflow

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Outline

 Motivation

 Tool-Demo: HOL-TestGen and its Workflow

 Case Studies

 Conclusion

Case Studies

Red-black trees

Goal:

Test if balancing property is preserved by the red-black tree operations.

part of the SML standard library

widely used internally in the sml/NJ compiler, e.g., for

providing efficient implementation for Sets, Bags, . . . ;

very hard to generate (balanced) instances randomly

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Case Studies

Red-black Trees: Summary

Statistics:  test cases were generated

One error found: crucial violation against red/black-invariants

Red-black-trees degenerate to linked list

(insert/search, etc. only in linear time)

Not found within  years

Reproduced meanwhile by random test tool

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Case Studies

Case Studies: Stateless Firewalls (Packet Filters)

Goal:

Test if a packet filter (firewall) configuration conforms to a given policy.

A packet filter filters (e.g., rejects or denies) packets based on

source address destination address

protocol

As usual

model firewalls (e.g., networks and protocols) and their policies in

HOL

use HOL-TestGen for test-case generation

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Case Studies

Case Studies: Stateful Firewalls

Goal:

Test if a stateful firewall supports stateful protocols correctly.

Obvervation:

protocols like �p and VoIP have an internal state

and need to be filtered (dynamically) based on their state

Idea:

re-use our state-less model

model an observer using a monadic fold construction

this observers manages the state at the execution time

for many cases, an observer can be generated automatically

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Case Studies

Firewall Testing: Summary

Remark:

Stateless firwalls are a unit testing scenario
Statefull firwalls are a sequence testing scenario

Successful testing if a concrete configuration of a network firewall

correctly implements a given policy

Non-trivial test-case Generation

Non-trivial state-space (IP Adresses)

Sequence testing used for stateful firewalls

Realistic, but amazingly concise model in HOL!

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Outline

 Motivation

 Tool-Demo: HOL-TestGen and its Workflow

 Case Studies

 Conclusion

Conclusion

Conclusion

Approach based on theorem proving

test specifications are written in HOL

functional programming, higher-order, pattern matching

Test hypothesis explicit and controllable by the user

(can be seen as proof-obligations)

Proof-state explosion controllable by the user

Although logically puristic, systematic unit-test of a “real”

compiler library is feasible!

Verified tool inside a (well-known) theorem prover

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Conclusion

Ongoing and Future Work

Ongoing work includes the development of support for:

integration of SAT and SMT Solvers

domain-specific test case generation

theories for simplifying and transforming test theories

Future works could include the development for:

test theories for three-valued specification (e.g., UML/OCL)

integration of unit- and sequence testing approaches

. . .

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

�ank you

for your attention!

Any questions or remarks?

�e HOL-TestGen can be downloaded from:

http://www.brucker.ch/projects/hol-testgen/

(including source, examples, and documentation)

http://www.brucker.ch/projects/hol-testgen/

Bibliography

Bibliography I

Achim D. Brucker, Lukas Brügger, and Burkhart Wolff.

Verifying test-hypotheses: An experiment in test and proof.

Electronic Notes in �eoretical Computer Science, ():–, .
Proceedings of the Fourth Workshop on Model Based Testing (oo ).

Achim D. Brucker and Burkhart Wolff.

Symbolic test case generation for primitive recursive functions.

In Jens Grabowski and Brian Nielsen, editors, Formal Approaches to Testing of
So�ware, number  in Lecture Notes in Computer Science, pages –.

Springer-Verlag, .

Achim D. Brucker and Burkhart Wolff.

HOL-TestGen .. user guide.

Technical Report , oo Zurich, April .

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Bibliography

Bibliography II

Achim D. Brucker and Burkhart Wolff.

Interactive testing using HOL-TestGen.

In Wolfgang Grieskamp and Carsten Weise, editors, Formal Approaches to
Testing of So�ware, number  in Lecture Notes in Computer Science.

Springer-Verlag, .

Achim D. Brucker and Burkhart Wolff.

Test-sequence generation with HOL-TestGen – with an application to firewall

testing.

In Bertrand Meyer and Yuri Gurevich, editors, oo : Tests And Proofs, number

 in Lecture Notes in Computer Science, pages –. Springer-Verlag,

.

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Part I

Appendix

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Further Remarks

In HOL, Sequence Testing and Unit Testing are the same!

�eWhite-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Further Remarks

In HOL, Sequence Testing and Unit Testing are the same!

TS pattern Unit Test:

pre x Ð→ post x(prog x)

�eWhite-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Further Remarks

In HOL, Sequence Testing and Unit Testing are the same!

TS pattern Sequence Test:

accept traceÔ⇒ P(Mfold trace σprog)

�eWhite-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Further Remarks

In HOL, Sequence Testing and Unit Testing are the same!

TS pattern Reactive Sequence Test:

accept trace Ô⇒ P(Mfold trace σ
(observer observer rebind subst prog))

�eWhite-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Modeling Red-black Trees I

Red-Black Trees:

Red Invariant: each red node has a black

parent.

Black Invariant: each path from the root

to an empty node (leaf) has

the same number of black

nodes.

2

5

6

8

datatype
color = R | B

tree = E | T color (α tree) (β :: ord item) (α tree)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Modeling Red-black Trees II

Red-Black Trees: Test �eory

consts
redinv :: tree ⇒ bool

blackinv :: tree ⇒ bool

recdef blackinv measure (λ t . (size t))

blackinv E = True

blackinv (T color a y b) =

((blackinv a) ∧ (blackinv b)

∧ ((max B (height a)) = (max B (height b))))

recdev redinv measure ...

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Red-black Trees: sml/NJ Implementation

2

5

6

8

(a) pre-state

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Red-black Trees: sml/NJ Implementation

2

5 8

6

(b) pre-state: delete “”

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Red-black Trees: sml/NJ Implementation

2

5 8

6

(b) pre-state: delete “”

6

5

2

(c) correct result

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Red-black Trees: sml/NJ Implementation

2

5 8

6

(b) pre-state: delete “”

6

5

2

(c) correct result

5

2

6

(d) result of sml/NJ

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

Red-black Trees: Test Specification

Red-Black Trees: Test Specification

test_spec :
" isord t ∧ redinv t ∧ blackinv t

∧ isin (y :: int) t

Ð→
(blackinv (prog(y , t))) "

where prog is the program under test (e.g., delete).

Using the standard-workflows results, among others:

RSFÐ→ blackinv (prog (, T B E  E))

blackinv (prog (−, T B (T R E − E)  E))

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

�e State-less Firewall Model I

First, we model a packet:

types (α ,β) packet = " id × protocol × α src × α dest × β content "

where

id: a unique packet identifier, e.g., of type Integer

protocol: the protocol, modeled using an enumeration type (e.g.,

�p, http, smtp)

α src (α dest): source (destination) address, e.g., using IPv:

types
ipv_ip = " (int × int × int × int) "

ipv = " (ipv_ip × int) "

β content: content of a packet

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

�e State-less Firewall Model II

A firewall (packet filter) either accepts or denies a packet:

datatype
α out = accept α | deny

A policy is a map from packet to packet out:

types
(α , β) Policy = " (α , β) packet ⇀ ((α , β) packet) out"

Writing policies is supported by a specialised combinator set

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

State-full Firewalls: An Example (�p)

based on our state-less model:

Idea: a firewall (and policy) has an internal state:

the firewall state is based on the history and the current policy:

types (α ,β ,γ) FWState = "α × (β ,γ) Policy "

where FWStateTransition maps an incoming packet to a new state

types (α ,β ,γ) FWStateTransition =

" ((β ,γ) In_Packet × (α ,β ,γ) FWState) ⇀
((α ,β ,γ) FWState)"

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS  

	Motivation
	Motivation
	HOL-TestGen and its Components

	Tool-Demo: HOL-TestGen and its Workflow
	Case Studies
	Conclusion
	Bibliography
	Appendix

