
Extending Access Control Models with
Break-glass

Achim D. Brucker Helmut Petritsch
{achim.brucker, helmut.petritsch}@sap.com

Vincenz-Priessnitz-Str. , Karlsruhe, Germany

ACM Symposium on Access Control Models and Technologies
(SACMAT)

Stresa, Italy, th June

http://www.brucker.ch/
http://petritsch.co.at
mailto:"Achim D. Brucker" <achim.brucker@sap.com>
mailto:"Helmut Petritsch" <helmut.petritsch@sap.com>

Outline

 Motivation

 Break-glass: �e Main Idea

 A Generic Architecture Supporting Break-glass

 Extending Model-driven Security

 Conclusion and Future Work

Motivation

Our Vision

Assume,
we are a nurse
trying to access the patient record of Peter Meier . . .

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Motivation

Our Vision

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Motivation

Our Vision

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Motivation

Break-glass or Overriding Access Control

While o�en motivated with
health care or
public security

scenarios, also enterprises demand break-glass solutions:
for preventing stagnation on the system administration level and
for preventing stagnation on the business process level.

In fact, state of the art enterprise systems support break-glass, e.g.,
Virsa Firefighter for SAP,
Oracle’s Role Manager.

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Motivation

�e Situation Today

Mostly implemented using pre-staged accounts that are
either stored in sealed covers or
electronically issued on request.

Break-glass solutions should cover
the creation of break-glass accounts,
the distribution pre-staged accounts,
the monitoring of the use of break-glass accounts, and
the cleanup a�er an break-glass situation.

�is solution is
quite coarse-grained and
not integrated into regular access control.

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Outline

 Motivation

 Break-glass: �e Main Idea

 A Generic Architecture Supporting Break-glass

 Extending Model-driven Security

 Conclusion and Future Work

Break-glass: The Main Idea

Observations and Goals

During discussions with end users, we observed:
depending on the situation, different overrides can be justified
some restrictions can never be overridden

�e two main design goals are:
access-control decisions should be overrideable on a per
permission basis and
fine-grained configuration of the restrictions that can be
overridden.

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Break-glass: The Main Idea

Emergeny Levels

Definition
A policy p refines a policy p′ (written p ⊑ p′) if and only if the set of
system traces that are allowed under p is a subset of the system traces
that are allowed under p′.

A policy p refines a policy p′ iff p is at least as restrictive as p′.
p⊺ is the policy that allows all actions and
p� is the policy that denies all actions.
p� refines all policies and every policy is a refinement of p⊺.
PA be the set of all policies of the access control modelA.
(PA, ⊑, p�, p⊺) is a lattice.

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Break-glass: The Main Idea

Regular Policies and Emergeny Policies

Definition
We refer to the regular policy, i. e., the policy that should be obeyed in
normal operations, as preg and we refer to the set of policies that are
refined by the regular policy, i. e.,

LA = {p ∣ p ∈ PA ∧ preg ⊑ p ∧ p ≠ preg}

as emergency levels or emergency policies of the policy preg. We require
that (PA ∖ p�, ⊑, preg, p⊺) is a lattice, i. e., inf(PA ∖ p�) = preg.

An emergency level can be active or inactive.
Only active emergency levels contribute to the access control
decision.
�e regular policy is always active.

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Break-glass: The Main Idea

Hierarchical Break-glass Access Control

An access that is only granted by an
emergency policy ℓ ∈ LA is called
override access.
Override accesses are only granted if
there is an active policy granting
access.
Obligations can be attached to an
(emergency) policy, i.e., requiring
user confirmations or for activating
monitoring.
By evaluating the policies in
topological order, the refinement
relation holds by construction!

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Outline

 Motivation

 Break-glass: �e Main Idea

 A Generic Architecture Supporting Break-glass

 Extending Model-driven Security

 Conclusion and Future Work

A Generic Architecture Supporting Break-glass

Break-glass Architecture: Main Idea

�e break-glass policy combination strategy can be
implemented by a meta PDP.

�e Break-glass PDP implements the break-glass policy
combination strategy on top of existing PDPs
User confirmations can be implemented using obligations:

the various PDPs need to support obligations
the various PEPs need to support obligations
the user interface needs to support confirmation requests

Break-glass does not impose restrictions on the underlying
access control model!

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

A Generic Architecture Supporting Break-glass

A Generic Break-glass Architecture

User Interface Confirmation Handler

Obligation
Support

Protected
ResourcePEP

Break-glass
PDP

Single
Sign-on

Existing
PDP(s)

Obligation Support

Policy Manager

Au
th
en
tic

at
io
n 1 4

2 3 3
3a 3b

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Outline

 Motivation

 Break-glass: �e Main Idea

 A Generic Architecture Supporting Break-glass

 Extending Model-driven Security

 Conclusion and Future Work

Extending Model-driven Security

�e Model-driven Security Vision
A Tool-supported and Security-aware Formal Model-driven Engineering Process

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Extending Model-driven Security

�e Model-driven Security Vision
A Tool-supported and Security-aware Formal Model-driven Engineering Process

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

Generic

SecureUML

ArgoUML−plugin

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Extending Model-driven Security

�e Model-driven Security Vision
A Tool-supported and Security-aware Formal Model-driven Engineering Process

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

Transformations:

SecureUML −> UML/OCL

UML/OCL −> UML/OCL

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Extending Model-driven Security

�e Model-driven Security Vision
A Tool-supported and Security-aware Formal Model-driven Engineering Process

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

Code Generator

SecureUML, UML, OCL

Java, C#, Junit, XACL, USE, ...

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Extending Model-driven Security

�e Model-driven Security Vision
A Tool-supported and Security-aware Formal Model-driven Engineering Process

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

HOL−OCL

formal analysis

 formal verification

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Extending Model-driven Security

�e Model-driven Security Vision
A Tool-supported and Security-aware Formal Model-driven Engineering Process

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

HOL−TestGen

model−based unit test

sequence testing

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Extending Model-driven Security

�e Model-driven Security Vision
A Tool-supported and Security-aware Formal Model-driven Engineering Process

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Extending Model-driven Security

SecureUML

Subject

Group User

Role Permission

AuthorizationConstraint

Action

AtomicAction CompositeAction

Resource0..* 0..* 1..* 0..* 0..* 1..* 0..*0..*

0..*
0..* 0..* 0..*

0..1 0..*
0..*

Policy Obligation
1..*

0..*

1..* 0..*

0..*

0..*

SecureUML
is a UML-based notation,
provides abstract Syntax given by MOF compliant metamodel,
is pluggable into arbitrary design modeling languages,
is supported by an ArgoUML plugin.

can easily be extended with support for break-glass.

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Extending Model-driven Security

SecureUML

Subject

Group User

Role Permission

AuthorizationConstraint

Action

AtomicAction CompositeAction

Resource0..* 0..* 1..* 0..* 0..* 1..* 0..*0..*

0..*
0..* 0..* 0..*

0..1 0..*
0..*

Policy Obligation
1..*

0..*

1..* 0..*

0..*

0..*

SecureUML
is a UML-based notation,
provides abstract Syntax given by MOF compliant metamodel,
is pluggable into arbitrary design modeling languages,
is supported by an ArgoUML plugin.
can easily be extended with support for break-glass.

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Extending Model-driven Security

Modeling Access Control with SecureUML

MedicalRecord
disease:String
medication:String
read():OclVoid
update():OclVoid
create():OclVoid

Patient
name:String

0..*
owner 1

«secureuml.role»
UserRole

«secureuml.role»
AdministratorRole

«secureuml.permission»
OwnerMedicalRecord
MedicalRecord:read
MedicalRecord:update
MedicalRecord:delete

caller=self.owner.name

«secureuml.policy»
LowEmergencyLevel

«secureuml.policy»
HighEmergencyLevel

«secureuml.permission»
EmergencyOwnerMedicalRecord
MedicalRecord:read

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Extending Model-driven Security

ArgoUML Support

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Extending Model-driven Security

ArgoUML Support

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Extending Model-driven Security

Code Generation (Java and XACML)

In case of XACML, we can generate
the policies and
the PDP configuration.

In particular, we
sort the policies topological,
use the “first-applicable” combining algorithm of XACML, and
exploit the obligations support of XACML.

With respect to the application, we generate
(stubs of) the business logic,
the calls to PDP, and
the PEP.

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

Outline

 Motivation

 Break-glass: �e Main Idea

 A Generic Architecture Supporting Break-glass

 Extending Model-driven Security

 Conclusion and Future Work

Conclusion and Future Work

Conclusion and Future Work

We presented a
a generic break-glass model that allows the fine-grained,
overriding of access control decisions,
an generic architecture for implementing break-glass,
an extension of SecureUML supporting break-glass, and
the mapping of break-glass to XACML

Future work includes the integration and development of
analysis techniques for user providing feedback to the user,
break-glass concepts for IT compliance, and
techniques for a posteriori analysis of incidents.

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

�ank you
for your attention!

Any questions or remarks?

Bibliography

Bibliography

Achim D. Brucker and Helmut Petritsch.
Extending access control models with break-glass.
In ACM symposium on access control models and technologies (SACMAT), pages
–. ACM Press, .

A.D. Brucker and H. Petritsch (SAP Research) Access Control Models with Break-glass SACMAT

	Motivation
	Break-glass: The Main Idea
	A Generic Architecture Supporting Break-glass
	Extending Model-driven Security
	Conclusion and Future Work
	Bibliography

