
c© 2009 IEEE Computer Society. This is the author’s version of the work. It is posted at http://www.brucker.ch/bibliography/abstract/kohler.ea-proactive-2009 by permission of
IEEE Computer Society for your personal use. Not for redistribution. The definitive version was published in Proceedings of the International Conference on Computational Science
and Engineering (CSE), pp. 297–304, 2009, doi: 10.1109/CSE.2009.177.

ProActive Caching: Generating Caching Heuristics
for Business Process Environments

Mathias Kohler
SAP Research

Vincenz-Priessnitz-Str. 1
76131 Karlsruhe

Germany
Email: mathias.kohler@sap.com

Achim D. Brucker
SAP Research

Vincenz-Priessnitz-Str. 1
76131 Karlsruhe

Germany
Email: achim.brucker@sap.com

Andreas Schaad
SAP Research

Vincenz-Priessnitz-Str. 1
76131 Karlsruhe

Germany
Email: andreas.schaad@sap.com

Abstract—Today’s complex and multi-layered enterprise sys-
tems demand fine-grained access control mechanisms supporting
dynamic security policies for large and distributed repositories.
Thus, the efficient evaluation of security policies becomes an
important factor for the overall system performance, specifically
with respect to systems with a high degree of user interaction
like workflow systems. Caching approaches may help to address
this situation.

We propose ProActive Caching, a two-phased caching ap-
proach: in an offline phase, we automatically determine a
workflow-specific heuristic for pre-computing cache entries. In an
online phase, we use the previously determined heuristic for the
cache management. The latter includes also the pre-computation
of cache entries which already provides a performance improve-
ment while evaluating a policy object for the first time. In this
paper, we present a method for the automatic generation of a
workflow specific caching heuristic, i. e., the offline phase.

I. INTRODUCTION

Large distributed enterprise systems require the implemen-
tation of mechanisms for the enforcement of fine-grained,
complex and dynamic access control policies. Access control
decisions need to be made at different layers, such as the UI
layer, the application layer, the business object layer as well
as the back-end or service layer. Equally, on a vertical level,
business requirements driven by, e. g., regulatory demands,
result in an increase in the amount and complexity of policies,
including the need for checking the current system state, and
an increase in the number of policy evaluation events. This,
of course, affects policy evaluation at runtime and thus, the
overall system performance experienced by the user.

The enforcement of such policies should be invisible and
not noticeable to the interacting user. Practical experience
shows that even delays of 100 ms are perceived as a minor
interruption, while more than 1 second impacts on the flow
of thoughts [13]. State of the art industrial workflow systems
execute hundreds of thousands of business process tasks in
parallel, making the efficient implementation of policy en-
forcement and evaluation techniques increasingly important.

State of the art security infrastructures are implemented with
efficiency in mind [10], [15] and, to some extend, already
apply caching strategies [11], [20]. All these approaches have
in common that the presented optimization techniques are

generic, i. e., trying to optimize access control decisions in-
dependently from the system context. In [9], we report on our
first experience in applying caching strategies that are based on
high-level system descriptions, e. g., business processes. This
integration of information about the possible system behavior
allows to anticipate future access control decisions and thus
provides an efficient caching solution that increases the overall
system performance substantially, even if the system is already
using a highly efficient security infrastructure.

Our main contribution is a caching strategy that, based on
high-level system descriptions, is not affected by cache misses
and already accelerates the first access to a resource. In partic-
ular, we present an algorithm for the automatic generation of
cache update heuristics based on given process definitions and
life cycles (for tasks and processes) of an underlying workflow
engine. We present an analysis of our overall approach with
respect to its runtime behavior.

II. BACKGROUND

In this section, we introduce business process-driven sys-
tems and proactive caching of access control decisions.

A. Business Process Execution

Business processes “focus upon the production of particular
products” [18] realized by a sequence of tasks. Processes may
be modeled in total or in parts as workflows. Figure 1 shows a
simple process model: the nodes represent the different tasks,
i. e., atomic activities. The transitions describe the execution
order of the tasks. In our example the process flow splits, i. e.,
Task 1 and Task 2 can be executed in parallel. Finally, source
and sink nodes represent the starting point and endpoint of
a process model. A process model can be constrained by a
security policy. To illustrate that roles have the permission to
execute an activity we add a small circled annotation to every
activity. Dynamic policies, e. g., separation of duty (SoD) can
also be specified: in our example, we require that Task 1 and
Task 2, and, pairwise, Task 2 and Task 3, must be performed
by different users.

A workflow engine, e. g., JBoss jBPM [17], executes pro-
cesses based on their abstract model. In particular, a workflow
engine creates, executes, and deletes instances of processes and

http://www.brucker.ch/bibliography/abstract/kohler.ea-proactive-2009
http://dx.doi.org/10.1109/CSE.2009.177
http://www.brucker.ch/
mailto:"Achim D. Brucker" <achim.brucker@sap.com>

Task 1

Task 2

Task 3

SoD2

SoD1

A

C

C

Fig. 1. A Simple Business Process Model.

Fig. 2. Business Process Execution Layers.

tasks with respect to life cycles which describe the different
technical states of the process and task representations.

Human centric execution of business processes requires a
human to execute the tasks. A user claims a task, gets assigned
to it and starts executing it by means of interacting with the
business process application. All tasks a user can claim are
listed in the General Worklist (GWL). The user opens the
GWL and claims the task(s) she wants to perform next. The
GWL should only display those tasks a user is allowed to claim
(usually only a small fraction of the total number of active
tasks). Thus, for each task instance in the system a potential
list of owners is generated. Assuming role-based access control
(RBAC) [14], this list is created based on the roles a user must
possess to perform the task. Due to dynamic constraints, this
list is an over-approximation, i. e., even potential owners may
be not allowed to claim a task in a specific situation. Whenever
the GWL is displayed, a second access control query checks
for every task instance in the list whether it can be claimed.

In [9] we show that ProActive Caching effectively reduces
the time required for access control requests. For instance, the
GWL can be displayed without a noticeable delay caused by
evaluating access control decisions. To gain this performance
increase it is important that the access decisions are already
available when the worklist is opened. In this paper we
introduce the automatic generation of the underlying caching
heuristic that guarantees that access decisions—which are
required for displaying the GWL—are already cached.

B. ProActive Caching

The goal of proactive caching is to decrease the overall
response time experienced by the user. The core idea is the
prediction of future access queries allowing to pre-compute
the required cache entries. In [9], we introduce the basic
underlying framework and show that that proactive caching
substantially reduces response times of the systems.

In large enterprises systems access control is usually based
on the request-response paradigm. This describes the interac-
tion between a policy enforcement point (PEP) and a policy
decision point (PDP). The PEP is part of the application,

enforcing the decisions made by the PDP. Figure 2 presents
such a generic access control architecture extended with an
access decision cache and a cache management component.
Each cache entry is a pre-evaluated access decision which
is anticipated to be required during the further execution of
a business process. The cache management component is
responsible that access decisions are pre-evaluated and stored
in the cache. Thus, the management component relies on gen-
erated caching heuristics which define at which point during a
process execution access decisions must be pre-evaluated. The
current status of the process execution is communicated via
events to the cache management. Access pre-evaluations are
performed by the PDP. When triggered by an event, the cache
management component sends the access request for which
an access decision should be pre-evaluated to the PDP. The
PDP evaluates the request and returns a corresponding access
decision which is stored in the cache.

C. Caching Heuristics

The pre-evaluations of access control decisions is based on
caching heuristics, in particular dependency relations (DR). A
DR maps a pair (event, resource) to a pair (event, resource),
i. e., its type is Σ×R→ Σ×R where Σ is the set of events
and R the set of resources. The event (and the corresponding
resource) at which an anticipated access request should be
evaluated is mapped to the event-resource-pair for which an
access decision should be pre-compute. For example, the
dependency relation

(createProcess, ‘P’) 7→ (cancelProcess, ‘P’)

states that whenever the event ’createProcess’ for the resource
’P’ occurs an access request for the anticipated upcoming
event ’cancelProcess’ (with resource ’P’) will be evaluated
such that the access decision is already available in case
the process should be canceled. During runtime every event
occurring in the system is matched against the events defined
in the dependency relations. As soon as an event matches, an
access control request is sent to the PDP based on the second
event defined in the relation to pre-compute the access control
decision. The returned decision is stored as a cache entry.

III. DEPENDENCY RELATIONS FOR BUSINESS PROCESSES

In this section, we introduce the sources life cycles, process
definitions, business objects, and SoD constraints from which
dependency relations can be generated.

A. Relations Based on Life Cycles

At runtime, every process and task instance may potentially
be in one of several states. A life cycle may comprise the
following states: Inactive, Initiated, Started, Failed, and
Terminated. Every vendor of workflow engines may define
its own life cycles. Every state may only be reached through
certain transitions. Such transitions reflect events performed
on an instance. For example, the transition start is the event
when an (initiated) instance is started. We model life cycles as
deterministic finite state machines [6]. Figure 3 presents the

sinactive

sinit

sstart

sfail sendsfail

create

start

cancel

endcancel

stop

(a) Process Life Cycle

sinactive

sinit

sstart

sfail sendsfail

createassign

start

cancel

endcancel

assign

(b) Task Life Cycle

Fig. 3. The Life Cycles of JBoss jBPM in their Formal Representations.

life-cycle models used by the JBoss jBPM workflow engine.
Formally, we define a life cycle as follows:

Definition 1: A formal life cycle model, represented as
finite state machine, is a quintuple (Q,Σ, q0, δ, F), where:
• Q is a finite, non-empty set of states.
• Σ is a finite, non-empty set of events with Q ∩ Σ = ∅.
• q0 is the initial state, with q0 ∈ Q.
• δ is the generalized state-transition function: δ : Q×Σ→
Q describing the possible transitions.

• F is the set of final states with F ⊆ Q.
Further, we make this definition access control aware:

Definition 2: A caching and access control aware formal
life cycle model is a sextuple (Q,Σ,ΣAC, q0, δ, F), where
(Q,Σ, q0, δ, F) is a life cycle and ΣAC ⊆ Σ is a finite set
of access control relevant events.

For our exemplary task life cycle (see Figure 3b) this results
in a formal life cycle model (Q,Σ,ΣAC, q0, δ, F), where
• Q = {sinactive, sinit, sstart, sfail, send},
• Σ = {create, assign, start, cancel, end},
• ΣAC = {assign, cancel},
• q0 = sinactive,
• δ =

{
(sinactive, create) 7→ sinit, (sinit, assign) 7→ sinit,

(sinit, start) 7→ sstart, (sinit, cancel) 7→ sfail,
(sstart, assign) 7→ sstart, (sstart, end) 7→ send,
(sstart, cancel) 7→ sfail}, and F = {sfail, send

}
.

In Figure 3b, the initial state is denoted with an incoming ar-
row without starting point, end states are marked with a double
circle, and access control relevant events are underlined. The
classification of access control relevant events depends on the
concrete implementation of workflow engine. Usually, events
which require user input underlie access control enforcement
whereas automatically executed events run without authoriza-
tion checks. For example, the transition end in the process life
cycle is executed automatically after the termination of all task
instances of the process.

ΣAC contains the events for access control decisions should
be pre-computed. The pre-computation should take place
whenever a predecessor event of an access control relevant
even occurs, i. e., every state that is source of an access control
relevant event is also the destination of events which precede
the access control relevant event.

B. Relations Based on Process Definitions

Access control relevant events in task life cycles can occur
directly after a task instance was created and hence must be
checked against the systems security. The goal is to guarantee
that directly after the creation of a task instance, cached
decisions for possibly immediately following access control
relevant events are provided. An example is the access control
relevant event assign. Hence, instead of using the task’s create
event as trigger for the creation of an anticipated access
decision, we use the create event of the preceding task in the
process to pre-evaluate the access decisions, e. g.,

(init event, ‘preceding task of Task N’) 7→
(access control relevant event, ‘Task N’),

where ‘init event’ is a placeholder for all events having sinactive
as source state (i. e., ‘create’ in our case). If a task has no
preceding tasks (i. e., it is the first task of a process), the ‘init
event’ of the process life cycle is used as trigger instead

(init event, ‘P’) 7→ (access control relevant event, ‘Task 1’),

where ‘P’ is the process as resource. As every process defini-
tion exactly states in which order tasks are executed, one can
extract all tasks which potentially succeed the current one.

C. Relations Based on SoD Constraints

Access control often requires context information for the
evaluation of security constraints. The evaluation of time based
constraints (e. g., a user may only perform a task within 6
a.m. and 7 p.m.) requires the current time to evaluate whether
access should be granted or denied. We classify such context
information which underlies steady or unexpected changes
as dynamic context information. Cached decisions which are
based on dynamic context information possibly become invalid
as the context changes unnoticed (which we handle in previous
work with open constraints; cf. [9]).

There are constraint types where the context information
only changes within the boundary of the system’s infrastruc-
ture such that whenever the context changes an update of
possibly changing cached decisions can be performed. An
example of a security constraint where context information
only changes due to workflow related actions (i. e., actions
part of a process or task life cycle) is dynamic separation of
duty (SoD). Dynamic SoD demands that a user may not be
assigned to two exclusive tasks of the same process instance.

Definition 3: A separation of duty constraint is a triple
(Process,Event, exclTasks) where
• Process is the process for which the constraint is defined.
• Event is an access control relevant event of a task life

cycle; when occurring in context of Process this SoD
constraint is checked.

• exclTasks is a set of tasks of the Process with the implicit
condition that a user may be assigned to at most one of
these tasks within the same process instance.

Consider the exclusive tasks Task 2 and Task 3 in our example
process during an execution where Task 2 and Task 3 are

ready to be assigned to users. For both tasks cache entries
with access decisions have been pre-computed. The cached
decision for Task 2 states that Alice may be assigned to it;
the decision for Task 3 also states Alice may be assigned to
it. Both permits result–due to the fact that at the point in time
when the cached decisions were evaluated–Alice would have
had the right to be assigned to Task 2 and Task 3. If Alice
claims Task 2, according to the security policy she may not
claim Task 3 as well—which should also be reflected by the
pre-evaluated cached access decision. Hence, an update of the
cache entry for Task 3 is necessary.

The goal is to generate dependency relations based on the
SoD constraints defined in a security policy. We generate the
dependency relation in such a way that if an event changes the
context information and this affects an already pre-computed
access decision, a new decision is computed which updates
the previously generated one. For illustration, the dependency
relations for the process of Figure 1 state that if a user is
assigned to Task 2 the cached decision for the event (assign,
‘Task 3’) must be calculated anew. The same holds for the
event (assign, ‘Task 2’) if a users is assigned to Task 3.

(assign, ‘Task 2’) 7→ (assign, ‘Task 3’), and
(assign, ‘Task 3’) 7→ (assign, ‘Task 2’).

D. Relations Based on Business Object Calls

Business Objects provide the functionality for data queries
and data modifications on the back-end layer. Access control
also happens for function calls on business objects. It is
checked whether the user may perform the function called.

During a process execution, tasks access business object
functionality. Which objects and what functions are accessed
by a task is defined within the process definition. Hence, when
as user is assigned to a task, it is clear that this user will
access the business object. Consequently, we can pre-evaluate
access decisions for these function calls at the moment we
know which user is assigned to a task. In JBoss jBPM this is
known when the event ‘assign’ occurs as this event commits a
user to perform a task. The dependency relations for a JBoss
jBPM system define the event ‘assign’ (and the respective task
as resource) as the trigger for the pre-computation of all access
decisions for the business object functions which will be called
during execution of the task. A general example is given next.

(assign, ‘Task’) 7→ (function call, ‘Business Object’)

Due to space reasons, we omit the generation of dependency
relations for business object calls in this paper. Due to the
fact that there is a specific link between task definition and
business object functions, the modification of the algorithm to
include business calls is only a minor modification.

E. Revoke Trigger

Once a pre-computed access decision is cached it should be
revoked from the cache as soon as it is not needed any longer.
Similar to dependency relations there are revoke triggers which

define the concrete point during a process execution at which
cache entries are to be removed from the cache.

Decisions are always pre-computed for a specific instance
of a task. Hence, whenever a task instance is completed all
cache entries generated for this instance can be removed. The
same holds for cache entries which were generated in context
of a process instance. If the process instance ends all cache
entries generated in its context can be removed.

Obviously, cache entries need to contain the information
for which process or task instance they were created. This
information is stored with the cache entry itself. This enables
a direct selection of all cache entries which belong to a specific
process or task instance. A revoke trigger contains the event
at which all entries for either a task or process instance must
be revoked. The events for a process are those which end
a process instance, hence, which lead to an end state in the
process life cycle. The events for a task are those which end
a task instance. The set of revoke triggers for our process life
cycle (PLC) Figure 3a is

{(end, ‘Process’), (cancel, ‘Process’)} ,

where end, and cancel are those events which lead to the
end states of the PLC. Events from the system contain the
identifier for which instance the event happened. If the process
instance for a process Process is canceled, an event with
(cancel,Process, 4711) is generated. If such an event matches
with a revoke trigger all cache entries containing the respective
instance identifier 4711 are revoked from the cache.

IV. AUTOMATED DR GENERATION

In this section, we present algorithms for computing the
different dependency relations (DR) based on the life cycles
and the process definition. Furthermore, we present an algo-
rithm for DRs based on the system’s security policy and an
algorithm for the generation of revoke triggers.

A. Preliminaries

In our presentation, we roughly follow the pseudocode
conventions of [3], e. g.,
• the symbol _← _ denotes variable assignments.
• variables are local to the given function.
• compound data, e. g., life cycles, are organized in objects

or structures, which are comprised attributes or fields. For
example, we write out[n] (in[n]) for accessing the set of
outgoing (incoming) events of state n and src[e] (dest[e])
for accessing the source (destination) state of event e.

• we re-use the notations from Definition 2, e. g., Q(TLC)
refers to the states of the task life cycle TLC; F (TLC)
refers to the end states of a task life cycle.

• parameters are passed to a function by value.
We assume that life cycles and process definitions are stored
in data structures which allows for efficient access to the states
(tasks) and events. In particular, we assume that we can iterate
over all states (or tasks) of a life cycle (or process), access the
incoming and outgoing transition of a given state directly, and
that we can access the source state of a transition.

1: function GENDR-LC(LC, res, event, initRes)
2: DrSetLC ← ∅
3: for all s ∈ Q(LC) do
4: for all i ∈ in[s] do
5: for all o ∈ out[s] ∩ ΣAC(LC) do
6: if src[i] = q0(LC) then
7: entry← (iEvent, iRes) 7→ (o, res)
8: else
9: entry← (i, res) 7→ (o, res)

10: end if
11: DrSetLC ← DrSetLC ∪ {entry}
12: end for
13: end for
14: end for
15: return DrSetLC
16: end function

Listing 1: DR Generation: Life Cycles

The set ΣAC can be determined automatically in a pre-
computation step by analyzing the security policy and mark
every event occurring in the policy as access control relevant.

B. Static Access Control

For our DR algorithms, we will use the introduced task and
process life cycles (Figure 3), as well as the process definition
(Figure 1) as examples. Recall, a DR is a mapping of a trigger
event to an access control relevant event

(trigger event, ‘resource’) 7→ (ac relevant event, ‘resource’),

where the trigger event must precede the access control
relevant event. Both events are bound to a respective resource,
i. e., a process or a task. The overall generation of DRs
is divided into three algorithms: GENDR-LC (Listing 1) is
the core algorithm. It generates the DRs for a given life
cycle (i. e., process or task life cycle) and corresponding
resource. The second algorithm is GENDR-PD (Listing 2).
As process definitions contain multiple tasks, this algorithm
generates the DRs for each task of a process. The algorithm
iterates over all tasks and calls the core algorithm on each of
them to generate the relations. The third algorithm GENDR
(Listing 3) is the one which orchestrates the overall generation
of the relations. It calls the core algorithm GENDR-LC to
generate the relations for the process life cycle and it calls
GENDR-PD to generate the relations for all the tasks of
a process definition. First, we introduce the core algorithm
GENDR-LC for generating DRs from a given life cycle.
The function GENDR-LC(LC, res, (iEvent, iRes)) takes three
arguments: a life cycle model (LC), the resource for which
the DRs are generated (res), and an event (iEvent, iRes) which
helps to initialize the algorithm (on which we come back later).

Recall that the point when a pre-evaluation should be
triggered is exactly that event (in a life cycle) which precedes
access control relevant events. Along these lines the core al-
gorithm (Listing 1) generates DRs by mapping each incoming
event of a state to an outgoing access control relevant event.
Consequently, we iterate over all states s of the life cycle
LC. For each state we map the incoming events (i, res) to the

outgoing access control relevant events (o, res) (lines 1.3–1.14)
and store the outcome as DR (i, res) 7→ (o, res) (line 1.9).

The event which triggers the pre-computation for the first
access control relevant events of a task (and its life cycle)
lies in the event that happens before a task instance is created.
There are two possibilities for such events. The first scenario is
that the task is the first task of a process definition. In this case,
the event which precedes the creation of the task instance is the
creation of the process itself. Hence, the trigger for creating
decisions for the first task of a process is the ‘create’ event for
the process instance. We use the above mentioned third argu-
ment of the algorithm GENDR-LC and initialize the algorithm
with the ‘create’-event of the process (‘create’PLC, ‘P’). Giving
an example for the generation of the DRs for the first task in
a process (e.g., ‘Task 1’ of Figure 1) we call the algorithm
as follows: GENDR-LC(TLC, ‘Task 1’, (createPLC, ‘P’)). This
results in the following set of DRs, where the initial event
(‘create’PLC, ‘P’) maps on to the first two access control
relevant events ‘assign’ and ‘cancel’ of the task life cycle in
Figure 3. The other DRs are generated by further processing
of all other states of the life cycle.

DrSetTask 1 =
{

(createPLC, ‘P’) 7→ (assignTLC, ‘Task 1’),
(createPLC, ‘P’) 7→ (cancelTLC, ‘Task 1’),
(assignTLC, ‘Task 1’) 7→ (cancelTLC, ‘Task 1’),
(startTLC, ‘Task 1’) 7→ (assignTLC, ‘Task 1’),
(startTLC, ‘Task 1’) 7→ (cancelTLC, ‘Task 1’)

}
The second scenario is that the task is within a process

definition. In this case, the event which precedes the creation
of the task instance is the creation of the task instance that
precedes the current one. Hence, the trigger for creating
decisions for a task within in a process definition is the ‘create’
event of its preceding task. We also use the above mentioned
third argument of the algorithm GENDR-LC to initialize
the algorithm with the ‘create’-event of the current task
(e. g., Task 2) its preceding task (e. g., Task 1): (‘create’TLC,
‘Task 1’). For illustration we call the algorithm as follows:

GENDR-LC(TLC, ‘Task 2’, (createTLC, ‘Task 1’)).

This results in the following set of DRs:

DrSetTask 2 =
{

(createTLC, ‘Task 1’) 7→ (assignTLC, ‘Task 2’),
(createTLC, ‘Task 1’) 7→ (cancelTLC, ‘Task 2’)
(assignTLC, ‘Task 2’) 7→ (cancelTLC, ‘Task 2’),
(startTLC, ‘Task 2’) 7→ (assignTLC, ‘Task 2’),
(startTLC, ‘Task 2’) 7→ (cancelTLC, ‘Task 2’)

}
Finally, the algorithm GENDR-LC is also used to generate the
DRs for a process life cycle, given a process ‘P’. The function
is called with the process life cycle (PLC), the resource ‘P’ as
well as a default initializing event as arguments, i. e.,

GENDR-LC(PLC, ‘P’, (createPLC, ‘P’)).

This results in the following set of four DRs:

DrSetP =
{

(createPLC, ‘P’) 7→ (cancelPLC, ‘P’),

1: function GENDR-PD(PD, PLC, TLC)
2: DrSetPD ← ∅
3: for all t ∈ Q(PD) do
4: for all i ∈ in[t] do
5: if src[i] = q0(PD) then
6: events← out[q0(PLC)]
7: rsc← name[PD]
8: else
9: events← out[q0(src[i])]

10: rsc← name[src[i]]
11: end if
12: for all e ∈ events do
13: DrSetPD ← DrSetPD∪
14: GENDR-LCS(TLC, name[t], e, rsc)
15: end for
16: end for
17: end for
18: return DrSetPD
19: end function

Listing 2: DR Generation: Process Definition

(startPLC, ‘P’) 7→ (stopPLC, ‘P’),
(stopPLC, ‘P’) 7→ (cancelPLC, ‘P’),
(startPLC, ‘P’) 7→ (cancelPLC, ‘P’)

}
Both the runtime and the output size of the function

GENDR-LC depend on the size of the given life cycle
(number of states) and its complexity (number of incoming
and access control relevant outgoing events per state):∣∣DrSetLC

∣∣ ≤ ∑
s∈Q(LC)

∣∣in[s]
∣∣ · ∣∣out[s] ∩ ΣAC(LC)

∣∣
The algorithm in Listing 2 orchestrates the generation of

DRs for all tasks of one process. Hence, it internally calls
the function of Listing 1 for each task in the process and
takes care that the initializing event (iEvent, iRes) is always
set with the ‘create’ event of its preceding tasks. Calling
the function GENDR-PD for our running example, i. e.,
GENDR-PD(PD,TLC,TLC) results in the following DRs:

DrSetPD =
{

(createPLC, ‘P’) 7→ (cancelTLC, ‘Task 1’),
(createPLC, ‘P’) 7→ (assignTLC, ‘Task 1’),
(assignTLC, ‘Task 1’) 7→ (assignTLC, ‘Task 1’),
(assignTLC, ‘Task 1’) 7→ (cancelTLC, ‘Task 1’),
(createTLC, ‘Task 1’) 7→ (cancelTLC, ‘Task 2’),
(createTLC, ‘Task 1’) 7→ (assignTLC, ‘Task 2’),
(assignTLC, ‘Task 2’) 7→ (assignTLC, ‘Task 2’),
(assignTLC, ‘Task 2’) 7→ (cancelTLC, ‘Task 2’),
(createTLC, ‘Task 2’) 7→ (cancelTLC, ‘Task 3’),
(createTLC, ‘Task 2’) 7→ (assignTLC, ‘Task 3’),
(assignTLC, ‘Task 3’) 7→ (assignTLC, ‘Task 3’),
(assignTLC, ‘Task 3’) 7→ (cancelTLC, ‘Task 3’)

}
Both the runtime and the output size of the operation depend

on the size of the given life cycles (number of states) and
their complexity (number of incoming and access control
relevant outgoing events per state) and the process definition.

1: function GENDR(PD, PLC, TLC)
2: DrSetCT ← ∅
3: for all e ∈ out[q0(PLC)] do
4: DrSetCT ← DrSetCT∪
5: GENDR-LCS(PLC, name[PD], e, name[PLC])
6: end for
7: DrSetCT ← DrSetCT ∪ GENDR-PD(PD, PLC, TLC)
8: return DrSetCT
9: end function

Listing 3: DR Generation

1: function GENERATERT(LC, res)
2: RtSet← ∅
3: for all s ∈ F (LC) do
4: for all i ∈ in[s] do
5: RtSet← RtSet ∪ {(i, res)}
6: end for
7: end for
8: return RtSet
9: end function

Listing 4: Generating Revoke Triggers

In principle, for each incoming event of each task, the function
GENDR-LC is executed. Thus, we can approximate the size
of the generated set of DRs with:∣∣DrSetPD

∣∣ ≤ (∑
t∈Q(PD)

∣∣in[t]
∣∣) · ∣∣DrSetLC

∣∣
Finally, we join the three sets of DRs by calling the function
GENDR(PD,PLC,TLC). It takes three arguments: the process
definition PD, the process life cycle PLC, and the task life
cycle TLC. This function (see Listing 3) calls GENDR-LCS
and GENDR-PD.

C. Revoke Trigger Generation

In this section, we present a function to generate revoke
triggers which remove those cache entries during runtime
which are not needed any more (cf. Section III-E). Cache
entries are revoked if either a task instance or process instance
transitions into a final state. Hence, the revoke triggers contain
the information on which events an instance transits into an
end state. The algorithm GENERATERT (Listing 4) generates
the respective set of revoke triggers for an LC and a given
resource. For example, the process ‘P’ (Figure 1) and the
presented life cycles (cf. Figure 3) result in the following set:

RtSet =
{

(cancel, ‘P’), (end, ‘P’), (cancel, ‘Task 1’),
(end, ‘Task 1’), (cancel, ‘Task 2’), (end, ‘Task 2’),
(cancel, ‘Task 3’), (end, ‘Task 3’)

}
Both the runtime and the output size of this operation

depend on the number of transitions to an end state:∣∣RtSet
∣∣ ≤ ∑

s∈F (PD)

∣∣in[s]
∣∣

where F (PD) denotes the set of end states of PD.

1: function GENDR-SOD(SP, PD)
2: DrSetSoD ← ∅
3: constraintsSoD ← GETSODCONSTRAINTS(SP, PD)
4: for all c ∈ constraintsSoD do
5: for all currExclTask ∈ exclTasks[c] do
6: for all e ∈ exclTasks[c] \ {currExclTask} do
7: DrSetSoD ← DrSetSoD∪
8: {(Event[c], name[currExclTask]) 7→
9: (Event[c], name[e])}

10: end for
11: end for
12: end for
13: return DrSetSoD
14: end function

Listing 5: DR Generation for SoD Constraints

D. Dynamic SoD Constraint

In this section, we describe an algorithm which generates
the relations based on the two input parameters SP and PD
where SP stands for security policy and PD is the process
definition of the process for which the DRs based on SoD
constraints should be generated.

The algorithm extracts the required SoD constraints from
the security policy by calling the function GETSODCON-
STRAINTS passing the policy and the process name as parame-
ters (line 5.3). For each returned SoD constraint the algorithm
generates the respective DRs such that as soon as one of the
exclusive tasks occurs as a resource in an event new cache
entries for the remaining exclusive tasks of the constraint are
created. For the process model depicted in Figure 1 with SoD
constraints, the following DRs are created:

DrSetSoD =
{

(assignTLC, ‘Task 1’) 7→ (assignTLC, ‘Task 2’),
(assignTLC, ‘Task 2’) 7→ (assignTLC, ‘Task 1’),
(assignTLC, ‘Task 2’) 7→ (assignTLC, ‘Task 3’),
(assignTLC, ‘Task 3’) 7→ (assignTLC, ‘Task 2’)

}
When Task 1 is assigned to a user, a new cache entry is

created for Task 2. The new cache entry reflects that the user
assigned to Task 1 may not be assigned to Task 2. The result
also shows that a new cache entry for Task 1 is created after
Task 2 is assigned. The latter relation shows that considering
the order of executions in the workflow creates a cache entry
for a task which is already finished at that point of execution.
Due to the fact that the algorithm treats all SoD constraints
in the policy equally regardless the order of the tasks, it
creates more DRs than needed. Given the small number of
SoD constraints usually defined for a process the additionally
generated relations are a small overhead compared to the effort
for analyzing the process definition according to the order of
tasks, especially given advanced control flow constructs [19].

Additional revoke triggers have to be generated to prevent
that during the generation of new cache entries invalid old
entries may be accessible in the cache. Along these lines, a
proactive caching implementation must guarantee that revoke
triggers are handled with a higher priority than requests for
cache entries. Due to space limitations and its similarity to

without caching with caching pre-evaluation speedup

model 1 769 ms 6 ms 1964 ms 128
model 2 1267 ms 8 ms 2717 ms 158
model 3 2687 ms 43 ms 5146 ms 62

TABLE I
PROCESSING TIMES FOR ACCESS CONTROL CHECKS AT RUNTIME

previously presented algorithms we skip the algorithm for SoD
related revoke triggers.

V. CASE STUDIES

We implemented the proactive caching framework in Java
including the algorithms introduced in this work [8]. For
evaluation, we generated caching heuristics for three different
types of workflow models and simulated them on a Pentium
4, dual core machine (2.0 GHz) with 1.5 GB of RAM.

First, we consider a linear workflow having only one avail-
able path of execution (i. e., no loops and no splits). Second,
we consider a model with a small branching factor which
influences the workflow execution with a greater number of
DRs and, hence, a greater number of pre-evaluated access
decisions. The third model contains multiple branches and
loops, which also increases the overhead for generating pre-
evaluated access decisions as more possibilities for the process
flow must be considered.

The goal of the simulation is to compare the effort required
for performing access control evaluations in an environment
where no caching is applied with an environment where
our proactive approach is implemented. We simulated the
execution of all three workflow models. In each case an
instance of the workflow was created and all its tasks suc-
cessively executed. Access control requests during execution
where made against an access control policy with 1500 users
(distributed on 15 roles), and a set of 1700 permissions.

Table I summarizes the results of our evaluation. For
each model, we report the accumulated processing times (in
[ms]; without caching and with proactive caching) required
to process all access control requests to be evaluated during
its execution. Moreover, we report on the time needed for
computing the cache entries (pre-evaluation). Our evaluations
show a performance gain of at least a factor 60, whereas the
overhead time required to generate the pre-evaluated access
decisions is only twice as much compared to the scenarios
where no cache is used. Our evaluations show that the re-
lation between overhead and the regular time decreases with
increasing complexity of the workflow model.

VI. CONCLUSION

A. Related Work

Improving the performance of access control decisions in
a distributed environment is a widespread research topic.
Whereas we focus on performance gains by using high-level
process models for adapting a generic caching architecture
many research approaches are focusing on optimizing the PDP
itself [10] or caching PDP results in the PEP [1], [2], [7], [16].
All these cache architectures share the same two limitations

compared to our approach: first, they do not anticipate cache
queries, and second they do not approximate state-dependent
parts (context information). Especially the second point is,
in our opinion, increasingly important as modern business
regulations require dynamic concepts, like SoD, that cannot
be cached easily. Thus, caching solutions that require a static
policies and a stateless PDP are suffering from a very high
miss rate in such dynamic scenarios we are looking at. There
are different approaches for optimizing the security polices
with respect of the evaluation complexity [10], [12].

The most closely related work is the secondary and approx-
imate authorization model (SAAM) [4] and its application to
systems using RBAC [20]. The core idea of SAAM is the
introduction of a secondary decision point (SDP). A SDP
is in principle caching approximate results of the PDP. The
concrete form of approximation depends on the requirements
of the SDP (e. g., with respect to its safeness and correctness)
and the underlying authorization model (e. g., RBAC or Bell-
laPadula). Overall, this approximations increases the hit rate
of the caching solution substantially. With this work, we share
on the one hand the experience that caching exact results of
the PDP leads to many cache misses and on the other hand
the vision of using abstract models for adapting the runtime
behavior [5] of the caching infrastructure.

Whereas SAAM focuses on advanced heuristics for ap-
proximating PDP results, we decided to approximate the
PDP results by strictly separating the static access control
model from the dynamic context information. Hence, our work
focuses on using abstract models for adapting the caching
architecture for an efficient pre-computation of cache entries.

B. Conclusion and Future Work

We propose ProActive Caching which is a caching strategy
tailored to business process-driven environments. It provides
caching of access control decisions based on high-level sys-
tem descriptions which are used to automatically generate
workflow-specific caching heuristics. These heuristics enable
a proactive caching framework to anticipate future access
queries at runtime, pre-evaluate the respective access requests
in advance, and store the results as cached access decisions
such that they are available when needed.

In this paper we presented algorithms for the automatic
generation of workflow-specific caching heuristics based on
input sources such as a system’s process and task life cycles,
process definitions, as well as SoD security constraints.

We analyzed our approach by generating caching heuristics
for three types of workflow models. The results show that
the caching approach is very effective. The performance for
access control checks during runtime increases at least by a
factor of 60 if the cache is used, whereas the effort to be put
into the system remains by only twice as much processing
time compared to a system where no caching is implemented.

For future work, extending our framework for security
policies that require fine-grained delegation concepts is an
interesting line of research. Along these lines, the transfer of
the proactive caching strategy to new applications domains is a

further aspect to be investigated. For example, our technique
could be used for pre-checking the availability of resources
needed for the execution of a given task.

VII. ACKNOWLEDGMENTS

We thank Robert Fies for valuable discussions on the topic
of this paper. This work has been supported by the German
“Federal Ministry of Education and Research” in the context
of the project “SoKNOS.”

REFERENCES

[1] L. Bauer, S. Garriss, and M. K. Reiter. Distributed proving in access-
control systems. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 81–95. IEEE Computer Society, 2005.

[2] K. Borders, X. Zhao, and A. Prakash. CPOL: high-performance policy
evaluation. In V. Atluri, C. Meadows, and A. Juels, editors, ACM
Conference on Computer and Communications Security, pages 147–157.
ACM Press, 2005.

[3] T. T. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
algorithms. MIT Press, 1990.

[4] J. Crampton, W. Leung, and K. Beznosov. The secondary and approxi-
mate authorization model and its application to Bell-LaPadula policies.
In Proceedings of the ACM symposium on Access control models and
technologies, pages 111–120. ACM Press, 2006.

[5] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E. Gjorven.
Using architecture models for runtime adaptability. IEEE Software,
23(2):62–70, 2006.

[6] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley Longman, Inc., 1979.

[7] G. Karjoth. Access control with IBM Tivoli access manager. ACM
Transactions on Information and System Security, 6(2):232–257, 2003.

[8] M. Kohler and R. Fies. ProActive caching – a framework for per-
formance optimized access control evaluations. In IEEE International
Symposium on Policies for Distributed Systems and Networks. IEEE
Computer Society, 2009.

[9] M. Kohler and A. Schaad. ProActive access control for business
process-driven environments. In Annual Computer Security Applications
Conference. IEEE Computer Society, 2008.

[10] A. X. Liu, F. Chen, J. Hwang, and T. Xie. Xengine: a fast and
scalable XACML policy evaluation engine. In Proceedings of the ACM
SIGMETRICS international conference on Measurement and modeling
of computer systems, pages 265–276. ACM Press, 2008.

[11] P. Loscocco and S. Smalley. Integrating flexible support for security
policies into the Linux operating system. In Proceedings of the
FREENIX Track: 2001 USENIX Annual Technical Conference, pages
29–42. USENIX Association, 2001.

[12] P. Miseldine. Automated XACML policy reconfiguration for evaluation
optimisation. In B. de Win, S.-W. Lee, and M. Monga, editors, SESS,
pages 1–8. ACM Press, 2008.

[13] J. Nielsen. Usability Engineering. Academic Press, 1993.
[14] R. S. Sandhu, D. F. Ferraiolo, and D. R. Kuhn. The NIST model for

role-based access control: towards a unified standard. In ACM Workshop
on Role-Based Access Control, pages 47–63. ACM Press, 2000.

[15] W. Shin and H. K. Kim. A simple implementation and performance
evaluation extended-role based access control. In Proceedings of the
4th WSEAS International Conference on Software Engineering, Parallel
& Distributed Systems, pages 1–5. World Scientific and Engineering
Academy and Society (WSEAS), 2005.

[16] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and
J. Lepreau. The Flask security architecture: System support for diverse
security policies. In Proc. 8th USENIX Security Symposium, Aug. 1999.

[17] The JBoss Group. jBPM. http://www.jboss.com/products/jbpm, 2008.
[18] W. van der Aalst and K. van Hee. Workflow Management: Models,

Methods, and Systems. MIT Press, 2002.
[19] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and

A. P. Barros. Workflow Patterns. Distributed and Parallel Databases,
14(1):5–51, 2003.

[20] Q. Wei, J. Crampton, K. Beznosov, and M. Ripeanu. Authorization
recycling in RBAC systems. In Proceedings of the ACM symposium
on Access control models and technologies, pages 63–72. ACM Press,
2008.

http://www.jboss.com/products/jbpm

	I Introduction
	II Background
	II-A Business Process Execution
	II-B ProActive Caching
	II-C Caching Heuristics

	III Dependency Relations for Business Processes
	III-A Relations Based on Life Cycles
	III-B Relations Based on Process Definitions
	III-C Relations Based on SoD Constraints
	III-D Relations Based on Business Object Calls
	III-E Revoke Trigger

	IV Automated DR Generation
	IV-A Preliminaries
	IV-B Static Access Control
	IV-C Revoke Trigger Generation
	IV-D Dynamic SoD Constraint

	V Case Studies
	VI Conclusion
	VI-A Related Work
	VI-B Conclusion and Future Work

	VII Acknowledgments
	References

@InCollection{	 kohler.ea:proactive:2009,
 author	= {Mathias Kohler and Achim D. Brucker and Andreas Schaad},
 title		= {ProActive Caching: Generating Caching Heuristics for
		 Business Process Environments},
 booktitle	= {International Conference on Computational Science and
		 Engineering (CSE)},
 doi		= {10.1109/CSE.2009.177},
 pages		= {207--304},
 volume	= {3},
 publisher	= {IEEE Computer Society},
 address	= {Los Alamitos, CA, USA},
 location	= {Vancouver, Kandada},
 year		= {2009},
 month		= aug,
 classification= {conference},
 abstract	= {Today's complex and multi-layered enterprise systems
		 demand fine-grained access control mechanisms supporting
		 dynamic security policies for large and distributed
		 repositories. Thus, the efficient evaluation of security
		 policies becomes an important factor for the overall system
		 performance, specifically with respect to systems with a
		 high degree of user interaction like workflow systems.
		 Caching approaches may help to address this situation.
		
		 We propose ProActive Caching, a two-phased caching
		 approach: in an offline phase, we automatically determine a
		 workflow-specific heuristic for pre-computing cache
		 entries. In an online phase, we use the previously
		 determined heuristic for the cache management. The latter
		 includes also the pre-computation of cache entries which
		 already provides a performance improvement while evaluating
		 a policy object for the first time. In this paper, we
		 present a method for the automatic generation of a workflow
		 specific caching heuristic, i.e., the offline phase.},
 areas		= {security},
 keywords	= {access control, proactive caching, process models},
 public	= {yes},
 pdf		= {http://www.brucker.ch/bibliography/download/2009/kohler.ea-proactive-2009.pdf},
 ps		= {http://www.brucker.ch/bibliography/download/2009/kohler.ea-proactive-2009.ps.gz},
 url		= {http://www.brucker.ch/bibliography/abstract/kohler.ea-proactive-2009}
		
}

%0 Book Section
%T ProActive Caching: Generating Caching Heuristics for Business Process Environments
%A Kohler, Mathias
%A Brucker, Achim D.
%A Schaad, Andreas
%B International Conference on Computational Science and Engineering (CSE)
%D 2009
%8 aug
%V 3
%I IEEE Computer Society
%C Los Alamitos, CA, USA
%F kohler.ea:proactive:2009
%X Today?s complex and multi-layered enterprise systems demand fine-grained access control mechanisms supporting dynamic security policies for large and distributed repositories. Thus, the efficient evaluation of security policies becomes an important factor for the overall system performance, specifically with respect to systems with a high degree of user interaction like workflow systems. Caching approaches may help to address this situation. We propose ProActive Caching, a two-phased caching approach: in an offline phase, we automatically determine a workflow-specific heuristic for pre-computing cache entries. In an online phase, we use the previously determined heuristic for the cache management. The latter includes also the pre-computation of cache entries which already provides a performance improvement while evaluating a policy object for the first time. In this paper, we present a method for the automatic generation of a workflow specific caching heuristic, i.e., the offline phase.
%K access control, proactive caching, process models
%U http://www.brucker.ch/bibliography/abstract/kohler.ea-proactive-2009
%U http://www.brucker.ch/bibliography/download/2009/kohler.ea-proactive-2009.pdf
%U http://dx.doi.org/10.1109/CSE.2009.177
%P 207-304

TY - CHAP
AU - Kohler, Mathias
AU - Brucker, Achim D.
AU - Schaad, Andreas
PY - 2009/aug/
TI - ProActive Caching: Generating Caching Heuristics for Business Process Environments
BT - International Conference on Computational Science and Engineering (CSE)
SP - 207
EP - 304
VL - 3
PB - IEEE Computer Society
CY - Los Alamitos, CA, USA
KW - access control, proactive caching, process models
N2 - Today?s complex and multi-layered enterprise systems demand fine-grained access control mechanisms supporting dynamic security policies for large and distributed repositories. Thus, the efficient evaluation of security policies becomes an important factor for the overall system performance, specifically with respect to systems with a high degree of user interaction like workflow systems. Caching approaches may help to address this situation. We propose ProActive Caching, a two-phased caching approach: in an offline phase, we automatically determine a workflow-specific heuristic for pre-computing cache entries. In an online phase, we use the previously determined heuristic for the cache management. The latter includes also the pre-computation of cache entries which already provides a performance improvement while evaluating a policy object for the first time. In this paper, we present a method for the automatic generation of a workflow specific caching heuristic, i.e., the offline phase.
UR - http://www.brucker.ch/bibliography/abstract/kohler.ea-proactive-2009
L1 - http://www.brucker.ch/bibliography/download/2009/kohler.ea-proactive-2009.pdf
UR - http://dx.doi.org/10.1109/CSE.2009.177
ID - kohler.ea:proactive:2009
ER -

