
S. Ghosh (Ed.): MODELS 2009 Workshops, LNCS 6002„ pp. 261–275, 2010.
c© 2010 Springer-Verlag. This is the author’s version of the work. It is posted at http://www.brucker.
ch/bibliography/abstract/brucker.ea-ocl-null-2009 by permission of Springer-Verlag for your per-
sonal use. The definitive version was published with doi: 10.1007/978-3-642-12261-3_25.

Extending OCL with Null-References
Towards a Formal Semantics for OCL 2.1

Achim D. Brucker1, Matthias P. Krieger2, and Burkhart Wolff2

1 SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2 Université Paris-Sud, Parc Club Orsay Université, 91893 Orsay Cedex, France?

{krieger, wolff}@lri.fr

Abstract. From its beginnings, OCL is based on a strict semantics
for undefinedness, with the exception of the logical connectives of type
Boolean that constitute a three-valued propositional logic. Recent ver-
sions of the OCL standard added a second exception element, which,
similar to the null references in object-oriented programming languages,
is given a non-strict semantics. Unfortunately, this extension has been
done in an ad hoc manner, which results in several inconsistencies and
contradictions.
In this paper, we present a consistent formal semantics (based on our
HOL-OCL approach) that includes such a non-strict exception element.
We discuss the possible consequences concerning class diagram seman-
tics as well as deduction rules. The benefits of our approach for the
specification-pragmatics of design level operation contracts are demon-
strated with a small case-study.

Keywords: HOL-OCL, UML, OCL, null reference, formal semantics

1 Introduction

The Object Constraint Language (OCL) is used for specifying constraints such as
well-formedness rules and for defining object-oriented designs through operation
contracts and class invariants. The expressions of OCL constitute the core of
the language. In essence, OCL allows for evaluating queries over UML models.
From its beginnings, OCL has been equipped with the notion of an undefined
value (called invalid in [17]) to deal with exceptions occurring during expression
evaluation. A classical example of such an exception is a division by zero. In OCL
such an erroneous division is specified to yield an undefined value. Other reasons
for exceptions include attempting to retrieve elements from empty collections,
illegal type conversions and evaluating attributes on objects that do not exist.
Most operations in OCL are defined to be strict, i. e., they evaluate to invalid

if they are called with an undefined argument. This ensures that errors are
propagated during expression evaluation so they are visible and can be handled

? This work was partially supported by the Digiteo Foundation.

http://www.brucker.ch/bibliography/abstract/brucker.ea-ocl-null-2009
http://www.brucker.ch/bibliography/abstract/brucker.ea-ocl-null-2009
http://dx.doi.org/10.1007/978-3-642-12261-3_25
http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/
mailto: "Achim D. Brucker" <achim.brucker@sap.com>
mailto: "Matthias P. Krieger" <krieger@lri.fr>
mailto: "Burkhart Wolff" <wolff@@lri.fr>

262 A.D. Brucker, M.P. Krieger, and B. Wolff

later on. Naturally, OCL collections are not allowed to have undefined elements,
since errors are more easily signaled by marking the collection value as undefined.

During the development of OCL, the potential benefits of a second exception
element in addition to invalid became clear. This second exception element,
called null, is intended to represent the absence of value. The need to express
the absence of value arises naturally when dealing with object attributes with a
multiplicity lower bound of zero. These attributes, that occur frequently in mod-
els, are not required to yield a value when evaluated. Representing this absence
of value with the original undefined value invalid would be inconvenient. To
prevent a propagation of undefined values, it would be necessary to handle all
cases of value absence immediately. In particular, it would not be possible to pass
potentially null values to strict operations. Since nearly all operations of OCL
are strict, even the most basic operations such as equality testing would need
to check for null. These difficulties can be avoided by introducing the second
exception element null as a valid operation argument and collection element.

The latest OCL 2.0 standard [17] introduces null for representing the absence
of a value. This extension has been done in an ad hoc manner, which results
in several inconsistencies and contradictions. For example, both invalid and
null are defined to conform to all classifiers, in particular null conforms to
invalid and vice versa. Since the conforms relationship is antisymmetric, this
implies that invalid and null are indistinguishable. The standard does not
state clearly when object attributes can evaluate to null and how this depends
on its multiplicity. The standard does also not clarify whether objects that do
not exist (“dangling references”) are treated the same way as null or not.

Our contribution is a proposal for a formal semantics that overcomes these
problems in the current version of the OCL standard. From this semantics, we
derive formally and informally numerous rules, which could be included in the
mandatory part of a standardization document, while our semantics could serve
as foundation of a future “Annex A.” We proceed as follows: In Section 3, we
provide a summary of the essentials of the HOL-OCL semantics as it could be
found in semantics textbooks (rather than a technical presentation motivated by
machine readable documents). Nevertheless, our semantics is a strong formal,
i. e., machine-checked semantics largely following [16, Annex A]. In Section 4,
we present as an increment our proposal for OCL 2.1, focusing on the key issue
of null-elements and null-types. In Section 5, we will discuss the consequences
for an omnipresent feature of UML, namely multiplicities, and its pragmatics.
Finally, in Section 6 we will show how the extended language can be used to
describe pretty standard contracts at design-level for object-oriented programs.

2 Formal and Technical Background

2.1 Higher-order Logic

Higher-order Logic (HOL) [8,1] is a classical logic with equality enriched by total
parametrically polymorphic higher-order functions. It is more expressive than
first-order logic, e. g., induction schemes can be expressed inside the logic.

Extending OCL with Null-References 263

HOL is based on the typed λ-calculus, i. e., the terms of HOL are λ-expressions.
Types of terms may be built from type variables (like α, β, . . . , optionally an-
notated by Haskell-like type classes as in α :: order or α :: bot) or type con-
structors. Type constructors may have arguments (as in α list or α set). The
type constructor for the function space ⇒ is written infix: α ⇒ β; multiple
applications like τ1 ⇒ (. . . ⇒ (τn ⇒ τn+1) . . .) have the alternative syntax
[τ1, . . . , τn] ⇒ τn+1. HOL is centered around the extensional logical equality
_ = _ with type [α, α]⇒ bool, where bool is the fundamental logical type. We
use infix notation: instead of (_ = _) E1 E2 we write E1 = E2. The logical con-
nectives _∧_, _∨_, _⇒ _ of HOL have type [bool,bool]⇒ bool, ¬_ has type
bool ⇒ bool. The quantifiers ∀_._ and ∃_._ have type [α ⇒ bool] ⇒ bool.
The quantifiers may range over types of higher order, i. e., functions or sets. The
definition of the element-hood _ ∈ _, the set comprehension {_._}, as well as
_ ∪_ and _ ∩_ are standard.

The Isabelle/HOL library [15] contains formal definitions and theorems for
practically all mathematical concepts used in computer science, including typed
set theory, well-founded recursion theory, number theory and theories for data-
structures like Cartesian products α × β and disjoint type sums α + β. The
library also includes the type constructor τ⊥ := ⊥ | x_y : α that assigns to each
type τ a type τ⊥ disjointly extended by the exceptional element ⊥. The function
p_q : α⊥ ⇒ α is the inverse of x_y (unspecified for ⊥). Partial functions α ⇀ β are
defined as functions α ⇒ β⊥ supporting the usual concepts of domain (dom _)
and range (ran _). The library is built entirely by logically safe, conservative
definitions and derived rules. This methodology is also applied to HOL-OCL.

2.2 A Brief Introduction to the HOL-OCL System

HOL-OCL [6,4] is integrated into a framework [3] supporting a formal, model-
driven software engineering process. Technically, HOL-OCL is based on a repos-
itory for UML/OCL models and on Isabelle/HOL. HOL-OCL also reuses and ex-
tends the existing Isabelle front-end called Proof General as well as the Isabelle
documentation generator.

3 An Overview over OCL Semantics

In this section, we will briefly introduce OCL semantics from the HOL-OCL per-
spective. The main differences between the OCL 2.0 formal semantics descrip-
tion [16, Annex A] and HOL-OCL is that the latter is a machine-checked, “strong”
formal semantics which is itself based on a typed meta-language (i. e., HOL) in-
stead of an untyped one (i. e., naïve set theory), and various technical simplifi-
cations: instead of three different semantic interpretation functions I(x), IJeKτ ,
IAttJeKτ , we use only one. The first difference enables us to give a semantic con-
sistency guarantee: Since all definitions of our formal semantics are logically safe
extensions, i. e., conservative [12] and since all rules are derived, the consistency
of HOL-OCL is reduced to the consistency of HOL, i. e., a widely accepted small

264 A.D. Brucker, M.P. Krieger, and B. Wolff

system of seven axioms. The second difference dramatically reduces the number
of rules necessary for formal reasoning. In this presentation we will avoid to show
the key-definitions used inside HOL-OCL; rather, for the sake of making this work
amenable to a wider audience, we will use a “textbook-style” presentation of the
semantics which is formally shown to be equivalent (for details, see [6]).

3.1 Validity and Evaluations

The topmost goal of the formal semantics is to define the validity statement :

(σ, σ′) � P ,

where σ is the pre-state and σ′ the post-state of the underlying system and P is
a Boolean expression (a formula). The assertion language of P is composed of
1) operators on built-in data structures such as Boolean or set, 2) operators of
the user-defined data-model such as accessors, type-casts and tests, and 3) user-
defined, side-effect-free methods. Informally, a formula P is valid if and only if
its evaluation in the context (σ, σ′) yields true. As all types in HOL-OCL are
extended by the special element ⊥ denoting undefinedness, we define formally:

(σ, σ′) � P ≡
(
P (σ, σ′) = xtruey

)
.

Since all operators of the assertion language depend on the context (σ, σ′) and
result in values that can be ⊥, all expressions can be viewed as evaluations from
(σ, σ′) to a type τ⊥. All types of expressions are of a form captured by

V(α) := state× state⇒ α⊥ ,

where state stands for the system state and state× state describes the pair of
pre-state and post-state and _ := _ denotes the type abbreviation.

The OCL semantics [16, Annex A] uses different interpretation functions for
invariants and pre-conditions; we achieve their semantic effect by a syntactic
transformation _pre which replaces all accessor functions _. a by their counter-
parts _. a @pre. For example, (self . a > 5)pre is just (self . a @pre > 5).

3.2 Strict Operations

An operation is called strict if it returns ⊥ if one of its arguments is ⊥. Most
OCL operations are strict, e. g., the Boolean negation is formally presented as:

IJnot XKτ ≡

{
x¬pIJXKτqy if IJXKτ 6= ⊥,
⊥ otherwise .

where τ = (σ, σ′) and IJ_K is a notation marking the HOL-OCL constructs to be
defined. This notation is motivated by the definitions in the OCL standard [16].
In our case, IJ_K is just the identity, i. e., IJXK ≡ X. These constructs, i. e.,
not _ are HOL functions (in this case of HOL type V(bool)⇒ V(bool)) that can
be viewed as transformers on evaluations.

Extending OCL with Null-References 265

The binary case of the integer addition is analogous:

IJX + Y K τ ≡

{
xpIJXK τq+ pIJY K τqy if IJXK τ 6= ⊥ and IJY K τ 6= ⊥,
⊥ otherwise .

Here, the operator _+_ on the right refers to the integer HOL operation with
type [int, int] ⇒ int. The type of the corresponding strict HOL-OCL operator
+ is [V(int), V(int)]⇒ V(int). A slight variation of this definition scheme is
used for the operators on collection types such as HOL-OCL sets or sequences:

IJX->union(Y)Kτ ≡

{
SxpIJXKτq ∪ pIJY Kτqy if IJXKτ 6= ⊥ and IJY Kτ 6= ⊥,
⊥ otherwise.

Here, S (“smash”) is a function that maps a lifted set xXy to ⊥ if and only if
⊥ ∈ X and to the identity otherwise. Smashedness of collection types is the
natural extension of the strictness principle for data structures.

Intuitively, the type expression V(τ) is a representation of the type that cor-
responds to the HOL-OCL type τ . We introduce the following type abbreviations:

Boolean := V(bool) , Set(α) := V(α set) ,
Integer := V(int) , and Sequence(α) := V(α list) .

The mapping of an expression E of HOL-OCL type T to a HOL expression E of
HOL type T is injective and preserves well-typedness.

3.3 Boolean Operators

There is a small number of explicitly stated exceptions from the general rule
that HOL-OCL operators are strict: the strong equality, the definedness operator
and the logical connectives. As a prerequisite, we define the logical constants for
truth, absurdity and undefinedness. We write these definitions as follows:

IJtrueKτ ≡ xtruey , IJfalseKτ ≡ xfalsey , and IJinvalidKτ ≡ ⊥ .

HOL-OCL has a strict equality _ .
= _. On the primitive types, it is defined

similarly to the integer addition; the case for objects is discussed later. For logical
purposes, we introduce also a strong equality _ , _ which is defined as follows:

IJX , Y K τ ≡ (IJXK τ = IJY K τ) ,

where the _ = _ operator on the right denotes the logical equality of HOL. The
undefinedness test is defined by X .oclIsInvalid() ≡ (X , invalid). The
strong equality can be used to state reduction rules like: τ � (invalid

.
= X) ,

invalid. The OCL standard requires a Strong Kleene Logic. In particular:

IJX and Y Kτ ≡

xpxq ∧ pyqy if x 6= ⊥ and y 6= ⊥,
xfalsey if x = xfalsey or y = xfalsey,

⊥ otherwise .

where x = IJXKτ and y = IJY Kτ . The other Boolean connectives were just short-
cuts: X or Y ≡ not (not X and not Y) and X implies Y ≡ not X or Y .

266 A.D. Brucker, M.P. Krieger, and B. Wolff

3.4 Object-oriented Data Structures

Now we turn to several families of operations that the user implicitly defines
when stating a class model as logical context of a specification. This is the
part of the language where object-oriented features such as type casts, accessor
functions, and tests for dynamic types come into play. Syntactically, a class model
provides a collection of classes C, an inheritance relation _ < _ on classes and a
collection of attributes A associated to classes. Semantically, a class model means
a collection of accessor functions (denoted _.a :: A→ B and _. a @pre :: A→ B
for a ∈ A and A,B ∈ C), type casts that can change the static type of an object
of a class (denoted _.oclAsType(C) of type A → C) and dynamic type tests
(denoted _.oclIsTypeOf(C)). A precise formal definition can be found in [6].

Class models: A simplified semantics. In this section, we will have to clarify
the notions of object identifiers, object representations, class types and state. We
will give a formal model for this, that will satisfy all properties discussed in the
subsequent section except one (see [5] for the complete model).

First, object identifiers are captured by an abstract type oid comprising
countably many elements and a special element nullid. Second, object rep-
resentations model “a piece of typed memory,” i. e., a kind of record comprising
administration information and the information for all attributes of an object;
here, the primitive types as well as collections over them are stored directly in
the object representations, class types and collections over them are represented
by oid’s (respectively lifted collections over them). Third, the class type C will be
the type of such an object representation: C := (oid×Ct×A1×· · ·×Ak) where
a unique tag-type Ct (ensuring type-safety) is created for each class type, where
the types A1, . . . , Ak are the attribute types (including inherited attributes)
with class types substituted by oid. The function OidOf projects the first com-
ponent, the oid, out of an object representation. Fourth, for a class model M
with the classes C1, . . . , Cn, we define states as partial functions from oid’s to
object representations satisfying a state invariant invσ:

state := {f :: oid⇀ (C1 + . . .+ Cn) | invσ(f)}

where invσ(f) states two conditions: 1) there is no object representation for
nullid: nullid /∈ (dom f). 2) there is a“one-to-one” correspondence between
object representations and oid’s: ∀oid ∈ domf. oid = OidOf pf(oid)q. The latter
condition is also mentioned in [16, Annex A] and goes back to Mark Richters [19].

3.5 The Accessors

On states built over object universes, we can now define accessors, casts, and
type tests of an object model. We consider the case of an attribute a of class C
which has the simple class type D (not a primitive type, not a collection):

IJself . aK(σ, σ′) ≡

⊥ if O = ⊥ ∨OidOf pOq /∈ dom σ′

getD u if σ′(getCpσ′(OidOf pOq)q. a(0)) = xuy,
⊥ otherwise.

Extending OCL with Null-References 267

IJself . a@preK(σ, σ′) ≡

⊥ if O = ⊥ ∨OidOf pOq /∈ dom σ

getD u if σ(getCpσ(OidOf pOq)q. a) = xuy,
⊥ otherwise.

where O = IJself K(σ, σ′). Here, getD is the projection function from the object
universe to D⊥, and x. a is the projection of the attribute from the class type (the
Cartesian product). For simple class types, we have to evaluate expression self ,
get an object representation (or undefined), project the attribute, de-reference it
in the pre or post state and project the class object from the object universe (getD
may yield ⊥ if the element in the universe does not correspond to a D object
representation.) In the case for a primitive type attribute, the de-referentiation
step is left out, and in the case of a collection over class types, the elements of
the collection have to be point-wise de-referenced and smashed.

In our model accessors always yield (type-safe) object representations; not
oid’s. Thus, a dangling reference, i. e., one that is not in dom σ, results in invalid

(this is a subtle difference to [16, Annex A] where the undefinedness is detected
one de-referentiation step later). The strict equality _ .

= _ must be defined via
OidOf when applied to objects. It satisfies (invalid .

= X) , invalid.
The definitions of casts and type tests can be found in [5], together with

other details of the construction above and its automation in HOL-OCL.

4 A Proposal for an OCL 2.1 Semantics

In this section, we describe our OCL 2.1 semantics proposal as an increment
to the OCL 2.0 semantics (underlying HOL-OCL and essentially formalizing [16,
Annex A]). In later versions of the standard [17] the formal semantics appendix
reappears although being incompatible with the normative parts of the standard.
Not all rules shown here are formally proven; technically, these are informal
proofs “with a glance” on the formal proofs shown in the previous section.

4.1 Revised Operations on Primitive Types

In UML, and since [17] in OCL, all primitive types comprise the null-element,
modeling the possibility to be non-existent. From a functional language perspec-
tive, this corresponds to the view that each basic value is a type like int option
as in SML. Technically, this results in lifting any primitive type twice:

Integer := V(int⊥) , etc.

and basic operations have to take the null elements into account. The distin-
guishable undefined and null-elements were defined as follows:

IJinvalidKτ ≡ ⊥ and IJnullIntegerKτ ≡ x⊥y .

An interpretation (consistent with [17]) is that nullInteger + 3 = invalid,
and due to commutativity, we postulate 3 + nullInteger = invalid, too. The
necessary modification of the semantic interpretation looks as follows:

268 A.D. Brucker, M.P. Krieger, and B. Wolff

IJX + Y K τ ≡

{
xxppxqq+ ppyqqyy if x 6= ⊥, y 6= ⊥, pxq 6= ⊥ and pyq 6= ⊥
⊥ otherwise .

where x = IJXKτ and y = IJY Kτ . The resulting principle here is that operations
on the primitive types Boolean, Integer, Real, and String treat null as invalid
(except _ .

= _, _ .oclIsInvalid(), _ .oclIsUndefined(), casts between the
different representations of null, and type-tests).

This principle is motivated by our intuition that invalid represents known
errors, and null-arguments of operations for Boolean, Integer, Real, and String
belong to this class. Thus, we must also modify the logical operators such that
nullBoolean and false , false and nullBoolean and true , ⊥.

With respect to definedness reasoning, there is a price to pay. For most basic
operations we have the rule:

not (X + Y) .oclIsInvalid() , (not X .oclIsUndefined())

and (not Y .oclIsUndefined())

where the test x .oclIsUndefined() covers two cases: x .oclIsInvalid() and
x
.
= null (i. e., x is invalid or null). As a consequence, for the inverse case

(X+Y) .oclIsInvalid()3 there are four possible cases for the failure instead of
two in the semantics described in [16]: each expression can be an erroneous null,
or report an error. However, since all built-in OCL operations yield non-null el-
ements (e. g., we have the rule not (X + Y

.
= nullInteger)), a pre-computation

can drastically reduce the number of cases occurring in expressions except for
the base case of variables (e. g., parameters of operations and self in invariants).
For these cases, it is desirable that implicit pre-conditions were generated as de-
fault, ruling out the null case. A convenient place for this are the multiplicities,
which can be set to 1 (i. e., 1..1) and will be interpreted as being non-null (see
discussion in Section 5 for more details).

Besides, the case for collection types is analogous: in addition to the invalid
collection, there is a nullSet(T) collection as well as collections that contain null
values (such as Set{nullT}) but never invalid.

4.2 Null in Class Types

It is a viable option to rule out undefinedness in object-graphs as such. The
essential source for such undefinedness are oid’s which do not occur in the state,
i. e., which represent “dangling references.” Ruling out undefinedness as result
of object accessors would correspond to a world where an accessor is always set
explicitly to null or to a defined object; in a programming language without
explicit deletion and where constructors always initialize their arguments (e. g.,
Spec# [2]), this may suffice. Semantically, this can be modeled by strengthen-
ing the state invariant invσ by adding clauses that state that in each object
representation all oid’s are either nullid or element of the domain of the state.
3 The same holds for (X + Y) .oclIsUndefined().

Extending OCL with Null-References 269

We deliberately decided against this option for the following reasons:
1. methodologically we do not like to constrain the semantics of OCL without

clear reason; in particular, “dangling references” exist in C and C++ programs
and it might be necessary to write contracts for them, and

2. semantically, the condition “no dangling references” can only be formulated
with the complete knowledge of all classes and their layout in form of object
representations. This restricts the OCL semantics to a closed world model.4

We can model null-elements as object-representations with nullid as their oid:

Definition 1 (Representation of null-Elements). Let Ci be a class type
with the attributes A1, . . . , An. Then we define its null object representation by:

IJnullCiKτ ≡ x(nullid, arbt, a1, . . . , an)y

where the ai are ⊥ for primitive types and collection types, and nullid for simple
class types. arbt is an arbitrary underspecified constant of the tag-type.

Due to the outermost lifting, the null object representation is a defined value,
and due to its special reference nullid and the state invariant, it is a typed value
not “living” in the state. The nullT-elements are not equal, but isomorphic: Each
type, has its own unique nullT-element; they can be mapped, i. e., casted, iso-
morphic to each other. In HOL-OCL, we can overload constants by parametrized
polymorphism which allows us to drop the index in this environment.

The referential strict equality allows us to write self
.
= null in OCL. Recall

that _ .
= _ is based on the projection OidOf from object-representations.

4.3 Revised Accessors

The modification of the accessor functions is now straight-forward:

IJobj . aK(σ, σ′) ≡

⊥ if IJobj K(σ, σ′) = ⊥∨OidOfpIJobj K(σ, σ′)q /∈ dom σ′

nullD if getCpσ′(OidOfpIJobj K(σ, σ′)q)q. a(0) = nullid

getD u if σ′(getCpσ′(OidOfpIJobj K(σ, σ′)q)q. a(0)) = xuy,
⊥ otherwise.

The definitions for type-cast and dynamic type test—which are not explicitly
shown in this paper, see [5] for details—can be generalized accordingly. In the
sequel, we will discuss the resulting properties of these modified accessors.

4 In our presentation, the definition of state in Section 3 assumes a closed world.
This limitation can be easily overcome by leaving “polymorphic holes” in our object
representation universe, i. e., by extending the type sum in the state definition to C1+
· · ·+Cn+α. The details of the management of universe extensions are involved, but
implemented in HOL-OCL (see [5] for details). However, these constructions exclude
knowing the set of sub-oid’s in advance.

270 A.D. Brucker, M.P. Krieger, and B. Wolff

All functions of the induced signature are strict. This means that this holds
for accessors, casts and tests, too:

invalid. a , invalid invalid.oclAsType(C) , invalid

invalid.oclIsTypeOf(C) , invalid

Casts on null are always valid, since they have an individual dynamic type and
can be casted to any other null-element due to their isomorphism.

nullA. a , invalid nullA.oclAsType(B) , nullB

nullA.oclIsTypeOf(A) , true

for all attributes a and classes A, B, C where C < B < A. These rules are further
exceptions from the standard’s general rule that null may never be passed as
first (“self ”) argument.

4.4 Other Operations on States

Defining _ .allInstances() is straight-forward; the only difference is the prop-
erty T .allInstances()->excludes(null) which is a consequence of the fact
that null’s are values and do not “live” in the state. In our semantics which
admits states with “dangling references,” it is possible to define a counterpart to
_.oclIsNew() called _.oclIsDeleted() which asks if an object id (represented
by an object representation) is contained in the pre-state, but not the post-state.

OCL does not guarantee that an operation only modifies the path-expressions
mentioned in the postcondition, i. e., it allows arbitrary relations from pre-states
to post-states. This framing problem is well-known (one of the suggested solu-
tions is [13]). We define

(S:Set(OclAny))->modifiedOnly (): Boolean

where S is a set of object representations, encoding a set of oid’s. The semantics of
this operator is defined such that for any object whose oid is not represented in S
and that is defined in pre and post state, the corresponding object representation
will not change in the state transition:

IJX->modifiedOnly()K(σ, σ′) ≡

{
⊥ if X ′ = ⊥
x∀ i ∈M. σ i = σ′ iy otherwise .

where X ′ = IJXK(σ, σ′) and M = (dom σ ∩ dom σ′) − {OidOf x| x ∈ pX ′q}.
Thus, if we require in a postcondition Set{}->modifiedOnly() and exclude
via _.oclIsNew() and _.oclIsDeleted() the existence of new or deleted ob-
jects, the operation is a query in the sense of the OCL standard, i. e., the
isQuery property is true. So, whenever we have τ � X->modifiedOnly() and
τ � X->excludes(s.a), we can infer that τ � s.a = s.a @pre (if they are valid).

Extending OCL with Null-References 271

5 Attribute Values

Depending on the specified multiplicity, the evaluation of an attribute can yield
a value or a collection of values. A multiplicity defines a lower bound as well as
a possibly infinite upper bound on the cardinality of the attribute’s values.

5.1 Single-Valued Attributes

If the upper bound specified by the attribute’s multiplicity is one, then an eval-
uation of the attribute yields a single value. Thus, the evaluation result is not
a collection. If the lower bound specified by the multiplicity is zero, the evalu-
ation is not required to yield a non-null value. In this case an evaluation of the
attribute can return null to indicate an absence of value.

To facilitate accessing attributes with multiplicity 0..1, the OCL standard
states that single values can be used as sets by calling collection operations on
them. This implicit conversion of a value to a Set is not defined by the standard.
We argue that the resulting set cannot be constructed the same way as when
evaluating a Set literal. Otherwise, null would be mapped to the singleton set
containing null, but the standard demands that the resulting set is empty in
this case. The conversion should instead be defined as follows:

context OclAny :: asSet ():T
post: if self .

= null then result .
= Set{}

else result .
= Set{self} endif

5.2 Collection-Valued Attributes

If the upper bound specified by the attribute’s multiplicity is larger than one,
then an evaluation of the attribute yields a collection of values. This raises the
question whether null can belong to this collection. The OCL standard states
that null can be owned by collections. However, if an attribute can evaluate to
a collection containing null, it is not clear how multiplicity constraints should
be interpreted for this attribute. The question arises whether the null element
should be counted or not when determining the cardinality of the collection.
Recall that null denotes the absence of value in the case of a cardinality upper
bound of one, so we would assume that null is not counted. On the other hand,
the operation size defined for collections in OCL does count null.

We propose to resolve this dilemma by regarding multiplicities as optional.
This point of view complies with the UML standard, that does not require lower
and upper bounds to be defined for multiplicities.5 In case a multiplicity is spec-
ified for an attribute, i. e., a lower and an upper bound are provided, we require
any collection the attribute evaluates to to not contain null. This allows for a
straightforward interpretation of the multiplicity constraint. If bounds are not
5 We are however aware that a well-formedness rule of the UML standard does define
a default bound of one in case a lower or upper bound is not specified.

272 A.D. Brucker, M.P. Krieger, and B. Wolff

provided for an attribute, we consider the attribute values to not be restricted
in any way. Because in particular the cardinality of the attribute’s values is not
bounded, the result of an evaluation of the attribute is of collection type. As
the range of values that the attribute can assume is not restricted, the attribute
can evaluate to a collection containing null. The attribute can also evaluate to
invalid. Allowing multiplicities to be optional in this way gives the modeler
the freedom to define attributes that can assume the full ranges of values pro-
vided by their types. However, we do not permit the omission of multiplicities
for association ends, since the values of association ends are not only restricted
by multiplicities, but also by other constraints enforcing the semantics of associ-
ations. Hence, the values of association ends cannot be completely unrestricted.

5.3 The Precise Meaning of Multiplicity Constraints

We are now ready to define the meaning of multiplicity constraints by giving
equivalent invariants written in OCL. Let a be an attribute of a class C with a
multiplicity specifying a lower bound m and an upper bound n. Then we can
define the multiplicity constraint on the values of attribute a to be equivalent to
the following invariants written in OCL:

context C inv lowerBound: a->size() >= m
inv upperBound: a->size() <= n
inv notNull: not a->includes(null)

If the upper bound n is infinite, the second invariant is omitted. For the definition
of these invariants we are making use of the conversion of single values to sets
described in Section 5.1. If n ≤ 1, the attribute a evaluates to a single value,
which is then converted to a Set on which the size operation is called.

If a value of the attribute a includes a reference to a non-existent object, the
attribute call evaluates to invalid. As a result, the entire expressions evaluate
to invalid, and the invariants are not satisfied. Thus, references to non-existent
objects are ruled out by these invariants. We believe that this result is appro-
priate, since we argue that the presence of such references in a system state is
usually not intended and likely to be the result of an error. If the modeler wishes
to allow references to non-existent objects, she can make use of the possibility
described above to omit the multiplicity.

6 Example: Red-Black Trees

We give a small example to demonstrate how the semantics we presented for
undefined values facilitates specification. Figure 1 and Listing 1.1 describe a class
for representing red-black trees. A red-black tree is a binary tree that satisfies
an additional balancing invariant to ensure fast lookups. Each node is associated
with a color (i. e., red or black) to allow for balancing. Every instance of the tree
class represents a red-black tree. The empty tree is represented by null. A tree
object is connected to its left and right subtrees via associations. The data is
stored in the attribute key and the node color in the attribute color.

Extending OCL with Null-References 273

inv wf: not left.oclIsInvalid () and not right.oclIsInvalid ()
inv redinv: color implies ((left .

= null or not left.color)
and (right .

= null or not right.color))
inv ordinv: (left .

= null or left.max() < key) and
(right .

= null or right.min() > key)
inv balinv: black_depth(left) .

= black_depth(right)

context RBT::min (): Integer
post: if left .=null then key else left.max() endif

context RBT::max (): Integer
post: if right .=null then key else right.max() endif

context RBT:: black_depth(tree: RBT): Integer
post: (tree .

= null and result , 0)
or (tree.left.color and result , black_depth(tree.left))
or (not tree.left.color and result , black_depth(tree.left) + 1)

context RBT:: isMember(tree: RBT , a:Integer): Boolean
post: result , (tree <> null and (a .

= tree.key or isMember(tree.left , a)
or isMember(tree.right , a)))

context RBT :: subtrees (): Set(RBT)
post: result , left ->collect(subtrees ())

->union(right ->collect(subtrees ()))->asSet()

context RBT:: insert(k : Integer):
post: subtrees()->modifiedOnly () and

subtrees ().key ->asSet () .
= subtrees@pre ().key ->asSet()->including(k)

Listing 1.1. OCL specification of red-black trees.

RBT
key:Integer[1]
color:Boolean[1]
min():Integer[1]
max():Integer[1]
black_depth(tree:RBT[0..1]):Integer[1]
isMember(tree:RBT[0..1], a:Integer[1]):Boolean[1]
subtrees():Set(RBT)
insert(k:Integer[1]):OclVoid[0..1]

0..*

0..1
right

0..*

0..1
left

Fig. 1. A class representing red-black trees.

The availability of the
null value for representing
the empty tree clearly sim-
plifies the specification. One
might object here that one
could alternatively introduce
a subclass EmptyTree in-
heriting from RBT; however,
this implies that there are

EmptyTree-objects which have to be allocated and deallocated resulting in a
different memory behavior. In contrast, representing empty trees by null allows
for specifying tree operations as they are commonly realized in Java or C++,
i. e. our extensions pave the way for design level contracts in OCL.

The only remaining alternative would be to represent the empty tree by the
other undefined value invalid. However, it is easy to see that this choice would
obscure the specification substantially. Recall that every operation call with an
invalid argument evaluates to invalid, so the tree operations could not be
called for the empty tree. Instead, the case of an empty tree would always have
to be considered additionally. In the postcondition of the operation isMember,
for example, the two recursive calls to isMember would require two tests for the
empty tree, which would increase the size of the postcondition considerably.

274 A.D. Brucker, M.P. Krieger, and B. Wolff

The postcondition of insert uses _->modifiedOnly() (see Section 4) for
stating that the only objects the operation may modify are the subtrees of the
tree that the operation is called for. Without this constraint it would not be
guaranteed that the operation does not modify other unrelated trees or even
other objects of a completely different type. Thus, _->modifiedOnly() allows us
to express properties that are essential for the completeness of the specification.

Another advantage of our semantics is that references to non-existent objects
can easily be ruled out a priori by the invariant wf.6 Hence, it is guaranteed that
every non-null tree object encountered during a search is a valid subtree and not
a dangling reference. This property is essential for the specification correctness.

7 Discussion

We have presented a formal semantics for OCL 2.1 as an increment to the
machine-checked HOL-OCL semantics presented in textbook format. The achieve-
ment is a proposal how to handle null-elements in the specification language
which result from the current attempt to align the UML infrastructure [18] with
the OCL standard; an attempt that has great impact on both the semantics of
UML and, to an even larger extent, OCL. Inconsistencies on the current stan-
dardization documents as result of an ad-hoc integration have been identified
as a major obstacle in OCL tool development. We discussed the consequences
of the integrated semantics by presenting the derived rules, their implications
for multiplicities, and their pragmatics in a non-trivial example, which shows
how null elements can help to write concise, natural, design-level contracts for
object-oriented code in a programming like style. Adding a basic mechanism
to express framing conditions gives the resulting language a similar expressive
power as, for example, JML or Spec#.

7.1 Related Work

While null elements are a common concept, e. g., in programming languages or
database design, there are, to our knowledge, no proposals at all for a formal
semantics of null elements in the context of OCL. Albeit, there are object-oriented
specification languages that support null elements, namely JML [14] or Spec# [2].
Notably, both languages limit null elements to class types and provide a type
system supporting non-null types. In the case of JML, the non-null types are
even chosen as the default types [7]. Supporting non-null types simplifies the
analysis of specifications drastically, as many cases resulting in potential invalid
states (e. g., de-referencing a null) are already ruled out by the type system.

Our concept for modeling frame properties is essentially identical (but sim-
pler) to [13], where query-methods were required to produce no observable change
of the state (i. e., internally, some objects may have been created, but must be
inaccessible at the end; an idea motivated by the presence of a garbage collector).
6 In fact, the invariant wf is redundant since it is implied by the multiplicity constraints
(see Section 5). The multiplicity constraints of the attributes key and color ensure
that these attributes are neither null nor invalid.

Extending OCL with Null-References 275

7.2 Future Work

There are numerous other concepts in the current OCL definition that deserve
formal analysis; for example, the precise notion of signals, method overriding,
overload-resolution, recursive definitions, and the precise form of interaction be-
tween class models, state machines and sequence charts. However, from the nar-
rower perspective of this work on integrating null elements, adding non-null
types and a non-null type inference to OCL (similar to [9,10]) seems to be the
most rewarding target.

References

1. Andrews, P.B.: Introduction to Mathematical Logic and Type Theory: To Truth
through Proof, 2nd edn. Kluwer Academic Publishers, Dordrecht (2002)

2. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: G. Barthe, L. Burdy, M. Huisman, J.L. Lanet, T. Muntean (eds.) Con-
struction and Analysis of Safe, Secure, and Interoperable Smart Devices (CASSIS),
LNCS, vol. 3362, pp. 49–69. Springer-Verlag (2005).

3. Brucker, A.D., Doser, J., Wolff, B.: An MDA framework supporting OCL. Electronic
Communications of the EASST 5 (2006).

4. Brucker, A.D., Wolff, B.: The HOL-OCL book. Tech. Rep. 525, ETH Zurich (2006).
5. Brucker, A.D., Wolff, B.: An extensible encoding of object-oriented data models in

HOL. Journal of Automated Reasoning 41, 219–249 (2008).
6. Brucker, A.D., Wolff, B.: Semantics, calculi, and analysis for object-oriented spec-

ifications. Acta Informatica 46(4), 255–284 (2009).
7. Chalin, P., Rioux, F.: Non-null references by default in the Java modeling lan-

guage. In: SAVCBS ’05: Proceedings of the 2005 conference on Specification and
verification of component-based systems, p. 9. ACM Press (2005).

8. Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic
5(2), 56–68 (1940)

9. Ekman, T., Hedin, G.: Pluggable checking and inferencing of nonnull types for
Java. Journal of Object Technology 6(9), 455–475 (2007)

10. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-
oriented language. In: OOPSLA, pp. 302–312. ACM Press (2003).

11. Gogolla, M., Kuhlmann, M., Büttner, F.: A benchmark for OCL engine accuracy,
determinateness, and efficiency. In: K. Czarnecki, I. Ober, J.M. Bruel, A. Uhl,
M. Völter (eds.) MoDELS, LNCS, vol. 5301, pp. 446–459. Springer-Verlag (2008).

12. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environ-
ment for higher order logic. Cambridge University Press (1993)

13. Kosiuczenko, P.: Specification of invariability in OCL. In: O. Nierstrasz, J. Whittle,
D. Harel, G. Reggio (eds.) Model Driven Engineering Languages and Systems
(MoDELS), LNCS, vol. 4199, pp. 676–691. Springer-Verlag (2006).

14. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D.R., Müller, P.,
Kiniry, J., Chalin, P.: JML reference manual (revision 1.2) (2007).

15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle’s logic: HOL (2009)
16. UML 2.0 OCL specification (2003). Available as OMG document ptc/03-10-14
17. UML 2.0 OCL specification (2006). Available as OMG document formal/06-05-01
18. UML 2.2 infrastructure (2009). Available as OMG document formal/2009-02-04
19. Richters, M.: A precise approach to validating UML models and OCL constraints.

Ph.D. thesis, Universität Bremen, Logos Verlag, BISS Monographs, No. 14 (2002)

http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/doc?formal/06-05-01
http://www.omg.org/cgi-bin/doc?formal/2009-02-04

Extending OCL with Null-References i

A Alternative Specifications of Red-Black-Trees7

In this appendix we give alternatives to our red-black tree specification in Sec-
tion 6. Our objective is to show the advantages and disadvantages of different
ways of representing the empty tree.

A.1 Representing the Empty Tree by invalid

The specification in Listing 1.2 represents the empty tree by invalid. This
shows how such a specification could be written without null if null were not
available in OCL8. The disadvantage is that every operation call with an invalid

argument evaluates to invalid, so the tree operations can not be called for the
empty tree. Instead, the case of an empty tree always has to be considered
additionally. In the specification of the operation black_depth, we use an if
expression to check for empty trees. This clearly is a nuisance. It would be
much nicer if we could call the operation black_depth directly on potentially
empty trees instead of introducing the intermediate variable left_depth. The
specification of isMember is even more problematic since it contains two recursive
operation calls, each requiring a test for empty trees.

context RBT:: black_depth (): Integer
post: let left_depth: Integer =

if left.oclIsInvalid () then 0 else left.black_depth () endif
in left.color and result , left_depth

or not left.color and result , left_depth + 1

context RBT:: isMember(a:Integer): Boolean
post: result , (a .

= tree.key
or not left.oclIsInvalid () and left.isMember(a)
or not right.oclIsInvalid () and right.isMember(a))

Listing 1.2. Representing the empty tree by invalid.

A.2 Representing the Empty Tree by a Specialized Class

The specification in Figure 2 and Listing 1.3 is an attempt to describe red-
black trees more elegantly by avoiding these problems. A new class EmptyTree
is introduced in order to model empty trees. Empty trees are represented by
an object of this class. It is now possible to keep the postconditions of the
operations black_depth and isMember more succinct, at the cost of spreading
the specification across two classes. A disadvantage of this specification is that
an implementation derived from it is likely to be less efficient than the original
7 This appendix extends the version published by Springer-Verlag.
8 This specification is not correct with respect to the semantics defined in this paper,
since in this semantics attributes constrained by multiplicities never evaluate to
invalid. Our objective is to show what a specification would look like if a different
semantics for OCL without null is chosen.

ii A.D. Brucker, M.P. Krieger, and B. Wolff

RBT

min():Integer[1]
max():Integer[1]
black_depth(tree:RBT[0..1]):Integer[1]
isMember(tree:RBT[0..1], a:Integer[1]):Boolean[1]
subtrees():Set(RBT)
insert(k:Integer[1]):OclVoid[0..1]

EmptyTreeNonEmptyTree
key:Integer[1]
color:Boolean[1]

1left

0..*

1right

0..*

Fig. 2. Representing the empty tree by a specialized class.

specification in Section 6. An additional object needs to be allocated for the
empty tree, and in general virtual function calls to black_depth and isMember
incur an overhead compared to direct calls.

context NonEmptyTree :: black_depth (): Integer
post: left.color and result , left.black_depth ()

or not left.color and result , left.black_depth () + 1

context NonEmptyTree :: isMember(a:Integer): Boolean
post: result , (a .

= tree.key or left.isMember(a) or right.isMember(a))

context EmptyTree :: black_depth (): Integer
post: result , 0

context EmptyTree :: isMember(a:Integer): Boolean
post: result , false

Listing 1.3. Representing the empty tree by a specialized class.

	Extending OCL with Null-References
	Achim D. Brucker, Matthias P. Krieger, and Burkhart Wolff
	1 Introduction
	2 Formal and Technical Background
	2.1 Higher-order Logic
	2.2 A Brief Introduction to the HOL-OCL System

	3 An Overview over ocl Semantics
	3.1 Validity and Evaluations
	3.2 Strict Operations
	3.3 Boolean Operators
	3.4 Object-oriented Data Structures
	3.5 The Accessors

	4 A Proposal for an OCL 2.1 Semantics
	4.1 Revised Operations on Primitive Types
	4.2 Null in Class Types
	4.3 Revised Accessors
	4.4 Other Operations on States

	5 Attribute Values
	5.1 Single-Valued Attributes
	5.2 Collection-Valued Attributes
	5.3 The Precise Meaning of Multiplicity Constraints

	6 Example: Red-Black Trees
	7 Discussion
	7.1 Related Work
	7.2 Future Work

	A Alternative Specifications of Red-Black-Trees
	A.1 Representing the Empty Tree by [style=ocl,columns=fullflexible]invalid
	A.2 Representing the Empty Tree by a Specialized Class

@InCollection{	 brucker.ea:ocl-null:2009,
 author	= {Achim D. Brucker and Matthias P. Krieger and Burkhart
		 Wolff},
 wsbooktitle	= {The Pragmatics of OCL and Other Textual Specification
		 Languages},
 note		= {Selected best papers from all satellite events of the
		 MoDELS 2009 conference.},
 booktitle	= {Models in Software Engineering},
 publisher	= {Springer-Verlag},
 address	= {Heidelberg},
 series	= {Lecture Notes in Computer Science},
 number	= {6002},
 editor	= {Sudipto Gosh},
 pages		= {261--275},
 doi		= {10.1007/978-3-642-12261-3_25},
 language	= {USenglish},
 title		= {Extending OCL with Null-References},
 year		= {2009},
 classification= {workshop},
 categories	= {holocl},
 location	= {Denver, Colorado, USA},
 areas		= {formal methods, software},
 public	= {yes},
 abstract	= {From its beginnings, OCL is based on a strict semantics
		 for undefinedness, with the exception of the logical
		 connectives of type Boolean that constitute a three-valued
		 propositional logic. Recent versions of the OCL standard
		 added a second exception element, which, similar to the
		 null references in object-oriented programming languages,
		 is given a non-strict semantics. Unfortunately, this
		 extension has been done in an ad hoc manner, which results
		 in several inconsistencies and contradictions.
		
		 In this paper, we present a consistent formal semantics
		 (based on our HOL-OCL approach) that includes such a
		 non-strict exception element. We discuss the possible
		 consequences concerning class diagram semantics as well as
		 deduction rules. The benefits of our approach for the
		 specification-pragmatics of design level operation
		 contracts are demonstrated with a small case-study.},
 bibkey	= {brucker.ea:ocl-null:2009},
 pdf		= {http://www.brucker.ch/bibliography/download/2009/brucker.ea-ocl-null-2009.pdf},
 ps		= {http://www.brucker.ch/bibliography/download/2009/brucker.ea-ocl-null-2009.ps.gz},
 keywords	= {HOL-OCL, UML, OCL, null reference, formal semantics},
 url		= {http://www.brucker.ch/bibliography/abstract/brucker.ea-ocl-null-2009}
		
}

%0 Book Section
%T Extending OCL with Null-References
%A Brucker, Achim D.
%A Krieger, Matthias P.
%A Wolff, Burkhart
%E Gosh, Sudipto
%B Models in Software Engineering
%D 2009
%N 6002
%I Springer-Verlag
%C Heidelberg
%G USenglish
%F brucker.ea:ocl-null:2009
%O Selected best papers from all satellite events of the MoDELS 2009 conference.
%X From its beginnings, OCL is based on a strict semantics for undefinedness, with the exception of the logical connectives of type Boolean that constitute a three-valued propositional logic. Recent versions of the OCL standard added a second exception element, which, similar to the null references in object-oriented programming languages, is given a non-strict semantics. Unfortunately, this extension has been done in an ad hoc manner, which results in several inconsistencies and contradictions. In this paper, we present a consistent formal semantics (based on our HOL-OCL approach) that includes such a non-strict exception element. We discuss the possible consequences concerning class diagram semantics as well as deduction rules. The benefits of our approach for the specification-pragmatics of design level operation contracts are demonstrated with a small case-study.
%K HOL-OCL, UML, OCL, null reference, formal semantics
%U http://www.brucker.ch/bibliography/abstract/brucker.ea-ocl-null-2009
%U http://www.brucker.ch/bibliography/download/2009/brucker.ea-ocl-null-2009.pdf
%U http://dx.doi.org/10.1007/978-3-642-12261-3_25
%P 261-275

TY - CHAP
AU - Brucker, Achim D.
AU - Krieger, Matthias P.
AU - Wolff, Burkhart
ED - Gosh, Sudipto
PY - 2009//
TI - Extending OCL with Null-References
BT - Models in Software Engineering
T3 - Lecture Notes in Computer Science
SP - 261
EP - 275
IS - 6002
PB - Springer-Verlag
CY - Heidelberg
KW - HOL-OCL, UML, OCL, null reference, formal semantics
N2 - From its beginnings, OCL is based on a strict semantics for undefinedness, with the exception of the logical connectives of type Boolean that constitute a three-valued propositional logic. Recent versions of the OCL standard added a second exception element, which, similar to the null references in object-oriented programming languages, is given a non-strict semantics. Unfortunately, this extension has been done in an ad hoc manner, which results in several inconsistencies and contradictions. In this paper, we present a consistent formal semantics (based on our HOL-OCL approach) that includes such a non-strict exception element. We discuss the possible consequences concerning class diagram semantics as well as deduction rules. The benefits of our approach for the specification-pragmatics of design level operation contracts are demonstrated with a small case-study.
UR - http://www.brucker.ch/bibliography/abstract/brucker.ea-ocl-null-2009
L1 - http://www.brucker.ch/bibliography/download/2009/brucker.ea-ocl-null-2009.pdf
UR - http://dx.doi.org/10.1007/978-3-642-12261-3_25
N1 - Selected best papers from all satellite events of the MoDELS 2009 conference.
ID - brucker.ea:ocl-null:2009
ER -

