
P. Degano and J. Guttman (Eds.). FAST 2009, LNCS 5983, pp. 248–262, 2010.
This is the author’s version of the work. It is posted at http://www.brucker.ch/bibliography/
abstract/brucker.ea-integrating-2009 for your personal use. The definitive version was published
with doi: 10.1007/978-3-642-12459-4Ω .

Integrating Automated and Interactive Protocol
Verification

Achim D. Brucker1 and Sebastian A. Mödersheim2

1 SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2 IBM Research, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
smo@zurich.ibm.com

Abstract. A number of current automated protocol verification tools
are based on abstract interpretation techniques and other over-approx-
imations of the set of reachable states or traces. The protocol models that
these tools employ are shaped by the needs of automated verification
and require subtle assumptions. Also, a complex verification tool may
suffer from implementation bugs so that in the worst case the tool could
accept some incorrect protocols as being correct. These risks of errors are
also present, but considerably smaller, when using an LCF-style theorem
prover like Isabelle. The interactive security proof, however, requires a
lot of expertise and time.
We combine the advantages of both worlds by using the representation
of the over-approximated search space computed by the automated tools
as a “proof idea” in Isabelle. Thus, we devise proof tactics for Isabelle
that generate the correctness proof of the protocol from the output of
the automated tools. In the worst case, these tactics fail to construct a
proof, namely when the representation of the search space is for some
reason incorrect. However, when they succeed, the correctness only relies
on the basic model and the Isabelle core.

1 Introduction

Over the last decade, a number of automated tools for security protocol veri-
fication have been developed such as AVISPA [1] and ProVerif [4]. They allow
engineers to find problems in their security protocols before deployment. Indeed,
several attacks to security protocols have been detected using automated tools.
The focus of this work is the positive case—when no attack is found: to obtain
a proof of security.

Many automated tools employ over-approximation and abstraction techniques
to cope with the infinite search spaces that are caused, e.g., by an unbounded
number of protocol sessions. This means to check the protocol in a finite abstract
model that subsumes the original model. Thus, if the protocol is correct in the
abstract model, then so it is in the original model. However, the soundness of
such abstractions depends on subtle assumptions, and it is often hard to keep
track of them, even for experts. Moreover, it is often hard to formalize protocols

http://www.brucker.ch/bibliography/abstract/brucker.ea-integrating-2009
http://www.brucker.ch/bibliography/abstract/brucker.ea-integrating-2009
http://dx.doi.org/10.1007/978-3-642-12459-4_18

Integrating Automated and Interactive Protocol Verification 249

correctly in such over-approximated models. Finally, tools may also have bugs.
For all these reasons, it is not unlikely that insecure protocols are accidentally
verified by automated verification tools.

There are semi-automated methods such as the Isabelle theorem prover which
offer a high reliability: if we trust in a small core (the proof checking and some
basic logical axioms), we can rely on the correctness of proved statements. How-
ever, conducting proofs in Isabelle requires considerable experience in both for-
mal logic and proof tactics, as well as a proof idea for the statement to show.

In this work, we combine the best of both worlds: reliability and full au-
tomation. The idea is that abstraction-based tools supposedly compute a finite
representation of an over-approximated search space, i.e., of what can happen
in a given protocol, and that this representation can be used as the basis to
automatically generate a security proof in Isabelle. This proof is w.r.t. a clean
standard protocol model without over-approximation. If anything goes wrong,
e.g., the abstraction is not sound, this proof generation fails. However, if we
succeed in generating the proof, we only need to trust in the standard protocol
model and the Isabelle core. Our vision is that such automatically generated
verifiable proofs can be the basis for reaching the highest assurance level EAL7
of a common criteria certification at a low cost.

Proof

Abstract Model

Abstraction/
Refinement

Proof
Generator

OFMCIsabelle/OFMC

Reference Model

Verified Attack
OR

TraceFixedpoint

FP Module

Isabelle Core

Fig. 1. The workflow of a protocol ver-
ification approach combing automated
(e.g., OFMC) and interactive (e.g., Is-
abelle) techniques.

We have realized the integration of au-
tomated and interactive protocol verifica-
tion in a prototype tool that is summa-
rized in Fig. 1. The protocol and the proof
goals (e.g., secrecy, authentication) are
specified in the reference model (Sect. 2
and Sect. 3). This reference model is not
driven by technical needs of the auto-
mated verification and is close to other
high-level protocol models. The descrip-
tion is fed into the automated tool, where
we consider (a novel module of) the
Open-source Fixed-point Model-Checker
OFMC [24], formerly called On-the-Fly
Model-Checker. OFMC first chooses an
initial abstraction and produces an ab-
stracted version of the protocol descrip-

tion as a set of Horn clauses. From this, the fixed-point (FP) module computes
a least fixed-point of derivable events. If this fixed-point contains an attack, this
can either be a real attack (that similarly works in the reference model) or a
false attack that was caused by the abstraction. By default, OFMC will assume
that the attack is false, refine the abstraction based on the attack details and
restart the verification. If the computed fixed-point does not contain an attack,
it is handed to the proof generator of the Isabelle/OFMC, our extension of
the interactive theorem prover Isabelle [25]. The proof generator translates the
fixed-point into the terms of the reference model (using annotations about the

250 A.D. Brucker and S.A. Mödersheim

abstraction OFMC considered) and generates an Isabelle proof with respect to
the protocol and goal description in the reference model. This proof is fed into
the Isabelle core to check the proof.

We emphasize two points. First, the entire approach is completely automatic:
after the specification of the protocol and goals in the reference model, no further
user interaction is required. Second, we need to trust in only two points—marked
with a dark-gray background in Fig. 1: the reference model and the Isabelle core.
Bugs in any other part, namely OFMC or the proof generation, can in the worst
case result in a failure to verify a (possibly correct) protocol, but they cannot
make us falsely accept a flawed protocol as being correct.

Our approach currently has two limitations: we consider a typed model
and, based on this, we limit the intruder composition to well-typed messages of
the protocol. The first limitation can be justified by implementation discipline
(see [19]). The second limitation is not a restriction as we show in Theorem 1.

Contributions. An increasing number of works considers the combination of au-
tomated methods with interactive theorem proving to obtain both highly reliable
and fully automated verification. In this paper, we contribute to this line of work
with a novel approach for security protocols. The first novel aspect is that our
approach automatically generates a proof from the representation of an over-
approximation of the search space computed by an automated protocol verifier.
Techniques based on over-approximation, similar to the ones we consider, have
turned out to be very successful in protocol verification [4,6,7,10], and our ap-
proach is thus the first step towards employing a whole class of established tools
for automated proof generation. The second novel aspect is that the proof is
entirely based on a standard protocol model without over-approximation close
to the model employed for instance in [26]. Our approach thus relates over-
approximated representations with standard protocol models.

Practically, we have implemented the integration between Isabelle on the
interactive side and the novel FP-module of OFMC on the automated side. The
result is a completely automated protocol verifier for an unbounded number of
sessions and agents that produces Isabelle-verifiable proofs with respect to a
standard protocol model.

2 The Reference Protocol Model

We begin with a reference protocol model, which is used in the Isabelle theorem
prover and is thus the basis of this work. The model is inspired by the formal-
ization of several security protocols in Isabelle by Paulson and others in [26,3]
and is close to the persistent IF model in [23].

Messages. We follow the common black-box cryptography model where messages
are modeled as symbolic terms. We define the set of all messages in style of
an inductive datatype in a functional programming language. Here, all sans-
serif symbols and the symbols of F are constructors. The inductively defined
datatype is interpreted like a term in the free term algebra, i.e. syntactically
different terms are interpreted as being different.

Integrating Automated and Interactive Protocol Verification 251

Definition 1. Let F , LA, LN , LS , LP , VA, VN , VS , VP , and VU be pairwise
disjoint sets of symbols where F , LA, LN , LS , and LP are finite, and VA, VN ,
VS , VP , and VU are countable. We define the sets of messages, agents, nonces,
symmetric keys, and public keys, respectively, to be the following sets of terms:

M = agent A | nonce N | symkey S | pubkey P | VU
| cryptMM | inv M | scryptMM | cat [M] | F M

A = LA × N | VA N = LN × N | VN S = LS × N | VS P = LP × N | VP

The set A contains both the concrete agent names (LA × N) and the variables
for agent names (VA). The concrete agent names consist of a label and a natural
number. The labels are for the interplay of Isabelle and the automated methods,
for now it is sufficient to think just of an infinite set of agents, indexed by natural
numbers. Similarly, N , S, and P define infinite reservoirs of concrete constants
and variables for nonces, symmetric keys, and public keys.

For convenience, we write in the examples of this paper simply a, b, or i for
concrete agent names, A, B for agent variables, n, n1, etc. for concrete nonces,
NA, NB etc. nonce variables. In general, we use lower-case letters for constants
and function symbols and upper-case letters for variables.

We distinguish atomic messages and composed messages (first and second
line in the definition of M). Except for the untyped variables of VU , all atomic
messages are of a particular type, namely from one of the sets A, N , S, or P. The
constructors like agent ensure that the respective subsets of the message space
are disjoint, for instance, no agent name can be a nonce. We discuss the details of
typing below. In examples, we will omit the constructors for convenience, when
the type is clear from the context.

Messages can be composed with one of the following operations: crypt and scrypt
represent asymmetric and symmetric encryption, respectively. We also simply
write {m}k for crypt k m, and {|m|}k for scrypt k m. inv(M) represents the private
key belonging to a public key. cat denotes concatenation. For readability, we omit
the cat and the list brackets. For instance the term {na3, b}pk(a) is convenient no-
tation for the following more technical message (for given labeling and number-
ing): crypt (pk (agent (honest, 1))) (cat [nonce (na, 3), agent (dishonest, 2)]). Here
we have used two labels, honest and dishonest, for agents. This represents the
default abstraction for agents in the abstract model. We require that the ab-
straction for the agents is a refinement of the default abstraction. We use this
labeling to distinguish honest and dishonest agents also in the reference model.

We use the standard notion of matching messages. The constructors like
agent here enforce a typing regime: typed variables can only be matched with
atomic messages of the same type. Only untyped variables can be matched with
composed messages. In rules for honest agents, we only use typed variables. Such
a typed model which is standard in protocol verification, even in interactive
verification with Isabelle [26,3], considerably simplifies the verification task. The
typing can be justified by tagging as in [19].

Events and Traces. We define the set of events also as an inductive datatype,
based on messages:

252 A.D. Brucker and S.A. Mödersheim

t ∈ T iknows m ∈ [t] iknows k ∈ [t]

iknows {m}k # t ∈ T
t ∈ T iknows m ∈ [t] iknows k ∈ [t]

iknows {|m|}k # t ∈ T

t ∈ T iknows m1 ∈ [t] . . . iknows mn ∈ [t]

iknows [m1, . . . ,mn] # t ∈ T
t ∈ T iknows m ∈ [t]

iknows f(m) # t ∈ T
f ∈ Fpub

t ∈ T iknows {m}k ∈ [t] iknows inv(k) ∈ [t]

iknows m# t ∈ T

t ∈ T iknows {m}inv(k) ∈ [t] iknows k ∈ [t]

iknows m# t ∈ T

t ∈ T iknows {|m|}k ∈ [t] iknows k ∈ [t]

iknows m# t ∈ T

t ∈ T iknows m1 ∈ [t] . . . iknows mn ∈ [t]

iknows m1 #, . . . # iknows mm # t ∈ T

t ∈ T secret A M ∈ [t] iknows M ∈ [t] honest A

attack M # t ∈ T

t ∈ T request B A id M ∈ [t] witness A B id M /∈ [t] honest A

attack M#t ∈ T

Fig. 2. The protocol independent rules of the reference model: the first four are compo-
sition rules (C), the next four are decomposition rules (D) and the last two are attack
rules (A).

Definition 2. The set of events is defined as follows:

E ::=iknowsM | state R [M] |
secret A M | witness A A I M | request A A I M | attackM

where I is a finite set of identifiers disjoint from all other symbols so far and
R ⊂ I. A trace is a finite sequence 〈 e1 # · · · # en 〉 of events ei.

The identifier set I contains constant symbols for the protocol variables, allowing
us to describe as which protocol variable an agent interprets a particular message.
We use Gothic fonts for identifiers, e.g. A and B.

The event iknows m means that the intruder just learned the message m. The
event state R msgs means that an honest agent playing role R has reached a
state of its protocol execution that is characterized by the list msgs of messages.
We need the other four events for expressing the goals in a protocol independent
form when we introduce attack rules below.

Rules and Protocols. Based on these definitions, we formalize protocols by a set
of inductive rules on traces that have the following form:

t ∈ T φ(t, e1, . . . , en)

e1 # . . . # en # t ∈ T

Integrating Automated and Interactive Protocol Verification 253

i.e. whenever t is a valid trace of the set T of traces and e1, . . . , en are events
that fulfill a certain condition φ with t, then also the extension of t with these
events is also part of T. Also, we have the rule that the empty trace is part of
T. Note that we require that all transition rules of honest agents contain only
typed variables, i.e. no variables of VU .

Fig. 2 shows the protocol independent rules for the intruder (C) and (D),
following the standard Dolev-Yao style intruder deduction, as well as the attack
rules (A), which follow the standard definitions of attacks in AVISPA [1]; here [t]
denotes the set of events in the trace t and Fpub ⊆ F is the set of functions that
is accessible to the intruder. Before we explain the attack rules, we describe the
transition rules of role Alice of the standard example protocol, NSL [20] (more
interesting examples are found in Sect. 6):

Example 1.

t ∈ T NA /∈ used (t)

iknows {NA, A}pk(B) # state A [A,B,NA] #
witness A B NA NA# secret B NA# t ∈ T

t ∈ T state A [A,B,NA] ∈ [t] iknows {NA,NB , B}pk(A) ∈ [t]

iknows {NB}pk(B) # request A B NB NB # t ∈ T
Here, used (t) is the set of all atomic messages that occur in t to allow for the
fresh generation of nonces. ut

The goals of a protocol are described negatively by what counts as an attack.
This is done by attack rules that have the event attack on the right-hand side.
We now explain the events that we use in attack rules. First, secret A M means
that some honest agent (not specified) requires that the message M is a secret
with agent A. Thus, it counts as an attack, if a trace contains both iknows M
and secret A M for an honest agent A (first attack rule in Fig. 2).

For authentication, the event witness A B id m means that for a particular
purpose id , the honest agent A wants to transmit the message M to agent B.
Correspondingly, when B believes to have received message M for purpose id
from agent A, the event request B A id M occurs. It thus counts as an attack, if
request B A id M occurs in a trace for an honest agent A and the trace does not
contain the corresponding event witness A B id M (second attack rule in Fig. 2).
We call a trace an attack trace if it contains the attack event.

Definition 3. Let a protocol be described by an inductive set R of rules. The
protocol is said to be safe, if the least set T of traces that is closed under R
contains no attack trace.

Despite some differences, our model is similar to the one of Paulson [26], as
discussed in detail in the extended version of this paper [8].

3 Limiting Intruder Composition

The closure of the intruder knowledge under the composition rules of the intruder
is generally infinite, e.g. the intruder can concatenate known messages arbitrarily.

254 A.D. Brucker and S.A. Mödersheim

However, many of these messages are useless to the intruder since, due to typing,
no honest agent accepts them. It is therefore intuitive that we do not loose any
attacks if we limit intruder composition to terms, and subterms thereof, that
some honest agent can actually receive. (A similar idea has been considered e.g.
in [28].) This limitation on intruder composition makes our approach significantly
simpler, and we have therefore chosen to integrate this simplification into our
reference model for this first version, and leave the generalization to an unlimited
intruder for future versions. We formally define the transformation that limits
intruder composition as follows:

Definition 4. For a set of rules R that contain no untyped variables VU , let MR

be the set of all messages that occur in an iknows or secret event of any rule of
R along with as their sub-messages. We say that an intruder composition rule
r can compose terms for R, if the resulting term of r can be unified with a term
in MR. In this case we call rσ an r-instance for compositions of MR if σ is the
most general unifier between the resulting term of r and a message in MR. We
say that R is saturated if it contains all r-instances for composition in MR.

Since we excluded untyped variables, atomic messages in MR are typed, i.e. of
the form type(·). Also, due to typing, every finite R has a finite saturation.

Theorem 1. Given an attack against a protocol described by a set of rules R ∪
C ∪D∪A where C and D are the intruder composition and decomposition rules
and A are the attack rules. Let R′ be a saturated superset of R. Then there is an
attack against R′ ∪D ∪A.

The proof is found in the extended version of this paper [8].

4 The Abstract Protocol Model

We now summarize two kinds of over-approximations of our model that are used
in our automated analysis tool to cope with the infinite set of traces induced by
the reference model. These techniques are quite common in protocol verification
and a more detailed description can be found in [23]; we discuss them here only as
far as they are relevant for our generation of Isabelle proofs. The first technique
is a data abstraction that maps the infinite set of ground atomic messages (that
can be created in an unbounded number of sessions) to a finite set of equivalence
classes in the style of abstract interpretation approaches. The second is a control
abstraction: we forget about the structure of traces and just consider reachable
events in the sense that they are contained in some trace of the reference model.
Neither of these abstractions is safe: each may introduce false attacks (that are
not possible in the reference model). Also, it is not guaranteed in general that
the model allows only for a finite number of reachable events, i.e. the approach
may still run into non-termination.

Data Abstraction. In the style of abstract interpretation, we first partition the
set of all ground atomic messages into finitely many equivalence classes and

Integrating Automated and Interactive Protocol Verification 255

then work on the basis of these equivalence classes. Recall that atomic ground
messages are defined as a pair (l, n) where l is a label and n is a natural number.
We use the label to denote the equivalence class of the message in the abstraction.
The abstract model thus identifies different atoms with the same label, and hence
we just omit the second component in all messages of the abstract model.

There is a large variety of such data abstractions. For the proof generation the
concrete way of abstraction is actually irrelevant, and we just give one example
for illustration:

Example 2. The initial abstraction that OFMC uses for freshly created data is
the following. If agent a creates a nonce n for agent b, we characterize the equiv-
alence class for that nonce in the abstract model by the triple (n, a, b). This
abstraction can be rephrased as “in all sessions where a wants to talk to b, a
uses the same constant for n (instead of a really fresh one)”. For a large number
of cases, this simple abstraction is sufficient; in the experiments of Sect. 6, only
two examples (NSL and Non-reversible Functions) require a more fine-grained
abstraction. Note that OFMC automatically refines abstractions when the ver-
ification fails, but this mechanism is irrelevant for the proof generation. The
protocol from Example 1, rules for A, then look as follows:

t ∈ T
iknows {(NA, A,B), A}pk(B) # state A [A,B, (NA, A,B)] #
witness A B NA (NA, A,B) # secret B (NA, A,B),# t ∈ T

t ∈ T state A [A,B,NA] ∈ [t] iknows {NA,NB , B}pk(A) ∈ [t]

iknows {NB}pk(B) # request A B NB NB # t ∈ T

Here, we only abstract NA in the first rule where it is created by the A. It is
crucial that the nonce NB is not abstracted in the second rule: since NB is not
generated by A, A cannot be sure a priori that was indeed generated by B. In
fact, if we also abstract NB here, the proof generation fails, because the resulting
fixed-point does no longer over-approximate the traces of the reference model.
More generally, fresh data are abstracted only in a rule where they are created.
Finally, observe that the condition is gone that tells that the freshly created NA
never occurred in the trace before, because now agents may actually use the
same value several times in place of the fresh nonce.

The key idea to relate our reference model with the abstract one is the use
of labels in the definition of concrete data. Recall that each concrete atomic
message in the reference model is a pair of a label and a natural number. The
finite set of labels is determined by the abstraction we use in the abstracted
model; in the above example, we use LN = {NA,NB} × LA × LA where LA is
the abstraction of the agents (for instance LA = {(honest, dishonest)}). As the
atomic messages consist of both such a label and a natural number, the reference
model is thus endowed with an infinite supply of constants for each equivalence
class of the abstract model. The relationship between data in the reference and
abstract models is straightforward: the abstraction of the concrete constant (l, n)

256 A.D. Brucker and S.A. Mödersheim

is simply l. Vice-versa, each equivalence class l in the abstract model represents
the set of data {(l, n) | n ∈ N} in the reference model.

It is crucial that in the reference model, the labels are merely annotations
to the data and the rules do not care about these annotations, except for the
distinction of honest and dishonest agents as discussed before. The labels however
later allow us to form a security proof in the reference model based on the
reachable events in the concrete model.

We need to take the abstraction into account in the reference model when
creating fresh data. In particular, we need to enforce the labeling that reflects ex-
actly the abstraction. We extend the assumptions of the first rule from Example 1
by a condition on the label of the freshly created NA:

t ∈ T NA /∈ used (t) label(NA) = (NA, A,B)

iknows {NA, A}pk(B) # state A [A,B,NA] #
witness A B NA NA # secret B NA # t ∈ T

where label(l, n) = l. (Recall that every concrete value is a pair of label and a
natural number.)

Control Abstraction. We now come to the second part of the abstraction. Even
with the first abstraction on data, the model gives us an infinite number of traces
(that are of finite but of unbounded length). The idea for simplification is that
under the data-abstraction, the trace structure is usually not relevant anymore.
In the reference model, we need the trace structure for the creation of fresh
data and for distinguishing potentially different handling of the same constant
in different traces. Under the data-abstraction, however, all these occurrences
fall together. In the abstract model we thus abandon the notion of traces and
consider only the set E of events that can ever occur.

Example 3. Our running example has now the following form:

iknows {(NA, A,B), A}pk(B) , state A [A,B, (NA, A,B)] ,
witness A B NA (NA, A,B) , secret B (NA, A,B) ∈ E

state A [A,B,NA] ∈ E iknows {NA,NB , B}pk(A) ∈ E
iknows {NB}pk(B) , request A B NB NB ∈ E

5 Turning Fixed-Points into Proofs

We now turn to the proof generator itself (see Fig. 1), putting the pieces together
to obtain the security proof with respect to the reference model.

Let RG denote in the following the given set of the reference model that
describes the protocol, its goals, and the intruder behavior, as described in Sect. 2
and 3. Recall that OFMC chooses an abstraction for the data that honest agents
freshly create, and refines these abstractions if the verification fails. As described

Integrating Automated and Interactive Protocol Verification 257

in Sect. 4, the connection between the data abstraction and the reference model
is made by annotating each freshly created message with a label expressing the
abstraction. Since this annotation is never referred to in the conditions of any
rule, the set of traces remains the same modulo the annotation. We denote by
RM the variant of the rules with the annotation of the freshly created data.

The next step is the inductive definition of the set of traces T in Isabelle,
representing the least fixed-point of RM . For such inductive definitions, Isabelle
proves automatically various properties (e.g., monotonicity) and derives an in-
duction scheme, i.e. if a property holds for the empty trace and is preserved
by every rule of RM , then it holds for all traces of T. This induction scheme is
fundamental for the security proof.

We define in Isabelle a set of traces T′ that represents the over-approximated
fixed-point FP computed by OFMC, expanding all abstractions. We define this
via a concretization function J·K:

JlK = {(l, n) | n ∈ N} Jf t1 . . . tnK = {f s1 . . . sn | si ∈ JtiK}
JF K = ∪f∈F JfK T′ = {e1# . . .#en | ei ∈ JFP K}

This replaces each occurrence of an abstract datum with an element of the
equivalence class it represents, and then builds all traces composed of events
from the fixed-point. Note that while FP is finite, T′ is infinite.

As the next step, the proof generation module proves several auxiliary theo-
rems using a set of specialized tactics we designed for this purpose. Each proved
auxiliary theorem can be used as a proof rule in subsequent proofs. We thus use
Isabelle as a framework for constructing a formal tool in a logically sound way
(see also [31]).

The first auxiliary theorem is that T′ does not contain any attacks. The the-
orem is proved by unfolding the definition of the fixed-point and applying Is-
abelle’s simplifier.

The main part of the proof generation is an auxiliary theorem for each rule
r ∈ RM that T′ is closed under r. In a nutshell, these theorems are also shown
by unfolding the definition of T and applying the simplifier. In this case, how-
ever, on a more technical level, we need to convert the set comprehensions of
the definition into a predicate notation so that the simplifier can recognize the
necessary proof steps. This is actually also the point where the labels that anno-
tate the abstraction silently fulfill their purpose: the rules are closed under any
concretization of the abstract data with the elements from the equivalence class
they represent. By our construction, the proof generation does not need to take
care of the abstraction at all.

Using the theorems that all rules are closed under T′, we can now show the
last auxiliary theorem, namely that T ⊆ T′, i.e., that OFMC indeed computed
an over-approximation of what can happen according to the reference model.
This theorem is proved by induction, using the induction scheme we have auto-
matically obtained from the definition of T above, i.e. we show that the subset
relation is preserved for each rule of RM , using the set of the auxiliary theorems.

258 A.D. Brucker and S.A. Mödersheim

Table 1. Analyzing security protocols using Isabelle/OFMC

Protocol FP time [s] Protocol FP time [s]

ISO 1-pass (sk) 40 21 ISO 2-pass mutual (sk) 130 266
ISO 2-pass (sk) 56 60 NSCK 137 6756
NSL 75 64 TLS (simplified) 166 14202
DenningSacco 76 3984 ISO 2-pass (pk) 168 2965
ISO 1-pass (pk) 82 177 ISO 3-pass mutual (sk) 229 6992
Bilateral Key Exchange 87 182 ISO 2-pass mutual (ccf) 300 1808
Andrew Secure RPC 104 617 ISO 2-pass mutual (pk) 322 5295
DenningSacco 117 1472 ISO 1-pass (ccf) 418 1731
ISO 2-pass (ccf) 124 269 ISO 3-pass mutual (ccf) 664 14434
NSL (w. key server) 127 242

Finally, we derive our main theorem that T contains no attack, which imme-
diately follows from T ⊆ T′ and T′ containing no attack. We have thus automat-
ically derived the proof that the protocol is safe from the given reference model
description and OFMC’s output.

6 Experimental Results

For first experiments, we have considered several protocols from the Clark-Jacob
library [11] and a simplified version of TLS. Tab. 1 shows the results in detail,
namely the size of the fixed-point and the time to generate and check the Isabelle
proof. Here, we have considered for each protocol all those secrecy and authen-
tication goals that do actually hold (we do not report on the well-known attacks
on some of these protocols that can be detected with OFMC). The runtime
for generating the fixed-point in OFMC is negligible (< 10 s for each example),
while the runtime for Isabelle/OFMC is significantly larger. We hope to improve
on the proof generator performance by fine-tuning and specializing the low-level
proof tactics where we currently use generic ones of Isabelle.

We suggest, however, that the proof generation time does not affect the
experimentation with OFMC such as testing different designs and variants of a
newly designed protocol, because the proof generation is meant only as a final
step when the protocol design has been fixed and verified with OFMC.

7 Related and Future Work

There is a large number of automated tools for protocol verification. [4,6,7,10]
in particular are close to the method that is implemented in the new fixed-point
module of OFMC: they are all based on an over-approximation of the search
space as described in Sect. 4: the first over-approximation concerns the fresh
data, following the abstract interpretation approach of [14] and the second con-
cerns the control structure, i.e., considering a set of reachable events rather than

Integrating Automated and Interactive Protocol Verification 259

traces. We propose that the other over-approximation-based tools can similarly
be connected to Isabelle as we did it for OFMC.

The work most closely related to ours is a recent paper by Goubault-Larrecq
who similarly considers generating proofs for an interactive theorem prover from
the output of automated tools [18]. He considers a setting where the protocol
and goal are given as a set S of Horn clauses; the tool output is a set S∞ of Horn
clauses that are in some sense saturated and such that the protocol has an attack
iff a contradiction is derivable. He briefly discusses two principal approaches
to the task of generating a proof from S∞. First, showing that the notion of
saturation implies consistency of the formula and that the formula is indeed
saturated. Second, showing the consistency by finding a finite model. He suggests
that the first approach is unlikely to give a practically feasible procedure, and
rather follows the second approach using tools for finding models of a formula.

In contrast, our work, which is closer to the first kind of approach, shows that
this proof generation procedure does indeed work in practice for many protocols,
comparable to the results of [18]. We see the main benefit of our approach in the
fact that we can indeed use the output of established verification tools dedicated
to the domain of security protocols. However, note that the work of [18] and
ours have some major differences which makes results hard to compare. First,
we consider a reference model where the protocol is modeled as a set of traces;
the generated proofs are with respect to this reference model and all abstrac-
tions are merely part of the automatic tools. In contrast, [18] considers only
one protocol model based on Horn clauses, close to the abstract model in our
paper. Taking the soundness of all these abstractions for granted is a weakness
of [18]. However, also our approach takes some things for granted, namely a
strictly typed model and, based on this, specialized composition rules for the
intruder. The typing is common in protocol verification and can be justified by
a reasonable protocol implementation discipline [19]. The second assumption is
justified by Theorem 1. Our next steps are concerned with lifting these two as-
sumptions from our reference model, i.e. allowing for an untyped reference model
with unbounded intruder composition. First experiments suggest that at least
the unbounded intruder composition can be feasibly integrated into the proof
generation procedure.

Similarly, [32] performs static analysis of security protocols using the tool
Rewrite which can generate proofs for the theorem prover Coq. Like in the case
of [18], the resulting proof is with respect to an over-approximated model only
and takes the soundness of all abstractions for granted.

A completely different approach to achieve the same goal is currently followed
by Meier. Based on [21], he considers an embedding of the Scyther tool [15] into
Isabelle in order to generate proofs automatically when they fall into the scope
of the Scyther method. The advantage is here that one does not rely on a typed
model, while at the stage of this writing the proof generation is not in all cases
completely automated.

Several automated verification tools are based on, or related to, automated
theorem provers, e.g. SATMC [2] generates Boolean formulae that are fed into
a SAT-solver, and ProVerif [4] can generate formulae for the first-order theorem

260 A.D. Brucker and S.A. Mödersheim

prover SPASS [30]. While there is some similarity with our approach, namely
connecting to other tools including the subtle modeling issues, this goes into
a different direction. In fact, these approaches additionally rely on both the
correctness of the translation to formulae, and the correctness of the automated
theorem prover that proves them. In contrast, we generate the proof ourselves
and let Isabelle check that proof.

Several papers such as [9,5,23,13]have studied the relationships between proto-
col models and the soundness of certain abstractions and simplifications in par-
ticular. For instance, [13] shows that for a large class of protocols, two agents
(an honest and a dishonest one) is sufficient. Recall that we have used this as a
standard abstraction of honest agents. While such arguments have thus played an
important role in the design of the automated tool and its connection to the refer-
ence model, the correctness of our approach does not rely on such arguments and
the question whether a given protocol indeed satisfies the assumptions. Rather,
it is part of the Isabelle proof we automatically construct that the abstract
model indeed covers everything that can happen in the reference model. The
automated verifier may thus try out whatever abstraction it wants, even if it is
not sound. Once again, in the worst case, the proof in Isabelle simply fails, if the
abstraction is indeed unsound for the given protocol, e.g., when some separation
of duty constraints invalidate the assumptions of the two-agents abstraction.

This was indeed one of the main motivations of our work: our system does
not rely on the subtle assumptions and tricks of automated verification. This
also allows for some heuristic technique that extends the classical abstraction
refinement approaches such as [12]. There, the idea is to start with a simple most
abstraction, and when the automatic verification fails, to refine the abstraction
based on the counter-example obtained. This accounts for the effect that the
abstraction may lead to incompleteness (i.e., failure to verify a correct system),
but it is essential that one uses only sound abstractions (i.e., if the abstract
model is flawless then so is the concrete model). With our approach, we are now
even able to try out potentially unsound abstractions in a heuristic way, i.e. start
with abstractions that usually work (like the two-agent abstraction). If they are
unsound, i.e. the Isabelle proof generation fails, then we repeat the verification
with a more refined abstraction.

Isabelle has been successfully used for the interactive verification in various
areas, including protocol verification [26,3]. These works are based on a protocol
model that is quite close the our reference model (see Sect. 2). There are several
works on increasing the degree of automation in interactive theorem provers
by integrating external automated tools [17,29,16,27,22]. These works have in
common that they integrate generic tools like SAT or SMT tools. In contrast,
we integrate a domain-specific tool, OFMC, into Isabelle.

As further future work, we plan the development of additional Isabelle tac-
tics improving the performance of the verification in Isabelle. Currently, the
main bottleneck is a proof step in which a large number of existential quantified
variables need to be instantiated with witnesses. While, in general, such satis-
fying candidates cannot be found efficiently, we plan to provide domain-specific

Integrating Automated and Interactive Protocol Verification 261

tactics that should be able infer witnesses based on domain-specific knowledge
about the protocol model. Finally, we plan to eliminate the limitations on the
intruder inductions from the model explained in Sect. 3. While this limitation
can be reasonably justified in many cases, the fact that our approach relies on
it is a drawback, both in terms of efficiency and also theoretically. In fact, tools
like ProVerif instead employ a more advanced approach of rule saturation that
allow to work without the limitation. We plan to extend our approach to such
representations of the fixed-point.

Acknowledgments. The work presented in this paper was partially supported by
the FP7-ICT-2007-1 Project no. 216471, “AVANTSSAR: Automated Validation
of Trust and Security of Service-oriented Architectures” (www.avantssar.eu).
We thank Luca Viganò for helpful comments.

References

1. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J.,
Hankes Drielsma, P., Héam, P.C., Mantovani, J., Mödersheim, S., von Oheimb, D.,
Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.: The AVISPA
Tool for the Automated Validation of Internet Security Protocols and Applications.
In: CAV’05. Springer, Heidelberg (2005). URL http://www.avispa-project.org

2. Armando, A., Compagna, L.: SAT-based Model-Checking for Security Protocols
Analysis. Int. J. of Information Security 6(1), 3–32

3. Bella, G.: Formal Correctness of Security Protocols. Springer, Heidelberg (2007)

4. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
CSFW’01, pp. 82–96. IEEE Computer Society Press (2001)

5. Blanchet, B.: Security protocols: from linear to classical logic by abstract interpre-
tation. Information Processing Letters 95(5), 473–479 (2005)

6. Boichut, Y., Héam, P.C., Kouchnarenko, O., Oehl, F.: Improvements on the Genet
and Klay technique to automatically verify security protocols. In: AVIS’04, pp.
1–11 (2004)

7. Bozga, L., Lakhnech, Y., Perin, M.: Pattern-based abstraction for verifying secrecy
in protocols. Int. J. on Software Tools for Technology Transfer 8(1), 57–76 (2006)

8. Brucker, A., Mödersheim, S.: Integrating Automated and Interactive Protocol Ver-
ification (extended version). Tech. Rep. RZ3750, IBM Zurich Research Lab (2009).
domino.research.ibm.com/library/cyberdig.nsf

9. Cervesato, I., Durgin, N., Lincoln, P.D., Mitchell, J.C., Scedrov, A.: A Comparison
between Strand Spaces and Multiset Rewriting for Security Protocol Analysis. In:
ISSS 2002, LNCS 2609, pp. 356–383. Springer, Heidelberg (2003)

10. Chevalier, Y., Vigneron, L.: Automated Unbounded Verification of Security Pro-
tocols. In: CAV’02, LNCS 2404, pp. 324–337 (2002)

11. Clark, J., Jacob, J.: A survey of authentication protocol: Literature: Version 1.0
(1997). www.cs.york.ac.uk/~jac/papers/drareview.ps.gz

12. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald,
M.: Abstraction and counterexample-guided refinement in model checking of hybrid
systems. Int. J. of Foundations of Computer Science 14(4), 583–604 (2003)

www.avantssar.eu
http://www.avispa-project.org
domino.research.ibm.com/library/cyberdig.nsf
www.cs.york.ac.uk/~jac/papers/drareview.ps.gz

262 A.D. Brucker and S.A. Mödersheim

13. Comon-Lundh, H., Cortier, V.: Security properties: two agents are sufficient. In:
P. Degano (ed.) ESOP’2003, LNCS 2618, pp. 99–113. Springer, Heidelberg (2003)

14. Cousot, P.: Abstract interpretation. Symposium on Models of Programming Lan-
guages and Computation, ACM Computing Surveys 28(2), 324–328 (1996)

15. Cremers, C.: Scyther. Semantics and Verification of Security Protocols. Phd-thesis,
University Eindhoven (2006)

16. Erkök, L., Matthews, J.: Using Yices as an automated solver in Isabelle/HOL. In:
AFM’08 (2008)

17. Fontaine, P., Marion, J.Y., Merz, S., Nieto, L.P., Tiu, A.F.: Expressiveness +
automation + soundness: Towards combining SMT solvers and interactive proof
assistants. In: H. Hermanns, J. Palsberg (eds.) TACAS, LNCS 3920, pp. 167–181.
Springer, Heidelberg (2006)

18. Goubault-Larrecq, J.: Towards producing formally checkable security proofs, au-
tomatically. In: CSF’08, pp. 224–238. IEEE Computer Society (2008)

19. Heather, J., Lowe, G., Schneider, S.: How to prevent type flaw attacks on security
protocols. In: CSFW’00. IEEE Computer Society Press (2000)

20. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. Springer, Heidelberg (2007)

21. Meier, S.: A formalization of an operational semantics of security protocols.
Diploma thesis, ETH Zurich (2007). http://people.inf.ethz.ch/meiersi/fossp

22. Meng, J., Quigley, C., Paulson, L.C.: Automation for interactive proof: First pro-
totype. Information and Computation 204(10), 1575–1596 (2006)

23. Mödersheim, S.: On the Relationships between Models in Protocol Verification. J.
of Information and Computation 206(2–4), 291–311 (2008)

24. Mödersheim, S., Viganò, L.: The open-source fixed-point model checker for sym-
bolic analysis of security protocols. In: Fosad 2007–2008–2009, LNCS, vol. 5705,
pp. 166–194. Springer, Heidelberg (2009)

25. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS 2283. Springer, Heidelberg (2002)

26. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J. of
Computer Security 6(1-2), 85–128 (1998)

27. Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive the-
orem proving. In: K. Schneider, J. Brandt (eds.) TPHOLs, LNCS 4732, pp. 232–
245. Springer, Heidelberg (2007)

28. Roscoe, A.W., Goldsmith, M.: The perfect spy for model-checking crypto-protocols.
In: DIMACS’97 (1997)

29. Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL the-
orem provers. J. of Applied Logic 7(1), 26 – 40 (2009)

30. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System
description: Spass version 3.0. In: CADE-21, pp. 514–520. Springer, Heidelberg
(2007)

31. Wenzel, M., Wolff, B.: Building formal method tools in the Isabelle/Isar frame-
work. In: K. Schneider, J. Brandt (eds.) TPHOLs 2007, LNCS 4732, pp. 352–367.
Springer, Heidelberg (2007)

32. Zunino, R., Degano, P.: Handling exp, × (and Timestamps) in Protocol Analy-
sis. In: L. Aceto, A. Ingólfsdóttir (eds.) FoSSaCS 2006, LNCS 3921, pp. 413–427.
Springer, Heidelberg (2006)

http://people.inf.ethz.ch/meiersi/fossp

	Integrating Automated and Interactive Protocol Verification
	Achim D. Brucker and Sebastian A. Mödersheim
	1 Introduction
	2 The Reference Protocol Model
	3 Limiting Intruder Composition
	4 The Abstract Protocol Model
	5 Turning Fixed-Points into Proofs
	6 Experimental Results
	7 Related and Future Work

@InCollection{	 brucker.ea:integrating:2009,
 title		= {Integrating Automated and Interactive Protocol
		 Verification},
 author	= {Achim D. Brucker and Sebastian A. M{\"o}dersheim},
 booktitle	= {Workshop on Formal Aspects in Security and Trust (FAST
		 2009)},
 publisher	= {Springer-Verlag},
 address	= {Heidelberg},
 series	= {Lecture Notes in Computer Science},
 number	= {5983},
 pages		= {248--262},
 doi		= {10.1007/978-3-642-12459-4_18},
 editor	= {Pierpaolo Degano and Joshua Guttman},
 year		= {2009},
 classification= {workshop},
 keywords	= {protocol verification, model-checking, theorem proving},
 areas		= {security, formal methods},
 public	= {yes},
 abstract	= {A number of current automated protocol verification tools
		 are based on abstract interpretation techniques and other
		 over-approximations of the set of reachable states or
		 traces. The protocol models that these tools employ are
		 shaped by the needs of automated verification and require
		 subtle assumptions. Also, a complex verification tool may
		 suffer from implementation bugs so that in the worst case
		 the tool could accept some incorrect protocols as being
		 correct. These risks of errors are also present, but
		 considerably smaller, when using an LCF-style theorem
		 prover like Isabelle. The interactive security proof,
		 however, requires a lot of expertise and time.
		
		 We combine the advantages of both worlds by using the
		 representation of the over-approx\-imated search space
		 computed by the automated tools as a ``proof idea'' in
		 Isabelle. Thus, we devise proof tactics for Isabelle that
		 generate the correctness proof of the protocol from the
		 output of the automated tools. In the worst case, these
		 tactics fail to construct a proof, namely when the
		 representation of the search space is for some reason
		 incorrect. However, when they succeed, the correctness only
		 relies on the basic model and the Isabelle core.},
 pdf		= {http://www.brucker.ch/bibliography/download/2009/brucker.ea-integrating-2009.pdf},
 ps		= {http://www.brucker.ch/bibliography/download/2009/brucker.ea-integrating-2009.ps.gz},
 note		= {An extended version of this paper is available as IBM
		 Research Technical Report, RZ3750.},
 filelabel	= {extended},
 file		= {http://www.brucker.ch/bibliography/download/2009/brucker.ea-integrating-2009-b.pdf},
 url		= {http://www.brucker.ch/bibliography/abstract/brucker.ea-integrating-2009}
		
}

%0 Book Section
%T Integrating Automated and Interactive Protocol Verification
%A Brucker, Achim D.
%A Mödersheim, Sebastian A.
%E Degano, Pierpaolo
%E Guttman, Joshua
%B Workshop on Formal Aspects in Security and Trust (FAST 2009)
%D 2009
%N 5983
%I Springer-Verlag
%C Heidelberg
%F brucker.ea:integrating:2009
%O An extended version of this paper is available as IBM Research Technical Report, RZ3750.
%X A number of current automated protocol verification tools are based on abstract interpretation techniques and other over-approximations of the set of reachable states or traces. The protocol models that these tools employ are shaped by the needs of automated verification and require subtle assumptions. Also, a complex verification tool may suffer from implementation bugs so that in the worst case the tool could accept some incorrect protocols as being correct. These risks of errors are also present, but considerably smaller, when using an LCF-style theorem prover like Isabelle. The interactive security proof, however, requires a lot of expertise and time. We combine the advantages of both worlds by using the representation of the over-approx\-imated search space computed by the automated tools as a ?proof idea? in Isabelle. Thus, we devise proof tactics for Isabelle that generate the correctness proof of the protocol from the output of the automated tools. In the worst case, these tactics fail to construct a proof, namely when the representation of the search space is for some reason incorrect. However, when they succeed, the correctness only relies on the basic model and the Isabelle core.
%K protocol verification, model-checking, theorem proving
%U http://www.brucker.ch/bibliography/abstract/brucker.ea-integrating-2009
%U http://www.brucker.ch/bibliography/download/2009/brucker.ea-integrating-2009.pdf
%U //www.brucker.ch/bibliography/download/2009/brucker.ea-integrating-2009-b.pdf
%U http://dx.doi.org/10.1007/978-3-642-12459-4_18
%P 248-262

TY - CHAP
AU - Brucker, Achim D.
AU - Mödersheim, Sebastian A.
ED - Degano, Pierpaolo
ED - Guttman, Joshua
PY - 2009//
TI - Integrating Automated and Interactive Protocol Verification
BT - Workshop on Formal Aspects in Security and Trust (FAST 2009)
T3 - Lecture Notes in Computer Science
SP - 248
EP - 262
IS - 5983
PB - Springer-Verlag
CY - Heidelberg
KW - protocol verification, model-checking, theorem proving
N2 - A number of current automated protocol verification tools are based on abstract interpretation techniques and other over-approximations of the set of reachable states or traces. The protocol models that these tools employ are shaped by the needs of automated verification and require subtle assumptions. Also, a complex verification tool may suffer from implementation bugs so that in the worst case the tool could accept some incorrect protocols as being correct. These risks of errors are also present, but considerably smaller, when using an LCF-style theorem prover like Isabelle. The interactive security proof, however, requires a lot of expertise and time. We combine the advantages of both worlds by using the representation of the over-approx\-imated search space computed by the automated tools as a ?proof idea? in Isabelle. Thus, we devise proof tactics for Isabelle that generate the correctness proof of the protocol from the output of the automated tools. In the worst case, these tactics fail to construct a proof, namely when the representation of the search space is for some reason incorrect. However, when they succeed, the correctness only relies on the basic model and the Isabelle core.
UR - http://www.brucker.ch/bibliography/abstract/brucker.ea-integrating-2009
L1 - http://www.brucker.ch/bibliography/download/2009/brucker.ea-integrating-2009.pdf
L1 - //www.brucker.ch/bibliography/download/2009/brucker.ea-integrating-2009-b.pdf
UR - http://dx.doi.org/10.1007/978-3-642-12459-4_18
N1 - An extended version of this paper is available as IBM Research Technical Report, RZ3750.
ID - brucker.ea:integrating:2009
ER -

