
M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 417–420, 2009.
c© 2009 Springer-Verlag. This is the author’s version of the work.It is posted at http://www.brucker.
ch/bibliography/abstract/brucker.ea-hol-testgen-2009 by permission of Springer-Verlag for your
personal use. The definitive version was published with doi: 10.1007/978-3-642-00593-0_28.

HOL-TestGen
An Interactive Test-case Generation Framework

Achim D. Brucker1 and Burkhart Wolff2

1 SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2 Université Paris-Sud, Parc Club Orsay Université, 91893 Orsay Cedex, France
wolff@lri.fr

Abstract We present HOL-TestGen, an extensible test environment
for specification-based testing build upon the proof assistant Isabelle.
HOL-TestGen leverages the semi-automated generation of test theorems
(a form of partitioning the test input space), and their refinement to
concrete test-data, as well as the automatic generation of a test driver
for the execution and test result verification.
HOL-TestGen can also be understood as a unifying technical and con-
ceptual framework for presenting and investigating the variety of unit
test and sequence test techniques in a logically consistent way.
Keywords: symbolic test-case generations, black box testing, white box
testing, theorem proving, interactive testing

1 Introduction

HOL-TestGen (http://www.brucker.ch/projects/hol-testgen/) is an in-
teractive, i. e., semi-automated, test tool for specification based tests built upon
Isabelle/HOL. HOL-TestGen allows one to write test specifications in higher-
order logic (HOL), (semi-) automatically partition the input space, resulting in
abstract test-cases, automatically select concrete test-data, automatically gen-
erate test scripts for testing arbitrary implementations.

2 The HOL-TestGen Architecture and Workflow

In this section, we briefly review the main concepts and outline the standard
workflow (see Figure 1) of HOL-TestGen [1–3]. The latter is divided into five
phases: first, the test theory containing the basic datatypes and key predicates
of the problem-domain has to be written. Since the test theory can be written
in classical higher-order logic (HOL), i. e., a functional programming language
extended by logical quantifiers, our approach is extremely flexible. Second, the
test-engineer has to write the test specification, i. e., the concrete property the
system under test is tested for. Third comes the generation of test-cases along
with a test theorem, forth the generation of test-data (TD), and fifth the test

http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-testgen-2009
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-testgen-2009
http://dx.doi.org/10.1007/978-3-642-00593-0_28
http://www.brucker.ch/
http://www.lri.fr/~wolff
mailto:"Achim D. Brucker" <achim.brucker@sap.com>
mailto:"Burkhart Wolff" <wolff@lri.fr>
http://www.brucker.ch/projects/hol-testgen/

418 Achim D. Brucker and Burkhart Wolff

program under test test script

test harness
(Test Result)

Test Trace

test data

test cases
test specification HOL-TestGen

Isabelle/HOL

test executable SML-system

Figure 1. Overview of the Standard Workflow of HOL-TestGen

execution (result verification) phase involving runs of the “real code” of the pro-
gram under test. Once a test theory is completed, an integrated documentation
(i. e., a formal test plan) with all definitions and results can be generated.

The properties of the program under test are specified in HOL in the test
specification (TS). A test-specification, typically, will have the form pre x →
post x (PUT x), where pre and post represent pre and post conditions of the
program under test PUT , which is just a variable in the test-specification. In-
stead of just a partition of the input spaces, our system will decompose the test
specification in the test-case generation phase into a semantically equivalent test
theorem which has the form:

JTD1; . . . ; TDn; THYP H1; . . . ; THYP HmK =⇒ TS

where THYP is a constant used to mark the test hypotheses that are underlying
this test. At present, HOL-TestGen uses only uniformity and regularity Hy-
pothesis; for example, a uniformity hypothesis means informally “if the program
conforms to one instance of a case to TS, it conforms to all instances of this case
to TS.” Thus, a test theorem has the following meaning: If the program under
test passes the tests for all TDi successfully, and if it satisfies all test hypothesis,
it conforms to the test specification. In this sense, a test theorem bridges the
gap between test and verification. The TDi are just formulae so far, containing
variables and arbitrary predicates of the test theory as well as the free variable
referring to the system under test. In the data-selection phase, which is imple-
mented by a constraint-resolution based on Isabelle’s proof procedures, ground
instances for these variables were constructed. Both the test-case generation and
the test-data-selection phase can be improved by adding lemmas (derived within
Isabelle), or all sorts of logical massage can be realized by Isabelle on the test
specification, the test theorem, the test-data, etc. This is how advanced users
can improve the power of the deduction process dramatically.

The test theory containing test specifications, configurations of the test-data
and test script generation, possibly extended by proofs for rules that support
the overall process, is written in an extension of the Isar language [6]. It can be

http://www.brucker.ch/
http://www.lri.fr/~wolff

HOL-TestGen 419

Figure 2. A HOL-TestGen Session Using Proof General

processed in batch mode, but also using the Proof General interface interactively,
see Figure 2. This interface allows for interactively stepping through a test theory
(in the upper sub-window) and the sub-window below shows the corresponding
system state. A system state may be a proof state in a test theorem development,
or the result of inspections of generated test-data or a list of test hypothesis.

After test-data generation, HOL-TestGen can produce a test script driving
the test using the provided test harness. The test script together with the test
harness stimulate the code for the program under test built into the test exe-
cutable. Executing the test executable runs the test and results in a test trace
showing possible errors in the implementation (see lower window in Figure 2).

3 Case Studies

HOL-TestGen was used successfully in several case studies, among them:

Unit testing of red-black trees: In this case study [2], we generated test-
cases for recursive data-structures. In particular, we generated test-cases for
red-black trees testing the red-black properties (i. e., both the insertion and
deletion operation preserve these properties). We also generated test-data
and test scripts for this scenario and used them for testing the red-black tree
implementation of the SML/NJ library. Our work revealed a major bug in
this implementation which has not been detected during the last 12 years.

Unit testing of packet filters: In this case study [4], we modeled stateless
packet filters (firewalls) and their security policy in HOL. Based on this
specification, we generated test-cases for testing that a real firewall imple-
ments a specific security policy. Furthermore, we exploited the framework

420 Achim D. Brucker and Burkhart Wolff

aspect of HOL-TestGen and developed a domain-specific test case genera-
tor: HOL-TestGen/fw. HOL-TestGen/fw provides both domain specific
test-case and test-data generation heuristics and domain-specific extensions
of the theorem prover, e. g., supporting the simplification of firewall policies.

Sequence testing of application level firewalls: In this case study [3], we
applied HOL-TestGen to different sequence-testing scenarios. In particular,
we modeled stateful communication protocols (e. g., ftp and voice-over-ip)
and used these models as basis for the test-case generation. Overall, this
provides a method for testing the compliance of an application level, stateful
firewall to a give security policy.

In all these applications, we made the experience that combining theorem prov-
ing techniques and testing techniques can improve the overall quality of the
generated test-cases and test-data.

4 Conclusion

We provide a test environment for specification-based (also called model-based)
unit and sequence testing. Moreover, our test environment bridges the gap be-
tween formal verification and testing techniques, i. e., testing, in a logically con-
sistent way. The system has been used in several substantial case studies [2–4]
and for test-theoretical work [5].

References

[1] Achim D. Brucker and Burkhart Wolff. HOL-TestGen 1.0.0 user guide. Technical
Report 482, ETH Zurich, April 2005.

[2] Achim D. Brucker and Burkhart Wolff. Symbolic test case generation for prim-
itive recursive functions. In Jens Grabowski and Brian Nielsen, editors, Formal
Approaches to Testing of Software, number 3395 in Lecture Notes in Computer
Science, pages 16–32. Springer-Verlag, 2004. doi: 10.1007/b106767.

[3] Achim D. Brucker and Burkhart Wolff. Test-sequence generation with
HOL-TestGen – with an application to firewall testing. In Bertrand Meyer
and Yuri Gurevich, editors, TAP 2007: Tests And Proofs, number 4454 in Lec-
ture Notes in Computer Science, pages 149–168. Springer-Verlag, 2007. doi:
10.1007/978-3-540-73770-4_9.

[4] Achim D. Brucker, Lukas Brügger, and Burkhart Wolff. Model-based firewall con-
formance testing. In Kenji Suzuki and Teruo Higashino, editors, Testcom/FATES

2008, number 5047 in Lecture Notes in Computer Science, pages 103–118. Springer-
Verlag, 2008. doi: 10.1007/978-3-540-68524-1_9.

[5] Achim D. Brucker, Lukas Brügger, and Burkhart Wolff. Verifying test-hypotheses:
An experiment in test and proof. Electronic Notes in Theoretical Computer Science,
220(1):15–27, 2008. ISSN 1571-0661. doi: 10.1016/j.entcs.2008.11.003. Proceedings
of the Fourth Workshop on Model Based Testing (MBT 2008).

[6] Markus M. Wenzel. Isabelle/Isar – a versatile environment for human-readable
formal proof documents. PhD thesis, TU München, München, February 2002.

http://www.brucker.ch/
http://www.lri.fr/~wolff
http://dx.doi.org/10.1007/b106767
http://dx.doi.org/10.1007/978-3-540-73770-4_9
http://dx.doi.org/10.1007/978-3-540-73770-4_9
http://dx.doi.org/10.1007/978-3-540-68524-1_9
http://dx.doi.org/10.1016/j.entcs.2008.11.003

	HOL-TestGen
	Achim D. Brucker and Burkhart Wolff

@InCollection{	 brucker.ea:hol-testgen:2009,
 abstract	= {We present HOL-TestGen, an extensible test environment for
		 specification-based testing build upon the proof assistant
		 Isabelle. HOL-TestGen leverages the semi-automated
		 generation of test theorems (a form of a partition), and
		 their refinement to concrete test data, as well as the
		 automatic generation of a test driver for the execution and
		 test result verification.
		
		 HOL-TestGen can also be understood as a unifying technical
		 and conceptual framework for presenting and investigating
		 the variety of unit and sequence test techniques in a
		 logically consistent way. },
 keywords	= {symbolic test case generations, black box testing, white
		 box testing, theorem proving, interactive testing},
 location	= {York, UK},
 author	= {Achim D. Brucker and Burkhart Wolff},
 booktitle	= {Fundamental Approaches to Software Engineering
		 {(FASE09)}},
 language	= {USenglish},
 publisher	= {Springer-Verlag},
 address	= {Heidelberg},
 series	= {Lecture Notes in Computer Science},
 number	= {5503},
 doi		= {10.1007/978-3-642-00593-0_28},
 pages		= {417--420},
 editor	= {Marsha Chechik and Martin Wirsing},
 title		= {{HOL-TestGen:} An Interactive Test-case Generation
		 Framework},
 categories	= {holtestgen},
 classification= {conference},
 year		= {2009},
 pdf		= {http://www.brucker.ch/bibliography/download/2009/brucker.ea-hol-testgen-2009.pdf},
 ps		= {http://www.brucker.ch/bibliography/download/2009/brucker.ea-hol-testgen-2009.ps.gz},
 public	= {yes},
 url		= {http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-testgen-2009}
		
}

%0 Book Section
%T HOL-TestGen: An Interactive Test-case Generation Framework
%A Brucker, Achim D.
%A Wolff, Burkhart
%E Chechik, Marsha
%E Wirsing, Martin
%B Fundamental Approaches to Software Engineering (FASE09)
%D 2009
%N 5503
%I Springer-Verlag
%C Heidelberg
%F brucker.ea:hol-testgen:2009
%X We present HOL-TestGen, an extensible test environment for specification-based testing build upon the proof assistant Isabelle. HOL-TestGen leverages the semi-automated generation of test theorems (a form of a partition), and their refinement to concrete test data, as well as the automatic generation of a test driver for the execution and test result verification. HOL-TestGen can also be understood as a unifying technical and conceptual framework for presenting and investigating the variety of unit and sequence test techniques in a logically consistent way.
%K symbolic test case generations, black box testing, white box testing, theorem proving, interactive testing
%U http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-testgen-2009
%P 417-420

TY - CHAP
AU - Brucker, Achim D.
AU - Wolff, Burkhart
ED - Chechik, Marsha
ED - Wirsing, Martin
PY - 2009//
TI - HOL-TestGen: An Interactive Test-case Generation Framework
BT - Fundamental Approaches to Software Engineering (FASE09)
T3 - Lecture Notes in Computer Science
SP - 417
EP - 420
IS - 5503
PB - Springer-Verlag
CY - Heidelberg
KW - symbolic test case generations, black box testing, white box testing, theorem proving, interactive testing
AB - We present HOL-TestGen, an extensible test environment for specification-based testing build upon the proof assistant Isabelle. HOL-TestGen leverages the semi-automated generation of test theorems (a form of a partition), and their refinement to concrete test data, as well as the automatic generation of a test driver for the execution and test result verification. HOL-TestGen can also be understood as a unifying technical and conceptual framework for presenting and investigating the variety of unit and sequence test techniques in a logically consistent way.
UR - http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-testgen-2009
ID - brucker.ea:hol-testgen:2009
ER -

