
c© 2009 IEEE Computer Society. This is the author’s version of the work. It is posted at http://www.brucker.ch/bibliography/abstract/brucker.ea-delegation-2009 by permission
of IEEE Computer Society for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 10th IEEE International Symposium on
Policies for Distributed Systems and Networks (POLICY ’09), pp. 84–91, 2009, doi: 10.1109/POLICY.2009.35.

Delegation Assistance

Achim D. Brucker
SAP Research

Vincenz-Priessnitz-Str. 1
76131 Karlsruhe

Germany
Email: achim.brucker@sap.com

Helmut Petritsch
SAP Research

Vincenz-Priessnitz-Str. 1
76131 Karlsruhe

Germany
Email: helmut.petritsch@sap.com

Andreas Schaad
SAP Research

Vincenz-Priessnitz-Str. 1
76131 Karlsruhe

Germany
Email: andreas.schaad@sap.com

Abstract—Today’s IT systems typically comprise a fine-
grained access control mechanism based on complex policies.
The strict enforcement of these policies, at runtime, always
contains the risk of hindering people in their regular work.

An efficient support for assisted delegation can help in
resolving the conflict between too tight access control and the
required flexibility as well as support the resolution of conflicts.
Here, assisted delegation means that, additional to denying the
access, a user is informed about a list of users that could
either grant him access to the requested resource or which
could execute this task in behalf of the user.

In this paper, we present an approach for determining a set
of users which are able to resolve an access control conflict. This
set is based on various information sources and are ordered
with respect to different distance functions. We show that
one distance function can be used to serve different types of
contextual input, e. g., role hierarchies, geospatial information
as well as shared business object structure data or social
network graphs.

Keywords-delegation and revocation, policy enforcement, se-
curity services, security architecture

I. INTRODUCTION

Today’s IT systems comprise a fine-grained access control
mechanism based on complex policies. The enforcement
of these policies, at runtime, always contains the risk of
hindering people in their regular work [1]. Thus, writing
security policies reflects always a trade-off between the
risk of accessing secured data or operations and the benefit
gained by using them.

An efficient support for assisted delegation can help in
resolving this conflict. Here, assisted delegation means that
a user is, additional to a deny, informed about a list of users
that could either grant him access to the requested resource
or which could execute this task (or a sub-task thereof)
in behalf of the user. For ensuring a timely response, the
request should be delegated to the “closest” person, which
has or could establish mutual trust and is able to resolve
the situation. These requirements raise the following two
questions: first, what is the meaning of being close to each
other, and second, who is able to resolve a given situation.
With respect to the second questions, we need at least to
consider the following two possibilities of determining the
users which are most well-suited for resolving the conflict:

• users that are able to resolve the situation by executing a
specific task. In this case, the originator (i. e., the user
whose access rights are not sufficient) can ask them
for help by either performing the task themselves or
delegating the required access rights, to him.

• users that can change the current security policy, i. e.,
extend the access rights of the requester. In this case,
after changing the policy, the requester is able to resolve
the situation (and future occurrences thereof) himself.

With respect to the first question, several information sources
could be considered, for example, users that are
• close with respect to the organizational hierarchy,
• close with respect to their office location,
• close with respect to their current location,
• close with respect to the security policy, and
• currently available.

These information sources can be represented by distance
functions that increase the chance of asking a user for
help that knows the originator of the request or his tasks
personally.

This kind of delegation assistance can help to avoid dead-
locks and bad usability [2] caused by too strictly enforced
security policies. In our experience, such situations arise in
particular often within
• disaster management teams,
• small and midsize enterprises (SME),
• agile environments within large enterprises, and
• industries working with privacy relevant data.

While IT systems for these application areas are in particular
need for supporting assisted delegation, we believe that
supporting assisted delegation is applicable to general IT
systems, e. g., reporting and analysis [3]. Moreover, we see
a special benefit of assisted delegation in process-based
systems, e. g., workflow-management systems [4].

The rest of the paper is structured as follows: we briefly
summarize our approach in Section II and present, in Sec-
tion III, an assisted delegation architecture. In Section IV,
we explain the delegation assistance procedure in more detail
and present a prototype. We discuss different information
sources in Section V, in Section VI we present an evaluation
of our prototype. Finally, Section VII concludes the paper.

http://www.brucker.ch/bibliography/abstract/brucker.ea-delegation-2009
http://dx.doi.org/10.1109/POLICY.2009.35
http://www.brucker.ch/
mailto:"Achim D. Brucker" <achim.brucker@sap.com>
http://petritsch.co.at/
mailto:"Helmut Petritsch" <helmut.petritsch@sap.com>
mailto:"Andreas Schaad" <andreas.schaad@sap.com>

II. DELEGATION ASSISTANCE IN A NUTSHELL

In this section, we describe a new concept, called del-
egation assistance, for assisting end users finding a user
(mentor) which is permitted to execute a specific task (or,
in systems supporting delegation, find a person which is
permitted to delegate a specific task). Such a delegation
assistance could be used in two different ways:

1) for providing feedback to users not permitted to access
a resource. For these users (requester) mentors are
suggested, which could either execute the required task
or could delegate the required access rights to the
requester.

2) for finding a user to whom a task could be delegated,
without that access rights have to be delegated (e. g.,
find a representative for the time of holidays).

The result of the delegation assistance approach is a set
of subjects based on various information sources that are
combined using user configurable distance-functions for
finding the optimal set of persons.

As example, we define a situation where a requester
searches a mentor to access a restricted resources. Thus,
we focus on a situation where the access decision of the
policy evaluation is not granting access (the access decision
is “deny,” an exception like “rule not applicable,” or “system
not available”). In such situations, further assistance can be
required for preventing systems stagnation.

For resolving this situation, the user could ask someone
(i. e., a mentor) to access the required resources in his place
(e. g., take over a (well-defined) sub-task which requires
access to the protected resource). Or, the user could ask
someone to grant him access to the required resource (e. g.,
by delegating the required access rights). Our approach par-
ticularly addresses the problem of finding the right (set of)
users, which can be characterized by to opposed scenarios:

1) there are a lot of possible mentors which are directly
related to the user searching for assistance. Delegation
assistance can support the user in, first, who of his
direct contacts is permitted to act as mentor and,
second, which of these persons are actual reachable
(e. g., logged into the system).

2) there are only a few possible mentors which may not
be directly related to the searching user. In this case, a
mediator is required to establish mutual trust between
the requester and a mentor. Delegation assistance helps
the requester to discover indirect mentors to which he
has a “close” contact, and who of his indirect contacts
may have the permissions to be a mentor.

In practice, both situations, depending on the policies and
the organizational structure of a company, may occur.

Figure 1 illustrates our running example: a company
where the employees are distributed over several locations:
Bob and Alice work in a group which is managed by Mark,
several groups work together on a project, which is managed

by the project lead Linus. The groups are divided in respect
to their tasks, whereas the project lead Linus is working on
another location as Bobs group.

Information from several information sources are rep-
resented as directed weighted graphs, called information
graphs. While deriving these information graphs requires,
usually, expert knowledge, there is a general rule: subjects
that are close to each other should be connected with an
edge having a (relatively) small weight.

Figure 1a shows an information graph which could be
used to represent the distance function of this organizational
situation: contacts within the group have least distance
10, the relation to a superior is estimated with 20, the
contact with a super-superior with 30. For superiors to team-
members the distance is always 10.

The (already existing) access control policy can be used
as further information source. In our example, we assume
a simplified RBAC policy: roles are assigned in respect to
the function of the users, i. e., Bob and Alice are both in
the role project member. Moreover, we assume Bob to be
also in the role for system administrators and Linus and
Bill are project managers (more powerful roles) of different
projects. Finally, all users are assigned to project specific
roles. Figure 1b shows the derived distance function graph.
Here, subjects having similar roles are connected by an edge
with low weight.

Finally, Figure 1c represents the location distances: Bob
and Alice are working in the same room (10), all others
are working in nearby rooms (20). We do not model edges
between subjects working in different locations.

Recall our two different ways of using assisted delegation
techniques. First, if Bob tries to access a resource for which
many people from his location have access to, assisted
delegation suggests users from Bobs location, preferring
those from his group, project, or room. If none of them
has the required permission (or is currently not available),
currently reachable users from his location will be suggested.
Thus, delegation assistance selects a reachable person from
his location which therefore knows Bob as a colleague.

Second, assume Bob tries to access a resources assigned
to a project from a different location, i. e., none of the
project members share their location with Bob. Moreover, no
member of Bob’s team has access to the required resource.
Applying delegation assistance helps in finding a person
“close” to Bob which can introduce Bob to someone having
the required access rights. In our example, Bill could be
the project lead of the external project and, in this case,
delegation assistance will suggest Bill to Bob. Linus will be
suggested as a mediator known to both Bob and Bill.

For both scenarios, the different relationship information
need to be merged using a combining algorithm. We present
such an algorithm in Section IV.

LinusBill

Mark

Bob Alice

10 20

20
10

20
10

10
30

10
30

10

10

(a) Representing the distance functions of an
organizational structure: Bill is the project lead
of a team formed by Alice and Bob.

LinusBill

Mark

Bob Alice

10 20

20
20

20
10

20

10

30

30

(b) Representing the system policy as distance
graph: role similarities are estimated with a low
weight.

LinusBill

Mark

Bob Alice

20
20

20
20

10

10

20

20

(c) The location distance functions estimates
least weight for connections within one room,
and does not represent connections between
locations.

Figure 1. Representing the distance function of the organizational structure, the policy and location as directed weighted graphs (information graphs).

Assisted
Delegation
Manager

Delegation
Resolution

Delegation
Analysis

Assisted
Delgation
Extension

Business
Object
Layer

ADI

User
Interface
Layer

Application
Layer

Business
Layer

Figure 2. An Exemplary Delegation Assistance Architecture

III. A DELEGATION ASSISTANCE ARCHITECTURE

In this section, we present a system architecture sup-
porting assisted delegation (see Figure 2), comprising: A
layered application containing a user interface layer, an
application layer, a process layer, and a business object or
back-end layer. Each of these layers may contain a Policy
Enforcement Point (PEP) which enforces the decisions made
by the Policy Decision Point (PDP). The layered application
may also serve as context provider for providing context
information via the context information service. The Policy
Decision Point (PDP) is responsible for evaluating access
decision requests and returning a respective access decision
response. The context providers deliver, through the context
information service, the context information required for
both access control evaluations and assisted delegation.

The Assisted Delegation Interface (ADI) comprises the
assisted delegation functionality visible to the end user. In
case of a non-permitted access decision from the PDP, the
ADI allows the user to start the consequential actions. The
Assisted Delegation Manager (ADM) provides means for

calculating the set of subjects that can help in resolving a
denied access request. Moreover, the ADM assists the ADI in
taking the actions required for resolving the current situation.

A. Assisted Delegation Interface (ADI)

The ADI defines the interface to the assisted functionality
for the user. The search for a mentor optionally can be
parametrized with user preferences (instead of using the
default settings). These preferences may include
• which information sources are included (or excluded)
• how these information sources are combined
• which type of mentor is needed, whereas the option

elements depend on the implementation of the access
control infrastructure. Possible choices are users
– with the required access rights,
– with the right to delegate the required access rights,
– able to modify (the affected part of) the policy, or
– able to act as second user for an access requiring the

four-eye principle
Depending on the delegation implementation, these
choice are not necessarily disjoint.

The ADI displays the results of the search (i. e., the mentors
found) in a suitable way (e. g., a list of mentors with, if
present, the mediator and a definition of the relationship
between mediator and mentor). Furthermore, the ADI helps
the user to trigger the required actions resolving the sit-
uation. For example, this can include further assistance for
generating support-tickets or sub-tasks that can be delegated.

B. Assisted Delegation Manager (ADM)

The implementation of the ADM can be split into:
• The delegation analysis component processes the

search requested from the ADI, whereas this request at
least contains the (denied) access request, and optional
user preferences; resulting in two types of mentor sets:
– an ordered set of mentors containing subjects that

can access the requested resource. i. e., the system
stagnation can be prevented by delegating a sub-task
to them.

– an ordered set of mentors containing users that can
(temporarily) extend the users access right for the
requests resource, i. e., the system stagnation can be
prevented by extending the users access rights.

The delegation assistance algorithms and information
sources are user-configurable and an optional part of
the search request.

• The delegation resolution component assists the user
in taking the required actions. For example, it could
assists the user in generating tickets for a support-ticket
system or in delegating a sub-task to a user. Thus,
this component implements the support functionality
provided by the ADI.

The decision, how the concrete implementation should look
like depends mainly on the already existing system environ-
ment. Figure 2 depicts an architecture which is especially
suitable for extending existing systems with support for
delegation assistance.

C. Delegation Analysis

The delegation analysis component determines the set of
users which are, first, permitted to execute or delegate a
specific access, and, second, are close in respect to the
searching user. With respect to the first task: policy decision
frameworks are designed to decide efficiently if a specific
user has access to a resource. The inverse problem, i. e.,
which users have access to a specific resource, is for usually
not supported. Due to the complexity and expressiveness of
most modern policy specification languages (often including
arbitrary constraints, as, e. g., in XACML [5]), such implemen-
tations may only be able to approximate the result.

As a consequence, we suggest to over-approximate the
access control policy by converting it (statically) into an in-
formation graph. This information graph should provide (in
combination with other information graphs) an efficient way
for determining the set of users that potentially have access
to a given resource. Assuming that this over-approximation
is not too coarse, we can use the existing PDP for testing
that a user can in fact access the given resource.

Finally, we suggest the following procedure for the ADM:
1) combine the selected information graphs (e. g., loca-

tions, project roles). In Section IV, we present an
algorithms for combing such graphs.

2) based on the weights on the (combined) information
graphs, compute the ordered set of the n best mentors.

3) the abstracted policy, i. e., represented as an information
graph, is used to remove all mentors which cannot
access the given resource.

4) using an assisted delegation PDP extension, compute
PDP requests for the n best potential users, i. e., the set
of users computed in the previous step. By evaluating
the generated requests, the set of potential users can be
refined to the subset thereof that has access.

An optimized ADM implementation may require to reduce
the list of candidates as early as possible. For example,
limiting the set of subjects to users that can potentially
access the given resource as first step (i. e., before the
information graphs are combined), reduces the effort for the
information graph combinations.

On the other hand, it can also prevent solutions by
eliminating users needed for intermediate steps: if no direct
contact of the searching user has the required access right, a
trusted mediator is required to establish a trusted relationship
between requester and mentor.

IV. A DELEGATION ASSISTANCE ALGORITHM

In this section, we present a generic framework for
combining and analyzing a set of information sources. The
main idea of our approach is to represent all information
sources as graphs modeling the relations between different
subjects. As a prerequisite, we define the concept of an
information graph:

Definition 1: (Information Graph) An Information Graph
is a directed weighted graph G = (V,E, ω, ωm) where V
is a set of vertices (representing the subjects), E is a set of
edges (representing the relations between the subjects), and
ω : V → N0, where ∀v ∈ V. 0 ≤ ω(v) ≤ ωm, is a function
assigning a weight, i. e., a numeric label, to each edge which
has to be smaller than ωm.

Intuitively, the edge weight represent the (degree of)
familiarity, on scale from 0 (very familiar) to ωm (not
familiar), between two subjects. We use directed graphs
for representing asymmetric relations, e. g., a project lead
usually has a close connection (can delegate tasks easily)
to its regular project member, whereas the opposite is not
necessarily true. Finally, we denote the set of information
graphs (with maximum weight ωm) with Gωm

.
Our approach is based on the notion of merging

two information graphs. Assume two information graphs
G1, G2 ∈ Gωm

with G1 = (V1, E1, ω1, ωm) and G2 =
(V2, E2, ω2, ωm). Conceptually, we merge G1 and G2 into
a new information graph G = (V,E, ω, ωm) ∈ Gωm using a
three-folded algorithm:

1) we merge the set of vertices:

V = V1 � V2, where � ∈ {∪,∩, \,	}. (1)

2) we merge the set of edges:

E = {e ∈ E1 ∪ E2 | src(e) ∈ V ∧ dest(e) ∈ V } (2)

where src(e) denotes the source vertex and dest(e) the
destination vertex of the edge e.

3) we update edge weights for all edges e ∈ E:

ω(e) =

ω1(e) if e ∈ E ∩ E1 \ E2

ω2(e) if e ∈ E ∩ E2 \ E1

f
(
ω1(e), ω2(e)

)
otherwise.

(3)

where f : {0, . . . , ωm}2 → {0, . . . , ωm} is a user-
defined function merging the weights of edges that are
part of both input graphs.

Thus, our algorithm is not only parametrized over the two
input graphs, but also over the functions for merging vertices
(_ � _) and edges (f(_, _)). In the following, we discuss
different choices for these functions:

Vertices: The join and disjoin are, in our experience,
the most often used methods for merging vertices. On the
one hand, joining all vertices, i. e., V = V1 ∪V2, guarantees
the maximal set of solutions. Especially in situation in which
one subset has only a few connections or, more formally, if
the maximum degree of the graphs to be merged is small. On
the other hand, disjoining the vertices, i. e., V = V1 ∩ V2,
allows for a quick reduction of the solution set in cases
where otherwise the end user would be swamped with to
much information or the system would need to handle to
large data sets not contributing to the solution.

The selection of the vertices merge function depends
on the information the graph contains, whereas two main
types can be distinguished: information graphs enhancing
the quality of the edge weights are for usual combined
with _ ∪ _ (e. g., combining the organizational information
graph and the policy information graph), information graphs
enhancing the quality of the vertices are for usual combined
with _ ∩ _ (e. g., only consider users logged in or from the
same location) or __ (e. g., remove users that are currently
not available).

Edges: Choosing a good strategy for merging edge
weights is more difficult than choosing a strategy for merg-
ing vertices. Overall, the class Gωm

should be closed under
the application of this function, i. e., we require for a merge
function f and a given ωm that

∀w1, w2 ∈ N0. (0 ≤ w1 ≤ ωm) ∧ (0 ≤ w2 ≤ ωm)
=⇒ (0 ≤ f(w1, w2) ≤ ωm) (4)

holds. Recall that a small edge weight represents a strong
connection between the two subjects (vertices). Therefore,
an intuitive (but not formal) requirement is

∀w1, w2 ∈ N0. f(w1, w2) ≤ w1 ∧ f(w1, w2) ≤ w2 , (5)

i. e., the merged edge weight is smaller or equal the min-
imum of the two input weights. Thus, an obvious choice,
satisfying both requirements, for f is the minimum function:

f(w1, w2) =

{
w1 if w1 ≤ w2,
w2 otherwise.

(6)

As an alternative, we will use the function

f(w1, w2) =
w1 · (ωm − w2)

ωm
(7)

which also satisfies our requirements and, moreover, guar-
antees for all 0 < w1, w2 < ωm that the weight f(w1, w2)

1 signature DELEGATION_INFORMATION_GRAPH = sig
type ver tex (∗ abs t r ac t types f o r v e r t i c e s ∗)
type edge (∗ abs t r ac t types f o r edges ∗)
type weight = i n t (∗ edge weights are i n tege rs ∗)
type graph (∗ abs t r ac t types f o r graphs ∗)

6

(∗ enumeration which i npu t graph conta ins a node : ∗)
datatype conta ined = src | dest | both

(∗ omi t ted severa l he lper f u nc t i o ns ∗)
11

(∗ a gener ic wrapper f o r app ly ing weight merges ∗)
val apply : (i n t ∗ i n t → i n t)

→ edge opt ion → edge opt ion → edge opt ion

16 (∗ an example f u n c t i o n merging v e r t i c e s ∗)
val ver t i ces_un : (conta ined → ver tex → ver tex op t ion)

(∗ an example f u n c t i o n merging edge weights ∗)
val edge_min : edge op t ion → edge opt ion → edge opt ion

21

(∗ merging two graphs : u t i l i z i n g the higher−order
f u nc t i o n s o f SML, t h i s f u n c t i o n s takes the two
merging f u n c t i o n s and the graphs as inpu t . ∗)

val merge : (edge op t ion → edge opt ion → edge opt ion)
26 → (conta ined → ver tex → ver tex op t ion)

→ graph → graph → graph

(∗ subgraph of sub jec ts t h a t are reachable w i th
l i m i t e d costs ∗)

31 val r e a c h a b l e _ l i m i t : graph → ver tex → i n t → graph

(∗ subgraph of the best reachable n sub jec ts ∗)
val reachable_best : graph → ver tex → i n t → graph

end

Listing 1. Signature for merging information graphs.

is strictly smaller than the minimum of both input weights.
Intuitively, we interpret w2 as the percentage to be subtracted
from w1.

Further, we present a variant allowing to influence the
reduction of merged edges by a factor c ∈ R (c ≥ 1).
Without loss of generality, we assume w1 ≤ w2 and define:

f(w1, w2, c) =
w1 + w1·w2

ωm
· (c− 1)

c
(8)

Informally, c describes the gradient used for decreasing edge
weights. This function has the following properties:
• If c = 1 then f(w1, w2, c) = w1 holds.
• If c1 ≥ c2 then f(w1, w2, c1) ≤ f(w1, w2, c2) holds.
• If w2 = ωm then f(w1, w2, c) = w1 holds. Thus, if one

of the input weights is equal to ωm, the other weight
remains unchanged.

Summarizing, choosing the appropriate methods for merg-
ing information graphs requires domain knowledge, i. e.,
an understanding about the information represented in the
graphs. This hold especially for the function merging edge
weights.

A. Implementation

We implemented a prototype of our framework in the
functional programming language SML [6]. Using higher-
order functions leads to an implementation that is very close
to the previously presented abstract algorithms. Listing 1

presents an excerpt of the SML signature describing the types
of our implementation. Here, edge option describes the type
allowing for “null values” (None), i. e., the absence of an
edge. Overall, this implementation is in the following two
aspects more flexible than our abstract representation:

1) our implementation supports arbitrary functions for
merging vertices and

2) our implementation allows also functions for merging
edges that change, or even omit, arbitrary edges of the
input graphs (and not only edges that are contained in
both graphs).

In Listing 1, we omitted several helper functions (e. g.,
constructors for edges, conversion function) and, of course,
our implementation also contains implementations of all
presented functions for merging edges or vertices.

Using the provided default implementations for joining all
vertices (vertice_un) and merging edge weights using the
minimum function (edge_min), we can merge two graphs
G1 and G2 by using our implementation as follows:

val G merge edge_min ver t i ces_un G1 G2

Due to support for higher-order functions in SML (in this
case, roughly similar to function pointers in C), we can also
provide user defined merge functions. For example, we can
choose to use the average of both edge weights and define
our own union of vertices:

fun merge_edge_weights (w1, w2) = w1 + w2 / 2
fun merge_vert ices l f t v1 v2 = v1

| merge_vert ices _ v1 v2 = v2
4 val G = merge (apply merge_edge) merge_vert ices G1 G2

We applied our framework successfully to several case
studies which we describe in Section VI.

V. INFORMATION SOURCES

In the following, we discuss several information sources,
together with suitable distance functions that could be used
for computing the lists of users that can help in resolving
an access conflict.
Role hierarchy: For systems using hierarchical role-based

access control, we propose the similarity of assigned
roles as distance function, whereas the estimation al-
gorithm should especially consider the role hierarchy.
Using this information source as distance function
prefers the delegation of sub-task to users with the least
additional access rights needed for executing the given
task.

Security labels: In systems using an access control sys-
tems based on labeling (e. g., Bell-LaPadulla [7]), we
propose to use the hierarchy of security labels, which
prefers resolution strategies that minimize the declassi-
fication distance of data.

Organizational structure: By using information about the
organizational structure of a company (membership of

users to divisions, administrative areas of accountabil-
ity), assisted delegation can prefer subjects that are,
somehow, responsible for the user. For example, this
strategy would prefer asking the system administrator
of ones own division for extending someones access
rights over asking the company wide IT support.

Management hierarchy: Similar to the organizational
structure, the management hierarchy can be exploited:
this would prefer users within the same level or sub-tree
of the hierarchy.

Process model: In systems driven by business processes,
the process models are another information source.
Here, one would prefer to delegate sub-tasks to subjects
that are already involved in the overall process.

Office location: Subjects that know the user personally
should be preferred in resolving a given access control
conflict. This sorting can be done by using the office
location as a measurement and preferring users that
work close to each other.

Availability and physical location: Besides the static in-
formation discussed above, also situational data can
be integrated into our approach. This includes for
example the current location (e. g., measured via GPS)
or free/busy information based on groupware entries.
While the previously discussed sources are mainly
static, i. e., they can be pre-computed efficiently, the
dynamic (i. e., depending on the concrete system con-
text) information needs to be updated at runtime.

First, this list of information sources is not meant to be
exhaustive; other information sources can easily be inte-
grated. Second, in practice, these information sources should
be combined for increasing the quality of the proposed
resolution strategy.

VI. CASE STUDIES

We validated our approach using different organizational
scenarios:
Scenario 1: In this scenario, we model a small company

with 100 employees, distributed over three locations
and working on 15 projects. The company has a flat
management hierarchy.

Scenario 2: In this scenario, we model a mid-size company
with 500 employees, distributed over four locations and
working on 20 different projects. The company has a
flat management hierarchy.

Scenario 3: In this scenario, we model a large company
with 10 000 employees, distributed over many (i. e., 15)
locations and working on 60 different projects. The
company has a complex management hierarchy.

For each of these models, we generated information graphs
representing the policy (based on a simple, hierarchical RBAC
model), the location information (locations in different cities
and different offices within one location), management hier-
archy, and a graph representing the project teams. Moreover,

Scenario 1 Scenario 2 Scenario 3

policy 14.2 52.7 782.4
combined 17.6 23.2 54.6
not in policy 0.0 6.4 13.2

policy (login) 7.3 22.1 326.1
combined (login) 10.5 17.9 41.3
not in policy (login) 0.0 5.2 9.5

Table I
APPLYING ASSISTED DELEGATION TO DIFFERENT SCENARIOS.

we generated a dynamic graph representing that about half
of the users are currently logged into the system (i. e., the
users that are currently available).

We evaluated our approach as follows: for each of the
scenarios we computed the combined graph of all static
information sources (i. e., not considering the login sta-
tus) using the function from Equation 7 for merging edge
weights. Thereafter, we simulated queries (representing not
permitted access control request) and computed the size of
the following sets:
• based on the policy graph as single information source,

we computed the set of users that are reachable with
lower or same costs as the tenth best user,

• based on combining all information sources, we com-
puted the set of users that are reachable with lower or
same costs as the tenth best user, and

• we computed the set of users that are, in the combined
graph, reachable from the originating subject but were
not connected in the policy graph.

In a second experiment, we “subtracted” after combining
all other information graphs, the login graph. This ensures
that only users currently available are part of the proposed
solution set. Table I summarizes result of our experiments
based on 100 queries. From these figures, we conclude that
delegation assistance is especially helpful for large and mid-
size scenarios. In more detail, we see that in small companies
the employees have a high degree of connections. In its
extreme, combining all information leads to a graph where
most of the subjects are directly connected, which explains
why in this case the set of people reachable with lower or
same costs as the tenth best user is larger than when only
considering the policy in isolation. In larger and mid-size
applications, this is not the case: here, combining several
information graphs leads to significantly more structure and
results in better (smaller) sets of candidates. Moreover, in
large and mid-size applications, there is a significant amount
of users suggested that are not in the policy graph, i. e., there
is a non-zero set of people that can act as mediator.

Finally, if we compare the first experiment with the second
one, we observer that the decrease of candidates based on the
policy (i. e., without combining several information sources)
roughly decreases with the percentage of users currently

logged in and therefore available. This effect is significantly
reduced if we base the delegation assistance on combined
information. As, after combining several information source,
users are much better connected, the loss of a subject can
often be replaced by a mediator.

Summarizing, our evaluations shows that assisted dele-
gation improves both the quality (and size) of the set of
possible candidates and also opens new solutions that are
(at least not directly) possible without such a system.

VII. RELATED WORK AND CONCLUSION

A. Related Work

We see three areas of related work: system for supporting
delegation, systems for dynamically extending access rights,
and policy analysis systems.

Research on delegation [8], [9] mainly focuses on algo-
rithms for determining the set of rights (e. g., expressed as
certificates or as changes to a given policy) that a delegator
has to transfer to a delegatee. This problem is orthogonal
to our work, as in our case, we already know which access
rights need to be changed. Existing delegation systems and
their analysis techniques can be integrated into our approach.
In particular, integrating an analysis for the rights needed
to delegate a sub-task (and all its depending tasks) could
decrease the chances that further delegation assistance is
needed in further subsequent a specific sub-task.

Research on extending access rights dynamically [10],
[11] comprises approaches that allow users to automatically,
i. e., without the supervision of other users, extend their
access rights. These extensions are usually implemented by
providing temporary accounts with higher access rights. This
approach is often called “Break Glass” and is also supported
by commercial business software, e. g., as Virsa Firefighter
for SAP. We see these approaches, that work without or only
post-hoc human supervision, only applicable for emergency
cases. Thus, assisted delegation positions itself in-between
regular system operation and exceptional system operation.

There are several works on policy analysis systems [12],
[13], [14], [15], e. g., for measuring the similarity of security
policies or role hierarchies. These approaches can directly be
integrated as distance functions (together with the required
information sources) into our approach.

B. Conclusion and Future Work

We presented an architecture and a framework supporting
users to resolve access control conflicts by finding a set of
subjects, called mentors, which either have access to the
required resource or can act as mediators. Overall, our ap-
proach for assisted delegation of tasks is independently from
the underlying delegation system. In fact, our approach can
be understood as a pre-computation of the, either supported
by the underlying system or manual, delegation taking place.

As a main contribution of this paper, we presented a
generic combination algorithm for information graphs, i. e.,

directed weighted graphs. The vertices of the graph represent
the subjects (users), while the (rated) relationship between
them are represented by (weighted) edges. This allows for
combining several information sources into one combined
model with increased expressiveness. We also presented a
generic framework together with an implementation of the
information graph combining algorithm.

Moreover, we presented an architecture that extends clas-
sical access control systems, supporting assisted delegation.
Our proposal for an assisted delegation architecture does not
require major modifications of the existing security relevant
components (i. e., the PDP and PEP).

We see several lines of future work. On the application
level, the combination with advanced caching strategies for
access control decisions, e. g., [16], is particular valuable.
As our implementation relies on evaluating different access
control requests for testing if a user has actually access to
a specific resource, our approach profits significantly from
an overall performance gain in access control evaluations.
Overall, this should be possible seamlessly, as our frame-
work does not require modifications of the existing access
control structure. On the theoretical side, more advanced
translations of policies, and the analysis thereof, need to
be developed to decrease the number of “false positive”
users. For example, the assisted delegation extension for the
PDP could be extended for providing a request dependent
policy information graph. Such a graph would still be an
over-approximation, but would provide a better estimation
of potentially permitted user.

Finally, further functions for merging edge weights need
to be considered and evaluated. Here we clearly envision that
different types of information sources require specialized
merge functions to be most valuable to the overall result.

ACKNOWLEDGMENT

This work has been supported by the German “Federal
Ministry of Education and Research” in the context of the
project “SoKNOS.” The authors are responsible for the content
of this publication.

REFERENCES

[1] D. Povey, “Enforcing well-formed and partially-formed trans-
actions for Unix,” in Proceedings of the 8th conference on
USENIX Security Symposium, vol. 8. USENIX Association,
1999, pp. 5–5.

[2] B. D. Win, F. Piessens, W. Joosen, and T. Verhanneman,
“On the importance of the separation-of-concerns principle
in secure software engineering,” in ACSA Workshop on the
Application of Engineering Principles to System Security
Design (Serban, C., ed.), 2003, pp. 1–10.

[3] T. Priebe and G. Pernul, “Towards OLAP security design:
survey and research issues,” in Proceedings of the 3rd ACM
international workshop on Data warehousing and OLAP.
New York, NY USA: ACM Press, 2000, pp. 33–40.

[4] V. Atluri and J. Warner, “Supporting conditional delegation
in secure workflow management systems,” in Proceedings
of the tenth ACM symposium on Access control models and
technologies (SACMAT). New York, NY USA: ACM Press,
2005, pp. 49–58.

[5] “eXtensible Access Control Markup Language (XACML), ver-
sion 2.0,” 2005. [Online]. Available: http://docs.oasis-open.
org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip

[6] L. C. Paulson, ML for the Working Programmer. Cambridge
Press, 1996.

[7] D. E. Bell and L. J. LaPadula, “Secure computer systems:
A mathematical model, volume II,” in Journal of Computer
Security 4, 1996, pp. 229–263, an electronic reconstruction of
Secure Computer Systems: Mathematical Foundations, 1973.

[8] D. W. Chadwick and A. Otenko, “The PERMIS X.509 role
based privilege management infrastructure,” in Proceedings
of the seventh ACM symposium on Access control models and
technologies (SACMAT). New York, NY USA: ACM Press,
2002, pp. 135–140.

[9] C. Ye and Z. Wu, “Using XML and XACML to support at-
tribute based delegation,” in CIT ’05: Proceedings of the The
Fifth International Conference on Computer and Information
Technology. Washington, DC, USA: IEEE Computer Society,
2005, pp. 751–756.

[10] “Break-glass: An approach to granting emergency access
to healthcare systems,” Joint NEMA/COCIR/JIRA Security and
Privacy Committee (SPC), White paper, 2004.

[11] A. D. Brucker and H. Petritsch, “Extending access control
models with break-glass,” in ACM symposium on access
control models and technologies (SACMAT). ACM Press, 2009.

[12] J. Warner, V. Atluri, R. Mukkamala, and J. Vaidya, “Using se-
mantics for automatic enforcement of access control policies
among dynamic coalitions,” in SACMAT, V. Lotz and B. M.
Thuraisingham, Eds. New York, NY USA: ACM Press, 2007,
pp. 235–244.

[13] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz, “Verification and change-impact analysis of access-
control policies,” in ICSE, G.-C. Roman, W. G. Griswold, and
B. Nuseibeh, Eds. New York, NY USA: ACM Press, 2005,
pp. 196–205.

[14] J. Bryans, “Reasoning about XACML policies using CSP,” in
Proceedings of the 2005 workshop on Secure Web services.
New York, NY USA: ACM Press, 2005, pp. 28–35.

[15] D. Lin, P. Rao, E. Bertino, and J. Lobo, “An approach to
evaluate policy similarity,” in SACMAT, V. Lotz and B. M.
Thuraisingham, Eds. New York, NY USA: ACM Press, 2007,
pp. 1–10.

[16] M. Kohler and A. Schaad, “Pro active access control for
business process-driven environments,” in Annual Computer
Security Applications Conference. Los Alamitos, CA, USA:
IEEE Computer Society, 2008, pp. 153–162.

http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip

	I Introduction
	II Delegation Assistance in a Nutshell
	III A Delegation Assistance Architecture
	III-A Assisted Delegation Interface (adi)
	III-B Assisted Delegation Manager (adm)
	III-C Delegation Analysis

	IV A Delegation Assistance Algorithm
	IV-A Implementation

	V Information Sources
	VI Case Studies
	VII Related Work and Conclusion
	VII-A Related Work
	VII-B Conclusion and Future Work

	Acknowledgment
	References

@InCollection{	 brucker.ea:delegation:2009,
 author	= {Achim D. Brucker and Helmut Petritsch and Andreas Schaad},
 title		= {Delegation Assistance},
 booktitle	= {IEEE International Symposium on Policies for Distributed
		 Systems and Networks (POLICY)},
 categories	= {security},
 year		= {2009},
 classification= {conference},
 myareas	= {security, formal methods, software, hardware},
 publisher	= {IEEE Computer Society},
 address	= {Los Alamitos, CA, USA},
 abstract	= {Today's IT systems typically comprise a fine-grained
		 access control mechanism based on complex policies. The
		 strict enforcement of these policies, at runtime, always
		 contains the risk of hindering people in their regular
		 work. An efficient support for assisted delegation can help
		 in resolving the conflict between too tight access control
		 and the required flexibility as well as support the
		 resolution of conflicts. Here, assisted delegation means
		 that, additional to denying the access, a user is informed
		 about a list of users that could either grant him access to
		 the requested resource or which could execute this task in
		 behalf of the user. In this paper, we present an approach
		 for determining a set of users which are able to resolve an
		 access control conflict. This set is based on various
		 information sources and are ordered with respect to
		 different distance functions. We show that one distance
		 function can be used to serve different types of contextual
		 input, e. g., role hierarchies, geospatial information as
		 well as shared business object structure data or social
		 network graphs.},
 pdf		= {http://www.brucker.ch/bibliography/download/2009/brucker.ea-delegation-2009.pdf},
 ps		= {http://www.brucker.ch/bibliography/download/2009/brucker.ea-delegation-2009.ps.gz},
 doi		= {10.1109/POLICY.2009.35},
 pages		= {84--91},
 public	= {yes},
 url		= {http://www.brucker.ch/bibliography/abstract/brucker.ea-delegation-2009}
		
}

TY - CHAP
AU - Brucker, Achim D.
AU - Petritsch, Helmut
AU - Schaad, Andreas
PY - 2009//
TI - Delegation Assistance
BT - IEEE International Symposium on Policies for Distributed Systems and Networks (POLICY)
SP - 84
EP - 91
PB - IEEE Computer Society
CY - Los Alamitos, CA, USA
AB - Today?s IT systems typically comprise a fine-grained access control mechanism based on complex policies. The strict enforcement of these policies, at runtime, always contains the risk of hindering people in their regular work. An efficient support for assisted delegation can help in resolving the conflict between too tight access control and the required flexibility as well as support the resolution of conflicts. Here, assisted delegation means that, additional to denying the access, a user is informed about a list of users that could either grant him access to the requested resource or which could execute this task in behalf of the user. In this paper, we present an approach for determining a set of users which are able to resolve an access control conflict. This set is based on various information sources and are ordered with respect to different distance functions. We show that one distance function can be used to serve different types of contextual input, e. g., role hierarchies, geospatial information as well as shared business object structure data or social network graphs.
UR - http://www.brucker.ch/bibliography/abstract/brucker.ea-delegation-2009
ID - brucker.ea:delegation:2009
ER -

