
J. Fiadeiro and P. Inverardi (Eds.): FASE 2008, LNCS 4961, pp. 97–100, 2008.
c© 2008 Springer-Verlag. This is the author’s version of the work.It is posted at http://www.brucker.

ch/bibliography/abstract/brucker.ea-hol-ocl-2008 by permission of Springer-Verlag for your per-
sonal use. The definitive version was published with doi: 10.1007/978-3-540-78743-3_8.

HOL-OCL
A Formal Proof Environment for UML/OCL

Achim D. Brucker1 and Burkhart Wolff2

1 SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2 Information Security, ETH Zurich, 8092 Zurich, Switzerland
bwolff@inf.ethz.ch

Abstract We present the theorem proving environment HOL-OCL that
is integrated in a Model-driven Engineering (MDE) framework. HOL-OCL
allows to reason over UML class models annotated with OCL specifica-
tions. Thus, HOL-OCL strengthens a crucial part of the UML to an object-
oriented formal method. HOL-OCL provides several derived proof calculi
that allow for formal derivations establishing the validity of UML/OCL
formulae. These formulae arise naturally when checking the consistency
of class models, when formally refining abstract models to more concrete
ones or when discharging side-conditions from model-transformations.
Key words: HOL-OCL, UML, OCL, Formal Method, Theorem Proving

1 Introduction

The HOL-OCL system (http://www.brucker.ch/projects/hol-ocl/) is an in-
teractive proof environment for UML [5] and OCL [4] specifications that we devel-
oped as a conservative, shallow embedding into Isabelle/HOL. This construction
ensures the consistency of the underlying formal semantics as well as the correct-
ness of the derived calculi. Together with several automated proof-procedures,
we provide an effective logical framework supporting object-oriented modeling
and reasoning with a particularly clean semantic foundation.

2 The Architecture and its Components

2.1 Overview

HOL-OCL [1, 2] is integrated into a framework [3] supporting a formal, model-
driven software engineering process (see Figure 1). Technically, HOL-OCL is based
on a repository for UML/OCL models, called su4sml, and on Isabelle/HOL; both
are written in SML. HOL-OCL is based on the SML interface of Isabelle/HOL.
Moreover, HOL-OCL also reuses and extends the existing Isabelle front-end called
Proof General well as the Isabelle documentation generator. Figure 2 gives an
overview of the main system components of HOL-OCL, namely:

http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2008
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2008
http://dx.doi.org/10.1007/978-3-540-78743-3_8
http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/
mailto:"Achim D. Brucker" <achim.brucker@sap.com>
mailto:"Burkhart Wolff" <bwolff@inf.ethz.ch>
http://www.brucker.ch/projects/hol-ocl/

98 A.D. Brucker and B. Wolff

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

ArgoUML

...

UML/OCL

(XMI)

or
SecureUML/OCL AC

Config

C#
+OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model
Test

Harness

HOL−TestGen

Validation

Proof

Obligations

Test Data

Figure 1. A Toolchain Supporting a Formal Model-driven Engineering Process

sml (Standard ml)

su4sml Isabelle/hol

Datatype Package hol-ocl Library Theory Morpher

hol-ocl User Interface (based on Proof General)

HOL-OCL

uml/ocl
Specification

import

Proof
Document

(Theory Files)

import

Figure 2. Overview of the HOL-OCL architecture.

– the data repository, called su4sml, providing XMI import facilities,
– the datatype package, or encoder, which encodes UML/OCL models into HOL;

from a user’s perspective, it yields a semantic interface to the model,
– the HOL-OCL library which provides the core theorems needed for verification

and also a formal semantics for the OCL built-in operators, and
– a suite of automated proof procedures based on rewriting and tableaux tech-

niques.

2.2 The Model Repository: su4sml

The model repository su4sml [3] provides a data base for syntactic elements of
UML core, namely class models and statemachines as well as OCL expressions.

HOL-OCL: A Formal Proof Environment for UML/OCL 99

Moreover, su4sml provides an import mechanism based on the XMI, which is
a standardized XML file format for UML models. Most CASE tools for UML can
export models in XMI.

For class models, su4sml resembles the tree structure given by the contain-
ment hierarchy. For example, a class contains attributes, operations, or statema-
chines. OCL expressions naturally translate into an abstract SML datatype in
SML. This abstract datatype is modeled closely following the standard OCL 2.0
metamodel. In addition to these datatype definitions, the repository structure
defines a couple of normalization functions, for example for converting associ-
ation ends into attributes with corresponding type, together with an invariant
expressing the cardinality constraint.

2.3 The Encoder: An Object-oriented Datatype Package

Encoding object-oriented data structures in HOL is a tedious and error-prone
activity if done manually. We therefore provided a datatype package automating
this task. In the theorem prover community, a datatype package is a module
that allows one to introduce new datatypes and automatically derive certain
properties over them.

Our datatype packages extends the given theory by a HOL-OCL-representation
of the given UML/OCL model. This is done in an extensible way, i. e., classes can
be added to an existing theory while preserving all proven properties. The theory
extension comprises the following activities:

1. declaration of HOL types for the classifiers of the model,
2. encoding of type-casts, attribute accessors, and dynamic type and kind tests

implicitly declared in the imported data model, and
3. encode the OCL specification (including invariants and operation specifica-

tions) and combine it with the core data model.

Overall, the datatype package encodes conservatively the user supplied model
and derives the usual algebraic properties on object-oriented structures (up casts
followed by down casts are idempotent, casts do not change the dynamic type,
etc.; [1, 2] describe the details). The package also provides automatically proofs
that the generated HOL model is a faithful representation of object-orientation;
for example, inheritance is expressed as inclusion of the sets of objects along the
subclass hierarchy of the model. This strategy, i. e., deriving properties of the
UML/OCL model from generated conservative definitions in HOL, ensures two
very important properties:

1. our encoding fulfills the required properties, otherwise the proofs fail, and
2. doing all definitions conservatively ensures the consistency of our model.

The time spent for all these proof activities during the import is typically below
a minute; the approach is therefore feasible in a proof environment.

100 A.D. Brucker and B. Wolff

2.4 The Library
An important part of HOL-OCL is a collection of Isabelle theories describing the
built-in operations of UML/OCL. This comprises over 10 000 definitions and the-
orems such as properties of basic types like Integer, Real, and String as well
as collection types such as Bag, Sequence and Set, and also the common super-
class OclAny. Besides the model-specific part covered by the datatype package
described in Section 2.3, the library with its body of derived rules represents the
generic part of data-structure related reasoning in OCL. Moreover, these theories
also contain new proof tactics written in SML.

2.5 Automated Proof Procedures
The operations of OCL have a certain representational distance to the operations
of HOL: for example, the logical connectives and, or, forAll, exists are based
on a three-valued logic (i. e., a strong Kleene logic) with an additional element
OclUndefined (⊥) and properties such as OclUndefined and false = false.
Moreover, all operations are implicitly parametrized over the pre-sate and the
post-state; OCL expressions are assertions and not only logical formulae.

The major Isabelle proof procedures, e. g., simp and auto, cannot handle this
logic directly, except for a fairly trivial fragments. We therefore implemented our
own versions of a context-rewriter and a tableaux-prover. These language specific
variants offer a reasonably high degree of proof automation for OCL.

3 Conclusion
We provide a proof-environment for an object-oriented specification method
based on UML class models annotated with OCL constraints. On this bases,
we can formally reason over such UML/OCL models. For example, we can prove
the satisfyability of class invariants, that postconditions do not contradict with
class invariants, or proof-obligations arising from stating that one class-model
is a refinements from another.this The system has been used in several smaller
and medium-sized case studies [1, 2].

References
[1] Achim D. Brucker. An Interactive Proof Environment for Object-oriented Spec-

ifications. Ph.d. thesis, ETH Zurich, March 2007. ETH Dissertation No. 17097.
http://www.brucker.ch/bibliography/abstract/brucker-interactive-2007.

[2] Achim D. Brucker and Burkhart Wolff. The HOL-OCL book. Technical Report 525,
ETH Zurich, 2006. http://www.brucker.ch/bibliography/abstract/brucker.
ea-hol-ocl-book-2006.

[3] Achim D. Brucker, Jürgen Doser, and Burkhart Wolff. An MDA framework sup-
porting OCL. Electronic Communications of the EASST, 5, 2006. ISSN 1863-2122.
http://www.brucker.ch/bibliography/abstract/brucker.ea-mda-2006-b.

[4] Object Management Group. UML 2.0 OCL specification, October 2003. Available
as OMG document ptc/03-10-14.

[5] Object Management Group. Unified modeling language specification (version 1.5),
March 2003. Available as OMG document formal/03-03-01.

http://www.brucker.ch/bibliography/abstract/brucker-interactive-2007
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-book-2006
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-book-2006
http://www.brucker.ch/bibliography/abstract/brucker.ea-mda-2006-b
http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/doc?formal/03-03-01

	HOL-OCL
	Achim D. Brucker and Burkhart Wolff

@InCollection{	 brucker.ea:hol-ocl:2008,
 abstract	= {We present the theorem proving environment HOL-OCL that is
		 integrated in a MDE framework. HOL-OCL allows to reason
		 over UMLclass models annotated with OCL specifications.
		 Thus, HOL-OCL strengthens a crucial part of the UML to an
		 object-oriented formal method. HOL-OCL provides several
		 derived proof calculi that allow for formal derivations
		 establishing the validity of UML/OCL formulae. These
		 formulae arise naturally when checking the consistency of
		 class models, when formally refining abstract models to
		 more concrete ones or when discharging side-conditions from
		 model-transformations.},
 keywords	= {HOL-OCL, UML, OCL, Formal Methods, Theorem Proving,
		 Refinement},
 location	= {Budapest, Hungary},
 author	= {Achim D. Brucker and Burkhart Wolff},
 booktitle	= {Fundamental Approaches to Software Engineering
		 {(FASE08)}},
 language	= {USenglish},
 publisher	= {Springer-Verlag},
 address	= {Heidelberg},
 series	= {Lecture Notes in Computer Science},
 number	= {4961},
 doi		= {10.1007/978-3-540-78743-3_8},
 pages		= {97--100},
 editor	= {Jos{\'e} Fiadeiro and Paola Inverardi},
 title		= {{HOL-OCL} -- {A Formal Proof Environment for
		 {UML}/{OCL}}},
 categories	= {holocl},
 classification= {conference},
 year		= {2008},
 pdf		= {http://www.brucker.ch/bibliography/download/2008/brucker.ea-hol-ocl-2008.pdf},
 ps		= {http://www.brucker.ch/bibliography/download/2008/brucker.ea-hol-ocl-2008.ps.gz},
 public	= {yes},
 url		= {http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2008}
		
}

%0 Book Section
%T HOL-OCL ? A Formal Proof Environment for UML/OCL
%A Brucker, Achim D.
%A Wolff, Burkhart
%E Fiadeiro, José
%E Inverardi, Paola
%B Fundamental Approaches to Software Engineering (FASE08)
%D 2008
%N 4961
%I Springer-Verlag
%C Heidelberg
%F brucker.ea:hol-ocl:2008
%X We present the theorem proving environment HOL-OCL that is integrated in a MDE framework. HOL-OCL allows to reason over UMLclass models annotated with OCL specifications. Thus, HOL-OCL strengthens a crucial part of the UML to an object-oriented formal method. HOL-OCL provides several derived proof calculi that allow for formal derivations establishing the validity of UML/OCL formulae. These formulae arise naturally when checking the consistency of class models, when formally refining abstract models to more concrete ones or when discharging side-conditions from model-transformations.
%K HOL-OCL, UML, OCL, Formal Methods, Theorem Proving, Refinement
%U http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2008
%P 97-100

TY - CHAP
AU - Brucker, Achim D.
AU - Wolff, Burkhart
ED - Fiadeiro, José
ED - Inverardi, Paola
PY - 2008//
TI - HOL-OCL ? A Formal Proof Environment for UML/OCL
BT - Fundamental Approaches to Software Engineering (FASE08)
T3 - Lecture Notes in Computer Science
SP - 97
EP - 100
IS - 4961
PB - Springer-Verlag
CY - Heidelberg
KW - HOL-OCL, UML, OCL, Formal Methods, Theorem Proving, Refinement
AB - We present the theorem proving environment HOL-OCL that is integrated in a MDE framework. HOL-OCL allows to reason over UMLclass models annotated with OCL specifications. Thus, HOL-OCL strengthens a crucial part of the UML to an object-oriented formal method. HOL-OCL provides several derived proof calculi that allow for formal derivations establishing the validity of UML/OCL formulae. These formulae arise naturally when checking the consistency of class models, when formally refining abstract models to more concrete ones or when discharging side-conditions from model-transformations.
UR - http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2008
ID - brucker.ea:hol-ocl:2008
ER -

