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Abstract We present a datatype package that enables the shallow em-
bedding technique to object-oriented specification and programming lan-
guages. This datatype package incrementally compiles an object-oriented
data model to a theory containing object-universes, constructors, acces-
sors functions, coercions between dynamic and static types, characteristic
sets, their relations reflecting inheritance, and the necessary class invari-
ants. The package is conservative, i. e., all properties are derived entirely
from axiomatic definitions. As an application, we use the package for an
object-oriented core-language called IMP++, for which correctness of a
Hoare-Logic with respect to an operational semantics is proven.

1 Introduction

While object-oriented programming is a widely accepted programming paradigm,
theorem proving over object-oriented programs or object-oriented specifications
is far from being a mature technology. Classes, inheritance, subtyping, objects
and references are deeply intertwined and complex concepts that are quite remote
from the platonic world of first-order logic or higher-order logic (HOL). For this
reason, there is a tangible conceptual gap between the verification of functional
and imperative programs on the one hand and imperative and object-oriented
programs on the other.

Among the existing implementations of proof environments dealing with sub-
typing and references, two categories can be distinguished: 1) pre-compilation into
standard logic, and2)deep-embeddings into ameta-logic. Aspre-compilation tools,
for example, we consider Boogie for Spec# [3,15] and tools based on the Java
Modeling Language (JML) such as Krakatoa [16]. The underlying idea is to com-
pile object-oriented programs into standard imperative ones and to apply a ver-
ification condition generator on the latter. While technically sometimes very ad-
vanced, the foundation of these tools is quite problematic: The compilation in itself
is notverified, and it is not clear if thegeneratedconditionsare sound with respect
to the (usually complex) operational semantics. Among the tools based on deep-
embeddings, there is a sizable body of literature on formal models of Java-like
languages (e. g., [6,11,12,21,23]). In a deep embedding of a language semantics,
syntax and types are represented by free datatypes. As a consequence, derived
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calculi inherit a heavy syntactic bias in form of side-conditions over binding and
typing issues. This is unavoidable if one is interested in meta-theoretic proper-
ties such as type-safety; however, when reasoning over applications and not over
language tweaks, this advantage turns into a major obstacle for efficient deduc-
tion. Thus, while proofs for type-safety, soundness of Hoare-Calculi and even
soundness of verification condition generators are done, none of the mentioned
deep embeddings has been used for substantial proof work in applications.

In contrast, the shallow embedding technique has been used for semantic rep-
resentations such as HOL itself (in Isabelle/Pure), for HOLCF (in Isabelle/HOL)
allowing reasoning over Haskell-like programs [18] or, for HOL-Z [8]. These em-
beddings have been used for substantial applications (e. g., [4]). The essence of
a shallow embedding is to represent object-language binding and typing directly
in the binding and typing machinery of the meta-language. Thus, many side-
conditions are simply unnecessary; type-safety, for example, has been proven
implicitly when deriving computational rules from semantic definitions. Since
implicit side-conditions are “implemented” by built-in mechanisms, they are han-
dled orders of magnitude faster compared to an explicit treatment.

At first sight, it seems impossible to apply the shallow embedding tech-
nique to object-oriented languages in HOL. In this technique, an expression E
of type T in some object-oriented language must be translated into some HOL-
expression E of HOL-type T . The translation should preserve well-typedness in
both ways. However, by “translation” we do not mean a simple one-to-one con-
version; rather, the translation might use the object-oriented type system for a
pre-processing step, making, for example, implicit coercions between subtypes
and supertypes explicit. Still, this requires a representation where subtyping is
embedded into parametric polymorphism.

The type representation problem becomes apparent when defining the most
fundamental concept of an object-oriented language, namely its underlying state
called object structure. Objects are abstract representations of pieces of memory
that are linked via references (object identifiers, oid) to each other. Objects
are tuples of class attributes, i. e., elementary values like Integers or Strings or
references to other objects. The type of these tuples is viewed as the type of
the class they are belonging to. Obviously, object structures are maps of type
oid⇒ U relating references to objects living in a universe U of all objects.

Instead of constructing such a universe globally for all data-models (which
is either untyped or “too large” for (simply) typed HOL, where all type sums
must be finite), one could think of generating an object universe only for each
given system of classes. Ignoring subtyping and inheritance for a moment, this
would result in a universe U 0 = A + B for some class system with the classes
A and B. Unfortunately, such a construction is not extensible: If we add a
new class to an existing class system, say D, then the “obvious” construction
U 1 = A+B+D results in a different type to U 0, making their object structures
logically incomparable. Properties, that have been proven over U 0 will not hold
over U 1. Thus, such a naive approach rules out an incremental construction of
class systems, which makes it clearly unfeasible.
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As contributions of this paper, we will present a novel universe construc-
tion which represents subtyping within parametric polymorphism in a preserv-
ing manner and which is extensible. This construction is used in a novel kind
of datatype-package (implemented for Isabelle/HOL), i. e., a kind of logic com-
piler that generates for each class system and its extensions (for example, given
as class models in a standardized format like XMI) various conservative defini-
tions representing an object-oriented data theory. This includes the definition
of constructors and accessors, coercions between types, tests, characteristic sets
of objects. On this basis, properties reflecting subtyping and proof principles
like class invariants are automatically derived. Further, we apply this datatype-
package for a small imperative language with object-oriented features and show
the soundness of a Hoare-Calculus.

2 Formal and Technical Background

Isabelle [22] is a generic, LCF-style theorem prover implemented in SML. For our
objects-oriented datatype package, we use the possibility to build SML programs
performing symbolic computations over HOL formulae in a logically safe way.
Isabelle/HOL offers support for checks for conservatism of definitions, datatypes,
primitive and well-founded recursion, and powerful generic proof engines based
on rewriting and tableaux provers.

Higher-order logic (HOL) [2] is a classical logic with equality enriched by
total polymorphic higher-order functions. It is more expressive than first-order
logic, e. g., induction schemes can be expressed inside the logic. HOL is based on
the typed λ-calculus, i. e., the terms of HOL are λ-expressions. The application
is written by juxtaposition E E′, and the abstraction is written λx.E. Types
may be built from type variables (like α, β, optionally annotated by type classes,
e. g., α :: order) or type constructors (e. g., bool). Type constructors may have
arguments (e. g., α list). The type constructor for the function space is written
infix: α ⇒ β; multiple applications like τ1 ⇒ (. . . ⇒ (τn ⇒ τn+1) . . .) are
also written as [τ1, . . . , τn] ⇒ τn+1. HOL is centered around the extensional
logical equality _ = _ with type [α, α] ⇒ bool, where bool is the fundamental
logical type. The logical connectives _ ∧ _, _ ∨ _, _ → _ of HOL have type
[bool,bool]⇒ bool, ¬_ has type bool⇒ bool. The quantifiers ∀_._ and ∃_._
have type [α set, α ⇒ bool] ⇒ bool. Quantifiers may range over higher order
types, i. e., functions.

The type discipline rules out paradoxes such as Russels paradox in untyped
set theory. Sets of type α set can be defined isomorphic to functions of type
α⇒ bool; the element-of-relation _ ∈ _ has the type [α, α set]⇒ bool and cor-
responds basically to the application; in contrast, the set comprehension {_|_}
has type [α set, α⇒ bool]⇒ α set and corresponds to the λ-abstraction.

Isabelle supports conservative theory extensions schemes; this means that
a theory (viewed as a pair of a signature Σ and a set of axioms Φ) can only
by extended by type-declarations, constant-declaration and axioms with a par-
ticular form. For example, the conservative extensions of a constant definition
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is constrained to a constant declaration c :: τ and an axiom c = E where c is
fresh, i. e., not contained in the previous signature, E does neither contain free
(type) variables nor c (these syntactic conditions are checked by Isabelle). For
conservative extension schemes such as constant definitions, the extended theory
is consistent (“has models”) if the original theory is consistent [13].

For our work, we assume a type class α :: bot for all types α that provide
an exceptional element ⊥; for each type in this class a test for definedness is
available via def x ≡ (x 6= ⊥). The HOL type constructor τ⊥ assigns to each type
τ a type lifted by ⊥. Thus, each type α⊥ is member of the class bot. The function
x_y : α → α⊥ denotes the injection, the function p_q : α⊥ → α its inverse for
defined values.

3 Typed Object Universes in an Object Store

In this section, we focus on the map associating an expression E of type T to
a HOL expression E of type T . The cornerstones of this map are the (func-
tional) constructors,3 selectors, tests for dynamic type and kind as well as cast
operations between objects along the class hierarchy.

As a pre-requisite, we have to define the families U i of object universes. Each
U i comprises all value types and an extensible class type representation induced
by a class hierarchy. To each class, a class type (like Node or Object) is associated
which represents the set of object instances or objects. The extensibility of a
universe type is reflected by “holes” (polymorphic variables), that can be filled
when “adding” extensions to a class. Our construction ensures that U i+1 is just
a type instance of U i (where U (i+1) is constructed by adding new classes to U i).
Thus, properties proven over object systems over U i remain valid with respect
to U i+1, see Figure 1 for an illustration of the main ideas of the construction
we present in the following.

A Formal Framework of Object Structure Encodings. We will present
the framework of our object encoding together with a small example: assume
a class Node with an attribute i of type integer and two attributes left and
right of type Node, and an inherited class Cnode (i. e., Cnode is a subtype of
Node) with an attribute color of type Boolean.

In the following we define several type sets which all are subsets of the types
of the HOL type system. These sets, although denoted in usual set-notation, are
a meta-theoretic construct, i. e., they cannot be formalized in HOL. For the class
attributes we define:

Definition 1 (Attribute Types). The set of attribute types A is defined
inductively as follows:
1. {Boolean, Integer, Real, String, oid} ⊂ A, and
2. {a Set, a Sequence, a Bag} ⊂ A for all a ∈ A.
3 These constructors only create a value, in contrast to constructors in object-oriented
languages that additionally bind this value to a fresh oid in the memory.
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A A βObject

αA

U 1
(αA,βObject) = A× αA⊥ + βObject

U 2
(αB ,αC ,βA,βObject) = A× (

=αA︷ ︸︸ ︷
B × αB⊥ + C × αC⊥ + βA)⊥

(a) A single class A represented by the type sum A× αA⊥ + βObject. The type variable
αA⊥ allows for introducing subclasses of A and the type variable βObject allows for
introducing new top-level classes.

A

B C

A βObject

B

αB

C βA

αC

U 2
(αB ,αC ,βA,βObject) = A× (

=αA︷ ︸︸ ︷
B × αB⊥ + C × αC⊥ + βA)⊥
+ βObject

(b) Extending the previous class model simultaneously with two direct subclasses of
A is represented by instantiating the type variable αA of U 1

(αA,βObject).

Figure 1. Assume we have a model consisting only of one class A which “lives” in the
universe U 1

(αA,βObject) that we want to extend simultaneously with two new subclasses,
namely B and C. As both new classes are derived from class A, we construct a local type
polynomial B×αB⊥+C×αC⊥+βA. This type polynomial is used for instantiating type
variable αA. This process results in the universe U 2

(αB ,αC ,βA,βObject) for the final class hi-
erarchy. In particular, the universe U 2

(αB ,αC ,βA,βObject) is a type instance of U 1
(αA,βObject).

Thus, properties that have been proven over the initial universe U 1
(αA,βObject) are still

valid over the extended universe U 2
(αB ,αC ,βA,βObject).

In principle, classes are Cartesian products of its attribute types extended
by an abstract type ensuring uniqueness.

Definition 2 (Tag Types). For each class C a tag type t ∈ T is associated.
The set T is called the set of tag types.

Tag types allow for building a strongly typed universe (with regard to the object-
oriented type system), e. g., for class Node we assign an abstract datatype Nodet
with the only element Nodekey. For each class, we introduce a base class type:

Definition 3 (Base Class Types). The set of base class types B is defined
as follows:

1. classes without attributes are represented by (t×unit) ∈ B, where t ∈ T and
unit is a special HOL type denoting the empty product.

2. if t ∈ T is a tag type and ai ∈ A for i ∈ {0, . . . , n} then (t×a0×· · ·×an) ∈ B.

Thus, the base object type of class Node is Nodet × Integer× oid× oid and of
class Cnode is Cnodet × Boolean.
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Without loss of generality, we assume in our object model a common super-
type of all objects. In the case of OCL, this is OclAny, in the case of Java this
is Object. This assumption is no restriction because such a common supertype
can always be added to a given class structure.

Definition 4 (Object). Let Objectt ∈ T be the tag of the common supertype
Object and oid the type of the object identifiers,

1. in the non-referential setting, we define α Object := (Objectt × α⊥).
2. in the referential setting, we define α Object :=

(
(Objectt × oid)× α⊥

)
.

In the referential setting, object generator functions can be defined such that
freshly generated object-identifiers to an object are also stored in the object
itself; thus, the construction of reference types and of referential equality is fairly
easy. However, for other object-oriented semantics the non-referential setting is
appropriate, where objects are viewed more like values. The consequences of this
choice is discussed elsewhere in more detail [9]. Now we have all the foundations
for defining the type of our family of universes formally:

Definition 5 (Universe Types). The set of all universe types Uref resp. Unref
(abbreviated Ux) is inductively defined by:

1. U 0
α ∈ Ux is the initial universe type with one type variable (hole) α.

2. U(α0,...,αn,β1,...,βm) ∈ Ux, n,m ∈ N, i ∈ {0, . . . , n} and c ∈ B then
U(α0,...,αn,β1,...,βm)

[
αi :=

(
(c× (αn+1)⊥) + βm+1

)]
∈ Ux

3. U(α0,...,αn,β1,...,βm) ∈ Ux, n,m ∈ N, i ∈ {0, . . . , n}, and c ∈ B then
U(α0,...,αn,β1,...,βm)

[
βi :=

(
(c× (αn+1)⊥) + βm+1

)]
∈ Ux

Here, item 2 covers the special case of introducing the first subtype by instan-
tiating the α-variable and item 3 covers the general case of introducing further
subtypes by instantiating the corresponding β-variable.

The initial universe U 0
α represents the common supertype (i. e., Object) of all

classes, i. e., a simple definition would be U 0
α = αObject. However, we will need

the ability to also store value types: Values = Real+Integer+Boolean+String.
Therefore, we define the initial universe type by U 0

α = α Object + Values.
Continuing our example we extend the initial universe U 0

(α), in parallel, with the
classes Node and Cnode. This extension leads to the following successor universe
type:

U 1
(αC,βC,βN) ≡

(
(Nodet × Integer× oid× oid)

×
(
(Cnodet × Boolean)× (αC)⊥ + βC

)
⊥ + βN

)
Object + Values

We pick up the idea of a universe representation without values for a class with
all its extensions (subtypes). For each class we construct a type that describes
this class and all its subtypes. They can be seen as paths in the tree-like structure
of universe types, collecting all attributes in Cartesian products and pruning the
type sums and β-alternatives.
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Definition 6 (Class Type). The set of class types C is defined as follows: Let
U be the universe covering, among others, class Cn, and let C0, . . . , Cn−1 be the
supertypes of C, i. e., Ci is inherited from Ci−1. The class type of C is defined
as:
1. Ci ∈ B, i ∈ {0, . . . , n} then

C 0
α =

(
C0 ×

(
C1 ×

(
C2 × · · · × (Cn × α⊥)⊥

)
⊥
)
⊥

)
⊥
∈ C,

2. UC ⊃ C, where UC is the set of universe types with U 0
α = C 0

α .

Thus in our example we construct for the class type of class Node the type
abbreviation:

(αC , βC) Node =(
(Nodet×Integer×oid×oid)×

(
(Cnodet×Boolean)×(αC)⊥+βC

)
⊥
)

Object .

Here, αC allows for extension with new classes by inheriting from Cnode while
βC allows for direct inheritance from Node.

Alternatively, one could omit the lifting of the base types of the supertypes
in the definition of class types. This would lead to:

C 0
α =

(
C0 ×

(
C1 ×

(
C2 × · · · × (Cn × α⊥)

)))
⊥

We see our definition as the more general one, since it allows for “partial ob-
jects” potentially relevant for other object-oriented semantics for programming
languages. For example Java, for which partial class objects may occur during
construction. This paves the way for establishing the definedness of an object
step by step.

Furthermore, since the injections and projections are only built to define
attribute accessors, partial objects are hidden in our language.

In both cases the outermost _⊥ reflect the fact that class objects may also be
undefined, in particular after projecting them from some term in the universe or
failing type casts. This choice has the consequence that constructor arguments
may be undefined.

Handling Instances For each class we provide injections and projects for each
class. In the case of Object these definitions are quite easy, e. g., using the
constructors Inl and Inr for type sums we can easily insert an Object object
into the initial universe via

mkObject o ≡ Inl o with type α Object→ U 0
α

and the inverse function for constructing an Object object out of an universe
can be defined as follows:

getObject u ≡

{
k if u = Inl k
ε k. true if u = Inr k

with type U 0
α → α Object.



Extensible Universes for Object-oriented Data Models 445

In the general case, the definitions of the projections are a little bit more com-
plex, but follows the same schema: for the injections we have to find the “right”
position in the type product and insert the given object into that position. Fur-
ther, we define in a similar way projections for all class attributes. For example,
we define the projections for accessing the left attribute of the class Node:

obj . left(l) ≡ (fst ◦ snd ◦ snd ◦ fst) pbase objq

with type (α1, β) Node → oid⊥ and where base is a variant of snd over lifted
tuples:

basex ≡

{
b if x = x(a, b)y,
⊥ otherwise.

This construction is not yet type-safe. Nevertheless, this can be easily extended
to a type-safe one by adding a unique abstract type for each class type (see
Section 4 for details).

In a next step, we define type test functions; for universe types we need to
test if an element of the universe belongs to a specific type, i. e., we need to test
which corresponding extensions are defined. This is done for Object via

isUnivObject u ≡

{
true if u = Inl k
false if u = Inr k

with type U 0
α → bool.

For class types we define two type tests, an exact one that tests if an object is
exactly of the given dynamic type and a more liberal one that tests if an object
is of the given type or a subtype thereof. Testing the latter one, which is called
kind in the OCL standard, is quite easy. We only have to test that the base type
of the object is defined, e. g., not equal to ⊥:

isKindObject o ≡ def o with type α Object→ bool.

An object is exactly of a specific dynamic type, if it is of the given kind and the
extension is undefined, e. g.:

isTypeObject o ≡ isKindObject ∧¬
(
(def ◦base) o

)
with type α Object→ bool.

The type tests for user defined classes are defined in a similar way by testing the
corresponding extensions for definedness.

Finally, we define coercions, i. e., ways to type-cast classes along their subtype
hierarchy. Thus we define for each class a cast to its direct subtype and to its
direct supertype. We need no conversion on the universe types where the subtype
relations are handled by polymorphism. Therefore we can define the type casts
as simple compositions of projections and injections, e. g.:

Node[Object] ≡ getObject ◦mkNode with type (α1, β) Node→ (α1, β1) Object,
Object[Node] ≡ getNode ◦mkObject with type (α1, β1) Object→ (α1, β1) Node.
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Universe

Object ValuesObject Values

A

B

C

A(0)
[OclAny]

B(0)
[A]

C(0)
[B]

OclAny(0)
[A]

A(0)
[B]

B(0)
[C]

mk(0)
A

mk(0)
B

mk(0)
C

get(0)
A

get(0)
B

get(0)
C

Figure 2. The type casts, e. g., B[C] allow for the conversion of a type to its direct
successor or predecessor in the type hierarchy. The injections, e. g., mkB convert a class
type to the universe type and the projections, e. g., getB, convert a universe type to a
concrete class type. For a universe without values, the class type and the universe type
of the top most class are identical. Here, the package Universe represents the universe,
i. e., the top level class (Object) and the primitive types (Values).

These type-casts are changing the static type of an object, while the dynamic
type remains unchanged. Figure 2 summarizes this construction for the three
classes A, B, and C.

Note, for a universe construction without values, e. g., U 0
α = α Object, the

universe type and the class type for the common supertype are the same. In
that case there is a particular strong relation between class types and universe
types on the one hand and on the other there is a strong relation between the
conversion functions and the injections and projections function. In more detail,
one can understand the projections as a cast from the universe type to the given
class type and the injections are inverse.

Now, if we build theorems over class invariants (based finally on these pro-
jections, injections, casts, characteristic sets, etc.), it will remain valid even if we
extend the universe via α and β instantiations.

3.1 Properties of Elementary Objects
Based on the presented definitions, our object-oriented datatype package proves
that our encoding of object-structures is a faithful representation of object-
oriented (e. g., in the sense of language like Java or Smalltalk or the UML stan-
dard [1]). These theorems are proven for each model, e. g., during loading a
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specific class model. This is similar to other datatype packages in interactive
theorem provers. Further, these theorems are also a prerequisite for successful
reasoning over object structures.

In the following, we assume an arbitrary model comprising the classes A, B
and C where B is a subclass of A and C is a subclass of B (recall Figure 2). We
start by proving this subtype relation for both our class type and universe type
representation:

isUniv(0)
A univ

isUniv(0)
B univ

isType(0)
B obj

isKind(0)
A obj

Moreover, we also show that we can switch between the universe representations
and object representation without losing information, in fact, both type systems
are isomorphic:

isUniv(0)
A univ

mk(0)
A (get(0)

A univ) = univ
isType(0)

A obj
get(0)

A (mk(0)
A obj) = obj

isType(0)
B obj

isUniv(0)
A (mk(0)

A obj)
isUniv(0)

A univ
isType(0)

A (get(0)
A univ)

Moreover, we can “re-cast” an object safely, i. e., up and down casts are
idempotent. However, casting an object deeper in the subclass hierarchy than
its dynamic type results in undefinedness:

isType(0)
A obj

obj(0)
[B] = ⊥

isType(0)
B obj(

(obj(0)
[A])

(0)
[B]
)

= obj

and also, the cast operations are strict and transitive, e. g.:

⊥(0)
[A] = ⊥

isType(0)
C obj

(obj(0)
[B])

(0)
[A] = obj(0)

[A]

Further, for all class types c, both isType(0)
c ⊥ = false and isKind(0)

c ⊥ = false
are valid. Summarizing, these derived rules show that our encoding of inheritance
establishes a subtype relation. Moreover, the (informal) relations between classes
one would expect from languages like UML, Java, or Spec#, also hold in our
encoding.

Our datatype package also derives similar properties for the injections and
projections into attributes automatically. For example, assume the class A has
two attributes a and b then we derive among others:

obj 6= ⊥
(obj . set(0)

a x). a(0) = x (obj . set(0)
a x).b(0) = obj .b(0)
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(obj . set(0)
a x). set(0)

a y = obj . set(0)
a y

(obj . set(0)
a x). set(0)

b y = (obj . set(0)
b y). set(0)

a x

As we use a shallow embedding of object-oriented data-structures into HOL, these
properties cannot be proven as meta-theoretic property of our encoding. Instead,
our datatype package proves these properties, fully automatically, during the
import of an object-oriented data models.

4 The Package

The previously described construction is the foundation of the datatype package
of HOL-OCL [10,7,9]. For a given class system, described as UML class model,
the datatype package of HOL-OCL generates may definitions (the subset of defi-
nitions presented in the previous section is marked by _ ≡ _). Technically, our
datatype package supports the standardized XMI format as input (see [9] for
implementation details). Besides, it proves automatically several theorems over
the imported specification; these theorems are proven for each class, e. g., during
loading a specific class model. This includes properties of the object structure,
e. g., that our conversion between universe representations and object represen-
tation is lossless. This property is characterized by the following two properties,
which are, among others, proven automatically by our datatype package:

isKindC o =⇒ getC(mkC o) = o and isUnivC u =⇒ mkC(getC u) = u .

Our construction works also for the encoding of recursive object structures,
including the support for class invariants. First we must introduce some ba-
sic notion: for arbitrary binary HOL operations op, we write σ � P op Q for
pP σqoppQσq. Moreover, we write σ � ∂ x (“x is defined in state σ”) for def(xσ),
and σ � 6∂ x for the contrary. For constant symbols we will simplify the presen-
tation: for example, we will write 5 for λσ. 5, xtruey for λσ. xtruey, etc.

Now we approach our main goal to provide a type-safe embedding of the
accessors, and, consequently, of the whole assertion language.

We define the store as a partial map based on the concept of object universes:

α St := oid ⇀ Uα .

Since all operations over our object store will be parametrized by αSt, we intro-
duced the following type synonym:

Vα(τ) := α St⇒ τ .

Thus we can define type-safe accessor functions, i. e., object identifiers (refer-
ences) are completely encapsulated. For example, the function for accessing the
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left attribute of an object of class Node in a system state σ is defined as follows:

obj . left ≡ λσ.

{
getNode u if σ(obj . left(l)) = xuy
⊥ otherwise.

For accessor with type set or sequence, we provide definitions that de-reference
each element of, e. g., a set of object identifiers and build a set of typed objects.

The object-language accessor .left of type Node, which is in fact a function
of type Node→ Node, is now represented by our construction as follows:

_. left ::V(αC ,βC)((αC , βC) Node)⇒ V(αC ,βC)((αC , βC) Node) .

Thus, the representation map is injective on types; subtyping is represented by
type-instantiation on the HOL-level. However, due to our universe construction,
the theory on accessor, casts, etc. is also extensible.

All other operations like casting, type- or kind-check are lifted equivalently;
in the following, we will always assume these lifted versions since due to our
typing discipline, no confusion may arise. These definitions are also generated
by our package and “lifted” versions of the theorems are derived.

We turn now to our construction of characteristic sets and the derivation of
class invariant theorems. Recall our previous example, where the class Node de-
scribes a potentially infinite recursive object structure. Assume that we want to
constrain the attribute i of class Node to values greater than 5. This is expressed
by the following function approximating the set of possible instances of the class
Node and its subclasses:

NodeKindF :: U 1
(αC,βC,βN) St⇒ U 1

(αC,βC,βN) St⇒ (αC , βC) Node set

⇒ U 1
(αC,βC,βN) St⇒ (αC , βC) Node set

NodeKindF ≡ λσ. λX.
{

obj
∣∣ σ � ∂ obj .i ∧ σ � obj .i > 5
∧ σ � ∂ obj .left ∧ σ � (obj .left) ∈ X
∧ σ � ∂ obj .right ∧ σ � (obj .right) ∈ X

}
In a setting with subtyping, we need two characteristic type sets, a more

liberal one, the characteristic kind set, and narrower one, the characteristic type
set. By adding the conjunct σ � obj isTypeOf(Node) (essentially a notation
for the previously defined type tests), we can construct another approximation
function (which has obviously the same type as NodeKindF):

NodeTypeF ≡ λσ. λX.
{

obj
∣∣ (obj ∈ (NodeKindF σ X))
∧ σ � obj isTypeOf(Node)

}
Thus, the characteristic kind set for the class Node can be defined as the greatest
fixed-point over the function NodeKindF:

NodeKindSet :: U 1
(αC,βC,βN) St⇒ U 1

(αC,βC,βN) St⇒ (αC , βC) Node set
NodeKindSet ≡ λσ. (gfp(NodeKindF σ)) .
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For the characteristic type set we proceed analogously. We infer a class invariant
theorem:

σ � obj ∈ NodeKindSet = σ � ∂ obj .i ∧ σ � obj .i > 5
∧ σ � ∂ obj .left ∧ σ � (obj .left) ∈ NodeKindSet
∧ σ � ∂ obj .right ∧ σ � (obj .right) ∈ NodeKindSet

and prove automatically by monotonicity of the approximation functions and
their point-wise inclusion:

NodeTypeSet ⊆ NodeKindSet

This kind of theorem remains valid if we add further classes in a class system.
Now we relate class invariants of subtypes to class invariants of supertypes.

Here, we use coercion functions described in the previous section; we write o[Node]
for the object o converted to the type Node of its superclass. The trick is done
by defining a new approximation for an inherited class Cnode on the basis of
the approximation function of the superclass:

CnodeF ≡ λσ. λX.
{

obj
∣∣ obj [Node] ∈ (NodeKindF σ (λ o. o[Node]) 8 X)) ∧ · · ·

}
where the . . . stand for the constraints specific to the subclass.

Similar to [24] we can handle mutual-recursive datatype definitions by en-
coding them into a type sum. However, we already have a suitable type sum
together with the needed injections and projections, namely our universe type
with the make and get methods for each class. The only requirement is that
a set of mutual recursive classes must be introduced “in parallel,” i. e., as one
extension of an existing universe.

These type sets have the usual properties that one associates with object-
oriented type systems. Let CN (KN ) and be the characteristic type set (char-
acteristic kind set) of a class N and CC and KN the corresponding type sets
of a direct subclass of N, then our encoding process proves formally that the
characteristic type set is a subset of the kind set, i. e.:

σ � obj ∈ CN −→ σ � obj ∈ KN

and that the kind set of the subclass is (after type coercion) a subset of the type
set (and thus also of the kind set) of the superclass:

σ � obj ∈ KC −→ σ � obj [Node] ∈ CN .

These proofs are based on co-inductions and involve a kind of bi-simulation of
(potentially) infinite object structures. Further, these proofs depend on theorems
that are already proven over the pre-defined types, e. g., Object. These proofs
were done in the context of the initial universe U 0 and can be instantiated
directly in the new universe without replaying the proof scripts; this is our main
motivation for an extensible construction.
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The Underlying Method. Ourobject-orienteddatatypepackage also supports
a special analysis and verification method based on the idea of providing several
versions of invariants that restrict the type and kind sets with different grades.
For example, the discussed type sets and kind sets are of major importance when
resolving overloading and late-binding: If we can infer from a class invariant that
some object must be of a particular type, then late-binding method invocation
can be reduced to a straight-forward procedure call with simplified semantics.

As a default we generate for each class three different type sets and kind sets:
1. a set based on the user-defined invariant,
2. a set allowing undefined references, i. e., all accessor to attributes of type oid

are or-ed with a corresponding 6∂-statement, and
3. one allowing undefined references and undefined value types, i. e., all accessor

to attributes are or-ed with a corresponding 6∂-statement.
This enumeration is ordered ascending with respect to the number of in-

stances that fulfill the conditions, i. e., every object that is in the first set, is also
in the other two. Such an hierarchy of invariants allows for formally specifying
the circumstances which invariants should hold.

In practice we assume the need for an even more fine-grained graduation of
invariants. Whereas at the moment one has to reproduce the encoding process of
our package to introduce new invariant types, we intend to provide an automatic
mechanism for defining new invariant types, i. e., an interface to our package
that defines new type sets and also automatically proves the basic properties,
including the inclusion relation with respect to the already defined type sets.

5 A Modular Proof-methodology for Object-oriented
Modeling

In the previous sections, we discussed a technique to build extensible object-
oriented data models. Now we turn to the wider goal of a modular proof method-
ology for object-oriented systems and explore achievements and limits of our
approach with respect to this goal. Two aspects of modular proofs over object-
oriented models have to be distinguished:
1. the modular construction of theories over object-data models and
2. a modular way to represent dynamic type information or storage assumptions

underlying object-oriented programs.
With respect to the former, the question boils down to what degree extensions of
classmodels and theories built over themcanbemerged. With respect to the latter,
we will show how co-inductive properties over the store help to achieve this goal.

5.1 Non-overlapping Merges

The positive answer to the modularity question is that object-oriented data-
model theories can be merged provided that the extensions to the underlying
object-data models are non-overlapping. Two extensions are non-overlapping, if
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Figure 3. Merging Universes

their set of classes including their direct parent classes are disjoint (see Fig-
ure 3a). In these cases, there exists a most general type instance of the merged
object universe U 3 (the type unifier of both extended universes U 2a and U 2b);
thus, all theorems built over the extended universes are still valid over the merged
universe (see Figure 3a). We argue that the non-overlapping case is the pragmat-
ically more important one; for example, all libraries of the HOL-OCL system [9]
are linked to the examples in its substantial example suite this way. Without
extensibility, the datatype package would have to require the recompilation of
the libraries, which takes in the case of the HOL-OCL system about 20 minutes.

5.2 Handling Overlapping Merges

Unfortunately, one pragmatically important case in object-oriented modeling is
considered as an overlap in our package. Consider the case illustrated in Fig-
ure 3b. Here, the parent class A is in the class set of both extensions (including
parent classes). The technical reason for the conflict is that the order of inser-
tions of sub-classes into a parent class is relevant since the type sum α + β is
not a commutative type constructor.

In our encoding scheme of object-oriented data models, this scenario of ex-
tensions represents an overlap that the user is forced to resolve. One pragmatic
possibility is to arrange an order of the extensions by changing the import hi-
erarchy of theories producing overlapping extensions. This worst-case results in
re-running the proof scripts of either B or C—usually a matter of a minute. An-
other option is to introduce an empty class B’ and inherit B from there. A further
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option consists in adding a mechanism into our package allowing to specify for
a child-class the position in the insertion-order.

5.3 Modularity in an Open-world: Dynamic Typing

Our notion of extensible class models generalizes the distinction “open-world
assumption” vs. “closed-world assumption” widely used in object-oriented mod-
eling. Our universe construction is strictly “open-world” by default; the case of
a “closed-world” results from instantiating all α,β-“holes” in the universe by the
unit type. Since such an instantiation can also be partial, there is a spectrum
between both extremes. Furthermore, one can distinguish α-finalizations, i. e., in-
stantiation of an α- variable in the universe by the unit type, and β-finalizations.
The former close a class hierarchy with respect to subtyping, the latter prevent
that a parent class may have further direct children (which makes the automatic
derivation of an exhaustion theorem for this parent class possible).

In usual object-oriented languages, methods can be overridden, method invo-
cations like in object-oriented languages require an overridden resolution mech-
anism such as late binding as used in Java. Late binding uses the dynamic type
isTypeX obj of obj . The late-binding method invocation is notorious for its dif-
ficulties for modular proof. Consider the case of an operation:

method Node ::m():: Bool
pre: P
post: Q

Furthermore assume that the implementation of m invokes itself recursively, e. g.,
by self.left.m(). Based on an open-world assumption, the postcondition Q
cannot be established in general since it is unknown which concrete implemen-
tation is called at the invocation.

Based on our universe construction, there are two ways to cope with this
underspecification. First, finalizations of all child classes of Node results in a
partial closed-world assumption allowing to treat the method invocation as case
switch over dynamic types and direct calls of method implementations. Second,
similarly to the co-inductive invariant example in Section 4 which ensures that a
specific dereferentiation is in fact defined, we can specify that a specific derefer-
entiation obj . left has a given dynamic type. An analogous invariant Invleft(obj)
can be defined co-inductively. From this invariant, we can directly infer facts
like isType(1)

Node (obj . left), and isType(1)
Node (obj . left. left), i. e., in an object graph

satisfying this invariant, the left “spine” must consist of nodes of dynamic type
Node. Strengthening the precondition P by Invleft(obj) consequently allows to
establish postcondition Q—in a modular manner, since only the method imple-
mentation above has to be considered in the proof. Invoking the method on an
object graph that does not satisfy this invariant can therefore be considered as
a breach of the contract.
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5.4 Modularity in an Open-world: Storage Assumptions

Similarly to co-inductive invariants, it is possible via co-recursive functions to
map an object to the set of objects that can be reached along a particular path
set. The definition must be co-recursive, since object structures may represent a
graph. However, the presentation of this function may be based on a primitive-
recursive approximation function depending on a factor k :: nat that computes
this object set only up to the length k of the paths in the path set.

ObjSetAleft 0 obj σ = {}
ObjSetAleft k obj σ = if σ |= ∂ obj then{}

else {obj} ∪ObjSetAleft (k − 1) (obj . left σ) σ

The function ObjSetleft obj σ can then be defined as limit⋃
n∈Nat ObjSetAleft n obj σ .

On the other hand, we can add a state invariant on our concept of state per
type definition αSt = {σ :: oid ⇀ U α. Inv σ}. Here, we require for inv that each
oid points to an object that contains itself:

∀ oid ∈ dom σ. OidOf(the(σ oid)) = oid

As a consequence, there exists a one-to-one correspondence between objects and
their oid in a state. Thus, sets of objects can be viewed as sets of references,
too, which paves the way to interpret these reference sets in different states and
specify that an object did not change during a system transition or that there
are no references from one object-structure into some critical part of another
object structure.

6 Application: A Shallow Embedding of IMP++

In the following, we integrate the operations derived from an object-oriented
data model into assertions in a derived Hoare-Calculus for a small, imperative
language. This language is pretty much in the spirit of Featherweight Java [14],
in the sense that it is reduced to the absolute minimum. IMP++does not even
comprise the concept of a method invocation or a procedure call; on the other
hand, it provides a “generic slot” for these concepts via the CMD-construct, that
allows for an arbitrary transition over the entire program state. Given the dy-
namic type tests of the data model, it is straight-forward to define an arbitrary
overload resolution within this language; demonstrating how this definitions scale
up with the presented machinery to a modular proof method, however, is a far
more evolved subject that we consider beyond the scope of this paper.

Instead, we focus on how our type-safe framework pays off by not further
complicating its rules by side-conditions related to well-formedness of objects,
the syntactic admissibility of attribute accesses to an object or reasoning along
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the class hierarchy as in the deep embedding of, e. g., NanoJava [23]. We will
show that compact calculi for denotational, operational and axiomatic semantics
can be derived in a standard exercise.

We follow deliberately the standard presentation of IMP [20], a canonical
imperative core language, in the Isabelle/HOL library; this language has been
inspired by a standard textbook on program semantics [26]. We will extend
IMP with object-oriented typedness, creation, update, selection and a simple
form for exceptional computation (motivated by illegal memory accesses). In a
small example, we sketch how to apply it for reasoning on weak and strong data
invariants on tree-like structures.

In contrast to the previous sections where definitions and proofs were done
automatically for all classes and attributes—the proof presented here are done
interactively. However, we emphasize that a large part of it (e. g., the core Hoare-
Calculus and the rules for update and create) could be mechanically derived, too.

6.1 Syntax

The syntax of IMP++is introduced via a datatype definition:

α com = SKIP | EXN

| CMDα cmd | IF α bexp THEN α com ELSE α com
| α com ; α com | WHILE α bexp DO α com

SKIP denotes the empty, successfully terminating command, EXN the program
that raises the exception (IMP++ possesses only one). The generic command
CMD takes as argument a function α cmd which is a synonym for a function
α state ⇒ α state⊥. Thus, a α cmd is allowed to raise an exception; in our
context, this will be used to react operationally on undefined argument oid’s
of creation and update operations. The sequential composition, the conditional
and the while loop are the conventional constructs of the language. The latter
two are controlled by a Boolean expression α bexp which is a synonym for
α state⇒ bool⊥. Any assertion has a type which is an instance of α bexp, thus,
it can be used as control expression in IMP++.

6.2 Denotational Semantics

In general, the denotational semantics of an imperative language is a relation on
states; since uncaught exceptions may occur on the command level, we have also
error states denoted by ⊥. Thus, the type of the relation is (α :: bot state⊥ ×
α state⊥)set. As a consequence, we need as prerequisite the “strict extension”
_ ◦⊥ _ of type (β⊥ × γ⊥) set⇒ (α⊥ × β⊥) set⇒ (α⊥ × γ⊥) set on relations:

r ◦⊥ s ≡ {(⊥,⊥)} ∪ {(x, z). def x ∧ (∃y. def y ∧ (x, y) ∈ s ∧ (y, z) ∈ r)}
∪ {(x, z). def x ∧ (∃y.¬def y ∧ (x, y) ∈ s ∧ z = ⊥)}
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The definition of the semantic function C is a primitive recursion over the syntax:

C(SKIP) = Id
C(EXN) = {(s, t). t = ⊥}

C(CMD f) = {(s, t). s = ⊥ ∧ t = ⊥} ∪ {(s, t). def s ∧ t = f psq}
C(c0; c1) = C(c1) ◦⊥ C(c0)

C(IF b THEN c1 ELSE c2) = {(s, t). (s = ⊥ ∨ b psq = ⊥) ∧ t = ⊥}
∪ {(s, t). def s ∧ b psq = xtruey ∧ (s, t) ∈ C c1}
∪ {(s, t). def s ∧ b psq = xfalsey ∧ (s, t) ∈ C c2}

C(WHILE b DO c) = lfp(Γ b (C c))

where Γ is the usual approximation functional for the least fixed-point operator
lfp, enriched by the cases for undefined states:

Γ b cd ≡(λφ. {(s, t). (s = ⊥ ∨ b psq = ⊥) ∧ t = ⊥}∪
{(s, t). def s ∧ b psq = xtruey ∧ (s, t) ∈ (φ ◦⊥ cd)}∪
{(s, t). def s ∧ b psq = xfalsey ∧ s = t})

6.3 Hoare Semantics

In our setting, assertions are functions α :: bot state⊥ ⇒ bool. The validity of a
Hoare triple is stated as traditional:

|= {P}c{Q} ≡ ∀s t. (s, t) ∈ C(c) −→ P s −→ Q t

Based on the definition for C, we can derive a Hoare calculus for IMP++. Since we
focus on correctness proof and not completeness, we present the rules for validity
|= directly, avoiding a detour via a derivability notion `. Moreover, we use the
abbreviation �P for λσ. def σ ∧ Pσ. Thus, assertions like � {�P ′}c{�Q′}
relate “non-exception” states allowing inference of normal behavior. The derived
calculus is then surprisingly standard (see Table 1).

6.4 Data-model Specific Hoare Rules

Recall our running example with the classes Node and CNode. Besides the type-
safe accessor functions, we need families of store-related (i. e., level 1) update and
creation operations on objects. For example, the lifting of update operations to
the level of the assertion language is straight-forward:

obj . set(1)
left E ≡ λσ.σ(OidOf obj := obj σ. set(0)

left (E σ))

Here, the operation _(_ := _) denotes the usual update on functions. Instead
of CMD(obj . set(1)

left E) we write obj . left := E.
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∀s. P ′ s −→ P s � {P}c{Q} ∀s.Q s −→ Q′ s

� {P ′}c{Q′} � {�P} SKIP{�P}

� {�P}c{�Q} � {�Q}d{�R}

� {�P}c; d{�R}

� {�λσ. Pσ ∧ (pσq � b)}c{�P}

� {�P}{WHILE}b{DO}c{�λσ. Pσ ∧ (pσq � ¬ b)}

� {λσ. σ = ⊥} c {λσ. σ = ⊥} � {�λσ. pσq � ∂ f ∧Q(f pσq)} CMD f{�Q}

� {�λσ. (Pσ) ∧ (pσq � b) ∧ (pσq � ∂ b)}d{�Q}
� {�λσ. (Pσ) ∧ (pσq � ¬ b) ∧ (pσq � ∂ b)}d{�Q}

� {�P}{IF}b{THEN}c{ELSE}d{�Q}

Table 1. The Hoare Calculus for IMP++

With respect to the creation operations, we define:

newOidσ ≡ ε x. x /∈ dom σ

where ε x. P x is the Hilbert-operator that chooses an arbitrary x satisfying P .

newNode oid ≡ x((Objectt, oid), x((Nodet,⊥,⊥,⊥,⊥)y)y

The creation operation generates a new object of some type and stores the
reference to it in a given attribute of obj :

obj .new(1)
left ≡λσ. letσ′ = σ(newOidσ := newNode (newOidσ))

in obj . set(1)
left (newNode (newOidσ))σ′

Instead of CMD(obj .new(1)
left ) we write obj . left := new(Node).

From these definitions, the following family of class model-specific Hoare-
rules is derived (as usual, we pick the case for attribute left):

|= {�λσ. x(pσq � (∂ self)) ∧Q(obj . set(1)
left Epσq)}obj . left := E{�Q}

The analogous case for the creation is a special case of this rule.

6.5 An Example in IMP++.

A program that produces the smallest possible object system satisfying the CN-
ode invariant looks in a fictive language as follows:
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method Node m();
var H1:CNode;
var H2:CNode;
begin

H1:= New(CNode );
H2:= New(CNode );
H1.i:= 7;
H1.color := true;
H1.left :=H2;
H1.right :=H2;
H2.i:= 9;
H2.color := false;
H2.left :=H1;
H2.right :=H1;
return H1

end

Well, the method call as such cannot be represented in IMP++ because we did
not provide syntax for that. However, we can represent the local variables by
extending the underlying class model by a stack object class for method m (a
terminology also used in the Java language specification), and express pre and
post conditions for the body called mbody.

The stack-object class class mso has the form:

self : Node
return : CNode
H1 : CNode
H2 : CNode

i. e., it comprises attributes for the local variables H1 and H2 with the previously
described types as well as a return attribute of type CNode. The package will
then generate the usual update functions for this class and give semantics to
the corresponding assignments in our example program (the return statement is
viewed as an update to the return attribute).

We want to specify that the program establishes by a sequence of creation
and update steps the global invariant verification of the body is stated as follows,
assuming that the stack object is defined when the method is called:

� {�λσ. σ |= ∂(mso)}mbody{�σ � mso. return(1) ∈ CNodeKindSet}

The proof for this statement proceeds in essentially two phases: First, by several
applications of the consequence rule and the update-rule, we accumulate an
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equation system as assertion:

σ |= ∂(mso.H1(1))

∧ σ |= ∂(mso.H2(1))

∧ σ |= mso.H1. i(1) = 7 ∧ σ |= mso.H1. color(1) = xtruey
∧ σ |= mso.H1. left(1) = H2 ∧ σ |= mso.H1. right(1) = H2

∧ σ |= mso.H2. i(1) = 9 ∧ σ |= mso.H2. color(1) = xfalsey
∧ σ |= mso.H2. left(1) = H1 ∧ σ |= mso.H2. right(1) = H1
∧ σ |= mso. return(1) = H1

(Recall that we overload 7, 9, . . . with λσ.7, λσ.7, . . . to simplify notation). This
assertion must imply the postcondition, which is reduced to:

σ |= mso. return(1) ∈ gfp CnodeKindF

The gap is bridged by the application of the derived fixed-point-induction:

∧
X.

[σ |= mso. return(1) ∈ X]
···

σ |= mso. return(1) ∈ CnodeKindFX

σ |= mso. return(1) ∈ gfp CnodeKindF

The example also shows how liberal invariants (a freshly generated object only
satisfies such an invariant since the .left and .right attribute are uninitialized)
can be used to establish stronger ones. In [15] local flags in objects are suggested
to switch on and off parts of static class invariants. Our approach does not
need such flags (while it can mimic them), rather, we would generate versions
of invariants and relate them via co-induction automatically.

7 Conclusion

We presented an extensible universe construction supporting object-oriented
datatype theories including subtyping and (single) inheritance. On the theoret-
ical side, this proves that object-oriented datatype theories can be represented
in typed λ-calculus with Hindley-Milner Polymorphism. As a by-product, the
construction also gives insight into the representation of open-world and closed-
world assumptions in types. The achievement on the practical side is three-fold:
First, we show that the core of object-oriented reasoning can be made amenable
to off-the-shelf HOL theorem provers (no Isabelle specific features are inherently
necessary for this) in form of a shallow embedding. Second, this can be done in
a conservative way: provided that the 9 axioms of HOL are consistent (on which
the large majority of logicians agree), the generated datatype theory will also
be consistent. Third, albeit the underlying complexity, deriving automatically
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the datatype theory from the basic definitions is still technically feasible: [7,9]
report on an example suite of class models. The computation time for each of
these models is below 2 minutes on recent hardware.

One might object that the universe construction described in Section 3 and
Section 4 is entirely meta-theoretic, thus not verifiable; and principles like con-
servative definitions are not applicable on this level. However, this is not entirely
true. While concepts like “the set of all HOL-types” or “the set of class types” are
indeed not formalized in HOL, for each concrete type resulting from the construc-
tion a consistent theory is generated. If our construction or our implementation
has an error, Isabelle will refuse to accept these definitions or the proofs.

Related Work. Work on object-oriented semantics based on deep embeddings
has been discussed earlier. For shallow embeddings, to the best of our knowledge,
there is only [25]. In this approach, however, emphasis is put on a universal type
for a classes comprising method tables. This results in local “universes” for input
and output types of methods and the need for reasoning on class isomorphisms.
Subtyping on objects must be expressed implicitly via refinement. With respect
to extensibility of data-structures, the idea of using parametric polymorphism is
partly folklore in HOL research communities; for example, extensible records and
their application for some form of subtyping has been described in HOOL [19].
Since only α-extensions are used, this results in a restricted form of class types
with no coercion mechanism to α Object.

Datatype packages have been considered mostly in the context of HOL or
functional programming languages. Going back to ideas of Milner in the 70ies,
systems like [17,5] build over an S-expression like term universe (co)-inductive
sets which are abstracted to (freely generated) datatypes. Paulson’s inductive
package [24] also uses subsets of the ZF set universe i.

Even systems like Spec# [3,15] or Krakatoa [16], which are clearly more
advanced with respect to the degree of automation for program verification as a
whole, might profit from guaranteed consistent data-models: at present, a quite
substantial axiomatization of a given object-oriented memory model is generated
in these systems. The second author witnessed several logical inconsistencies in
the data model underlying Spec#. We believe that the properties of our object-
oriented data model, even if taken axiomatically, could provide assurance. If
required, our system can generate for given class system proofs of consistency.

Future Work. We see the following lines of future research:
– Multiple Inheritance. Our approach is strictly limited to single inheritance.

However, it is easy to extend our package with support for multiple subtyping
based on interfaces.

– Modular Verification of Recursive Methods. The presented language does
not comprise method invocation—it remains to be shown how the presented
machinery can be used for an extensible program theory comprising these
crucial features.

– Support for Inductive Constraints. By introducing measure-functions over
object-structures, inductive datatypes can be characterized for defined mea-
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sures of an object. This paves the way for the usual structural induction and
well-founded recursion schemes,

– Support of built-in Co-recursion. Co-recursion can be used to define e. g.,
deep object equalities.

– Deriving VCG. Similar to the IMP-theory, verification condition generators
for IMP++programs can be proven sound and complete. This leads to effec-
tive program verification techniques based entirely on derived rules.
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