
Theorem-prover based Testing

with HOL-TestGen

Achim D. Brucker Burkhart Wolff
{brucker, bwolff}@inf.ethz.ch

Information Security, ETH Zurich, Switzerland
Microsoft Research, MSR Redmond, USA

Tallinn, 26th June 2007

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff
mailto:brucker@inf.ethz.ch
mailto:bwolff@inf.ethz.ch

Outline

1 Motivation and Introduction

2 From Foundations to Pragmatics

3 Advanced Test Scenarios

4 Case Studies

5 Conclusion

Outline

1 Motivation and Introduction

2 From Foundations to Pragmatics

3 Advanced Test Scenarios

4 Case Studies

5 Conclusion

Motivation and Introduction Motivation

State of the Art

“Dijkstra’s Verdict”:

Program testing can be used to show the presence of bugs, but
never to show their absence.

Is this always true?

Can we bother?

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 4

Motivation and Introduction Motivation

Our First Vision

Testing and verification may converge,
in a precise technical sense:

specification-based (black-box) unit testing

generation and management of formal test hypothesis

verification of test hypothesis (not discussed here)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 5

Motivation and Introduction Motivation

Our Second Vision

Observation:
Any testcase-generation technique is based on and limited
by underlying constraint-solution techniques.

Approach:
Testing should be integrated in an environment combining
automated and interactive proof techniques.

the test engineer must decide over, abstraction level, split
rules, breadth and depth of data structure exploration ...

we mistrust the dream of a push-button solution

byproduct: a verified test-tool

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 6

Motivation and Introduction HOL-TestGen and its Components

Components of HOL-TestGen

HOL (Higher-order Logic):

“Functional Programming Language with Quantifiers”
plus definitional libraries on Sets, Lists, . . .
can be used meta-language for Hoare Calculus for Java, Z,
. . .

HOL-TestGen:

based on the interactive theorem prover Isabelle/HOL
implements these visions

Proof General:

user interface for Isabelle and HOL-TestGen
step-wise processing of specifications/theories
shows current proof states

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 7

Motivation and Introduction HOL-TestGen and its Components

Components-Overview

Isabelle/HOL

HOL-TestGen

SML-System

ProofGeneral

Figure: The Components of HOL-TestGen

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 8

Motivation and Introduction HOL-TestGen and its Workflow

The HOL-TestGen Workflow

The HOL-TestGen workflow is basically fivefold:

1 Step I: writing a test theory (in HOL)

2 Step II: writing a test specification
(in the context of the test theory)

3 Step III: generating a test theorem (roughly: testcases)

4 Step IV: generating test data

5 Step V: generating a test script

And of course:

building an executable test driver

and running the test driver

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 9

Motivation and Introduction HOL-TestGen and its Workflow

Step I: Writing a Test Theory

Write data types in HOL:

theory List_test
imports Testing
begin

datatype ’a list =
Nil ("[]")

| Cons ’a "’a list " (infixr "#" 65)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 10

Motivation and Introduction HOL-TestGen and its Workflow

Step I: Writing a Test Theory

Write recursive functions in HOL:

consts is_sorted:: "(’a::ord) list⇒bool"
primrec

"is_sorted [] = True"
"is_sorted (x#xs) = case xs of

[] ⇒ True
| y#ys⇒((x < y) ∨(x = y))

∧ is_sorted xs"

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 11

Motivation and Introduction HOL-TestGen and its Workflow

Step II: Write a Test Specification

writing a test specification (TS)
as HOL-TestGen command:

test_spec "is_sorted (prog (l::(’a list)))"

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 12

Motivation and Introduction HOL-TestGen and its Workflow

Step III: Generating Testcases

executing the testcase generator in form of an Isabelle
proof method:

apply(gen_test_cases "prog")

concluded by the command:

store_test_thm "test_sorting"

. . . that binds the current proof state as test theorem to
the name test_sorting.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 13

Motivation and Introduction HOL-TestGen and its Workflow

Step III: Generating Testcases

The test theorem contains clauses (the test-cases):

is_sorted (prog [])
is_sorted (prog [?X1X17])
is_sorted (prog [?X2X13, ?X1X12])
is_sorted (prog [?X3X7, ?X2X6, ?X1X5])

as well as clauses (the test-hypothesis):

THYP((∃ x. is_sorted (prog [x])) −→(∀ x. is_sorted(prog [x])))
. . .
THYP((∀ l. 4 < |l| −→is_sorted(prog l))

We will discuss these hypothesises later in great detail.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 14

Motivation and Introduction HOL-TestGen and its Workflow

Step IV: Test Data Generation

On the test theorem,
all sorts of logical massages can be performed.
Finally, a test data generator can be executed:

gen_test_data "test_sorting"

The test data generator
extracts the testcases from the test theorem
searches ground instances satisfying the constraints (none
in the example)

Resulting in test statements like:

is_sorted (prog [])
is_sorted (prog [3])
is_sorted (prog [6, 8])
is_sorted (prog [0, 10, 1])

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 15

Motivation and Introduction HOL-TestGen and its Workflow

Step V: Generating A Test Script

Finally, a test script or test harness can be generated:

gen_test_script "test_lists.sml" list" prog

The generated test script can be used to test an
implementation, e. g., in SML, C, or Java

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 16

Motivation and Introduction HOL-TestGen and its Workflow

The Complete Test Theory

theory List_test
imports Main begin
consts is_sorted:: "(’a::ord) list⇒bool"
primrec "is_sorted [] = True"

"is_sorted (x#xs) = case xs of
[] ⇒ True

| y#ys⇒((x < y) ∨(x = y))
∧ is_sorted xs"

test_spec "is_sorted (prog (l::(’a list)))"
apply(gen_test_cases prog)

store_test_thm "test_sorting"

gen_test_data "test_sorting"
gen_test_script "test_lists.sml" list" prog

end

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 17

Motivation and Introduction HOL-TestGen and its Workflow

Testing an Implementation

Executing the generated test script may result in:

Test Results:
Test 0 - *** FAILURE: post-condition false, result: [1, 0, 10]
Test 1 - SUCCESS, result: [8, 6]
Test 2 - SUCCESS, result: [3]
Test 3 - SUCCESS, result: []

Summary:
Number successful tests cases: 3 of 4 (ca. 75%)
Number of warnings: 0 of 4 (ca. 0%)
Number of errors: 0 of 4 (ca. 0%)
Number of failures: 1 of 4 (ca. 25%)
Number of fatal errors: 0 of 4 (ca. 0%)

Overall result: failed

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 18

Motivation and Introduction HOL-TestGen and its Workflow

Tool-Demo!

Figure: HOL-TestGen Using Proof General at one Glance

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 19

Outline

1 Motivation and Introduction

2 From Foundations to Pragmatics

3 Advanced Test Scenarios

4 Case Studies

5 Conclusion

From Foundations to Pragmatics Foundations

The Foundations of HOL-TestGen

Basis:

Isabelle/HOL library: 10000 derived rules, . . .
about 500 are organized in larger data-structures used by
Isabelle’s proof procedures, . . .

These Rules were used in advanced proof-procedures for:

Higher-Order Rewriting
Tableaux-based Reasoning —
a standard technique in automated deduction
Arithmetic decision procedures (Coopers Algorithm)

gen_testcases is an automated tactical program using
combination of them.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 21

From Foundations to Pragmatics Foundations

Some Rewrite Rules

Rewriting is a easy to understand deduction paradigm
(similar FP) centered around equality

Arithmetic rules, e. g.,

Suc(x + y) = x + Suc(y)

x + y = y + x

Suc(x) 6= 0

Logic and Set Theory, e. g.,

∀x. (P x ∧ Q x) = (∀x. P x) ∧ (∀x. P x)⋃
x ∈ S. (P x ∪ Q x) = (

⋃
x ∈ S. P x) ∪ (

⋃
x ∈ S. Q x)

JA = A′; A =⇒ B = B′K =⇒ (A ∧ B) = (A′ ∧ B′)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 22

From Foundations to Pragmatics Foundations

The Core Tableaux-Calculus

Safe Introduction Rules for logical connectives:

t = t true

P Q

P ∧ Q

[¬Q]
···
P

P ∨ Q

[P]
···
Q

P→ Q

[P]
···

false

¬P

...

Safe Elimination Rules:

false

P

P ∧ Q

[P,Q]
···
R

R

P ∨ Q

[P]
···
R

[Q]
···
R

R

P→ Q

[¬P]
···
R

[Q]
···
R

R

...

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 23

From Foundations to Pragmatics Foundations

The Core Tableaux-Calculus

Safe Introduction Quantifier rules:

P ?x

∃x. P x

∧
x. P x

∀x. P x

Safe Quantifier Elimination ∃x. P x
∧

x.

[P x]
···
Q

Q
Critical Rewrite Rule:

if P then A else B = (P→ A) ∧ (¬P→ B)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 24

From Foundations to Pragmatics Explicit Hypothesis

Explicit Test Hypothesis: The Concept

What to do with infinite data-strucutures?

What is the connection between test-cases and test
statements and the test theorems?

Two problems, one answer: Introducing test hypothesis
“on the fly”:

THYP : bool⇒bool
THYP(x) ≡x

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 25

From Foundations to Pragmatics Explicit Hypothesis

Taming Infinity I: Regularity Hypothesis

What to do with infinite data-strucutures of type τ?
Conceptually, we split the set of all data of type τ into

{X :: τ | |x| < k} ∪ {X :: τ | |x| ≥ k}

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 26

From Foundations to Pragmatics Explicit Hypothesis

Taming Infinity I: Motivation

Consider the first set {X :: τ | |x| < k}
for the case τ = α list, k = 2,3,4.
These sets can be presented as:

1) |x::τ |<2 = (x = []) ∨(∃ a. x = [a])
2) |x::τ |<3 = (x = []) ∨(∃ a. x = [a])

∨ (∃ a b. x = [a,b])
3) |x::τ |<4 = (x = []) ∨(∃ a. x = [a])

∨ (∃ a b. x = [a,b]) ∨(∃ a b c. x = [a,b,c])

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 27

From Foundations to Pragmatics Explicit Hypothesis

Taming Infinity I: Data Separation Rules

This motivates the (derived) data-separation rule:

(τ = α list, k = 3):[
x = []

]
···
P

∧
a.

[
x = [a]

]
···
P

∧
a b.

[
x = [a,b]

]
···
P THYP M

P

Here, M is an abbreviation for:

∀ x. k < |x| −→P x

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 28

From Foundations to Pragmatics Explicit Hypothesis

Taming Infinity II: Uniformity Hypothesis

What is the connection between test cases and test
statements and the test theorems?

Well, the “uniformity hypothesis”:

Once the program behaves correct for one test case,
it behaves correct for all test cases ...

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 29

From Foundations to Pragmatics Explicit Hypothesis

Taming Infinity II: Uniformity Hypothesis

Using the uniformity hypothesis, a test case:

n) [[C1 x; ...; Cm x]] =⇒TS x

is transformed into:

n) [[C1 ?x; ...; Cm ?x]] =⇒TS ?x
n+1) THYP((∃ x. C1 x ... Cm x −→TS x)

−→(∀ x. C1 x ... Cm x −→TS x))

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 30

From Foundations to Pragmatics Putting the Pieces Together

Testcase Generation by NF Computations

Test-theorem is computed out of the test specification by

a heuristicts applying Data-Separation Theorems

a rewriting normal-form computation

a tableaux-reasoning normal-form computation

shifting variables referring to the program under test prog
test into the conclusion, e.g.:

[[¬(prog x = c); ¬(prog x = d)]]=⇒A

is transformed equivalently into

[[¬A]] =⇒(prog x = c) ∨(prog x = d)

as a final step, all resulting clauses were normalized by
applying uniformity hypothesis to each free variable.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 31

From Foundations to Pragmatics Putting the Pieces Together

Testcase Generation: An Example

theory TestPrimRec
imports Main
begin
primrec

x mem [] = False
x mem (y#S) = if y = x

then True
else x mem S

test_spec:
"x mem S =⇒prog x S"

apply(gen_testcase 0 0)

1) prog x [x]
2)
∧

b. prog x [x,b]
3)
∧

a. a6=x=⇒prog x [a,x]
4) THYP(3 ≤size (S)

−→∀ x. x mem S
−→prog x S)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 32

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 33

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

is transformed via data-separation lemma to:

1. S=[] =⇒x mem S −→prog x S

2.
∧

a. S=[a] =⇒x mem S −→prog x S

3.
∧

a b. S=[a,b] =⇒x mem S −→prog x S

4. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 33

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

canonization leads to:

1. x mem [] =⇒prog x []

2.
∧

a. x mem [a] =⇒prog x [a]

3.
∧

a b. x mem [a,b] =⇒prog x [a,b]

4. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 33

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

which is reduced via the equation for mem:

1. false =⇒prog x []

2.
∧

a. if a = x then True
else x mem [] =⇒prog x [a]

3.
∧

a b. if a = x then True
else x mem [b] =⇒prog x [a,b]

4. THYP(3 ≤|S| −→x mem S −→prog x S)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 33

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

erasure for unsatisfyable constraints and rewriting conditionals
yields:

2.
∧

a. a = x ∨(a 6=x ∧false)
=⇒prog x [a]

3.
∧

a b. a = x ∨(a 6=x ∧x mem [b]) =⇒prog x [a,b]

4. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 33

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

. . . which is further reduced by tableaux rules and canconiza-
tion to:

2.
∧

a. prog a [a]

3.
∧

a b. a = x =⇒prog x [a,b]
3’.

∧
a b. [[a6=x; x mem [b]]]=⇒prog x [a,b]

4. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 33

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

. . . which is reduced by canonization and rewriting of mem to:

2.
∧

a. prog x [x]

3.
∧

a b. prog x [x,b]
3’.

∧
a b. a 6=x =⇒prog x [a,x]

4. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 33

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

. . . as a final step, uniformity is expressed:

1. prog ?x1 [?x1]
2. prog ?x2 [?x2,?b2]
3. ?a36=?x1 =⇒prog ?x3 [?a3,?x3]
4. THYP(∃ x.prog x [x] −→prog x [x]

...
7. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 33

From Foundations to Pragmatics Summing Up

Summing up:

The test-theorem for a test specification TS has the general
form:

JTC1; . . . ; TCn; THYP H1; . . . ; THYP HmK =⇒ TS

where the test cases TCi have the form:

JC1x; . . . ; Cmx; THYP H1; . . . ; THYP HmK =⇒ P x (prog x)

and where the test-hypothesis are either uniformity or
regularity hypothethises.
The Ci in a test case were also called constraints of the
testcase.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 34

From Foundations to Pragmatics Summing Up

Summing up:

The overall meaning of the test-theorem is:

if the program passes the tests for all test-cases,
and if the test hypothesis are valid for PUT,
then PUT complies to testspecification TS.

Thus, the test-theorem establishes a formal link
between test and verification !!!

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 35

From Foundations to Pragmatics A Quick Glance on Test Data Generation

Generating Test Data

Test data generation is now a constraint satisfaction problem.

We eliminate the meta variables ?x , ?y, . . . by
constructing values (“ground instances”) satisfying the
constraints. This is done by:

random testing (for a smaller input space!!!)
arithmetic decision procedures
reusing pre-compiled abstract test cases
. . .
interactive simplify and check, if constraints went away!

Output: Sets of instantiated test theorems
(to be converted into Test Driver Code)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 36

Advanced Test Scenarios

Outline

1 Motivation and Introduction

2 From Foundations to Pragmatics

3 Advanced Test Scenarios

4 Case Studies

5 Conclusion

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 37

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Tuning the Workflow by Interactive Proof

Observations:

Test-theorem generations is fairly easy ...

Test-data generation is fairly hard ...
(it does not really matter if you use random solving
or just plain enumeration !!!)

Both are scalable processes . . .
(via parameters like depth, iterations, ...)

There are bad and less bad forms of test-theorems !!!

Recall: Test-theorem and test-data generation are normal
form computations:
=⇒ More Rules, better results . . .

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 38

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Example: A “Bad” Test-case

Drawn from Red-Black-Tree, after gen_test_cases 5 1.

[[max_B_height ?X8 = 0; blackinv ?X8; redinv (T R E ?X9 ?X8);
∀ x. (x = ?X9 −→?X7< ?X9) <and> (isin x ?X8 −→?X7 < x);
∀ x. isin x ?X8 −→?X9 < x; isord ?X8
=⇒blackinv (prog (?X7, T B E ?X7 (T R E ?X9 ?X8)));

lots of unresolved (user-defined) recursive predicates, lots of
quantifiers, three variables for which satisfying
ground-instances have to be found . . .

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 39

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

What makes a Test-case “Bad”

redundancy.

many unsatisfiable constraints.

many constraints with unclear logical status.

constraints that are difficult to solve.
(like arithmetics).

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 40

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

How to Improve Test-Theorems

New simplification rule establishing unsatisfiability.

New rules establishing equational constraints for
variables.

(max_B_height (T x t1 val t2) = 0) =⇒(x = R)

(max_B_height x = 0) =
(x = E ∨∃ a y b. x = T R a y b ∧

max(max_B_height a)
(max_B_height b) = 0)

Many rules are domain specific —
few hope that automation pays really off.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 41

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Improvement Slots

logical massage of test-theorem.

in-situ improvements:
add new rules into the context before gen_test_cases.

post-hoc logical massage of test-theorem.

in-situ improvements:
add new rules into the context before gen_test_data.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 42

Advanced Test Scenarios Sequence Testing

Motivation: Sequence Test

So far, we have used HOL-TestGen only for test
specifications of the form:

pre x→ post(prog x)

This seems to limit the HOL-TestGen approach to
UNIT-tests.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 43

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

No Non-determinism.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 44

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

post must indeed be executable; however, the pre-
post style of specification represents a relational
description of prog.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 44

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

post must indeed be executable; however, the pre-
post style of specification represents a relational
description of prog.

No Automata - No Tests for Sequential Behaviour.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 44

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

post must indeed be executable; however, the pre-
post style of specification represents a relational
description of prog.

HOL has lists and recursive predicates; thus sets of
lists, thus languages . . .

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 44

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

post must indeed be executable; however, the pre-
post style of specification represents a relational
description of prog.

HOL has lists and recursive predicates; thus sets of
lists, thus languages . . .

No possibility to describe reactive tests.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 44

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

post must indeed be executable; however, the pre-
post style of specification represents a relational
description of prog.

HOL has lists and recursive predicates; thus sets of
lists, thus languages . . .

HOL has Monads. And therefore means for IO-
specifications.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 44

Advanced Test Scenarios Sequence Testing

Representing Sequence Test

Test-Specification Pattern:

accept trace→P(Mfold trace σ0 prog)

where

Mfold [] σ = Some σ
MFold (input::R) = case prog(input, σ) of

None ⇒ None
| Some σ‘⇒Mfold R σ’ prog

Can this be used for reactive tests?

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 45

Advanced Test Scenarios Sequence Testing

Example: A Reactive System I

A toy client-server system:

stop

ack

ack

req?X send?D!Yport!Y

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel . . .

Observation:

X and Y are only known at runtime!

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 46

Advanced Test Scenarios Sequence Testing

Example: A Reactive System I

A toy client-server system:

req?X→ port!Y[Y < X]→
(rec N. send!D.Y → ack→ N

� stop→ ack→ SKIP)

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel . . .

Observation:

X and Y are only known at runtime!

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 46

Advanced Test Scenarios Sequence Testing

Example: A Reactive System I

A toy client-server system:

req?X→ port!Y[Y < X]→
(rec N. send!D.Y → ack→ N

� stop→ ack→ SKIP)

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel . . .
Observation:

X and Y are only known at runtime!

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 46

Advanced Test Scenarios Sequence Testing

Example: A Reactive System II

Observation:

X and Y are only known at runtime!

Mfold is a program that manages a state at test run time.

use an environment that keeps track of the instances of X
and Y?

Infrastructure: An observer maps
abstract events (req X, port Y, ...) in traces
to
concrete events (req 4, port 2, ...) in runs!

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 47

Advanced Test Scenarios Sequence Testing

Example: A Reactive System |||

Infrastructure: the observer

observer rebind substitute postcond ioprog ≡
(λ input. (λ (σ, σ ’). let input’= substitute σinput in

case ioprog input’ σ’ of
None⇒None (* ioprog failure − eg. timeout ... *)

| Some (output, σ’’’)⇒let σ’’ = rebind σoutput in
(if postcond (σ’’,σ’’’) input’ output
then Some(σ’’, σ’’’)
else None (* postcond failure *))))"

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 48

Advanced Test Scenarios Sequence Testing

Example: A Reactive Test IV

Reactive Test-Specification Pattern:

accept trace→
P(Mfold traceσ0 (observer rebind subst postcond ioprog))

for reactive systems!

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 49

Outline

1 Motivation and Introduction

2 From Foundations to Pragmatics

3 Advanced Test Scenarios

4 Case Studies

5 Conclusion

Case Studies Red-black Trees

Case Studies: Red-black Trees

Motivation

Test a non-trivial and widely-used data structure.

part of the SML standard library

widely used internally in the sml/NJ compiler, e. g., for
providing efficient implementation for Sets, Bags, . . . ;

very hard to generate (balanced) instances randomly

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 51

Case Studies Red-black Trees

Modeling Red-black Trees I

Red-Black Trees:

Red Invariant: each red node has a
black parent.

Black Invariant: each path from the
root to an empty node
(leaf) has the same
number of black nodes.

2

5

6

8

datatype
color = R | B
tree = E | T color (α tree) (β::ord item) (α tree)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 52

Case Studies Red-black Trees

Modeling Red-black Trees II

Red-Black Trees: Test Theory

consts
redinv :: tree⇒bool
blackinv :: tree⇒bool

recdef blackinv measure (λ t. (size t))
blackinv E = True
blackinv (T color a y b) =

((blackinv a) ∧(blackinv b)
∧ ((max B (height a)) = (max B (height b))))

recdev redinv measure ...

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 53

Case Studies Red-black Trees

Red-black Trees: Test Specification

Red-Black Trees: Test Specification

test_spec:
"isord t ∧ redinv t ∧blackinv t
∧ isin (y::int) t
−→
(blackinv(prog(y,t)))"

where prog is the program under test (e. g., delete).

Using the standard-workflows results, among others:

RSF −→blackinv (prog (100, T B E 7 E))
blackinv (prog (−91, T B (T R E −91 E) 5 E))

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 54

Case Studies Red-black Trees

Red-black Trees: A first Summary

Observation:

Guessing (i. e., random-solving) valid red-black trees is difficult.

On the one hand:

random-solving is nearly impossible for solutions which are
“difficult” to find
only a small fraction of trees with depth k are balanced

On the other hand:

we can quite easily construct valid red-black trees
interactively.

Question:
Can we improve the test-data generation by using our
knowledge about red-black trees?

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 55

Case Studies Red-black Trees

Red-black Trees: A first Summary

Observation:

Guessing (i. e., random-solving) valid red-black trees is difficult.

On the one hand:

random-solving is nearly impossible for solutions which are
“difficult” to find
only a small fraction of trees with depth k are balanced

On the other hand:

we can quite easily construct valid red-black trees
interactively.

Question:
Can we improve the test-data generation by using our
knowledge about red-black trees?

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 55

Case Studies Red-black Trees

Red-black Trees: Hierarchical Testing I

Idea:

Characterize valid instances of red-black tree in more detail and
use this knowledge to guide the test data generation.

First attempt:
enumerate the height of some trees without black nodes

lemma maxB_0_1:
"max_B_height (E:: int tree) = 0"

lemma maxB_0_5:
"max_B_height (T R (T R E 2 E) (5::int) (T R E 7 E)) = 0"

But this is tedious . . .

and error-prone

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 56

Case Studies Red-black Trees

Red-black Trees: Hierarchical Testing I

Idea:

Characterize valid instances of red-black tree in more detail and
use this knowledge to guide the test data generation.

First attempt:
enumerate the height of some trees without black nodes

lemma maxB_0_1:
"max_B_height (E:: int tree) = 0"

lemma maxB_0_5:
"max_B_height (T R (T R E 2 E) (5::int) (T R E 7 E)) = 0"

But this is tedious . . . and error-prone

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 56

Case Studies Red-black Trees

Red-black Trees: Hierarchical Testing II

Or use Theorem-proving:

introduce auxiliary lemmas, that allow for the elimination of
unsatisfiable constraints.

lemma max_B_height_dec :
"((max_B_height (T x t1 val t3)) = 0) =⇒(x = R) "
apply(case_tac "x",auto)

done

lemma height_0:
"(max_B_height x = 0) =
(x = E ∨(∃ a y b. x = T R a y b ∧

(max (max_B_height a) (max_B_height b)) = 0))";
apply(induct "x", simp_all,case_tac "color",auto)

done

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 57

Case Studies Red-black Trees

Red-black Trees: sml/NJ Implementation

2

5

6

8

(a) pre-state

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 58

Case Studies Red-black Trees

Red-black Trees: sml/NJ Implementation

2

5

6

8

(b) pre-state: delete “8”

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 58

Case Studies Red-black Trees

Red-black Trees: sml/NJ Implementation

2

5

6

8

(b) pre-state: delete “8”

6

5

2

(c) correct result

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 58

Case Studies Red-black Trees

Red-black Trees: sml/NJ Implementation

2

5

6

8

(b) pre-state: delete “8”

6

5

2

(c) correct result

5

2

6

(d) result of sml/NJ

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 58

Case Studies Red-black Trees

Red-black Trees: Summary

Statistics: 348 test cases were generated
(within 2 minutes)

One error found: crucial violation against
red/black-invariants

Red-black-trees degenerate to linked list
(insert/search, etc. only in linear time)

Not found within 12 years

Reproduced meanwhile by random test tool

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 59

Case Studies Firewall Testing

Specification-based Firewall Testing

Objective: test if a firewall configuration implements a given
firewall policy

Procedure: as usual:
1 model firewalls (e.g., networks and protocols)

and their policies in HOL
2 use HOL-TestGen for test-case generation

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 60

Case Studies Firewall Testing

A Typical Firewall Policy

DMZ

Internet (extern)

Intranet (intern)
��
��
��
��

��
��
��
��

−→ Intranet DMZ Internet
Intranet - smtp, imap all protocols except smtp
DMZ ∅ - smtp
Internet ∅ http,smtp -

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 61

Case Studies Firewall Testing

A Bluffers Guide to Firewalls

A Firewall is a

state-less or
state-full

packet filter.

The filtering (i.e., either accept or deny a package) is
based on the

source
destination
protocol
possibly: internal protocol state

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 62

Case Studies Firewall Testing

The State-less Firewall Model I

First, we model a packet:

types (α,β) packet = "id ×protocol ×αsrc ×αdest ×βcontent"

where

id: a unique packet identifier, e. g., of type Integer

protocol: the protocol, modeled using an enumeration type
(e.g., ftp, http, smtp)

α src (α dest): source (destination) address, e.g., using IPv4:

types
ipv4_ip = "(int ×int ×int ×int)"
ipv4 = "(ipv4_ip ×int)"

β content: content of a package

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 63

Case Studies Firewall Testing

The State-less Firewall Model II

A firewall (packet filter) either accepts or denies a
package:

datatype
α out = accept α| deny

A policy Eine Policy is a map from packet to packet out:

types
(α, β) Policy = "(α, β) packet ⇀((α, β) packet) out"

Writing policies is supported by a specialised combinator
set

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 64

Case Studies Firewall Testing

Testing State-less Firewalls: An Example I

DMZ

Internet (extern)

Intranet (intern)
��
��
��
��

��
��
��
��

−→ Intranet DMZ Internet
Intranet - smtp, imap all protocols except smtp
DMZ ∅ - smtp
Internet ∅ http,smtp -

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 65

Case Studies Firewall Testing

Testing State-less Firewalls: An Example II

src dest protocol action
Internet DMZ http accept
Internet DMZ smtp accept

...
...

...
...

∗ ∗ ∗ deny

constdefs Internet_DMZ :: "(ipv4, content) Rule"
"Internet_DMZ ≡

(allow_prot_from_to smtp internet dmz) ++
(allow_prot_from_to http internet dmz)"

The policy can be modelled as follows:

constdefs test_policy :: "(ipv4,content) Policy"
"test_policy ≡ deny_all ++ Internet_DMZ ++ ..."

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 66

Case Studies Firewall Testing

Testing State-less Firewalls: An Example III

Using the test specification

test_spec "FUT x = test_policy x"

results in 485 test cases, e.g.:

FUT
(6,smtp,((192,169,2,8),25),((6,2,0,4),2),data) =
Some (accept
(6,smtp,((192,169,2,8),25),((6,2,0,4),2),data))
FUT (2,smtp,((192,168,0,6),6),((9,0,8,0),6),data)
= Some deny

(time used: 19 hours)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 67

Case Studies Firewall Testing

State-full Firewalls: An Example (ftp) I

ftp_close

ftp_data

ftp_port_request

ftp_init

Server Client

 ftp_data

ftp_close
ftp_port_req

ftp_init

Exception

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 68

Case Studies Firewall Testing

State-full Firewalls: An Example (ftp) II

based on our state-less model:
Idea: a firwall (and policy) has an internal state:

the firewall state is based on the history and the current
policy state:

types (α,β,γ) FWState = "α ×(β,γ) Policy"

where FWStateTransition maps an incoming packet to a
new state

types (α,β,γ) FWStateTransition =
"((β,γ) In_Packet ×(α,β,γ) FWState) ⇀
((α,β,γ) FWState)"

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 69

Case Studies Firewall Testing

State-full Firewalls: An Example (ftp) III

HOL-TestGen gerates 4 test case, e.g.:

FUT [(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), close),
(6, ftp, ((4, 7, 9, 8), 21), ((192, 168, 3, 1), 3), ftp_data),
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), port_request 3),
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), init)] =

([(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), close),
(6, ftp, ((4, 7, 9, 8), 21), ((192, 168, 3, 1), 3), ftp_data),
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), port_request 3),
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), init)],

new_policy)

(time used: 7 minutes)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 70

Case Studies Firewall Testing

Firewall Testing: Summary

Firewall testing does a concrete configuration of a network
firewall correctly implements a policy ?

Non-Trivial State-Space (IP Adresses)

Non-Trivial Test-Case Generation

Sequence Testing used for Stateful Firewalls

Realistic, but amazingly concise model in HOL!

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 71

Outline

1 Motivation and Introduction

2 From Foundations to Pragmatics

3 Advanced Test Scenarios

4 Case Studies

5 Conclusion

Conclusion

Conclusion I

Approach based on theorem proving

test specifications are written in HOL
functional programming, higher-order, pattern matching

Test hypothesis explicit and controllable by the user
(could even be verified!)

Proof-state explosion controllable by the user

Although logically puristic, systematic unit-test of a “real”
compiler library is feasible!

Verified tool inside a (well-known) theorem prover

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 73

Conclusion

Conclusion II

Test Hypothesis explicit and controllable by the user
(can even be verified !)

In HOL, Sequence Testing and Unit Testing are the same!

The Sequence Test Setting of HOL-TestGen is effective
(see Firewall Test Case Study)

HOL-Testgen is a verified test-tool
(entirely based on derived rules . . .)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 74

Conclusion

Conclusion II

Test Hypothesis explicit and controllable by the user
(can even be verified !)

In HOL, Sequence Testing and Unit Testing are the same!
TS pattern Unit Test:

pre x −→ post x(prog x)

The Sequence Test Setting of HOL-TestGen is effective
(see Firewall Test Case Study)

HOL-Testgen is a verified test-tool
(entirely based on derived rules . . .)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 74

Conclusion

Conclusion II

Test Hypothesis explicit and controllable by the user
(can even be verified !)

In HOL, Sequence Testing and Unit Testing are the same!
TS pattern Sequence Test:

accept trace =⇒ P(Mfold trace σ0prog)

The Sequence Test Setting of HOL-TestGen is effective
(see Firewall Test Case Study)

HOL-Testgen is a verified test-tool
(entirely based on derived rules . . .)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 74

Conclusion

Conclusion II

Test Hypothesis explicit and controllable by the user
(can even be verified !)

In HOL, Sequence Testing and Unit Testing are the same!
TS pattern Reactive Sequence Test:

accept trace =⇒ P(Mfold trace σ0

(observer observer rebind subst prog))

The Sequence Test Setting of HOL-TestGen is effective
(see Firewall Test Case Study)

HOL-Testgen is a verified test-tool
(entirely based on derived rules . . .)

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 74

Bibliography

Bibliography I

Achim D. Brucker and Burkhart Wolff.
Interactive testing using HOL-TestGen.
In Wolfgang Grieskamp and Carsten Weise, editors, Formal
Approaches to Testing of Software (FATES 05), LNCS 3997,
pages 87–102. Springer-Verlag, Edinburgh, 2005.

Achim D. Brucker and Burkhart Wolff.
Symbolic test case generation for primitive recursive
functions.
In Jens Grabowski and Brian Nielsen, editors, Formal
Approaches to Software Testing (FATES), volume 3395 of
Lecture Notes in Computer Science, pages 16–32.
Springer-Verlag, Linz, 2005.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 75

Bibliography

Bibliography II

Achim D. Brucker and Burkhart Wolff.
HOL-TestGen 1.0.0 user guide.
Technical Report 482, ETH Zurich, April 2005.

Achim D. Brucker and Burkhart Wolff.
Test-sequence generation with HOL-TestGen – with an
application to firewall testing.
In Bertrand Meyer and Yuri Gurevich, editors, TAP 2007:
Tests And Proofs, number 4454 in Lecture Notes in
Computer Science. Springer-Verlag, Zurich, 2007.

The HOL-TestGen Website.
http://www.brucker.ch/projects/hol-testgen/.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 76

http://www.brucker.ch/projects/hol-testgen/

Part II

Appendix

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 77

Outline

6 The HOL-TestGen System

7 A Hands-on Example

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 78

The HOL-TestGen System Download

Download HOL-TestGen

available, including source at:
http://www.brucker.ch/projects/hol-testgen/

for a “out of the box experience,” try IsaMorph:
http://www.brucker.ch/projects/isamorph/

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 79

http://www.brucker.ch/projects/hol-testgen/
http://www.brucker.ch/projects/isamorph/

The HOL-TestGen System The System Architecture

The System Architecture of HOL-TestGen

test data

test cases

program under test

test harness

test script

test specification

(Test Result)
Test Trace

HOL-TestGen

Isabelle/HOL

SML-systemtest executable

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 80

A Hands-on Example The HOL-TestGen Workflow

The HOL-TestGen Workflow

We start by

1 writing a test theory (in HOL)

2 writing a test specification (within the test theory)

3 generating test cases

4 interactively improve generated test cases (if necessary)

5 generating test data

6 generating a test script.

And finally we,

1 build the test executable

2 and run the test executable.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 81

A Hands-on Example Writing a Test Theory

Writing a Test Theory

For using HOL-TestGen you have to build your Isabelle theories
(i.e. test specifications) on top of the theory Testing instead of
Main:

theory max_test = Testing:

. . .

end

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 82

A Hands-on Example Writing a Test Specification

Writing a Test Specification

Test specifications are defined similar to theorems in Isabelle,
e.g.

test_spec "prog a b = max a b"

would be the test specification for testing a a simple program
computing the maximum value of two integers.

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 83

A Hands-on Example Test Case Generation

Test Case Generation

Now, abstract test cases for our test specification can
(automatically) generated, e.g. by issuing

apply(gen_test_cases 3 1 "prog" simp: max_def)

The generated test cases can be further processed, e.g.,
simplified using the usual Isabelle/HOL tactics.

After generating the test cases (and test hypothesis’) you
should store your results, e.g.:

store_test_thm "max_test"

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 84

A Hands-on Example Test Data Selection

Test Data Selection

In a next step, the test cases can be refined to concrete test
data:

gen_test_data "max_test"

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 85

A Hands-on Example Test Data Selection

Test Script Generation

After the test data generation, HOL-TestGen is able to generate
a test script:

generate_test_script "test_max.sml" "max_test" "prog"
"myMax.max"

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 86

A Hands-on Example Testing a Simple Function: max

A Simple Testing Theory: max

theory max_test = Testing:

test_spec "prog a b = max a b"
apply(gen_test_cases 1 3 "prog" simp: max_def)
store_test_thm "max_test"
gen_test_data "max_test"
generate_test_script "test_max.sml" "max_test" "prog"

"myMax.max"
end

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 87

A Hands-on Example Testing a Simple Function: max

A (Automatically Generated) Test Script

1 structure TestDriver : sig end = struct
val return = ref ~63;
fun eval x2 x1 = let val ret = myMax.max x2 x1

in ((return := ret) ; ret) end
fun retval () = SOME(! return) ;

6 fun toString a = Int . toString a;
val testres = [] ;

val pre_0 = [] ;
val post_0 = fn () => ((eval ~23 69 = 69));
val res_0 = TestHarness . check retval pre_0 post_0 ;

11 val testres = testres@[res_0] ;
val pre_1 = [] ;
val post_1 = fn () => ((eval ~11 ~15 = ~11));
val res_1 = TestHarness . check retval pre_1 post_1 ;
val testres = testres@[res_1] ;

16 val _ = TestHarness . pr intL is t toString testres ;
end

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 88

A Hands-on Example Test Result Verification

Building the Test Executable

Assume we want to test the SML implementation

structure myMax = struct
fun max x y = i f (x < y) then y else x

3 end

stored in the file max.sml.

The easiest option is to start an interactive SML session:

use "harness . sml" ;
2 use "max.sml" ;

use "test_max .sml" ;

It is also an option to compile the test harness, test script
and our implementation under test into one executable.

Using a foreign language interface we are able to test
arbitrary implementations (e. g., C, Java or any language
supported by the .Net framework).

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 89

A Hands-on Example Test Result Verification

The Test Trace

Running our test executable produces the following test trace:

Test Results:
=============
Test 0 - SUCCESS, result: 69
Test 1 - SUCCESS, result: ~11

Summary:

Number successful tests cases: 2 of 2 (ca. 100%)
Number of warnings: 0 of 2 (ca. 0%)
Number of errors: 0 of 2 (ca. 0%)
Number of failures: 0 of 2 (ca. 0%)
Number of fatal errors: 0 of 2 (ca. 0%)

Overall result: success
===============

A.D. Brucker and B. Wolff (ETHZ/MSR) HOL-TestGen: Theorem-prover based Testing A Tutorial at TESTCOM/FATES 2007 90

	Theorem-prover based Testing with HOL-TestGen
	Motivation and Introduction
	Motivation
	HOL-TestGen and its Components
	HOL-TestGen and its Workflow

	From Foundations to Pragmatics
	Foundations
	Explicit Hypothesis
	Putting the Pieces Together
	Summing Up
	A Quick Glance on Test Data Generation

	Advanced Test Scenarios
	Tuning the Workflow by Interactive Proof
	Sequence Testing

	Case Studies
	Red-black Trees
	Firewall Testing

	Conclusion
	Bibliography

	Appendix
	The HOL-TestGen System
	Download
	The System Architecture

	A Hands-on Example
	The HOL-TestGen Workflow
	Writing a Test Theory
	Writing a Test Specification
	Test Case Generation
	Test Data Selection
	Test Script Generation
	Testing a Simple Function: max
	Test Result Verification

