Theorem-prover based Testing with HOL-TestGen

> Achim D. Brucker Burkhart Wolff {brucker, bwolff}@inf.ethz.ch

Information Security, ETH Zurich, Switzerland Microsoft Research, MSR Redmond, USA

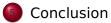
Tallinn, 26th June 2007

Outline

Motivation and Introduction

From Foundations to Pragmatics

Advanced Test Scenarios



Outline

Motivation and Introduction

Advanced Test Scenarios

Conclusion

State of the Art

"Dijkstra's Verdict":

Program testing can be used to show the presence of bugs, but never to show their absence.

- Is this always true?
- Can we bother?

Our First Vision

Testing and verification may converge, in a precise technical sense:

- specification-based (black-box) unit testing
- generation and management of formal test hypothesis
- verification of test hypothesis (not discussed here)

Our Second Vision

• Observation:

Any testcase-generation technique is based on and limited by underlying constraint-solution techniques.

• Approach:

Testing should be integrated in an environment combining automated and interactive proof techniques.

- the test engineer must decide over, abstraction level, split rules, breadth and depth of data structure exploration ...
- we mistrust the dream of a push-button solution
- byproduct: a verified test-tool

Components of HOL-TestGen

• HOL (Higher-order Logic):

- "Functional Programming Language with Quantifiers"
- plus definitional libraries on Sets, Lists, ...
- can be used meta-language for Hoare Calculus for Java, Z,

• HOL-TestGen:

- based on the interactive theorem prover Isabelle/HOL
- implements these visions
- Proof General:
 - user interface for Isabelle and HOL-TestGen
 - step-wise processing of specifications/theories
 - shows current proof states

Components-Overview

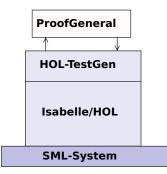


Figure: The Components of HOL-TestGen

The HOL-TestGen Workflow

The HOL-TestGen workflow is basically fivefold:

- Step I: writing a test theory (in HOL)
- Step II: writing a test specification (in the context of the test theory)
- Step III: generating a test theorem (roughly: testcases)
- Step IV: generating test data
- Step V: generating a test script

And of course:

- building an executable test driver
- and running the test driver

Step I: Writing a Test Theory

• Write data types in HOL:

theory List_test imports Testing begin

```
datatype 'a list =
    Nil ("[]")
    Cons 'a "'a list" (infixr "#" 65)
```

Step I: Writing a Test Theory

• Write recursive functions in HOL:

```
consts is_sorted:: "('a::ord) list \Rightarrow bool"

primrec

"is_sorted [] = True"

"is_sorted (x#xs) = case xs of

[] \Rightarrow True

| y#ys \Rightarrow((x < y) \lor(x = y))

\land is sorted xs"
```

Step II: Write a Test Specification

 writing a test specification (TS) as HOL-TestGen command:

test_spec "is_sorted (prog (l::('a list)))"

Step III: Generating Testcases

 executing the testcase generator in form of an Isabelle proof method:

apply(gen_test_cases "prog")

• concluded by the command:

store_test_thm "test_sorting"

... that binds the current proof state as test theorem to the name test_sorting.

Step III: Generating Testcases

• The test theorem contains clauses (the test-cases):

is_sorted (prog [])
is_sorted (prog [?X1X17])
is_sorted (prog [?X2X13, ?X1X12])
is_sorted (prog [?X3X7, ?X2X6, ?X1X5])

• as well as clauses (the test-hypothesis):

THYP(($\exists x. is_sorted (prog [x])) \longrightarrow (\forall x. is_sorted(prog [x])))$

THYP(($\forall I. 4 < |I| \longrightarrow is_sorted(prog I)$)

• We will discuss these hypothesises later in great detail.

Step IV: Test Data Generation

- On the test theorem, all sorts of logical massages can be performed.
- Finally, a test data generator can be executed:

gen_test_data "test_sorting"

- The test data generator
 - extracts the testcases from the test theorem
 - searches ground instances satisfying the constraints (none in the example)
- Resulting in test statements like:

is_sorted (prog [])
is_sorted (prog [3])
is_sorted (prog [6, 8])
is_sorted (prog [0, 10, 1])

Step V: Generating A Test Script

- Finally, a test script or test harness can be generated: gen_test_script "test_lists.sml" list" prog
- The generated test script can be used to test an implementation, e.g., in SML, C, or Java

The Complete Test Theory

```
theory List_test

imports Main begin

consts is_sorted:: "('a::ord) list \Rightarrow bool"

primrec "is_sorted [] = True"

"is_sorted (x#xs) = case xs of

[] \Rightarrow True

| y#ys \Rightarrow((x < y) \lor(x = y))

\land is_sorted xs"
```

test_spec "is_sorted (prog (l::('a list)))"
 apply(gen_test_cases prog)
store_test_thm "test_sorting"

```
gen_test_data "test_sorting"
gen_test_script "test_lists.sml" list" prog
end
```

Testing an Implementation

Executing the generated test script may result in:

```
Test Results:
Test 0 - *** FAILURE: post-condition false, result: [1, 0, 10]
Test 1 - SUCCESS, result: [8, 6]
Test 2 - SUCCESS, result: [3]
Test 3 - SUCCESS, result: []
Summary:
Number successful tests cases:
                               3 of 4 (ca. 75%)
                               0 of 4 (ca. 0%)
Number of warnings:
Number of errors:
                               0 of 4 (ca. 0%)
Number of failures:
                               1 of 4 (ca. 25%)
Number of fatal errors:
                               0 of 4 (ca. 0%)
```

```
Overall result: failed
```

Tool-Demo!

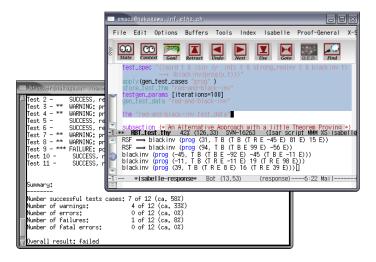


Figure: HOL-TestGen Using Proof General at one Glance

Outline

From Foundations to Pragmatics

Advanced Test Scenarios

Conclusion

The Foundations of HOL-TestGen

Basis:

- Isabelle/HOL library: 10000 derived rules, ...
- about 500 are organized in larger data-structures used by Isabelle's proof procedures, ...

• These Rules were used in advanced proof-procedures for:

- Higher-Order Rewriting
- Tableaux-based Reasoning a standard technique in automated deduction
- Arithmetic decision procedures (Coopers Algorithm)
- gen_testcases is an automated tactical program using combination of them.

Some Rewrite Rules

- Rewriting is a easy to understand deduction paradigm (similar FP) centered around equality
- Arithmetic rules, e.g.,

$$Suc(x + y) = x + Suc(y)$$

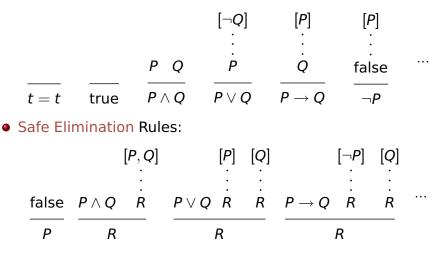
 $x + y = y + x$
 $Suc(x) \neq 0$

Logic and Set Theory, e.g.,

$$\forall x. (P x \land Q x) = (\forall x. P x) \land (\forall x. P x)$$
$$\bigcup x \in S. (P x \cup Q x) = (\bigcup x \in S. P x) \cup (\bigcup x \in S. Q x)$$
$$\llbracket A = A'; A \Longrightarrow B = B' \rrbracket \Longrightarrow (A \land B) = (A' \land B')$$

The Core Tableaux-Calculus

• Safe Introduction Rules for logical connectives:



The Core Tableaux-Calculus

• Safe Introduction Quantifier rules:

• Safe Quantifier Elimination
$$\frac{P?x}{\exists x. Px} \quad \frac{\bigwedge x. Px}{\forall x. Px}$$
$$\frac{[Px]}{\vdots}$$
$$\frac{\exists x. Px \quad \bigwedge x. \quad Q}{Q}$$

• Critical Rewrite Rule:

if P then A else
$$B = (P \rightarrow A) \land (\neg P \rightarrow B)$$

Explicit Test Hypothesis: The Concept

- What to do with infinite data-strucutures?
- What is the connection between test-cases and test statements and the test theorems?
- Two problems, one answer: Introducing test hypothesis "on the fly":

 $\begin{array}{l} \mathsf{THYP}:\mathsf{bool}\Rightarrow\mathsf{bool}\\ \mathsf{THYP}(\mathsf{x})\equiv\mathsf{x} \end{array}$

Taming Infinity I: Regularity Hypothesis

What to do with infinite data-strucutures of type τ?
 Conceptually, we split the set of all data of type τ into

$$\{X :: \tau \mid |\mathbf{x}| < k\} \cup \{X :: \tau \mid |\mathbf{x}| \ge k\}$$

Taming Infinity I: Motivation

Consider the first set $\{X :: \tau \mid |x| < k\}$ for the case $\tau = \alpha$ list, k = 2, 3, 4. These sets can be presented as:

1)
$$|x::\tau| < 2 = (x = []) \lor (\exists a. x = [a])$$

2) $|x::\tau| < 3 = (x = []) \lor (\exists a. x = [a])$
 $\lor (\exists a b. x = [a,b])$
3) $|x::\tau| < 4 = (x = []) \lor (\exists a. x = [a])$
 $\lor (\exists a b. x = [a,b]) \lor (\exists a b c. x = [a,b,c])$

Taming Infinity I: Data Separation Rules

This motivates the (derived) data-separation rule:

•
$$(\tau = \alpha \text{ list, } k = 3)$$
:

$$\begin{bmatrix} x = [1] \\ \vdots \\ P \\ Aa. P \\ P \end{bmatrix} \begin{bmatrix} x = [a, b] \\ \vdots \\ P \\ Ab. P \\ THYP \\ M \\ P \end{bmatrix}$$

• Here, *M* is an abbreviation for:

 $\forall x. k < |x| \longrightarrow P x$

Taming Infinity II: Uniformity Hypothesis

- What is the connection between test cases and test statements and the test theorems?
- Well, the "uniformity hypothesis":
- Once the program behaves correct for one test case, it behaves correct for all test cases ...

Taming Infinity II: Uniformity Hypothesis

 Using the uniformity hypothesis, a test case:
 n) [[C1 x; ...; Cm x]] ⇒TS x is transformed into:

n)
$$\llbracket C1 ?x; ...; Cm ?x \rrbracket \Longrightarrow TS ?x$$

n+1) THYP(($\exists x. C1 x ... Cm x \longrightarrow TS x$)
 $\longrightarrow (\forall x. C1 x ... Cm x \longrightarrow TS x))$

Testcase Generation by NF Computations

Test-theorem is computed out of the test specification by

- a heuristicts applying Data-Separation Theorems
- a rewriting normal-form computation
- a tableaux-reasoning normal-form computation
- shifting variables referring to the program under test prog test into the conclusion, e.g.:

$$\llbracket \neg (\text{prog } x = c); \neg (\text{prog } x = d) \rrbracket \Longrightarrow A$$

is transformed equivalently into

 $\llbracket \neg A \rrbracket \Longrightarrow (\text{prog } x = c) \lor (\text{prog } x = d)$

 as a final step, all resulting clauses were normalized by applying uniformity hypothesis to each free variable.

Testcase Generation: An Example

theory TestPrimRec imports Main begin primrec x mem [] = False x mem (y#S) = if y = x then True else x mem S

1) prog x [x] 2) \land b. prog x [x,b] 3) \land a. $a \neq x \Longrightarrow$ prog x [a,x] 4) THYP(3 \leq size (S) $\longrightarrow \forall x. x \text{ mem S}$ \longrightarrow prog x S)

test_spec:

"x mem S \implies prog x S" apply(gen_testcase 0 0)

Example

 $x \text{ mem } S \longrightarrow prog \ x \ S$

Example

 $x \text{ mem } S \longrightarrow prog \ x \ S$

is transformed via data-separation lemma to:

1.
$$S=[] \Longrightarrow x \text{ mem } S \longrightarrow \text{prog } x S$$

2. $Aa. S=[a] \Longrightarrow x \text{ mem } S \longrightarrow \text{prog } x S$

3. $\land a b. S=[a,b] \Longrightarrow x \text{ mem } S \longrightarrow \text{prog } x S$

4. THYP(\forall S. 3 \leq |S| \longrightarrow x mem S \longrightarrow prog x S)

Example

 $x \text{ mem } S \longrightarrow prog \ x \ S$

canonization leads to:

- 1. x mem [] \implies prog x []
- 2. $Aa. x mem [a] \Longrightarrow prog x [a]$
- 3. $Aa b. x mem [a,b] \Longrightarrow prog x [a,b]$
- 4. THYP(\forall S. 3 \leq |S| \longrightarrow x mem S \longrightarrow prog x S)

Example

 $x \text{ mem } S \longrightarrow prog \ x \ S$

which is reduced via the equation for mem:

1. false
$$\implies$$
 prog x []

2. A: if a = x then True else x mem [] \implies prog x [a] 3. A b. if a = x then True else x mem [b] \implies prog x [a,b] 4. THYP(3 \leq |S| \longrightarrow x mem S \longrightarrow prog x S)

Example

 $x \text{ mem } S \longrightarrow prog \ x \ S$

erasure for unsatisfyable constraints and rewriting conditionals yields:

2.
$$\bigwedge$$
a. a = x \lor (a \neq x \land false)
 \Longrightarrow prog x [a]
3. \bigwedge a b. a = x \lor (a \neq x \land x mem [b]) \Longrightarrow prog x [a,b]

4. THYP(\forall S. 3 \leq |S| \longrightarrow x mem S \longrightarrow prog x S)

Example

 $x \text{ mem } S \longrightarrow prog \ x \ S$

... which is further reduced by tableaux rules and canconization to:

2. \a. prog a [a]

3.
$$\bigwedge a b. a = x \Longrightarrow prog x [a,b]$$

3'. $\bigwedge a b. [[a \neq x; x mem [b]]] \Longrightarrow prog x [a,b]$
4. THYP($\forall S. 3 \le |S| \longrightarrow x mem S \longrightarrow prog x S)$

Example

 $x \text{ mem } S \longrightarrow prog \ x \ S$

... which is reduced by canonization and rewriting of mem to:

2. ∧a. prog x [x]

3. \land a b. prog x [x,b] 3'. \land a b. a \neq x \Longrightarrow prog x [a,x] 4. THYP(\forall S. 3 \leq |S| \longrightarrow x mem S \longrightarrow prog x S)

Example

 $x \text{ mem } S \longrightarrow prog \ x \ S$

... as a final step, uniformity is expressed:

- 1. prog ?x1 [?x1]
- 2. prog ?x2 [?x2,?b2]
- 3. $a3 \neq x1 \implies prog x3 [a3, x3]$
- 4. THYP($\exists x. prog x [x] \longrightarrow prog x [x]$

... 7. THYP(\forall S. 3 < |S| \longrightarrow x mem S \longrightarrow prog x S)

Summing up:

The test-theorem for a test specification TS has the general form:

$$\llbracket TC_1; \ldots; TC_n; THYP \ H_1; \ldots; THYP \ H_m \rrbracket \Longrightarrow TS$$

where the test cases TC_i have the form:

$$\llbracket C_1 x; \ldots; C_m x; \text{THYP } H_1; \ldots; \text{THYP } H_m \rrbracket \Longrightarrow P x (prog x)$$

and where the test-hypothesis are either uniformity or regularity hypothethises.

The C_i in a test case were also called constraints of the testcase.

Summing up:

- The overall meaning of the test-theorem is:
 - if the program passes the tests for all test-cases,
 - and if the test hypothesis are valid for PUT,
 - then PUT complies to testspecification TS.
- Thus, the test-theorem establishes a formal link between test and verification !!!

Generating Test Data

Test data generation is now a constraint satisfaction problem.

- We eliminate the meta variables ?x , ?y, ... by constructing values ("ground instances") satisfying the constraints. This is done by:
 - random testing (for a smaller input space!!!)
 - arithmetic decision procedures
 - reusing pre-compiled abstract test cases
 - ...
 - interactive simplify and check, if constraints went away!
- Output: Sets of instantiated test theorems (to be converted into Test Driver Code)

Outline

Motivation and Introduction

From Foundations to Pragmatics

Advanced Test Scenarios

Case Studies

Conclusion

Tuning the Workflow by Interactive Proof

Observations:

- Test-theorem generations is fairly easy ...
- Test-data generation is fairly hard ...
 (it does not really matter if you use random solving or just plain enumeration !!!)
- Both are scalable processes . . . (via parameters like depth, iterations, ...)
- There are bad and less bad forms of test-theorems !!!
- **Recall**: Test-theorem and test-data generation are normal form computations:
 - \implies More Rules, better results . . .

Example: A "Bad" Test-case

Drawn from Red-Black-Tree, after gen_test_cases 5 1.

 $\begin{bmatrix} \max_B \text{height ?X8} = 0; \text{ blackinv ?X8; redinv (T R E ?X9 ?X8);} \\ \forall x. (x = ?X9 \longrightarrow ?X7 < ?X9) < and > (isin x ?X8 \longrightarrow ?X7 < x); \\ \forall x. isin x ?X8 \longrightarrow ?X9 < x; isord ?X8 \\ \implies \text{blackinv (prog (?X7, T B E ?X7 (T R E ?X9 ?X8)));} \end{cases}$

lots of unresolved (user-defined) recursive predicates, lots of quantifiers, three variables for which satisfying ground-instances have to be found . . .

What makes a Test-case "Bad"

- redundancy.
- many unsatisfiable constraints.
- many constraints with unclear logical status.
- constraints that are difficult to solve. (like arithmetics).

How to Improve Test-Theorems

- New simplification rule establishing unsatisfiability.
- New rules establishing equational constraints for variables.

 $(\max_B \text{height} (T \text{ x t1 val t2}) = 0) \Longrightarrow (x = R)$

```
\begin{array}{l} (\max\_B\_height \ x = 0) = \\ (x = E \lor \exists \ a \ y \ b. \ x = T \ R \ a \ y \ b \land \\ & max(max\_B\_height \ a) \\ & (max\_B\_height \ b) = 0) \end{array}
```

 Many rules are domain specific few hope that automation pays really off.

Improvement Slots

- logical massage of test-theorem.
- in-situ improvements: add new rules into the context before gen_test_cases.
- post-hoc logical massage of test-theorem.
- in-situ improvements: add new rules into the context before gen_test_data.

Motivation: Sequence Test

 So far, we have used HOL-TestGen only for test specifications of the form:

pre $x \rightarrow post(prog x)$

 This seems to limit the HOL-TestGen approach to UNIT-tests.

• No Non-determinism.

 post must indeed be executable; however, the prepost style of specification represents a *relational* description of *prog*.

 post must indeed be executable; however, the prepost style of specification represents a *relational* description of *prog*.

No Automata - No Tests for Sequential Behaviour.

- post must indeed be executable; however, the prepost style of specification represents a *relational* description of *prog*.
- HOL has lists and recursive predicates; thus sets of lists, thus languages . . .

- post must indeed be executable; however, the prepost style of specification represents a *relational* description of *prog*.
- HOL has lists and recursive predicates; thus sets of lists, thus languages . . .

• No possibility to describe reactive tests.

- post must indeed be executable; however, the prepost style of specification represents a *relational* description of *prog*.
- HOL has lists and recursive predicates; thus sets of lists, thus languages . . .

 HOL has Monads. And therefore means for IOspecifications.

Representing Sequence Test

• Test-Specification Pattern:

accept trace \rightarrow P(Mfold trace σ_0 prog)

where

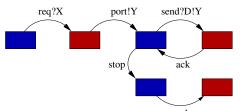
 $\begin{array}{ll} \mathsf{Mfold} \ [] \ \sigma & = \mathsf{Some} \ \sigma \\ \mathsf{MFold} \ (\mathsf{input::R}) = \mathsf{case} \ \mathsf{prog}(\mathsf{input}, \ \sigma) \ \mathbf{of} \\ & \mathsf{None} \ \Rightarrow \mathsf{None} \\ & | \ \mathsf{Some} \ \sigma' \Rightarrow \mathsf{Mfold} \ \mathsf{R} \ \sigma' \ \mathsf{prog} \end{array}$

• Can this be used for reactive tests?

Sequence Testing

Example: A Reactive System I

A toy client-server system:



a channel is requested within a bound X, a channel Y is chosen by the server, the client communicates along this channel . . .

Example: A Reactive System I

• A toy client-server system:

$$req?X \rightarrow port!Y[Y < X] \rightarrow$$

$$(rec N. send!D.Y \rightarrow ack \rightarrow N$$

$$\Box stop \rightarrow ack \rightarrow SKIP)$$

a channel is requested within a bound *X*, a channel *Y* is chosen by the server, the client communicates along this channel . . .

Example: A Reactive System I

• A toy client-server system:

$$req?X \rightarrow port!Y[Y < X] \rightarrow$$

$$(rec N. send!D.Y \rightarrow ack \rightarrow N$$

$$\Box stop \rightarrow ack \rightarrow SKIP)$$

a channel is requested within a bound *X*, a channel *Y* is chosen by the server, the client communicates along this channel . . . Observation:

X and Y are only known at runtime!

Sequence Testing

Example: A Reactive System II

Observation:

X and Y are only known at runtime!

- Mfold is a program that manages a state at test run time.
- use an environment that keeps track of the instances of X and Y?
- Infrastructure: An observer maps abstract events (reg X, port Y, ...) in traces to

concrete events (reg 4, port 2, ...) in runs!

Scenarios Sequence lesting

Example: A Reactive System |||

• Infrastructure: the observer

observer rebind substitute postcond ioprog \equiv (λ input. (λ (σ , σ'). **let** input'= substitute σ input **in** case ioprog input' σ' **of** None \Rightarrow None (* *ioprog failure* – *eg. timeout* ... *) | Some (output, σ''') \Rightarrow **let** σ'' = rebind σ output **in** (if postcond (σ'', σ''') input' output then Some(σ'', σ''') else None (* *postcond failure* *))))"

Example: A Reactive Test IV

• Reactive Test-Specification Pattern:

accept trace \rightarrow

 $P(M fold trace \sigma_0 (observer rebind subst postcond ioprog))$

for reactive systems!

Outline

- From Foundations to Pragmatics
- Advanced Test Scenarios

Case Studies: Red-black Trees

Motivation

Test a non-trivial and widely-used data structure.

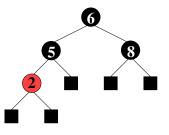
- part of the SML standard library
- widely used internally in the sml/NJ compiler, e.g., for providing efficient implementation for Sets, Bags, ...;
- very hard to generate (balanced) instances randomly

Modeling Red-black Trees I

Red-Black Trees:

Red Invariant: each red node has a black parent.

Black Invariant: each path from the root to an empty node (leaf) has the same number of black nodes.



datatype

color = R | B tree = E | T color (α tree) (β ::ord item) (α tree)

Modeling Red-black Trees II

• Red-Black Trees: Test Theory

consts

redinv :: tree \Rightarrow bool blackinv :: tree \Rightarrow bool

recdef blackinv measure (λ t. (size t)) blackinv E = True blackinv (T color a y b) = ((blackinv a) \land (blackinv b) \land ((max B (height a)) = (max B (height b))))

recdev redinv measure ...

Red-black Trees: Test Specification

• Red-Black Trees: Test Specification

test_spec:

 \longrightarrow

"isord t \land redinv t \land blackinv t \land isin (y::int) t

(blackinv(prog(y,t)))"

where prog is the program under test (e.g., delete).

• Using the standard-workflows results, among others:

RSF \longrightarrow blackinv (prog (100, T B E 7 E)) blackinv (prog (-91, T B (T R E -91 E) 5 E))

Red-black Trees: A first Summary

Observation:

Guessing (i.e., random-solving) valid red-black trees is difficult.

- On the one hand:
 - random-solving is nearly impossible for solutions which are "difficult" to find
 - only a small fraction of trees with depth k are balanced
- On the other hand:
 - we can quite easily construct valid red-black trees interactively.

Red-black Trees: A first Summary

Observation:

Guessing (i.e., random-solving) valid red-black trees is difficult.

- On the one hand:
 - random-solving is nearly impossible for solutions which are "difficult" to find
 - only a small fraction of trees with depth k are balanced
- On the other hand:
 - we can quite easily construct valid red-black trees interactively.
- Question:

Can we improve the test-data generation by using our knowledge about red-black trees?

Red-black Trees: Hierarchical Testing I

Idea:

Characterize valid instances of red-black tree in more detail and use this knowledge to guide the test data generation.

First attempt:

enumerate the height of some trees without black nodes

lemma maxB_0_1:
 "max B height (E:: int tree) = 0"

lemma maxB_0_5: "max_B_height (T R (T R E 2 E) (5::int) (T R E 7 E)) = 0"

But this is tedious . . .

Red-black Trees: Hierarchical Testing I

Idea:

Characterize valid instances of red-black tree in more detail and use this knowledge to guide the test data generation.

• First attempt:

enumerate the height of some trees without black nodes

lemma maxB_0_1:
 "max B height (E:: int tree) = 0"

lemma maxB_0_5: "max_B_height (T R (T R E 2 E) (5::int) (T R E 7 E)) = 0"

• But this is tedious . . . and error-prone

Red-black Trees: Hierarchical Testing II

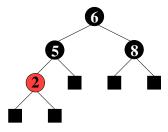
Or use Theorem-proving:

introduce *auxiliary lemmas*, that allow for the *elimination of unsatisfiable constraints*.

```
lemma max_B_height_dec :
"((max_B_height (T x t1 val t3)) = 0) ⇒(x = R) "
apply(case_tac "x",auto)
done
```

Red-black Trees

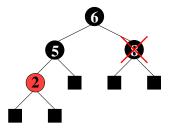
Red-black Trees: sml/NJ Implementation



(a) pre-state

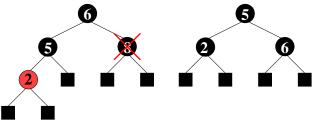
Red-black Trees

Red-black Trees: sml/NJ Implementation



(b) pre-state: delete "8"

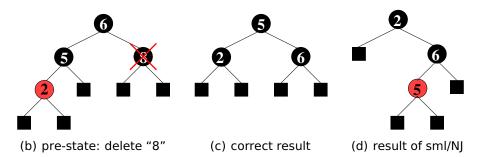
Red-black Trees: sml/NJ Implementation



(b) pre-state: delete "8" (c) correct result

Red-black Trees

Red-black Trees: sml/NJ Implementation



Red-black Trees: Summary

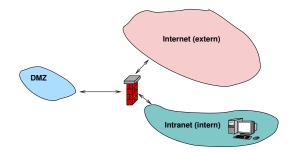
- Statistics: 348 test cases were generated (within 2 minutes)
- One error found: crucial violation against red/black-invariants
- Red-black-trees degenerate to linked list (insert/search, etc. only in linear time)
- Not found within 12 years
- Reproduced meanwhile by random test tool

Specification-based Firewall Testing

Objective: test if a firewall configuration implements a given firewall policy

- Procedure: as usual:
 - model firewalls (e.g., networks and protocols) and their policies in HOL
 - use HOL-TestGen for test-case generation

A Typical Firewall Policy



\longrightarrow	Intranet	DMZ	Internet	
Intranet	-	smtp, imap	all protocols except smtp	
DMZ	Ø	-	smtp	
Internet	Ø	http,smtp	-	

A Bluffers Guide to Firewalls

- A Firewall is a
 - state-less or
 - state-full

packet filter.

- The filtering (i.e., either accept or deny a package) is based on the
 - source
 - destination
 - protocol
 - possibly: internal protocol state

The State-less Firewall Model I

First, we model a packet:

types (α , β) packet = "id ×protocol × α src × α dest × β content" where

id: a unique packet identifier, e.g., of type Integerprotocol: the protocol, modeled using an enumeration type (e.g., ftp, http, smtp)

 α src (α dest): source (destination) address, e.g., using IPv4:

types

```
ipv4_ip = "(int \times int \times int \times int)"
ipv4 = "(ipv4_ip \times int)"
```

 β content: content of a package

The State-less Firewall Model II

• A firewall (packet filter) either accepts or denies a package:

datatype

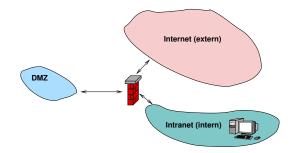
- α out = accept α | deny
- A policy Eine Policy is a map from packet to packet out:

types

 (α, β) Policy = " (α, β) packet \rightarrow ((α, β) packet) out"

Writing policies is supported by a specialised combinator set

Testing State-less Firewalls: An Example I



\longrightarrow	Intranet	DMZ	Internet	
Intranet	-	smtp, imap all protocols except s		
DMZ	Ø	-	smtp	
Internet	Ø	http,smtp	-	

Testing State-less Firewalls: An Example II

src	dest	protocol	action
Internet	DMZ	http	accept
Internet	DMZ	smtp	accept
÷	:	:	:
*	*	*	deny

constdefs Internet_DMZ :: "(ipv4, content) Rule"
 "Internet_DMZ ≡
 (allow_prot_from_to smtp internet dmz) ++
 (allow_prot_from_to http internet dmz)"
The policy can be modelled as follows:

constdefs test_policy :: "(ipv4,content) Policy"
 "test_policy = deny_all ++ Internet_DMZ ++ ..."

Testing State-less Firewalls: An Example III

• Using the test specification

test_spec "FUT x = test_policy x"

- results in 485 test cases, e.g.:
 - FUT

(6,smtp,((192,169,2,8),25),((6,2,0,4),2),data) = Some (accept

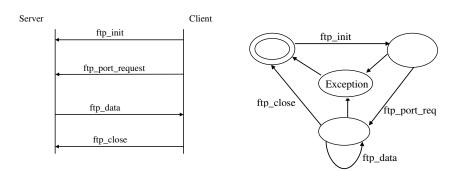
(6, smtp,((192,169,2,8),25),((6,2,0,4),2),data))

• FUT (2,smtp,((192,168,0,6),6),((9,0,8,0),6),data) = Some deny

(time used: 19 hours)

Firewall Testing

State-full Firewalls: An Example (ftp) I



State-full Firewalls: An Example (ftp) II

- based on our state-less model: Idea: a firwall (and policy) has an internal state:
- the firewall state is based on the history and the current policy state:

types (α , β , γ) FWState = " $\alpha \times (\beta,\gamma)$ Policy"

 where FWStateTransition maps an incoming packet to a new state

types (α , β , γ) FWStateTransition = "((β , γ) In_Packet ×(α , β , γ) FWState) \rightarrow ((α , β , γ) FWState)"

State-full Firewalls: An Example (ftp) III

HOL-TestGen gerates 4 test case, e.g.:

FUT [(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), close), (6, ftp, ((4, 7, 9, 8), 21), ((192, 168, 3, 1), 3), ftp_data), (6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), port_request (6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), init)] = ([(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), close), (6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), close), (6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), port_request 3), (6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), port_request 3), (6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), init)], new_policy)

(time used: 7 minutes)

Firewall Testing: Summary

- Firewall testing does a concrete configuration of a network firewall correctly implements a policy ?
- Non-Trivial State-Space (IP Adresses)
- Non-Trivial Test-Case Generation
- Sequence Testing used for Stateful Firewalls
- Realistic, but amazingly concise model in HOL!

Outline

- From Foundations to Pragmatics
- Advanced Test Scenarios

- Approach based on theorem proving
 - test specifications are written in HOL
 - functional programming, higher-order, pattern matching
- Test hypothesis explicit and controllable by the user (could even be verified!)
- Proof-state explosion controllable by the user
- Although logically puristic, systematic unit-test of a "real" compiler library is feasible!
- Verified tool inside a (well-known) theorem prover

- Test Hypothesis explicit and controllable by the user (can even be verified !)
- In HOL, Sequence Testing and Unit Testing are the same!

- The Sequence Test Setting of HOL-TestGen is effective (see Firewall Test Case Study)
- HOL-Testgen is a verified test-tool (entirely based on derived rules ...)

- Test Hypothesis explicit and controllable by the user (can even be verified !)
- In HOL, Sequence Testing and Unit Testing are the same! TS pattern Unit Test:

pre $x \longrightarrow post x(prog x)$

- The Sequence Test Setting of HOL-TestGen is effective (see Firewall Test Case Study)
- HOL-Testgen is a verified test-tool (entirely based on derived rules ...)

- Test Hypothesis explicit and controllable by the user (can even be verified !)
- In HOL, Sequence Testing and Unit Testing are the same! TS pattern Sequence Test:

accept trace \implies *P*(Mfold trace $\sigma_0 prog$)

- The Sequence Test Setting of HOL-TestGen is effective (see Firewall Test Case Study)
- HOL-Testgen is a verified test-tool (entirely based on derived rules ...)

- Test Hypothesis explicit and controllable by the user (can even be verified !)
- In HOL, Sequence Testing and Unit Testing are the same! TS pattern Reactive Sequence Test:

accept trace \implies P(Mfold trace σ_0 (observer observer rebind subst prog))

- The Sequence Test Setting of HOL-TestGen is effective (see Firewall Test Case Study)
- HOL-Testgen is a verified test-tool (entirely based on derived rules ...)

Bibliography I

Achim D. Brucker and Burkhart Wolff.

Interactive testing using HOL-TestGen. In Wolfgang Grieskamp and Carsten Weise, editors, *Formal Approaches to Testing of Software (FATES 05)*, LNCS 3997, pages 87–102. Springer-Verlag, Edinburgh, 2005.

Achim D. Brucker and Burkhart Wolff. Symbolic test case generation for primitive recursive functions

In Jens Grabowski and Brian Nielsen, editors, *Formal Approaches to Software Testing* (FATES), volume 3395 of *Lecture Notes in Computer Science*, pages 16–32. Springer-Verlag, Linz, 2005.

Bibliography II

Achim D. Brucker and Burkhart Wolff. HOL-TestGen 1.0.0 user guide. Technical Report 482, ETH Zurich, April 2005.

Achim D. Brucker and Burkhart Wolff.

Test-sequence generation with HOL-TestGen – with an application to firewall testing.

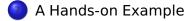
In Bertrand Meyer and Yuri Gurevich, editors, *TAP 2007: Tests And Proofs*, number 4454 in Lecture Notes in Computer Science. Springer-Verlag, Zurich, 2007.

The HOL-TestGen Website.

http://www.brucker.ch/projects/hol-testgen/.

Part II Appendix

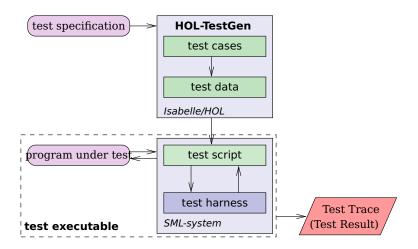
The HOL-TestGen System



Download HOL-TestGen

- available, including source at: http://www.brucker.ch/projects/hol-testgen/
- for a "out of the box experience," try IsaMorph: http://www.brucker.ch/projects/isamorph/

The System Architecture of HOL-TestGen



The HOL-TestGen Workflow

We start by

- writing a test theory (in HOL)
- writing a test specification (within the test theory)
- generating test cases
- interactively improve generated test cases (if necessary)
- generating test data
- generating a test script.

And finally we,

- build the test executable
- and run the test executable.

e Writing a Test Theory

Writing a Test Theory

For using HOL-TestGen you have to build your Isabelle theories (i.e. test specifications) on top of the theory Testing instead of Main:

theory max_test = Testing:

end

. . .

Writing a Test Specification

Test specifications are defined similar to theorems in Isabelle, e.g.

test_spec "prog a b = max a b"

would be the test specification for testing a a simple program computing the maximum value of two integers.

Test Case Generation

- Now, abstract test cases for our test specification can (automatically) generated, e.g. by issuing
 apply(gen test cases 3 1 "prog" simp: max def)
- The generated test cases can be further processed, e.g., simplified using the usual Isabelle/HOL tactics.
- After generating the test cases (and test hypothesis') you should store your results, e.g.:

```
store_test_thm "max_test"
```

Test Data Selection

In a next step, the test cases can be refined to concrete test data:

gen_test_data "max_test"

Test Script Generation

After the test data generation, HOL-TestGen is able to generate a test script:

A Simple Testing Theory: max

theory max_test = Testing:

end

A (Automatically Generated) Test Script

```
1 structure TestDriver : sig end = struct
        val return = ref \sim 63:
        fun eval x2 x1 = let val ret = myMax.max x2 x1
                         in ((return := ret); ret) end
        fun retval () = SOME(!return);
        fun toString a = Int.toString a;
6
        val testres = [];
      val pre 0 = [];
      val post 0 = fn () \Rightarrow ( (eval ~23 69 = 69));
      val res 0 = TestHarness.check retval pre 0 post 0;
11
     val testres = testres@[res 0];
      val pre 1 = [];
      val post 1 = fn () \Rightarrow ( (eval ~11 ~15 = ~11));
      val res 1 = TestHarness.check retval pre 1 post 1;
      val testres = testres@[res 1];
      val = TestHarness.printList toString testres;
16
   end
```

Building the Test Executable

Assume we want to test the SML implementation

```
structure myMax = struct
fun max x y = if (x < y) then y else x
and</pre>
```

3 end

stored in the file max.sml.

• The easiest option is to start an interactive SML session:

```
use "harness.sml";
2 use "max.sml";
use "test_max.sml";
```

- It is also an option to compile the test harness, test script and our implementation under test into one executable.
- Using a foreign language interface we are able to test arbitrary implementations (e.g., C, Java or any language supported by the .Net framework).

The Test Trace

Running our test executable produces the following test trace:

```
Test Results:
 _____
Test 0 -
           SUCCESS. result: 69
Test 1 -
           SUCCESS, result: ~11
Summary:
Number successful tests cases: 2 of 2 (ca. 100%)
Number of warnings:
                     0 of 2 (ca. 0%)
Number of errors.
                        0 of 2 (ca. 0%)
Number of failures:
                          0 of 2 (ca. 0%)
Number of fatal errors:
                        0 of 2 (ca. 0%)
```

```
Overall result: success
```