
J. Grabowski and B. Nielsen (Eds.): FATES 2004, LNCS 3395, pp. 16–32, 2005.
c© 2005 Springer-Verlag. This is the author’s version of the work. It is posted at http://www.brucker.
ch/bibliography/abstract/brucker.ea-symbolic-2005 by permission of Springer-Verlag for your per-
sonal use. The definitive version was published with doi: 10.1007/b106767.

Symbolic Test Case Generation for Primitive
Recursive Functions

Achim D. Brucker and Burkhart Wolff

Information Security, ETH Zürich, ETH Zentrum, CH-8092 Zürich, Switzerland.
{brucker, bwolff}@inf.ethz.ch

Abstract We present a method for the automatic generation of test
cases for HOL formulae containing primitive recursive predicates. These
test cases can be used for the animation of specifications as well as for
black-box testing of external programs.
Our method is two-staged: first, the original formula is partitioned into
test cases by transformation into a Horn-clause normal form (HCNF).
Second, the test cases are analyzed for instances with constant terms
satisfying the premises of the clauses. Particular emphasis is put on the
control of test hypotheses and test hierarchies to avoid intractability.
We applied our method to several examples, including AVL-trees and the
red-black tree implementation in the standard library from SML/NJ.
Keywords: symbolic test case generations, black box testing, theorem
proving, Isabelle/HOL

1 Introduction

Today, essentially two software validation techniques are used: software verifi-
cation and software testing. Whereas verification is rarely used in “large-scale”
software development, testing is widely used, but normally in an ad-hoc manner.
Therefore, the attitude towards testing has been predominantly negative in the
formal methods community, following what we call Dijkstra’s verdict [11, p.6]:

“Program testing can be used to show the presence of bugs, but never
to show their absence!”

More recently, three research areas, albeit driven by different motivations, con-
verge and result in a renewed interest in testing techniques:

– Abstraction Techniques: model-checking raised interest in techniques to ab-
stract infinite models to finite ones. Provided that the abstraction has been
proven sound, testing may be sufficient for establishing correctness [5, 9].

– Systematic Testing: the discussion over test adequacy criteria [21], i.e., cri-
teria answering the question “when did we test enough to meet a given test
hypothesis”, led to more systematic approaches for partitioning the space of
possible test data and the choice of representatives. New systematic testing
methods and abstraction techniques can be found in [12, 13].

http://www.brucker.ch/bibliography/abstract/brucker.ea-symbolic-2005
http://www.brucker.ch/bibliography/abstract/brucker.ea-symbolic-2005
http://dx.doi.org/10.1007/b106767
http://www.brucker.ch/
http://www.informatik.uni-freiburg.de/~wolff/

Symbolic Test Case Generation for Primitive Recursive Functions 17

– Specification Animation: constructing counter-examples has raised interest
also in the theorem proving community, when combined with animations of
evaluations, they may help to find modeling errors early and to increase the
overall productivity [14].

The first two areas are motivated by the question “are we building the pro-
gram right?”, the latter is focused on the question “are we specifying the right
program?”. While the first area shows that Dijkstra’s Verdict is no longer true
under all circumstances, the latter area shows that it simply does not apply to
important situations in practice. In particular, if a formal model of the environ-
ment of a software system (e.g., based on, amongst other things, the operating
system, middleware or external libraries) must be reverse-engineered, testing —
in the sense of “experimenting” — is without alternative (see [7]).

Following standard terminology [21], our approach is a specification-based
unit test. A test procedure for such an approach can be divided into:

– Test Case Generation: for each operation, the pre/post-condition relation is
divided into sub-relations. It assumes that all members of a sub-relation lead
to a similar behavior of the implementation.

– Test Data Selection: for each test case (at least) one representative is chosen
so that coverage of all test cases is achieved. From the resulting test data,
test input data processable by the implementation is extracted.

– Test Execution: the implementation is run with the selected test input data
in order to determine the test output data.

– Test Result Verification: the pair of input/output data is checked against
the specification of the test case.

As an example for a specification-based unit-test approach, QuickCheck [8] has
attracted interest in various research communities. QuickCheck performs ran-
dom tests, potentially improved by hand-programmed test data generators, and
provides a simple test execution and test result verification environment for pro-
grams written in Haskell.

However, it is well-known that random test can be ineffective in many cases;1

in particular, if complex preconditions of programs like “the input tree must be
balanced” or “the input must be a well-formed abstract syntax tree” rule out
most of randomly generated data. In our approach, we will exploit the speci-
fication of pre- and postconditions of a program — the test specification — in
a preprocessing step, the test case generation. Our implementation TestGen of
a test case generator is built on top of the theorem prover Isabelle/HOL [17].
Isabelle is programmed to execute the underlying symbolic computations in an
automatic, but logically safe way. Based on the resulting test cases, a random
test based data selection procedure can be controlled in a problem-oriented way
and achieve a significantly better test coverage. As a particular feature, the au-
tomated deduction-based process can log the test hypothesis underlying the test.

1 Consider abs(x-2) >= 0 where abs from the Haskell Integer library computes the
absolute value. Here it is very unlikely that QuickCheck finds the problem. . .

18 Achim D. Brucker and Burkhart Wolff

Provided that the test hypotheses are valid for the program and provided the
program passes the test successfully, the program must guarantee correctness
with respect to the test specification.

We proceed as follows: we will introduce our implementation built on top of
the theorem prover Isabelle by a tiny, but classical example [12] (Sec. 2). This
demonstration serves as a means to motivate concepts like test specification,
testing normal form, test cases, test statements. In Sec. 3, we will discuss the
test case generation in more detail. In Sec. 4, we will discuss a technique for
controlling the state explosion by generating abstract test cases. Finally, we apply
our technique to a number of non-trivial examples (Sec. 5) involving recursive
data types and recursive predicates and functions over them.

2 Symbolic Test Case Generation: A Guided Tour

Our test case generator TestGen is integrated into the specification and theo-
rem proving environment Isabelle/HOL. As a specification language, HOL offers
data types, recursive function definitions and fairly rich libraries with theories
of, e.g., arithmetics; it is often viewed as a “functional programming language
with logical quantifiers”. As a theorem proving environment, Isabelle is based
on a relatively small proof engine (based on higher-order resolution) providing a
proof state that can be transformed via elementary tactics into logically equiv-
alent ones, until a final proof state is reached where a derived formula has the
appropriate form.

Our running example for automatic test case generation is described as fol-
lows: given three integers representing the lengths of the sides of a triangle, a
small algorithm has to check, whether these integers describe an equilateral,
isosceles, scalene triangle, or no triangle at all. First we define an abstract data
type describing the possible results in Isabelle/HOL:

datatype Triangles := equilateral | scalene | isosceles | error

For clarity (and as an example for specification modularization) we define an
auxiliary predicate deciding if the three lengths are describing a triangle:

constdefs triangle :: [nat,nat,nat]→ bool
triangle x y z ≡ (0 < x) ∧ (0 < y) ∧ (0 < z) ∧ (z < x+ y)

∧(x < y + z) ∧ (y < x+ z)

Now we define the behavior of the triangle program by initializing the internal
Isabelle proof state with the test specification TS :

prog(x, y, z) = if triangle x y z then
if x = y then

if y = z then equilateral else isosceles
else if y = z then isosceles

else if x = z then isosceles else scalene
else error

http://www.brucker.ch/
http://www.informatik.uni-freiburg.de/~wolff/

Symbolic Test Case Generation for Primitive Recursive Functions 19

Note that the variable prog is used to label an arbitrary implementation as the
current program under test that should fulfill the test specification.

In the following we show how our test package TestGen can be applied to the
automatic test data generation problem for the triangle problem. Our method
proceeds in the following steps:

1. By applying gen_test_case_tac we bring the proof state into testing normal
form (TNF). In this example, we decided to generate symbolic test cases
up to depth 0 (discussed later) and to unfold the triangle predicate by its
definition before the process. This leads to a formula with 26 clauses, among
them:

[[0 < z; z < z + z]] =⇒ prog(z, z, z) = equilateral[[
x 6= z; 0 < x; 0 < z;
z < x+ z;x < z + z

]]
=⇒ prog(x, z, z) = isosceles

[[y 6= z; z 6= y;¬z < z + y]] =⇒ prog(z, y, z) = error

We call each Horn-clause of the proof state a symbolic test case. As a result of
gen_test_case_tac, we can extract the current proof state and get the test
theorem which has the form [[A1; . . . ;A26]] =⇒ TS where the Ai abbreviate
the above test cases.

2. We compute the concrete test statements by instantiating variables by con-
stant terms in the symbolic test cases for “prog” via a random test procedure
(genadd_test_data). The latter operation selects the test cases from the test
theorem and produces the test statements (excerpt):

prog(3, 3, 3) = equilateral prog(4, 6, 0) = error

A test statement can be compiled into a test program by simply mapping all
operators to external code (where prog is the code for calling the program under
test). This can be automated with Isabelle’s code-generator. If such a compilation
is possible for a formula A, i.e., if A only consists of constant symbols for which
this map is defined, we call A executable. This definition essentially rules out
unbounded logical quantifiers and more arcane HOL constructs like the Hilbert-
operator.

In our triangle example, standard simplification was able to eliminate the
assumptions of the (instantiated) test cases automatically. In general, assump-
tions in test statements (also called constraints) may remain. Provided that
all test statements are executable, clauses with constraints can nevertheless be
interpreted as an abstract test program. For its result, three cases may be distin-
guished: (i) if one of the clauses evaluates to false, the test is invalid, otherwise
valid. A valid test may be (ii) a successful test if and only if the evaluation of all
conclusions (including the call of prog) also evaluates to true; (iii) otherwise the
test contains at least one test failure. Rephrased in this terminology, the ultimate
goal of the test data selection is to construct successful tests, which means that

20 Achim D. Brucker and Burkhart Wolff

ground substitutions (i.e. instantiations of variables with constant terms) must
be found that make the remaining constraints valid.

Coming back to our example, there is a viable alternative for the process
above: instead of unfolding triangle and trying to generate ground substitutions
satisfying the constraints, one may keep triangle in the test theorem, treating
it as a building block for new constraints. It turns out that a special test theo-
rem and test data (like “triangle(3, 4, 5) = True”) can be generated “once and
for all” and inserted before the test data selection phase producing a “partial”
grounding. It will turn out that the main state explosion is shifted from the
test case generation to the test data selection phase, possibly at the cost of test
adequacy. This technique to modularize test data generation will be discussed
in Sec. 4 in more detail.

3 Concepts of Test Case Generation

As input of the test case generation phase, the test specification, one might
expect a special format like pre(x)→ post x (prog(x)). However, this rules out
trivial instances such as 3 < prog(x) or just prog(x) (meaning that prog must
evaluate to True for x). Therefore, we do not impose any other restriction on
a specification other than the final test statements being executable, i.e., the
result of the process can be compiled into a test program.

Processing this test specification, our method gen_test_case_tac can be
separated into the following conceptual phases (in reality, these phases were
performed in an interleaved way):

– Tableaux Normal Form Computation: via a tableaux calculus (see Tab. 1),
the specification is transformed into Horn-clause normal form (HCNF).

– Rewriting Normal Form Computation: via the standard rewrite rules the
current specification is simplified.

– Testing Normal Form Computation: by re-ordering of the clauses, the calls
of the program under test are rearranged such that they only occur in the
conclusion, where they must occur at least once.

– Testing Normal Form Minimization: redundancies, e.g., clauses subsumed by
others, are eliminated.

– Exploiting Regularity Hypothesis: for free variables occurring in recurring
argument positions of primitive recursive predicates, a suitable data separa-
tion lemma is generated and applied (leading to a test hypothesis THYP).

– Exploiting Uniformity Hypothesis: for all Horn-clauses not representing a
test hypothesis, a uniformity hypothesis is generated and exploited.

After a brief introduction of concepts and use of Isabelle in our setting, we will
follow the sequence of these phases and describe them in more detail in the
subsequent sections. We will conclude with a discussion of coverage criteria.

http://www.brucker.ch/
http://www.informatik.uni-freiburg.de/~wolff/

Symbolic Test Case Generation for Primitive Recursive Functions 21

3.1 Concepts and Use of Isabelle/HOL

Isabelle [17] is a generic theorem prover of the LCF prover family; as such, we use
the possibility to build programs performing symbolic computations over formu-
lae in a logically safe (conservative) way on top of the logical core engine: this is
what TestGen technically is. Throughout this paper, we will use Isabelle/HOL,
the instance for Church’s higher-order logic. Isabelle/HOL offers support for data
types, primitive and well-founded recursion, and powerful generic proof engines
based on rewriting and tableaux provers.

Isabelle’s proof engine is geared towards Horn-clauses (called “subgoals”):
A1 =⇒ . . . =⇒ An =⇒ An+1, written [[A1; . . . ;An]] =⇒ An+1, is viewed as a rule
of the form “from assumptions A1 to An, infer conclusion An+1”. A proof state
in Isabelle contains an implicitly conjoint sequence of Horn-clauses φ1,. . . ,φn

and a goal φ. Since a Horn-clause

[[A1; . . . ;An]] =⇒ An+1

is logically equivalent to

¬A1 ∨ · · · ∨ ¬An ∨An+1,

a Horn-clause normal form (HCNF) can be viewed as a conjunctive normal form
(CNF). Note, that in order to cope with quantifiers naturally occurring in speci-
fications, we generalize the idea of a Horn-clause to Isabelle’s format of a subgoal,
where variables may be bound by a built-in meta-quantifier:∧

x1, . . . , xm. [[A1; . . . ;An]] =⇒ An+1

Subgoals and goals may be extracted from the proof state into theorems of the
form [[φ1; . . . ;φn]] =⇒ φ; this mechanism is used to generate test theorems. The
meta-quantifier

∧
is used to capture the usual side-constraints “x must not occur

free in the assumptions” for quantifier rules; meta-quantified variables can be
considered as free variables. Further, Isabelle supports meta-variables (written
?x, ?y, . . .), which can be seen as “holes in a term” that can still be substituted.
Meta-variables are instantiated by Isabelle’s built-in higher-order unification.

3.2 Normal Form Computations

In this section, we describe the tableaux, rewriting and testing normal form
computations in more detail. In Isabelle/HOL, the automated proof procedures
for HOL formulae depend heavily on tableaux calculi [10] presented as (derived)
natural deduction rules. The core tableaux calculus is shown in Tab. 1 in the
Appendix. Note, that with the notable exception of the elimination rule for
the universal quantifier (see Tab. 0(c)), any rule application leads to a logically
equivalent proof state: therefore, all rules (except ∀ elimination) are called safe.
When applied bottom up in backwards reasoning (which may introduce meta-
variables explicitly marked in Tab. 1), the technique leads in a deterministic
manner to a HCNF.

22 Achim D. Brucker and Burkhart Wolff

Horn-clauses can be normalized by a number of elementary logical rules (e.g.,
False =⇒ P = True), the usual injectivity and distinctness rules for constructors
implied by data types and computation rules resulting from recursive definitions.
Both processes together bring an original specification into Rewriting HCNF.

However, these forms do not exclude clauses of the form:

[[¬(prog x = c);¬(prog x = d)]] =⇒ An+1

where prog is the program under test. Equivalently, this clause can be trans-
formed into

[[¬(An+1)]] =⇒ prog x = c ∨ prog x = d

We call this form of Horn-clauses testing normal form (TNF). More formally, a
Horn-clause is in TNF for program under test F if and only if

– F does not occur in the constraints, and
– F does occur in the conclusion.

Note that not all specifications can be converted to TNF. For example, if the
specification does not make a suitably strong constraint over program F , in par-
ticular if F does not occur in the specification. In such cases, gen_test_case_tac
stops with an exception.

3.3 Minimizing TNF

A TNF computation as described so far may result in a proof state with redun-
dancies. Redundancies in a proof state may result in superfluous test data and
should therefore be eliminated. A proof state may have:

1. several occurrences of identical clauses
2. several occurrences of clauses with subsuming assumption lists; this can be

eliminated by the transformation

[[P ;R]] =⇒ A; [[P ;Q;R]] =⇒ A;
==========================

[[P ;R]] =⇒ A;

3. and in particular, clauses that subsume each other after distribution of ∨;
this can be eliminated by the transformation

[[P ;R]] =⇒ A; [[¬P ;Q]] =⇒ B; [[R;Q]] =⇒ A ∨B;
===

[[P ;R]] =⇒ A; [[¬P ;Q]] =⇒ B;

The notation above refers to logical transformations on a subset of clauses within
a proof state and not, as usual, on formulae within a clause. Since in backward
proofs the proof state below is a refinement of the proof state above, the logical
implication goes from bottom to top.

http://www.brucker.ch/
http://www.informatik.uni-freiburg.de/~wolff/

Symbolic Test Case Generation for Primitive Recursive Functions 23

3.4 Exploiting Regularity Hypothesis for Recursive Predicates

In the following, we address the key problem of test case generation in our
setting, i.e.; recursive predicates occurring in preconditions of a program. As an
introductory example, we consider the membership predicate of an element in a
list:

primrec x mem [] = False
x mem (y#ys) = if y = x then True elsex mem ys (1)

which occurs as precondition in an (abstract) program specification:

x mem S → prog x S

For the testing of recursive data structure, Gaudel suggested in [13] the intro-
duction of a regularity hypothesis as one possible form of a test hypothesis, a
kind of weak induction rule:

[|x| < k]··
P x

P x

This rule formalizes the hypothesis that provided a predicate P is true for all
data x whose size, denoted by |x|, is less than a given depth k, it is always true.
The original rule can be viewed as a meta-notation: In a rule for a concrete data-
type, the premises |x| < k can be expanded to a number of premises enumerating
constructor terms.

For all variables in clauses that occur as (recurring) arguments of primitive
recursive functions, we will use a testing hypothesis of this kind — called data
separation lemma — in an exercise in poly-typic theorem proving [19] described
in the following.

The Isabelle/HOL data type package generates definitions of poly-typic func-
tions (like case-match and recursors) from data type definitions and derives a
number of theorems over them (like induction, distinctness of constructors, etc.).
In particular, for any data type, we can assume the size function and reduction
rules allowing to compute

∣∣[a, b, c]∣∣ = 3, for example. Moreover, there is a stan-
dard exhaustion-theorem, which for lists has the form[[

y = [] =⇒ P ;
∧
x xs. y = x#xs =⇒ P

]]
=⇒ P

Now, since we can separate any data x belonging to a data type τ into:

x ∈
{
z :: τ. |z| < d

}
∨ x ∈

{
z :: τ. d ≤ |z|

}
(2)

i.e., x is either in the set of data smaller d or in the remaining set. Note that both
sets are infinite in general; the bound for the size produces “data test cases” and
not just finite sets of data. Consequently, we can derive for each given type τ

24 Achim D. Brucker and Burkhart Wolff

and each d a destruction rule that enumerates the data of size 0, 1, . . . , k − 1.
For lists x and d = 2, 3, it has the form:

x ∈ {z :: α list. |z| < 2} →
(
x = []

)
∨
(
∃a. x = [a]

)
x ∈ {z :: α list. |z| < 3} →

(
x = []

)
∨
(
∃a. x = [a]

)
∨
(
∃ab. x = [a, b]

)
(3)

Putting equation (2) together with the destruction rule (3), instead of the unsafe
regularity hypothesis in the sense of Gaudel we automatically construct the safe
data separation lemma, i.e. an exhaustion theorem of the form:[
x = []

]
··

P (x)
∧
a.

[
x = [a]

]
··

P (x)
∧
a b.

[
x = [a, b]

]
··

P (x) THYP
(
3 ≤ |x| → P (x)

)
P (x)

The purpose of this rule in backward proof is to split a statement over a program
into several cases, each with an additional assumption that allows to “rewrite-
away” the x appropriately. Here, the constant THYP :: bool→ bool (defined as
the identity function) is used to label the test hypothesis in the proof state. Since
we do not unfold it, formulae labeled by THYP are protected from decomposition
by the tableaux rules shown in Tab. 1.

The equalities introduced by this rule of depth d = 3 allow for the simplifi-
cation of the primitive recursive predicate mem which leads to further decom-
positions during the TNF computation. Thus, for our test specification:

x mem S → prog x S

executing gen test case tac results in the following TNF:

1. prog x [x]

2.
∧
b. prog x [x, b]

3.
∧
a. a 6= x→ prog x [a, x]

4. THYP(3 ≤ |S| → x mem S → prog x S)

The simplification of the mem predicate along its defining rules (1) leads to
nested “if thenelse” constructs. Their decomposition during HCNF computa-
tion results in the constraint that the lists fulfilling the precondition must have
a particular structure. Even the simplest “generate-and-test”-method for test
data selection will now produce adequate test statements, while it would have
produced mostly test failures when applied directly to the original specification.

The handling of quantifiers ranging over data types can be done analogously:
since ∀x. P (x) is equivalent to ∀x : UNIV . P (x) and since the universal set
UNIV = {z :: τ. |z| < d} ∪ {z :: τ. d ≤ |z|}, the universal quantifier can be
decomposed into a finite conjunction for the test cases smaller than d and a test
hypothesis THYP for the rest.

From the above example it follows that the general form of a test theorem
is [[A1; . . . ;An; THYP(H1); . . . ; THYP(Hm)]] =⇒ TS . Here the Ai represent the
test cases, the Hi the test hypothesis, and TS the testing specification.

http://www.brucker.ch/
http://www.informatik.uni-freiburg.de/~wolff/

Symbolic Test Case Generation for Primitive Recursive Functions 25

3.5 Exploiting Uniformity Hypothesis

After introducing the uniformity hypothesis and computing a TNF (except for
clauses containing THYPs), we use the clauses to construct another form of
testing hypothesis, namely the uniformity hypothesis [13] (sometimes also called
partitioning hypothesis) for each test case. This kind of hypothesis has the form:

THYP(∃x1, . . . , xn. P x1, . . . , xn → ∀x1, . . . , xn. P x1, . . . , xn)

This means that whenever there is a successful test for a test case, it is assumed
that the program will behave correctly for all data of this test case.

Using a uniformity hypothesis for each (non-THYP) clause allows for the
replacement of free variables by meta-variables; e.g., for the case of two free
variables, we have the following transformation on proof states:

[[A1 x y; . . . ;An x y]] =⇒ An+1 x y
==
[[A1 ?x ?y; . . . ;An ?x ?y]] =⇒ An+1?x ?y; THYP((∃xy. P x y)→ (∀xy. P x y));

where P x y ≡ A1 x y∧ . . .∧An x y → An+1 x y. This transformation is logically
sound. Moreover, the construction introduces individual meta-variables into each
clause for the ground instances to be substituted in the test data selection; this
representation allows for partial instantiation of variable with constant terms
and is also a prerequisite for structured test data selection as discussed in Sec.4.

3.6 Coverage Criteria: A Discussion

In their seminal work, Dick and Faivre [12] propose to transform the original
specification into disjunctive normal form (DNF), followed by a case splitting
phase converting the disjunctions A∨B into A∧B, ¬A∧B and A∧¬B and further
(logical and arithmetic) simplifications and minimizations on the disjunctions.
The resulting cases are also called the partitions of the specification or the (DNF)
test cases. The method suggests the following test adequacy criterion: a set of
test data is partition complete if and only if for any test case there is a test data.
Consequently, a program P is tested adequately to partition completeness with
respect to a specification S if it passes a partition complete test data set.

Our notion of a successful test, see Sec. 2, is a HCNF based adequacy criterion.
DNF and HCNF based adequacy result in the same partitioning in many practical
cases, as in the triangle example, while having no clear-cut advantage in others.
Since the DNF technique has the disadvantage of producing a double exponential
blow-up (the case splitting phase alone can produce an exponential blow-up)
while HCNF computation is simply exponential, and since HCNF-computation
can be more directly and efficiently implemented in the Isabelle proof engine,
we chose the latter.

HCNF adequacy subsumes another interesting adequacy criterion under cer-
tain conditions, namely branch coverage with respect to the specification. Branch
coverage means that in any (mutual) recursive system of functions, all reachable
branches, e.g., of the if P then A else B statements, were activated at least

26 Achim D. Brucker and Burkhart Wolff

once. For a mutual recursive system consisting only of primitive recursive func-
tions, (i.e., with each call the size of data will decrease exactly by one), it can
be concluded that if the testing depth d is chosen larger than the size of the
maximal strong component of the call graph of the recursive system, each func-
tion is unfolded at least once. Since the unfold results in conditionals that were
translated to (P → A) ∧ (¬P → B), any branch will lead to a test case.

Thus, while gen_test_case_tac often produces reasonable results for arbi-
trarily recursive functions, we can assure only for primitive recursions that the
underlying HCNF adequacy of our method subsumes branch coverage.

4 Structured Test Data Selection

The motivations to separate test data selection from test case generation are
both conceptual and technical. Conceptually, test data selection is a process
where we would also like to admit more heuristic techniques like random data
generation or generate-and-test with the constraints; since test data selection
yields sequences of ground theorems (no meta-variables, no type variables), this
paves the way for highly efficient evaluation by compiled code more capable to
cope with the unavoidable state explosion in the late stages. A purely technical
motivation for this separation is Isabelle-related: within a test theorem, it is
not possible to instantiate polymorphic type variables α in different ways when
generating test statements, however, this flexibility may be desirable.

The generation of a multitude of ground test statements from one test the-
orem containing the test cases and the test hypothesis is essentially based on a
random-procedure followed by a test of the satisfaction of the constraints (simi-
lar to QuickCheck). For each type, this default procedure may be overwritten in
TestGen-specific generators that may be user defined; thus, the usual heuristics
like trying [0, 1, 2,maxint ,maxint +1] can be easily implemented, or the counter-
example generation integrated in Isabelle’s arithmetic procedure can be plugged
in (which, in our experience, is difficult to control in larger examples).

Now we will discuss the issue of structured test data generation. Similar to
theorem proving, the question of “how many definitions should be unfolded” is
crucial; exploiting suitable abstractions is the major weapon against complexity.
In our first attempt to generate a test theorem for the triangle example (see
Sec. 2), the auxiliary predicate triangle is unfolded in the test specification. This
resulted in the aforementioned 26 cases. If we do not unfold it, the resulting test
theorem has only 10 test cases, but contains “abstract constraints” such as:

[[triangle z z z]] =⇒ prog(z, z, z) = equilateral
[[¬triangle z z z]] =⇒ prog(z, z, z) = error

[[y 6= z; z 6= y; triangle z y z]] =⇒ prog(z, y, z) = isosceles

Thus, a substantial part of the proof state explosion can be postponed by treating
triangle as a building block in the constraints or, in other words, by generating
more abstract test cases.

http://www.brucker.ch/
http://www.informatik.uni-freiburg.de/~wolff/

Symbolic Test Case Generation for Primitive Recursive Functions 27

Now, if we could generate an local test theorem for triangle as such, generate
the local test data separately and resolve the resulting test statements for it into
the test theorem for the global computation, the state explosion could be shifted
to the test data selection. The trick can be done as follows: we define a trivially
true proof goal for:

prog(x, y, z) = triangle x y z =⇒ prog(x, y, z) = triangle x y z

unfold triangle and compute TNF(prog). When folding back triangle via the
assumption we get the following local test cases:

¬triangle 0 y z ¬z < x+ y =⇒ ¬triangle x y z
¬triangle x 0 z ¬x < y + z =⇒ ¬triangle x y z
¬triangle x y 0 ¬y < x+ z =⇒ ¬triangle x y z[[

0 < x; 0 < y; 0 < z;
z < x+ y;x < y + z; y < x+ z

]]
=⇒ triangle x y z

which can easily be converted into abstract test statements such as triangle 1 1 1.
When resolving the latter in all combinations into the abstract global test theo-
rem, instances for variables with randomly generated constants were made super-
fluous. Thus, the test statements of previously developed theories can be reused
when building up larger units. Of course, when building up test data in a mod-
ular way, this comes at a price: since the local test statements do not have the
same logical information available as their application context in a more global
test theorem, the instantiation may result in unsatisfiable constraints. Neverthe-
less, since the criterion for success of a decomposition is clear — at the very end
we want constraint-free test statements achieving a full coverage of the TNF—
the implementor of a test has more flexibility here helping to deal with larger
problems. In our example, there is no loss at all: test data for the local predicate
is valid for the global goal, and by construction, the set of test statements is still
complete for HCNF coverage.

5 Applications

We applied our method to specifications of two widely used variants of balanced
binary search trees: AVL trees and red-black trees. These case studies were per-
formed using Isabelle 2003 compiled with SML of New Jersey running on Linux
with 512 MBytes of RAM, and an Intel 1.6 GHz P4 processor.

5.1 AVL Trees

In 1962 Adel’son-Vel’skĭı and Landis [3] introduced a class of balanced binary
search trees (called AVL trees) that guarantee that a tree with n internal nodes
has height O(log n). Based on an AVL-theory from the Isabelle library we gen-
erated test cases for the following invariant: if an element y is in the tree after
insertion of x in the tree t then either x = y holds or y was already stored in t.
Based on the depth 3, this test specification leads to an amazing 236 test cases
which were computed in less than 30 seconds.

28 Achim D. Brucker and Burkhart Wolff

5.2 Red-Black Trees

A widely used variant of balanced search trees was presented by Bayer [4]. In
this data structure, the balancing information is stored in one additional bit
per node. This is called “color of a node” (which can either be red or black),
hence the name red-black trees. A valid (balanced) red-black tree must fulfill the
following two invariants:

– Red Invariant: each red node has a black parent.
– Black Invariant: each path from the root to an empty node has the same

number of black nodes.

We aimed for testing a “real-world” implementation of red-black trees and de-
cided to test the red-black trees provided in the standard library of SML of New
Jersey (SML/NJ) [2]. There, red-black trees are used for implementing finite sets
and maps which are intensively used throughout the SML/NJ compiler itself.

Our specification is based on the formalization [16] of the SML/NJ red-black
trees (based on version 110.44 of SML/NJ). The specification starts with the
basic data type declaration for binary trees:

datatype color = R | B
α tree = E | T color (α tree) (α item) (α tree)

In this example we have chosen not only to check if keys are stored or deleted
correctly in the trees but also to check if the trees fulfill the balancing invariants.
Therefore our specification has to formalize the red and black invariants. This
is done by the following recursive predicates:

consts
redinv :: (α item) tree⇒ bool
blackinv :: (α item) tree⇒ bool

recdef redinv“measure (λt. (size t))”
“redinv E = True”
“redinv (T B a y b) = (redinv a ∧ redinv b)”
“redinv (T R (T R a x b) y c)= False”
“redinv (T R a x (T R b y c))= False”
“redinv (T R a x b) = (redinv a ∧ redinv b)”

recdef blackinv“measure (λt. (size t))”
“blackinvE = True”
“blackinv(T color a y b) = ((blackinv a) ∧ (blackinv b)

∧((max B height a) = (max B height b)))”

We use the following test specification for checking if the delete operation fulfills
these invariants:

(redinv t ∧ blackinv t)→ (redinv (delete x t) ∧ blackinv (delete x t))

http://www.brucker.ch/
http://www.informatik.uni-freiburg.de/~wolff/

Symbolic Test Case Generation for Primitive Recursive Functions 29

In other words, for all trees the deletion operation maintains the red and black
invariant. For testing purposes, we instantiated item with Integers. The test case
generation takes less than two minutes and results in 348 test cases. Among them

delete 8 (T B (T B (T R E 2 E) 5 E) 6 (T B E 8 E))
= (T B (T B E 2 E) 5 (T B E 6 E))

which describes that the deletion of the node 8 in the tree shown in Fig. 1(a)
must result in the tree shown in Fig. 1(b). This test case revealed a major error
in the standard library of SML/NJ. Using a simple SML test script one observes:

val input = T (B,T (B,T (R,E,2,E),5,E),6,T (B,E,8,E))

- val output = delete(input ,8);

val output = T (B,E,2,T (B,T (R,E,5,E),6,E))

Obviously, the black invariant does not hold for output (see Fig. 1(c)).

2

5

6

8

(a) pre-state

6

5

2

(b) correct result

5

2

6

(c) result of SML/NJ

Figure 1. Test Data for Deleting a Node in a Red-Black Tree

This example shows that specification based testing can find efficiency bugs:
combinations of insert and delete operations of the SML/NJ implementation
easily lead to trees that degenerate to sorted lists. In our case, the revealed flaw
has not been detected in the last 12 years, although red-black trees are widely
used within the SML/NJ compiler itself. Fixing this bug will presumably lead to
a perceptible performance gain of the SML/NJ compiler.

Based on our definitions, the bug could be reproduced by QCheck/SML [1], a
QuickCheck-like random testing tool. Although this particular bug can even be
found without using a hand-programmed test data generator, the QuickCheck
method imposes to write one in general. Moreover, our method allows to con-
clude that certain coverage criteria are fulfilled and makes all underlying test
hypotheses explicit. Further, our approach can profit from the underlying theo-
ries for data-types offering the potential for problem-specific case splits.2

2 . . . such as [[P (minBound :: Int); a 6= minBound =⇒ P (−a)]] =⇒ P (−a) which also
produces the critical test case x = minBound + 2 for the mentioned problem
abs(x-2)>=0 after unfolding abs to if x >= 0 then x else -x.

30 Achim D. Brucker and Burkhart Wolff

6 Conclusion

We have presented the theory and implementation of a test case generator for
unit tests. In contrast to [20] (which also provides a recent survey), which at-
tempts to analyze imperative programs with non-trivial data-structures, our
approach is focused on functional programs. Since imperative programs can be
provided with a functional interface (by compiling a functional call to a state-
ment sequence consisting of (i) initialization, (ii) executing constructors repre-
senting data types, (iii) calling the program under test, and (iv) checking the
result), this is not a real limitation of our approach except if complex reference
structures have to be analyzed. We demonstrated the practical feasibility of our
approach by testing functions from the SML/NJ library, which revealed a major
bug leading to inefficiency in basic data structures of the SML/NJ compiler.

In our opinion, test data generation is an activity that clearly needs some
user interaction: as in model-checking, one has to experiment with the form
of the specifications and basic parameters (depth of data separation, the level
of abstraction, the decision which definitions should be unfold, etc.) in order
to get a feasible test data set for the test of a “real program”. Therefore, we
believe such an activity is best supported by an integration into an interactive
theorem proving environment such as Isabelle. Since TestGen is ca. 400 lines
of SML code that is loaded into Isabelle, we still consider our approach fairly
“lightweight”. Nevertheless, TestGen is at present the only implementation of
a test case generator that combines state-of-the-art deduction technology based
on derived rules (formally proven inside Isabelle) with a powerful logic.

We believe that there is another line of criticism against Dijkstra’s verdict. A
successful test together with explicitly stated test hypotheses is not fundamen-
tally different from program verification: all sorts of modeling assumptions were
made, adding test hypothesis is just one more of them. The nature and trust-
worthiness of these assumptions may be different, but a clear-cut line between
testing and verification does not exist.

6.1 Future Work

We see the following lines of extension of our work:

1. Investigating the test hypothesis: a new test hypothesis (like congruence hy-
pothesis on data, for example) may dramatically improve the viability of the
approach. Furthermore, it should be explored if the verification of the test
hypothesis for a given abstract program offers new lines of automation.

2. Better control of the process: at the moment, our implementation can only
be controlled by very globally applied parameters such as depth. The ap-
proach could be improved by generating the test hypothesis and the test
data depending on the local context within the test theorems.

3. Integration tests: integrating/combining our framework into behavioral mod-
eling leads to the generation of test sequences as in [15, 18].

4. Generating test data for many-valued logics such as HOL-OCL [6] should make
our approach applicable to formal methods more accepted in industry.

http://www.brucker.ch/
http://www.informatik.uni-freiburg.de/~wolff/

Symbolic Test Case Generation for Primitive Recursive Functions 31

References

[1] QCheck/SML. http://contrapunctus.net/league/haques/qcheck/.
[2] SML of New Jersey. http://www.smlnj.org/.
[3] G. M. Adel’son-Vel’skĭı and E. M. Landis. An algorithm for the organization of

information. Soviet Mathematics Doklady, 3:1259–1263, 1962.
[4] R. Bayer. Symmetric binary B-trees: Data structure and maintenance algorithms.

Acta Informatica, 1(4):290–306, 1972.
[5] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded Model

Checking. Number 58 in Advances In Computers. 2003.
[6] A. D. Brucker and B. Wolff. A proposal for a formal OCL semantics in Is-

abelle/HOL. In C. Muñoz, S. Tahar, and V. Carreño, editors, TPHOLs, volume
2410 of LNCS, pages 99–114. Springer-Verlag, Hampton, VA, USA, 2002.

[7] A. D. Brucker and B. Wolff. A case study of a formalized security architecture.
In T. Arts and W. Fokkink, editors, FMICS’03, volume 80 of Electronic Notes in
Theoretical Computer Science, Roros, 2003. Elsevier Science Publishers.

[8] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing
of Haskell programs. In Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, pages 268–279. ACM Press, 2000.

[9] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 238–252. ACM Press, 1977.

[10] M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors. Handbook of
Tableau Methods. Kluwer, Dordrecht, 1996.

[11] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming, volume 8
of A.P.I.C. Studies in Data Processing. Academic Press, London, 1972.

[12] J. Dick and A. Faivre. Automating the generation and sequencing of test cases
from model-based specications. In J. Woodcock and P. Larsen, editors, FME 93,
volume 670 of LNCS, pages 268–284. Springer-Verlag, 1993.

[13] M.-C. Gaudel. Testing can be formal, too. In P. D. Mosses, M. Nielsen, and
M. I. Schwartzbach, editors, TAPSOFT 95, volume 915 of LNCS, pages 82–96.
Springer-Verlag, Aarhus, Denmark, 1995.

[14] S. Hayashi. Towards the animation of proofs—testing proofs by examples. Theo-
retical Computer Science, 272(1–2):177–195, 2002.

[15] F. Huber, B. Schätz, A. Schmidt, and K. Spies. AutoFocus - a tool for distributed
systems specification. In FTRTFT 96, volume 1135 of LNCS, pages 467–470.
Springer-Verlag, 1996.

[16] A. Kimmig. Red-black trees of smlnj. Studienarbeit, Universität Freiburg, 2003.
[17] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant

for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.
[18] A. Pretschner. Classical search strategies for test case generation with constraint

logic programming. In E. Brinksma and J. Tretmans, editors, Proc. Formal ap-
proaches to testing of software, pages 47–60. BRICS, 2001.

[19] K. Slind and J. Hurd. Applications of polytypism in theorem proving. In D. Basin
and B. Wolff, editors, TPHOLs, volume 2758 of LNCS, pages 103–119. Springer-
Verlag, Rome, Italy, 2003.

[20] W. Visser, C. S. Păsăreanu, and S. Khurshid. Test input generation with Java
PathFinder. SIGSOFT Softw. Eng. Notes, 29(4):97–107, 2004.

[21] H. Zhu, P. A. Hall, and J. H. R. May. Software unit test coverage and adequacy.
ACM Computing Surveys, 29(4):366–427, 1997.

http://contrapunctus.net/league/haques/qcheck/
http://www.smlnj.org/

A Appendix

(a) Quantifier Introduction Rules

P ?x

∃x. P x

^
x. P x

∀x. P x

(b) Safe Introduction Rules

t = t True

P Q

P ∧Q

[¬Q]
··
P

P ∨Q

[P]
··
Q

P → Q

[P]
··

False

¬P

[P]
··
Q

[Q]
··
P

P = Q

(c) Unsafe Elimination Rules

∀x. P x

[P ?x]
··
R

R

∀x. P x

[∀x. P x; P ?x]
··
R

R

(d) Safe Elimination Rules

False

P

P ∧Q

[P Q]
··
R

R

P ∨Q

[P]
··
R

[Q]
··
R

R

P → Q

[¬P]
··
R

[Q]
··
R

R

∃x. P x
^

x.

[P x]
··
Q

Q

P = Q

[P Q]
··
R

[¬P ¬Q]
··
R

R

(e) Rewrites

if P then A else B = (P → A) ∧ (¬P → B)

Table 1. The Standard Tableaux Calculus for HOL

	Symbolic Test Case Generation for Primitive Recursive Functions
	Achim D. Brucker and Burkhart Wolff
	Introduction
	Symbolic Test Case Generation: A Guided Tour
	Concepts of Test Case Generation
	Concepts and Use of Isabelle/HOL
	Normal Form Computations
	Minimizing TNF
	Exploiting Regularity Hypothesis for Recursive Predicates
	Exploiting Uniformity Hypothesis
	Coverage Criteria: A Discussion

	Structured Test Data Selection
	Applications
	AVL Trees
	Red-Black Trees

	Conclusion
	Future Work

	Appendix

@InCollection{	 brucker.ea:symbolic:2005,
 abstract	= {We present a method for the automatic generation of test
		 cases for HOL formulae containing primitive recursive
		 predicates. These test cases can be used for the animation
		 of specifications as well as for black-box testing of
		 external programs. Our method is two-staged: first, the
		 original formula is partitioned into test cases by
		 transformation into a Horn-clause normal form (HCNF).
		 Second, the test cases are analyzed for instances with
		 constant terms satisfying the premises of the clauses.
		 Particular emphasis is put on the control of test
		 hypotheses and test hierarchies to avoid intractability. We
		 applied our method to several examples, including AVL-trees
		 and the red-black tree implementation in the standard
		 library from SML/NJ. },
 keywords	= {symbolic test case generations, black box testing, theorem
		 proving, Isabelle/HOL },
 location	= {Linz},
 author	= {Achim D. Brucker and Burkhart Wolff},
 booktitle	= {Formal Approaches to Testing of Software},
 language	= {USenglish},
 pages		= {16--32},
 publisher	= {Springer-Verlag},
 address	= {Heidelberg},
 series	= {Lecture Notes in Computer Science},
 number	= {3395},
 isbn		= {3-540-25109-X},
 doi		= {10.1007/b106767},
 editor	= {Jens Grabowski and Brian Nielsen},
 pdf		= {http://www.brucker.ch/bibliography/download/2005/brucker.ea-symbolic-2005.pdf},
 ps		= {http://www.brucker.ch/bibliography/download/2005/brucker.ea-symbolic-2005.ps.gz},
 project	= {CSFMDOS},
 title		= {Symbolic Test Case Generation for Primitive Recursive
		 Functions},
 classification= {workshop},
 categories	= {holtestgen},
 year		= {2004},
 url		= {http://www.brucker.ch/bibliography/abstract/brucker.ea-symbolic-2005}
		
}

%0 Book Section
%T Symbolic Test Case Generation for Primitive Recursive Functions
%A Brucker, Achim D.
%A Wolff, Burkhart
%E Grabowski, Jens
%E Nielsen, Brian
%B Formal Approaches to Testing of Software
%D 2004
%N 3395
%I Springer-Verlag
%C Heidelberg
%@ 3-540-25109-X
%F brucker.ea:symbolic:2005
%X We present a method for the automatic generation of test cases for HOL formulae containing primitive recursive predicates. These test cases can be used for the animation of specifications as well as for black-box testing of external programs. Our method is two-staged: first, the original formula is partitioned into test cases by transformation into a Horn-clause normal form (HCNF). Second, the test cases are analyzed for instances with constant terms satisfying the premises of the clauses. Particular emphasis is put on the control of test hypotheses and test hierarchies to avoid intractability. We applied our method to several examples, including AVL-trees and the red-black tree implementation in the standard library from SML/NJ.
%K symbolic test case generations, black box testing, theorem proving, Isabelle/HOL
%U http://www.brucker.ch/bibliography/abstract/brucker.ea-symbolic-2005
%P 16-32

TY - CHAP
AU - Brucker, Achim D.
AU - Wolff, Burkhart
ED - Grabowski, Jens
ED - Nielsen, Brian
PY - 2004//
TI - Symbolic Test Case Generation for Primitive Recursive Functions
BT - Formal Approaches to Testing of Software
T3 - Lecture Notes in Computer Science
SP - 16
EP - 32
IS - 3395
PB - Springer-Verlag
CY - Heidelberg
KW - symbolic test case generations, black box testing, theorem proving, Isabelle/HOL
AB - We present a method for the automatic generation of test cases for HOL formulae containing primitive recursive predicates. These test cases can be used for the animation of specifications as well as for black-box testing of external programs. Our method is two-staged: first, the original formula is partitioned into test cases by transformation into a Horn-clause normal form (HCNF). Second, the test cases are analyzed for instances with constant terms satisfying the premises of the clauses. Particular emphasis is put on the control of test hypotheses and test hierarchies to avoid intractability. We applied our method to several examples, including AVL-trees and the red-black tree implementation in the standard library from SML/NJ.
SN - 3-540-25109-X
UR - http://www.brucker.ch/bibliography/abstract/brucker.ea-symbolic-2005
ID - brucker.ea:symbolic:2005
ER -

