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Abstract HOL-TestGen is a test environment for specification-based
unit testing build upon the proof assistant Isabelle/HOL. While there
is considerable skepticism with regard to interactive theorem provers in
testing communities, we argue that they are a natural choice for (auto-
mated) symbolic computations underlying systematic tests. This holds
in particular for the development on non-trivial formal test plans of com-
plex software, where some parts of the overall activity require inherently
guidance by a test engineer. In this paper, we present the underlying
methods for both black box and white box testing in interactive unit test
scenarios. HOL-TestGen can also be understood as a unifying technical
and conceptual framework for presenting and investigating the variety of
unit test techniques in a logically consistent way.
Keywords: symbolic test case generations, black box testing, white box
testing, theorem proving, interactive testing

1 Introduction

HOL-TestGen [1, 5, 6] is a test environment for unit testing based on the proof
assistant Isabelle/HOL. Its design rationale is remarkably different from the
mainstream of other symbolic testing tools which are designed to be fully auto-
matic: In our view, the development of tests is an interactive activity, where the
form of test specifications, the abstraction levels used in a test, the solution of
generated logical constraints (for path-conditions, etc.), and the parameters of
the test data selection must be experimented with and adopted up to the point
where the generated tests are sufficiently “good” with respect to an underlying
test adequacy criteria.

Aiming at a fully automatic tool for specification-based test has a number of
consequences: be it for the specification language and for the degree of abstrac-
tion of test specifications, be it for the theories of the underlying data structures,
and be it, last but not least, on the way how not automatically resolvable logical
constraints of a test are finally treated. It may be the case that most of the
generated constraints can (and, of course, should!) be solved by an automated
theorem prover or constraint solver, however, what happens to the remaining
rest? Raising this question and putting the interactive element from the periph-
ery into the center leads in our experience to different answers with respect to
the usable specification language, to the design of the system architecture as well
as to the testing methodology.
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This paper focuses on the latter issue. HOL-TestGen has been used to find
non-trivial bugs in “real” software based on highly automated symbolic compu-
tation processes [6], where theory and implementation are described. But what is
the underlying methodology leading to this result? And are there other ways to
profit from the inactive potentials of HOL-TestGen? We answer these questions
in the main sections of this paper: in Sec. 4, we describe the “best practices”
developed in previous specification-based black box tests. In particular, we show
how the highly automated standard workflow for generating test data can be
enhanced by mixing it with more or less ingenious intermediate theorem prov-
ing steps. In Sec. 5, we will exploit the underlying generality of Isabelle for a
different testing technique in the style of Pathfinder [11], SpecExplorer [8], and
Korat [4]. The approach is based on a suitable semantic presentation of a pro-
gramming language (a “logical embedding”), which can be used to both derive
semantic constraints underlying a test as well as solving them in an integrated
way. Moreover, our approach allows for logging explicit test hypotheses, a con-
cept developed by the authors [6].

We would like to emphasize that all our symbolic computations are based
entirely on conservative theory extensions of HOL and derived rules from them,
such that HOL-TestGen is in fact a proven correct tool (assuming the consistency
of HOL and its correct implementation in Isabelle). We believe that proving the
crucial rules helps to develop a simple, semantically clean and integrated support
of testing techniques.

The contributions and the plan of this paper are as follows: First, we outline
an overall system presentation of HOL-TestGen (Sec. 3), second, we will develop
the interactive methodology of generating specification-based black box tests
(Sec. 4), and finally, we develop a proof of concept for white box testing in our
framework. In particular, we show how our concept of explicit test hypotheses
can be applied in this context (Sec. 5).

2 Foundations

2.1 Isabelle

Isabelle [10] is a generic theorem prover. New object logics can be introduced
by specifying their syntax and inference rules. Among other logics, Isabelle sup-
ports first order logic, Zermelo-Fränkel set theory and HOL, which we choose as
framework for HOL-TestGen.

While Isabelle/HOL is usually coined as “proof assistant”, we use it as sym-
bolic computation environment. Implementations on Isabelle/HOL can re-use
existing powerful deduction mechanisms such as higher-order resolution and
rewriting, and the overall environment provides a large collection of compo-
nents ranging from documentation generators and code-generators to (generic)
decision procedures for datatypes and Presburger Arithmetic.

Isabelle can easily be controlled by a programming interface on its implemen-
tation level in SML in a logically safe way, as well as in the Isar level, i.e., a tactic
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proof language in which interactive and automated proofs can be mixed arbi-
trarily. Documents in the Isar format, enriched by the commands provided by
HOL-TestGen, can be processed incrementally within Proof General (see Sec. 3)
as well as in batch mode. These documents can be seen as formal and technically
checked test plan of a program under test.

2.2 Higher-order Logic

Higher-order logic (HOL) [7, 3] is a classical logic with equality enriched by total
polymorphic1 higher-order functions. It is more expressive than first-order logic,
since e.g., induction schemes can be expressed inside the logic. Pragmatically,
HOL can be viewed as a combination of a typed functional programming lan-
guage like SML or Haskell extended by logical quantifiers. Thus, it often allows
a very natural way of specification.

Isabelle/HOL provides also a large collection of theories like sets, lists, mul-
tisets, orderings, and various arithmetic theories. Furthermore, it provides the
means for defining data types and recursive function definitions over them in a
style similar to a functional programming language.

Isabelle/HOL processes rules and theorems of the form A1 =⇒ . . . =⇒
An =⇒ An+1, also denoted as [[A1; . . . ;An]] =⇒ An+1. They can be under-
stood as a rule of the form “from assumptions A1 to An, infer conclusion An+1”.
In particular, the presentation of sub-goals uses this format. We will refer to
assumptions also as constraints in this paper.

3 The HOL-TestGen System

HOL-TestGen is an interactive (semi-automated) test tool for specification based
unit tests. Its theory and implementation has been described in [5], here, we
briefly review main concepts and outline the standard workflow. The latter is
divided into four phases: writing the test specification, generation of test cases
along with a test theorem, generation of test data (TD), and the test execution
(result verification) phase involving runs of the “real code” of the program under
test. Once a test theory is completed, documents can be generated that represent
a formal test plan. See Fig. 1 for the overall workflow.

The properties of program under test are specified in HOL in the test speci-
fication (TS). The system will decompose the test specification in the test case
generation phase into a semantically equivalent test theorem which has the form:

[[TD1; ...;TDn;THYP H1; ...;THYP Hm]] =⇒ TS

where THYP is a constant (semantically: an identity) used to mark the test hy-
potheses that are underlying this test. At present, HOL-TestGen uses only uni-
formity and regularity Hypothesis; for example, a uniformity hypothesis means
informally “if the program conforms to one instance of a case to TS, it conforms
1 to be more specific: parametric polymorphism
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Figure 1. Overview of the Standard Workflow of HOL-TestGen

to all instances of this case to TS” (see Sec.4.2 for a formal presentation). Thus,
a test theorem has the following meaning:

If the program under test passes the tests for all TDi successfully, and if it
satisfies all test hypothesis, it conforms to the test specification.

In this sense, a test theorem bridges the gap between test and verification. h The
theory containing test theory, test specifications, configurations of the test data
and test script generation, possibly extended by proofs for rules that support

Figure 2. A HOL-TestGen Session Using Proof General
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the overall process, is written in an extension of the Isar language [12]. It
can be processed in batch mode, but also using the Proof General interface
interactively, see Fig. 2. This interface allows for interactively stepping through
a test theory (in the upper sub-window) and the sub-window below shows the
corresponding system state. A system state may be a proof state in a test theorem
development, or the result of inspections of generated test data or a list of test
hypothesis.

After test data generation, HOL-TestGen can produces a test script driving
the test using the provided test harness. The test script together with the test
harness stimulate the code for the program under test built into the test exe-
cutable. Executing the test executable runs the test and results in a test trace
showing possible errors in the implementation (see lower window in Fig. 2).

4 Interactive Black Box Testing

In this section we present the method for the current main application of HOL-
TestGen: generating test data for black box testing of side-effect free programs.
As running example we chose the red-black trees already used in [5] to find an er-
ror in the “real” sml/NJ library. However, this time we will show how errors were
found and how test data can be generated that actually explores the program
under test to a satisfactory degree.

4.1 The Test Specification

Red-black trees store the balancing information in one additional bit per node,
which is called the “color of a node”. This is either red or black. A valid (balanced)
red-black tree must fulfill the following three invariants:
1. Red Invariant: each red node has a black parent.
2. Strong Red Invariant: the root is red and the red invariant holds.
3. Black Invariant: each path from the root to a leaf has the same number of

black nodes.
An invariant can be represented as recursive predicate; for the red invariant this
looks as follows:

types ’a item = "’a ::ord_key"
datatype color = R | B
datatype ’a tree = E | T color "’a tree" "’a item" "’a tree"

consts redinv :: "’a tree ⇒ bool"
recdef redinv "measure (λt. ( size t))"

"redinv E = True"
"redinv (T B a y b) = (redinv a ∧ redinv b)"
"redinv (T R (T R a x b) y c) = False"
"redinv (T R a x (T R b y c)) = False"
"redinv (T R a x b) = (redinv a ∧ redinv b)"
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Assume we want to test that insertion or deletion (summarized by the place-
holder prog) fulfill the black invariant. Hence, we are searching for test data
fulfilling the premise of the following test specification:
test_spec "(isord t∧ isin y t∧strong_redinv t∧ blackinv t)−→ (blackinv(prog(y, t )))"

which we found after some experimenting (weaker preconditions lead to under-
standable exceptions of the program under test).

4.2 First Attempt: The “Standard Workflow”
Test Case Generation Now we can automatically generate test cases in
a model checking-like fashion by applying the gen_test_cases method. The
method generates data-structures (here: trees) up to a certain depth and per-
forms case splitting over all possible cases; remaining constraints are simplified.
The default depth-parameter of the method is set to 3. Finally, the resulting test
theorem is stored in a test environment :
apply(gen_test_cases "prog")

store_test_thm "red_and_black_inv"

This fairly simple setup generates already 25 subgoals containing 12 test cases,
altogether with non-trivial constraints, among them:
1. [[ x1=x2 ]] =⇒ blackinv (prog (x1, T B E x2 E))
2. [[ x1=x6; max_B_height (T x5 x4 x3 x2) = 0; blackinv x2;

max_B_height x4 = max_B_height x2; blackinv x4; redinv (T x5 x4 x3 x2);
∀ x. (x= x3 −→x6 < x) ∧ ( isin x x4 −→ x6 < x) ∧ ( isin x x2 −→ x6 < x);
∀ x. isin x x2 −→ x3 < x; ∀ x. isin x x4 −→ x < x3; isord x2; isord x4]]
=⇒ blackinv (prog (x1, T B E x6 (T x5 x4 x3 x2)))

An example for a generated uniformity test hypothesis is:
THYP ((∃ x xa. x = xa −→blackinv (prog (x, T B E xa E))) −→

(∀ x xa. x = xa −→ blackinv (prog (x, T B E xa E))));

Test Data Generation Generating concrete test data already takes a remark-
able length of time, as it’s quite unlikely that the random solver generates values
that fulfill these ordering constraints. Therefore we restrict the attempts (itera-
tions) the random solver takes for solving a single test case to 40

testgen_params [ iterations=40]
gen_test_data "red_and_black_inv"

which is sadly not sufficient to solve all conditions, e.g., we obtain test cases like
RSF −→ blackinv (prog (100, T B E 7 E))
RSF −→ blackinv (prog (83, T B (T B (T B E −8 E) 57 (T R E 13 E)) −62 E))
blackinv (prog (−91, T B (T R E −91 E) 5 E))
RSF −→ blackinv (prog (−33, T B (T R E −2 E) 37 E))

were RSF marks unsolved cases. Analyzing the generated test data reveals that
only very few had been resolved and therefore lead to inconclusive tests. To
compute more conclusive test data, we can interactively increase the number of
iterations, which reveals that we need to set iterations to more than 100 to find
a suitable set of test data reliably.
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Test Script Generation Now we generate the test script for PUT being imple-
mented by wrapper.del:

gen_test_script "rbt_script.sml" "red_and_black_inv" "PUT" "wrapper.del"

In principle, any SML-system should be able to run the provided test-harness
and generated test-script. Using their specific facilities for calling foreign code,
testing of non-SML implementations, e.g., Java, or C, is supported. Depending
on the SML-system, the test execution can be done within an interpreter or using
a compiled test executable. Testing implementations written in SML is straight-
forward. For testing non-SML implementations it is in most cases sufficient to
provide a quite simple “wrapper” doing some datatype conversion.

Test Result Verification Running the test executable for red_and_black_inv
results in an output similar to Tab. 1, showing successful test cases, failures
(i.e., the implementation violates the post condition) and warning caused by
unresolved cased (where the random solver returns RSF as pre-condition). In the
latter case, the PUT is still executed (and throws in our example an exception).
Already in this highly automatic set-up, we were able to produce the reported

Test Results:
Test 0 - SUCCESS, result: E
Test 1 - SUCCESS, result: T(R,E,67,E)
Test 2 - SUCCESS, result: T(B,E,~88,E)
Test 3 - ** WARNING: pre cond. false (exception during post cond.)
Test 4 - ** WARNING: pre cond. false (exception during post cond.)
Test 5 - SUCCESS, result: T(R,E,30,E)
Test 6 - SUCCESS, result: T(B,E,73,E)
Test 7 - ** WARNING: pre cond. false (exception during post cond.)
Test 8 - ** WARNING: pre cond. false (exception during post cond.)
Test 9 - *** FAILURE: post cond. false, result: T(B,T(B,E,~92,E),~11,E)
Test 10 - SUCCESS, result: T(B,E,19,T(R,E,98,E))
Test 11 - SUCCESS, result: T(B,T(R,E,8,E),16,E)

Summary:
Number successful tests cases: 7 of 12 (ca. 58%)
Number of warnings: 4 of 12 (ca. 33%)
Number of errors: 0 of 12 (ca. 0%)
Number of failures: 1 of 12 (ca. 8%)
Number of fatal errors: 0 of 12 (ca. 0%)

Table 1. RBT Test trace

error in the SML library. However, based on the test depth 3 (which represents
the limit of the standard approach if we restrict ourselves to a time investment of
10 minutes for the overall run) we cannot have trees with more than three nodes
on the level of the test case generation. Of course, random solving increases the
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depth of the trees sporadically, as can be seen from the test result, but in an
unsystematic way. Thus, the program under test has obviously not been tested
satisfactorily, and we need means to treat test data sets with higher depth.

4.3 Second Attempt: Using “Abstract Test Data”

By inspection of the constraints of the test theorem, one immediately identifies
predicates for which solutions are difficult to find by a random process (a measure
for this difficulty could be the percentage of trees up to depth k, that make
this predicate valid. One can easily convince oneself, that this percentage is
decreasing asymptotically).

Repeatedly, ground instances were needed for terms of the form:
1. max_B_height x = 0
2. max_B_height y = max_B_height z
3. blackinv x
4. redinv x
5. isord x

How can the constraint resolution be helped by user guidance? The idea is to
establish ground instances by hand and to feed them into the resolution process
as abstract test cases, see [6]. But which of the patterns should we choose? It
turns out that max_B_height X = 0 (is the number of black nodes on any path
0?) has many candidates, but after depth 2 they are all ruled out by redinv).
Thus, we picked redinv and provided ground instances for it by hand: redinv
E, redinv (T R E (5::int) E), redinv (T B E (5::int) E), redinv (T R E 2 (T
B E (5::int) E)), redinv ((T R (T B E (5::int) E) 6 E)), redinv(T R (T B E 3
E)4 (T B E (5::int) E)), etc. Each of these ground instances is in fact established
by an automatic proof:

lemma redinv_6[test "red_and_black_inv"]:
"redinv(T R (T B E 3 E) 4 (T B E (5::int ) E))" by auto

The pragma [ test "red_and_black_inv"] is used to associate this theorem as
abstract test data to the data generation

gen_test_data "red_and_black_inv"

An analysis of the test results (omitted here for space reasons) reveals that the
tests are now a more complete set of trees of depth 4.

Note, however, that the “samples” of abstract data had been chosen with
hindsight to the overall test: they all represent ordered trees that happen to
fulfill the black invariant, generated within the time frame of 10 minutes as in
the previous run. Abstract test data that do not fulfill all the other possible
constraints represent dead ends and are no help for the constraint solving phase.

4.4 Third Approach: Using a Little Theorem Proving

The question arises how this problematic aspect of ingeniously added abstract
test data can be overcome and be systematized for our example. One answer is
a characterization theorem of redinv:
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lemma redinv_enumerate:
"redinv x =((x = E)

∨ (∃ a y b. x = T B a y b ∧ redinv a ∧ redinv b)
∨ (∃ y. x = T R E y E)
∨ (∃ y am an ao. x = T R E y (T B am an ao) ∧

redinv (T B am an ao))
∨ (∃ ae af ag y. x = (T R (T B ae af ag) y E)

∧ redinv (T B ae af ag))
∨ (∃ ae af ag y T B bg bh bi.

x = (T R (T B ae af ag) y (T B bg bh bi)) ∧
( redinv (T B ae af ag) ∧ redinv (T B bg bh bi))))"

The precise form of this lemma can be inferred when inspecting the rule set
generated by Isabelle from the redinv-definition. The proof is a routine induction
proof which nevertheless needs knowledge about theorem proving in general
and Isabelle in particular. This lemma is used to improve the form of the test
theorem. To be a bit more precise, we insert after the test case generation a
sequence of Isar-methods that resolve in any constraint of the form redinv x the
above lemma, recomputes the TNF and repeats this process once. The resulting
test is now of depth 5 and constitutes now a quite extensive test of our program
(again in the time-frame of 10 minutes for a complete run).

4.5 Summing Up

In our experience, increasing the number of iterations also increases remarkably
the time needed for test data generation. On the other side, this underpins the
usual criticism with respect to random testing: deeply nested (either in the sense
of data or execution paths) program structures cannot be tested seriously using
pure random tests; guidance generated by test cases is crucially needed.

Further, our results show that highly automated approaches yield useful “first
shots” but heavily profit from more or less ingenious user interaction. A trade-off
must be made here between the time needed to run a test (including generation),
the quality of the test and the time and experience needed in advanced techniques
such as Isabelle theorem proving.

5 Imperative White Box Tests

Our framework is not restricted to black box test of side-effect free programs.
Using a logical embedding (a representation in HOL comprising syntax and se-
mantics) for an imperative language, it can be used to implement and analyze
various white-box test techniques.

5.1 The Language IMP: An Overview

The Isabelle distribution comes already with various logical embeddings: IMP,
IMPP, NanoJava, or MicroJava, and more are available in the literature. For the
sake of this presentation, we chose the simplest one, IMP, which is intended as
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formalization of a textbook on programming language semantics [13, 9], and pro-
vides as such a particularly clean and complete collection of several semantics of
IMP (natural semantics, transition semantics, denotational semantics, axiomatic
semantics), proofs of their relations (e.g., denotational is equivalent to natural)
and proofs of crucial meta-properties (axiomatic semantics is sound and relative
complete).

The basic concepts of IMP are values val (just natural numbers, for example),
and states state = loc ⇒ val. Boolean expressions bexp and atomic expressions
(aexp) are represented as functions from state to val or bool. Thus, IMP has in
fact no syntax of its own, but just inherits the expression language of HOL at
this place2. The syntax of IMP commands com is then defined as data type:

datatype com = SKIP
| ":==" loc aexp ( infixl 60)
| Semi com com ("_ ; _" [60, 60] 10)
| Cond bexp com com (" IF _ THEN _ ELSE _" 60)
| While bexp com (" WHILE _ DO _" 60)

where the text in the parenthesis are just pragmas for the powerful Isabelle
syntax engine to allow the usual infix/mixfix notation.

One of the operational semantics of IMP is a relation of triples evalc ::
(com ×state × state) set ((cm,s,s ’) ∈ evalc is denoted 〈cm,s〉 −→c s ’) which
is inductively defined as follows:

inductive evalc intros
"〈SKIP , s〉 −→c s"
"〈x :== a,s〉 −→c s [x:=(a s )]"
"[[ 〈c0 ,s〉 −→c s1 ; 〈cs1 ,s1〉 −→c s2 ]] =⇒ 〈c0 ;cs1 , s〉 −→c s2"
"[[ b s ; 〈c0 ,s〉 −→c s1 ]] =⇒ 〈 IF b THEN c0 ELSE c_1, s〉 −→c s1"
"[[ ¬b s; 〈c1 ,s〉 −→c s1 ]] =⇒ 〈 IF b THEN c0 ELSE c1 , s〉 −→c s1"
"[[¬b s]] =⇒ 〈 WHILE b DO c, s〉 −→c s"
"[[ b s ; 〈c, s〉−→c s1 ; 〈 WHILE b DO c, s1〉−→c s2 ]] =⇒ 〈 WHILE b DO c, s〉 −→c s2"

The usual notation s [x:=v] is defined by λ y. if y=x then v else s y. For these
inductive rules, an alternative rule set is derived that can be processed by the
efficient Isabelle rewriter directly:

〈 SKIP , s〉 −→c s ’ = (s’ = s)
〈 x :== a, s〉 −→c s ’ = (s’ = s[x := a s ])
b s =⇒ 〈 IF b THEN d ELSE e, s〉 −→c s ’ = 〈 d,s〉 −→c s ’
. . .

We omit the definition of the denotational semantics reflecting the partial cor-
rectness C :: com ⇒(state × state) set (see [2] for details), but it is linked to
the operational semantics via the theorem ((s , t) ∈ C c) = 〈c,s〉 −→c t. On the
denotational level, program transformation rules relevant for the next section
can be shown easily:

2 This technique is also called a “shallow embedding”
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C(SKIP ;c) = C(c) C(c;SKIP ) = C(c) C((c;d);e) = C(c;(d;e))
C(( IF b THEN c ELSE d);e) = C( IF b THEN c;e ELSE d;e)
C( WHILE b DO c) = C( IF b THEN c; WHILE b DO c ELSE SKIP )

On the level of the denotational semantics, the usual notion of “valid Hoare
triple” is formalized as:

|= {P} c {Q} ≡ ∀ s t. (s , t) ∈ C c −→P s −→Q t

where P, Q are assertions, i.e., functions from state to bool.

5.2 Unwinding IMP Programs

To perform white box tests in the style of Pathfinder [11], SpecExplorer [8], or
Korat [4], it is necessary to make the program paths explicit in the program rep-
resentation and amenable to the rules of the operational semantics. Therefore,
a pre-processing step is necessary that unfolds all WHILE -loops up to a cer-
tain limit, the unwind-factor k. This principle can also be applied in a language
extension with procedure calls such as IMPP, also available in the Isabelle distri-
bution. Additionally, the program should be transformed into a certain normal
form to be efficiently processed (left associative sequential compositions must be
avoided since they lead to an existentially quantified intermediate states which
are more difficult to process in the symbolic computation). We define two recur-
sive functions on com-terms that perform both these normalizations as well as
the unwinding up to k. Note, that we will not program this function outside the
logic as (tactic), i.e., a control program in SML, but inside HOL, such that we
can also prove its correctness with respect to the IMP semantics:

consts "@@" :: "[com,com] ⇒com" ( infixr 70)
primrec "SKIP @@ c = c"

"(x:== E) @@ c = ((x:== E); c)"
"(c;d) @@ e = (c; d @@ e)"
"( IF b THEN c ELSE d) @@ e = ( IF b THEN c @@ e ELSE d @@ e)"
"( WHILE b DO c) @@ e = (( WHILE b DO c);e)"

consts unwind :: "nat ×com ⇒com"
recdef unwind "less_than <∗lex∗> measure(λ s. size s)"

"unwind(n, SKIP) = SKIP"
"unwind(n, a :== E) = (a :== E)"
"unwind(n, IF b THEN c ELSE d) = IF b THEN unwind(n,c) ELSE unwind(n,d)"
"unwind(n, WHILE b DO c) =

( if 0 < n
then IF b THEN unwind(n,c)@@unwind(n− 1,WHILE b DO c) ELSE SKIP
else WHILE b DO unwind(0, c))"

"unwind(n, SKIP ; c) = unwind(n, c)"
"unwind(n, c ; SKIP ) = unwind(n, c)"
"unwind(n, ( IF b THEN c ELSE d) ; e) =

( IF b THEN (unwind(n,c;e)) ELSE (unwind(n,d;e)))"
"unwind(n, (c ; d); e) = (unwind(n, c;d))@@(unwind(n,e))"
"unwind(n, c ; d) = (unwind(n, c))@@(unwind(n, d))"



98 Achim D. Brucker and Burkhart Wolff

The primitive recursive auxiliary function c@@d appends a command d to the
last command in c that is reachable from the root via sequential composition
modes. The more tricky unwind function unfolds WHILE -loops as long as the
unwind factor is positive and performs the program normal form computation
along the program equivalences as discussed in Sec. 5.1.

The Isabelle Recursion Package adopts a “First Fit” pattern matching strat-
egy (similar to SML). This means that in overlapping cases, the first is taken
into account with higher priority—this is reflected on the level of the rewrite
rule set generated from this definition. Thus, the last equation in the recursive
definition is a catch-all rule for sequential composition.

Now we derived the following facts over these definitions:

Lemma 1 (Termination:). Both functions terminate.

Proof. In the case of @@ this is trivial due to machine checked primitive re-
cursion; in case of unwind a proof has to be performed that the lexicographic
composition of the standard ordering _ < _ and the standard term ordering is
well-founded and respected by the inner calls in this recursive definition. This
proof is done fully automatically.

Lemma 2 (Correctness:). C(c @@ d)= C(c;d) and C(unwind(n,c))= C(c)

Proof. For @@, a straight-forward induction suffices. As for unwind, the proof
is non-trivial, but routine (generalization over n, induction over c, intricate case
splitting, application of semantic equivalences of Sec. 5.1).

5.3 Generating Path Conditions

As example program, we chose a little program that computes the square-root
of a natural number. In Isabelle/IMP syntax, we can define it as follows:

constdefs squareroot :: "[ loc , loc , loc , loc ] ⇒ com"
"squareroot tm sum i a ≡ (( tm :== λs. 1);

(( sum :== λs. 1);
(( i :== λs. 0);

WHILE λs. (s sum) <= (s a) DO
(( i :== λs. (s i ) + 1);
((tm :== λs. (s tm) + 2);
(sum :== λs. (s tm) + (s sum)))))))

where the locations (references) are the input into the program to express se-
mantically constraints on them, as we will see later. The shallow embedding
of the expressions has the consequence that program variable accesses must be
represented as explicit application of the state s (at this program point) to a lo-
cation representing this variable. Hence, we implicitly require a pre-parser that
makes these bindings of program variables explicit.

We need one further derived rule If_split , which is necessary to expand the
case splits produced for each path:

[[b s =⇒ 〈c, s〉−→c s ’; ¬ b s =⇒ 〈d,s〉−→c s ’ ]] =⇒ 〈 IF b THEN c ELSE d,s〉−→c s ’



Interactive Testing with HOL-TestGen 99

Putting everything together, we can now formulate the generation of symbolic
states for the program squareroot as follows:

lemma derive_test_cases: assumes no_alias : . . .
shows "〈unwind(3, squareroot tm sum i a), s〉 −→c s ’"

where the omitted technical side-condition no_alias specifies that the locations
tm,sum,i,a are pairwise disjoint. Now, the canonical tactic script:

apply(simp add: squareroot_def)
apply( rule If_split , simp_all add: update_def no_alias)+

unfolds the definition of squareroot, and then enters in a loop that performs
the computation of unwind (including path normalization), the case splitting
along the If_split rule discussed above, the evaluation of state constraints and
the simplification of the arithmetic constraints until no further changes can be
achieved. The resulting proof-state consists of the following goals:3

1. 9 ≤ s a =⇒ 〈 WHILE λs. s sum ≤s a
DO i :== λs. Suc (s i ) ;
(tm :== λs. Suc (Suc (s tm)) ;
sum :== λs. s tm + s sum ),

s( i := 3, tm := 7, sum := 16)〉 −→c s ’
2. [[4 ≤ s a; 8 < s a ]] =⇒ s ’ = s ( i := 2, tm := 5, sum := 9)
3. [[ 1 ≤ s a; s a < 4]] =⇒ s ’ = s ( i := 1, tm := 3, sum := 4)
4. s a = 0 =⇒ s ’ = s(tm := 1, sum := 1, i := 0)

The resulting proof state enumerates the possible symbolic states including their
path conditions.4

5.4 Treating Assertions and Test Hypothesises

Traditional pre and post conditions can be expressed via the validity relation for
Hoare Triple, e.g.: |= {pre} squareroot tm sum i a {post a i} where pre is just
λx. True and post a i is λ s . (s i )∗(s i )≤(s a) ∧ s a < (s i + 1)∗(s i + 1).

The setup of a specification based white box test is now produced by the
derived rule:

|={P} c {Q} = ∀ s t. 〈unwind (n, c), s〉 −→c t −→P s −→Q t

The result of this rule application is piped into the previous process which con-
joins the preconditions with the path conditions and attempts to solve them;
the post condition is then constructed over the post state constructed by the
natural semantics.

Assertions can be introduced into our language as follows: First, we declare
an uninterpreted constant STOP as command of the language. Then, a construct
like ASSERT b c can be introduced as abbreviation for ASSERT b c ≡ IF b
THEN c ELSE STOP, and further constructs like an annotated while loop AWHILE
b inv c are introduced analogously.

3 the presentation has been slightly syntactically simplified
4 The computing time for unwind-factor 10 based on this simplistic tactic remains
under a few seconds, including pretty-printing.
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It remains to show how white box testing fits methodically into our frame-
work, where we try to generate test hypothesis that make the “logical difference”
between a test and the verification of the test specification explicit. Obviously,
the only new element related to white box test is the unwinding parameter; if
exhausted, this leads to program fragments that represent the “set of untested
execution paths” of a program under test. In our running example, this lead
to the first sub-goal in the final proof state. Turned into an explicit unwinding
k test hypothesis, this condition for resulting from the test theorem: |={pre}
squareroot tm sum i a {post a i} looks as follows:

1. THYP(9 ≤s a −→ 〈 WHILE λs. s sum ≤s a
DO i :== λs. Suc (s i ) ;

(tm :== λs. Suc (Suc (s tm)) ;
sum :== λs. s tm + s sum ),

s( i := 3, tm := 7, sum := 16)〉 −→c s ’
∧ post a i s ’)

Testing a program in this setting means that all symbolic state transitions in-
cluding their path conditions must satisfy the post condition whenever the pre
condition holds. This is the case in our example, and the system will find the
satisfiability of the generated constraints without need for random solving in this
case. The only remaining assumption is the test hypothesis shown above which
reflects that we have tested the program and not verified it.

To sum up, we described a symbolic computation process for white box tests
in the language IMP, that generates from a given, potentially annotated program
a test theorem including the test hypotheses automatically. This test theorem can
be fed into the test data generation phase to find ground instances for particular
paths as before.

5.5 Blowing up IMP

The reader might object that the language IMP, having only Boolean and arith-
metic side-effect free expressions and non-recursive, macro-like procedures, is too
academic to be of practical importance. In contrast, we argue that IMP is a rea-
sonable core language which can be “blown-up” fairly easy to larger languages,
in large parts without adding further complexity to the symbolic computation
process presented so far.

We discuss three extensions of IMP, two more straight-forward, one more
involved, to give an impression over the potential of our approach:

1. Mutual recursion: Just apply our approach to embedding IMPP.
2. Arbitrary expressions: exchange val in the IMP semantics by a universe

which is a sum of the HOL data types.
3. Objects: Extend our approach to an embedding like NanoJava.

In more detail, extension 2 requires that program variables must be presented as
triples (loc ,emb::α−→val,proj::val−→α) consisting of the traditional location,
and a pair of functions (representing the typing of the program and variable) that
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allow for injection and projection of HOL-values into the val universe of IMP.
Program variable accesses, which has been encoded by s a so far, will be s !a
where s !(a,emb,prj) is defined by prj(s a). The assignment semantics of IMP
must be adopted analogously. This technique paves the way for lists, options,
strings, and further user-defined data types. Expressions over user-defined HOL
data-types can now be processed by the gen_test_cases-method which is at the
heart of HOL-TestGen. As a result of these extensions, we have an SML-like
language with data-types and HOL-expressions inside.

The extension 3 involves sub-classing, method calls with late-binding and
object creation; as such, a lot more machinery is therefore involved whose tactical
control will be feasible in our opinion, but require substantial more work.

6 Conclusion

We have shown the pragmatics of our Isabelle/HOL-based testing tool HOL-
TestGen [1, 5] gained from previous experiences for specification based black
box tests. While some aspects of the symbolic computations are fully automatic
(like data separation lemma generation, generation of test hypothesis, TNF-
computations, test data generations and solving), other aspects like constraint
solving may profit from some theorem proving and experiments with “appropri-
ate” formulations of test specifications/test theorems. We have also developed a
method to use HOL-TestGen for specification based white box tests.

The symbolic computation process is fully presented inside HOL, so no tool
integration and conversion issues are involved which may be critical both for
correctness and efficiency. Since the necessary symbolic transformation processes
can be based on derived rules,5 HOL-TestGen can be used as a tool for a seam-
less conceptual study of these techniques including formal correctness proofs,
their prototypical implementation and even their industry strength implementa-
tion. The latter, will require substantial effort in tactic programming and tool
integration.

Although the example for imperative white-box test is based on a conceptual
language and therefore merely a proof of concept than a proof of technology, we
believe that the approach can scale up with respect to size of the supported lan-
guage while maintaining reasonable efficiency of the underlying symbolic compu-
tations. Thus, we believe that HOL-TestGen can be seen as unifying framework
in which a wide range of unit test techniques can be presented in a mathemati-
cally clean way.
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