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1. Introduction

Today, essentially two validation techniques for software are used: software
verification and software testing . Whereas verification is rarely used in “real”
software development, testing is widely-used, but normally in an ad-hoc man-
ner. Therefore, the attitude towards testing has been predominantly negative
in the formal methods community, following what we call Djikstra’s verdict [17,
p.6]:

“Program testing can be used to show the presence of bugs, but
never to show their absence!”

More recently, three research areas, albeit driven by different motivations, con-
verge and result in a renewed interest in testing techniques:

Abstraction Techniques: model-checking raised interest in techniques to ab-
stract infinite to finite models. Provided that the abstraction has been
proven sound, testing may be sufficient for establishing correctness [11,
16].

Systematic Testing: the discussion over test adequacy criteria [25], i.e. cri-
teria solving the question “when did we test enough to meet a given test
hypothesis”, led to more systematic approaches for partitioning the space
of possible test data and the choice of representatives. New systematic
testing methods and abstraction techniques can be found in [20, 18].

Specification Animation: constructing counter-examples has raised interest
also in the theorem proving community, since combined with animations
of evaluations, they may help to find modeling errors early and to increase
the overall productivity [10, 21, 15].

The first two areas are motivated by the question “are we building the pro-
gram right?”, the latter is focused on the question “are we specifying the right
program?”. While the first area shows that Dijkstra’s Verdict is no longer true
under all circumstances, the latter area shows, that it simply does not apply
in practically important situations. In particular, if a formal model of the
environment of a software system (e.g. based among others on the operation
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system, middleware or external libraries) must be reverse-engineered, testing
(“experimenting”) is without alternative (see [13]).

Following standard terminology [25], our approach is a specification-based
unit test . In general, a test procedure for such an approach can be divided
into:

Test Case Generation: for each operation of the pre/post-condition relation
is divided into sub-relations. It assumes that all members of a sub-relation
lead to a similar behavior of the implementation.

Test Data Generation: (also: Test Data Selection) for each test case (at
least) one representative is chosen so that coverage of all test cases is
achieved. From the resulting test data, test input data processable by
the implementation is extracted.

Test Execution: the implementation is run with the selected test input data
in order to determine the test output data.

Test Result Verification: the pair of input/output data is checked against
the specification of the test case.

The development of HOL-TestGen has been inspired by [19], which follows
the line of specification animation works. In contrast, we see our contribution in
the development of techniques mostly on the first and to a minor extent on the
second phase. Building on QuickCheck [15], the work presented in [19] performs
essentially random test, potentially improved by hand-programmed external
test data generators. Nevertheless, this work also inspired the development
of a random testing tool for Isabelle [10]. It is well-known that random test
can be ineffective in many cases; in particular, if pre-conditions of a program
based on recursive predicates like “input tree must be balanced” or “input must
be a typable abstract syntax tree” rule out most of randomly generated data.
HOL-TestGen exploit these predicates and other specification data in order
to produce adequate data. As a particular feature, the automated deduction-
based process can log the underlying test hypothesis made during the test;
provided that the test hypothesis are valid for the program and provided the
program passes the test successfully, the program must guarantee correctness
with respect to the test specification, see [12] for details.
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2. Preliminary Notes on
Isabelle/HOL

2.1. Higher-order logic — HOL

Higher-order logic(HOL) [14, 9] is a classical logic with equality enriched by to-
tal polymorphic1 higher-order functions. It is more expressive than first-order
logic, since e.g. induction schemes can be expressed inside the logic. Pragmati-
cally, HOL can be viewed as a combination of a typed functional programming
language like Standard ML (SML) or Haskell extended by logical quantifiers.
Thus, it often allows a very natural way of specification.

2.2. Isabelle

Isabelle [22, 2] is a generic theorem prover. New object logic’s can be introduced
by specifying their syntax and inference rules. Among other logics, Isabelle sup-
ports first order logic (constructive and classical), Zermelo-Fränkel set theory
and HOL, which we choose as the basis for the development of HOL-TestGen.

Isabelle consists of a logical engine encapsulated in an abstract data type thm
in Standard ML; any thm object has been constructed by trusted elementary
rules in the kernel. Thus Isabelle supports user-programmable extensions in a
logically safe way. A number of generic proof procedures (tactics) have been
developed; namely a simplifier based on higher-order rewriting and proof-search
procedures based on higher-order resolution.

We use the possibility to build on top of the logical core engine own programs
performing symbolic computations over formulae in a logically safe (conserva-
tive) way: this is what HOL-TestGen technically is.

1to be more specific: parametric polymorphism
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3. Installation

3.1. Prerequisites

HOL-TestGen is build on top of Isabelle/HOL, version 2004, thus you need an
working installation of Isabelle 2004, either based on SML/NJ [7] or Poly/ML [5]
to use HOL-TestGen. To install Isabelle, follow the instructions on the Isabelle
web-site:

http://isabelle.in.tum.de/dist/packages.html

We strongly recommend also to install the generic proof assistant front-end
Proof General [6].

3.2. Installing HOL-TestGen

In the following we assume that you have a running Isabelle 2004 environment
including the Proof General based front-end. The installation of HOL-TestGen
requires the following steps:

1. Unpack the HOL-TestGen distribution, e.g.:

tar zxvf testgen-1.0.0.tar.gz

This will create a directory testgen-1.0.0 containing the HOL-TestGen
distribution.

2. Check the settings in the configuration file testgen-1.0.0/make.config.
If you can use the isatool tool from Isabelle on the command line, the
default settings should work.

3. Change into the src directory

cd testgen-1.0.0/src

and build the HOL-TestGen heap image for Isabelle by calling

isatool make
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Figure 3.1.: A HOL-TestGen session Using the Isar Interface of Isabelle

3.3. Starting HOL-TestGen

HOL-TestGen can now be started using the Isabelle command:

Isabelle -k HOL-TestGen -l HOL-TestGen

As HOL-TestGen provides new top-level commands, the -k HOL-TestGen is
mandatory. After a few seconds you should see a Emacs window similar to the
one shown in Fig. 3.1.
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4. Using HOL-TestGen

4.1. HOL-TestGen: An Overview

HOL-TestGen allows one to automate the interactive development of test cases,
refine them to concrete test data, and generate a test script that can be used for
test execution and test result verification. The test case generation an test data
generation (selection) is done in an Isar-based [24] environment (see Fig. 4.1
for details). The Test executable (and the generated test script) can be build
with any SML-system.

4.2. Test Case and Test Data Generation

In this section we give a brief overview of HOL-TestGen related extension of
the Isar [24] proof language. We also use a presentation similar to the one
in the Isar Reference Manual [24], e.g. “missing” non-terminals of our syntax
diagrams are defined in [24]. We introduce the HOL-TestGen syntax by a (very
small) running example: assume we want to test a functions that computes the
maximum of two integers.

Starting your own theory for testing: For using HOL-TestGen you have
to build your Isabelle theories (i.e. test specifications) on top of the theory
Testing instead of Main. A sample theory is shown in Tab. 4.1.

Defining a test specification: Test specifications are defined similar to the-
orems in Isabelle, e.g.

test spec ”prog a b = max a b”

would be the test specification for testing a a simple program comput-
ing the maximum value of two integers. The syntax of the keyword
test spec : theory → proof (prove) is given by:

-- test_spec �� 〈locale〉 ��� 〈goal〉� 〈longgoal〉 ��� have� show �� hence �� thus �
� 〈goal〉 -�
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test data

test cases

program under test

test harness

test script

test specification

(Test Result)
Test Trace

HOL-TestGen

Isabelle/HOL

SML-systemtest executable

Figure 4.1.: Overview of the system architecture of HOL-TestGen

theory max test = Testing:

test spec ”prog a b = max a b”
apply(gen test cases 1 3 ”prog” simp: max def)
store test thm ”max test”

gen test data ”max test”

thm max test.test data

gen test script ”test max.sml” ”max test” ”prog”
”myMax.max”

end

Table 4.1.: A simple Testing Theory
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〈goal〉 ::=-- �〈props〉� and �� -�

〈longgoal〉 ::=-- �� 〈thmdecl〉 ���� 〈contextelem〉 �� shows 〈goal〉 -�

Please look into the Isar Reference Manual [24] for the remaining details,
e.g. a description of 〈contextelem〉.

Generating symbolic test cases: Now, abstract test cases for our test spec-
ification can (automatically) generated, e.g. by issuing

apply(gen test cases ”prog” simp: max def)

The gen test cases : method tactic allows a one to control the test
case generation in a fine-granular manner:

-- gen_test_cases �� 〈depth〉 〈breadth〉 �� 〈progname〉 -

- �� 〈clamsimpmod〉 �� -�

Where 〈depth〉 is a natural number describing the depth of the generated
test cases and 〈breadth〉 is a natural number describing their breadth.
Roughly speaking, the 〈depth〉 controls the term size in data separation
lemmas in order to establish a regularity hypothesis (see [12] for details),
while the 〈breadth〉 controls the number of variables occurring in the test
specification for which regularity hypothesis’ were generated. The default
for 〈depth〉 and 〈breadth〉 is 3 resp. 1. 〈progname〉 denotes the name of the
program under test. Further, one can control the classifier and simplifier
sets used internally in the gen test cases tactic using the optional
〈clasimpmod〉 option:

〈clamsimpmod〉 ::=-- � simp � add� del �� only �
�

� � cong� split ���� add �� del �
� �

� iff ��� add ���� ? ��� del �
� �

� �� intro� elim �� dest �
�� !� �� ? �

�
� del �

� �

� : 〈thmrefs〉-
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- -�

The generated test cases can be further processed, e.g., simplified using
the usual Isabelle/HOL tactics.

Storing the test theorem: After generating the test cases (and test hypoth-
esis’) you should store your results, e.g.:

store test thm ”max test”

for further processing. This is done using the test spec : proof (prove) →
proof (prove) | theory command which also closes the actual “proof state”
(or test state. Its syntax is given by:

-- store_test_thm 〈name〉 -�

Where 〈name〉 is an fresh identifier which is later used to refer to this test
state. Isabelle/HOL can access the corresponding test theorem using the
identifier 〈name〉.test thm, e.g.:

thm max test.test thm

Generating test data: In a next step, the test cases can be refined to con-
crete test data:

gen test data ”max test”

The gen test data : theory |proof → theory |proof command takes only
one parameter, the name of the test environment for which the test data
should be generated:

-- gen_test_data 〈name〉 -�

After the successful execution of this command Isabelle can access the
test hypothesis using the identifier 〈name〉.test hyps and the test data
using the identifier 〈name〉.test data

thm max test.test hyps
thm max test.test data

It is important to understand that generating test data is (partly) done
by calling the random solver which is incomplete. If the random solver is
not able to find a solution, it instantiate the term with the constant RSF
(random solve failure).

Note, that one has a broad variety of configurations options using the
testgen params command.
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Generating test scripts: After the test data generation, HOL-TestGen is
able to generate a test script, e.g.:

gen test script ”test max.sml” ”max test” ”prog”
”myMax.max”

produces the test script shown in Tab. 4.2 that can (together with the pro-
vided test harness) be used to test real implementations. The generation
of test scripts is done using the generate test script : theory |proof →
theory |proof command:

-- gen_test_script 〈filename〉 〈name〉 〈progname〉 -
- �� 〈smlprogname〉 �� -�

Where 〈filename〉 is the name of the file in which the test script is stored,
and 〈name〉 is the name of a collection of test data in the test environ-
ment, and 〈progname〉 the name of the program under test. The optional
parameter 〈smlprogname〉 allows for the configuration of different names
of the program under test that is used within the test script for calling
the implementation.

Configure HOL-TestGen: The overall behavior of test data and test script
generation can be configured, e.g.

testgen params [iterations=15]

using the testgen params : theory → theory command:

-- testgen_params [ -

-
� , �� � depth = 〈nat〉� breadth = 〈nat〉 �� bound = 〈nat〉 �� case_breadth = 〈nat〉 �� iterations = 〈nat〉 �� gen_prelude = 〈bool〉 �� gen_wrapper = 〈bool〉 �� gen_toString = 〈string〉 �� setup_code = 〈string〉 �� type_range_bound = 〈nat〉 �

� type_candidates = [

� , �� 〈typname〉 � ] �

� � ] -�

Configuring the test data generation: Further, a attribute test : attribute
is provided, i.e.:
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structure TestDriver : sig end = struct

val return = ref ~63;

fun eval x2 x1 = let

val ret = myMax.max x2 x1

in

(( return := ret);ret)

end

fun retval () = SOME(! return );

fun toString a = Int.toString a;

val testres = [];

val pre_0 = [];

val post_0 = fn () => ( (eval ~23 69 = 69));

val res_0 = TestHarness.check retval pre_0 post_0;

val testres = testres@[res_0];

val pre_1 = [];

val post_1 = fn () => ( (eval ~11 ~15 = ~11));

val res_1 = TestHarness.check retval pre_1 post_1;

val testres = testres@[res_1];

val _ = TestHarness.printList toString testres;

end

Table 4.2.: Test Script
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structure myMax = struct

fun max x y = if (x < y) then y else x

end

Table 4.3.: Implementation in SML of max

lemma max abscase [test ”maxtest”]:”max 4 7 = 7”

or

declare max abscase [test ”maxtest”]

that can be used for hierarchical test case generation:

-- test 〈name〉 -�

4.3. Test Execution and Result Verification

In principle, any SML-system, e.g. [7, 5, 8, 3, 4], should be able to run the
provided test-harness and generated test-script. Using their specific facilities
for calling foreign code, testing of non-SML programs is possible. For example,
one could test

• implementations using the .Net platform (more specific: CLR IL), e.g.,
written in C# using sml.net [8],

• implementations written in C using, e.g. the foreign language interface
of sml/NJ [7] or MLton [4],

• implementations written in Java using mlj [3].

Also, depending on the SML-system, the test execution can be done within an
interpreter (it is even possible to execute the test script within HOL-TestGen)
or using a compiled test executable. In this section, we will demonstrate the
test of SML programs (using SML/NJ or MLton) and ANSI C programs.

4.3.1. Testing an SML-Implementation

Assume we have written a max-function in SML (see Tab. 4.3 stored in the
file max.sml and we want to test it using the test script generated by HOL-
TestGen. Following Fig. 4.1 on page 12 we have to build a test executable
based on our implementation, the generic test harness (harness.sml) provided
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Test Results:

=============

Test 0 - SUCCESS, result: 69

Test 1 - SUCCESS, result: ~11

Summary:

--------

Number successful tests cases: 2 of 2 (ca. 100%)

Number of warnings: 0 of 2 (ca. 0%)

Number of errors: 0 of 2 (ca. 0%)

Number of failures: 0 of 2 (ca. 0%)

Number of fatal errors: 0 of 2 (ca. 0%)

Overall result: success

===============

Table 4.4.: Test Trace

by HOL-TestGen, and the generated test script (test max.sml), shown in
Tab. 4.2 on page 16.

If we want to run our test interactively in the shell provided by sml/NJ, we
just have to issue the following commands:

use "harness.sml";
use "max.sml";
use "test_max.sml";

After the last command, sml/NJ will automatically execute our test, e.g. you
will see a output similar to the one shown in Tab. 4.4.

If we prefer to use the compilation manager of sml/NJ, or compile our test
to a single test executable using MLton, we just write a (simple) file for the
compilation manager of sml/NJ (which is understood both, by MLton and
sml/NJ) with the following content:

Group is
harness.sml
max.sml
test_max.sml

#if(defined(SMLNJ_VERSION))
$/basis.cm

18



int max (int x, int y) {

if (x < y) {

return y;

}else{

return x;

}

}

Table 4.5.: Implementation in ANSI C of max

$smlnj/compiler/compiler.cm
#else
#endif

and store it as test.cm. We have two options, we can

• use sml/NJ, e.g. we can start the sml/NJ interpreter and just enter

CM.make("test.cm")

which will build a test setup and run our test.

• use MLton to compile a single test executable by executing

mlton test.cm

on the system shell. This will result in a test executable called test which
can be directly executed.

In both cases, we will get a test output (test trace) similar to the one presented
in Tab. 4.4 on the preceding page.

4.3.2. Testing Non-SML Implementations

Suppose we have an ANSI C implementation of max (see Tab. 4.5) that we
want to test using the foreign language interface provided by MLton. First
we have to provide import the max method written in C using the _import
keyword of MLton. Further, we provide a “wrapper” function doing the pairing
of the curried arguments:

structure myMax = struct

val cmax = _import "max": int * int -> int ;

fun max a b = cmax(a,b);

end
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We store this file as max.sml and write a small configuration file for the com-
pilation manager:

Group is
harness.sml
max.sml
test_max.sml

We can compile a test executable by the command

mlton -default-ann ’allowImport true’ test.cm max.c

on the system shell. Again, we end up with an test executable test which can
be called directly. Running our test executable will result in trace similar to
the one presented in Tab. 4.4 on page 18.
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5. Examples

Before introducing to the HOL-TestGen showcase ranging from simple to more
advanced examples, one general remark: The test data generation uses as final
procedure to solve the constraints of test cases a random solver. This choice has
the advantage that the random process is more faster in general while requiring
less interaction as, say, an enumeration based solution principle. However this
choice has the feature that two different runs of this document will produce
outputs that differs in the details o displayed data. Even worse, in very unlikely
cases, the random solver does not find a solution that a previous run could easily
produce (in such cases, one should upgrade the iterations-variable in the test
environment.

5.1. Triangle

theory Triangle = Testing:

A prominent example for automatic test case generation is the triangle prob-
lem [23]: given three integers representing the lengths of the sides of a triangle,
a small algorithm has to check, whether these integers describe an equilateral,
isosceles, scalene triangle, or no triangle at all. First we define an abstract data
type describing the possible results in Isabelle/HOL:

datatype triangle = equilateral | scalene | isosceles | error

For clarity (and as an example for specification modularization) we define an
auxiliary predicate deciding if the three lengths are describing a triangle:

constdefs triangle :: "[int,int,int] => bool"

"triangle x y z ≡ (0<x ∧ 0<y ∧ 0 < z ∧
(z < x+y) ∧ (x < y+z) ∧ (y < x+z))"

Now we define the behavior of the triangle program:

constdefs
classify_triangle :: "[int,int,int] ⇒ triangle"

"classify_triangle x y z ≡ (if triangle x y z

then if x=y

then if y=z

21



then equilateral

else isosceles

else if y=z

then isosceles

else if x=z then isosceles

else scalene else error)"

end

theory Triangle_test = Triangle + Testing:

The test theory Triangle test is used to demonstrate the pragmatics of
HOL-TestGen in the standard triangle example; The demonstration elaborates
three test plans: standard test generation (including test driver generation),
abstract test data based test generation, and abstract test data based test
generation reusing partially synthesized abstract test data.

5.1.1. The Standard Workflow

We start with stating a test specification for a program under test: it must
behave as in the definition of classify_triangle specified.

Note that the variable program is used to label an arbitrary implementation
of the current program under test that should fulfill the test specification:

test spec "program(x,y,z) = classify_triangle x y z"

By applying gen_test_cases we bring the proof state into testing normal form
(TNF).

apply(simp add: classify_triangle_def)

apply(gen_test_cases "program" simp add: triangle_def

classify_triangle_def)

In this example, we decided to generate symbolic test cases and to unfold the
triangle predicate by its definition before the process. This leads to a formula with,
among others, the following clauses:

1. 0 < ?X1X266 =⇒ program (?X1X266, ?X1X266, ?X1X266) = equilateral

2. THYP

((∃ x. 0 < x −→ program (x, x, x) = equilateral) −→
(∀ x. 0 < x −→ program (x, x, x) = equilateral))

3. ¬ 0 < ?X1X260 =⇒ program (?X1X260, ?X1X260, ?X1X260) = error

4. THYP

((∃ x. ¬ 0 < x −→ program (x, x, x) = error) −→
(∀ x. ¬ 0 < x −→ program (x, x, x) = error))

5. [[?X2X249 < 2 * ?X1X248; 0 < ?X2X249; 0 < ?X1X248; 0 < ?X2X249;

0 < ?X1X248; ?X2X249 6= ?X1X248]]
=⇒ program (?X1X248, ?X2X249, ?X1X248) = isosceles
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Note that the computed TNFis not minimal, e.g., further simplification and rewrit-
ing steps are needed to compute the minimal set of symbolic test cases. The following
post-generation simplification improves the generated result before “frozen” into a
test theorem:

apply(simp_all)

Now, “freezing” a test theorem technically means storing it into a specific data
structure provided by HOL-TestGen, namely a test environment that captures all
data relevant to a test:

store test thm "triangle_test"

The resulting test theorem is now bound to a particular name in the Isar
environment, such that it can inspected by the usual Isar command thm.

thm "triangle_test.test_thm"

We compute the concrete test statements by instantiating variables by con-
stant terms in the symbolic test cases for “program” via a random test proce-
dure:

gen test data "triangle_test"

thm "triangle_test.test_hyps"

thm "triangle_test.test_data"

Now we use the generated test data statement lists to automatically generate
a test driver, which is controlled by the test harness. The first argument is the
external SML-file name into which the test driver is generated, the second
argument the name of the test data statement set and the third the name of
the (external) program under test:

gen test script "triangle_script.sml" "triangle_test" "program"

which results in

program (86, 86, 86) = equilateral

program (-19, -19, -19) = error

program (68, 53, 68) = isosceles

program (57, 0, 57) = error

program (-72, -85, -72) = error

program (-98, 65, -98) = error

program (3, 48, 48) = isosceles

program (80, -98, -98) = error

program (28, -7, -7) = error

program (-13, 93, 93) = error

program (41, 41, 7) = isosceles
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program (-65, -65, -41) = error

program (-83, -83, 10) = error

program (-74, -74, -9) = error

program (88, 45, 56) = scalene

program (43, -28, 35) = error

program (-99, -39, 54) = error

program (-37, 80, -6) = error

program (-80, -27, -90) = error

program (36, 91, -7) = error

5.1.2. The Modified Workflow: Using Abstract Testdata

There is a viable alternative for the standard development process above: in-
stead of unfolding triangle and trying to generate ground substitutions satis-
fying the constraints, one may keep triangle in the test theorem, treating it as
a building block for new constraints. Such building blocks will also be called
abstract test cases.

In the following, we will set up a new version of the test specification, called
triangle2, and prove the relevant abstract test cases individually before test
case generation. These proofs are highly automatic, but the choice of the
abstract test data in itself is ingenious, of course. Nevertheless, the computation
for establishing if a certain triple is encapsulated in these proofs, deliberating
the main test case generation of triangle2 from them. In fact, these contain
5 arithmetic constraints which represent already a sensible load if given to the
random solver.

The abstract test data will be assigned to the subsequent test generation for
the test generation triangle2. Then the test data generation phase is started for
triangle2 implicitly using the abstract test cases. The association established
by this assignment is also stored in the test environment.

The point of having abstract test data is that it can be generated “once and
for all” and inserted before the test data selection phase producing a “partial”
grounding. It will turn out that the main state explosion is shifted from the
test case generation to the test data selection phase.

The “ingenious approach”

lemma triangle_abscase1 [test"triangle2"]:"triangle 1 1 1"

by(auto simp: triangle_def)

lemma triangle_abscase2 [test"triangle2"]:"triangle 1 2 2"

by(auto simp: triangle_def)
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lemma triangle_abscase3 [test"triangle2"]:"triangle 2 1 2"

by(auto simp: triangle_def)

lemma triangle_abscase4 [test"triangle2"]:"triangle 2 2 1"

by(auto simp: triangle_def)

lemma triangle_abscase5 [test"triangle2"]:"triangle 3 4 5"

by(auto simp: triangle_def)

lemma triangle_abscase6 [test"triangle2"]:"¬ triangle -1 1 2"

by(auto simp: triangle_def)

lemma triangle_abscase7 [test"triangle2"]:"¬ triangle 1 -1 2"

by(auto simp: triangle_def)

lemma triangle_abscase8 [test"triangle2"]:"¬ triangle 1 2 -1"

by(auto simp: triangle_def)

Test specification is as shown in the standard case, but the underlying sim-
plification does not use the definition of triangle def. Afterwards we inspect
the resulting test theorem.

test spec "prog(x,y,z) = classify_triangle x y z"

apply(gen_test_cases "prog" simp add: classify_triangle_def)

store test thm "triangle2"

thm "triangle2.test_thm"

The test data generation is started and implicitly uses the abstract test data
assigned to the test theorem triangle2. Again, we inspect the results:

gen test data "triangle2"

thm "triangle2.test_hyps"

thm "triangle2.test_data"

Alternative: Synthesizing Abstract Test Data

In fact, part of the ingenious work of generating abstract test data can be
synthesized by using the test case generator itself. This scenario of use proceeds
as follows:

1. we set up a the decomposition of triangle in an equality to itself; this
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identity is disguised by introducing a variable prog which is stated equiv-
alent to triangle in an assumption,

2. the introduction of this assumption is delayed; i.e. the test case generation
is performed in a state where this assumption is not visible,

3. after executing test case generation, we fold back prog against triangle.

test spec abs_triangle :

assumes 1: "prog = triangle"

shows "triangle x y z = prog x y z"

apply(gen_test_cases "prog" simp add: triangle_def)

apply(simp_all add: 1)

store test thm "abs_triangle"

thm abs_triangle.test_thm

which results in

[[[[?X2X72 < ?X3X73 + ?X1X71; ?X3X73 < ?X2X72 + ?X1X71;

?X1X71 < ?X3X73 + ?X2X72; 0 < ?X1X71; 0 < ?X2X72; 0 < ?X3X73]]
=⇒ triangle ?X3X73 ?X2X72 ?X1X71;

THYP

((∃ x xa xb.

xa < xb + x −→ xb < xa + x −→ x < xb + xa −→ triangle xb xa x)

−→
(∀ x xa xb.

xa < xb + x −→ xb < xa + x −→ x < xb + xa −→ triangle xb xa x));

¬ 0 < ?X3X58 =⇒ ¬ triangle ?X3X58 ?X2X57 ?X1X56;

THYP

((∃ x xa xb. ¬ 0 < xb −→ ¬ triangle xb xa x) −→
(∀ x xa xb. ¬ 0 < xb −→ ¬ triangle xb xa x));

¬ 0 < ?X2X47 =⇒ ¬ triangle ?X3X48 ?X2X47 ?X1X46;

THYP

((∃ x xa. ¬ 0 < xa −→ (∃ xb. ¬ triangle xb xa x)) −→
(∀ x xa. ¬ 0 < xa −→ (∀ xb. ¬ triangle xb xa x)));

¬ 0 < ?X1X36 =⇒ ¬ triangle ?X3X38 ?X2X37 ?X1X36;

THYP

((∃ x. ¬ 0 < x −→ (∃ xa xb. ¬ triangle xb xa x)) −→
(∀ x. ¬ 0 < x −→ (∀ xa xb. ¬ triangle xb xa x)));

¬ ?X1X26 < ?X3X28 + ?X2X27 =⇒ ¬ triangle ?X3X28 ?X2X27 ?X1X26;

THYP

((∃ x xa xb. ¬ x < xb + xa −→ ¬ triangle xb xa x) −→
(∀ x xa xb. ¬ x < xb + xa −→ ¬ triangle xb xa x));

¬ ?X3X18 < ?X2X17 + ?X1X16 =⇒ ¬ triangle ?X3X18 ?X2X17 ?X1X16;
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THYP

((∃ x xa xb. ¬ xb < xa + x −→ ¬ triangle xb xa x) −→
(∀ x xa xb. ¬ xb < xa + x −→ ¬ triangle xb xa x));

¬ ?X2X7 < ?X3X8 + ?X1X6 =⇒ ¬ triangle ?X3X8 ?X2X7 ?X1X6;

THYP

((∃ x xa xb. ¬ xa < xb + x −→ ¬ triangle xb xa x) −→
(∀ x xa xb. ¬ xa < xb + x −→ ¬ triangle xb xa x))]]

=⇒ (triangle x y z = prog x y z)

Thus, we constructed test cases for being triangle or not in terms of arithmetic
constraints. These are amenable to test data generation by increased random
solving, which is controlled by the test environment variable iterations:

testgen params[iterations=100]

gen test data "abs_triangle"

resulting in:

triangle 19 83 92

¬ triangle -74 64 -42

¬ triangle -90 -23 -34

¬ triangle -94 25 -42

¬ triangle -65 -95 23

¬ triangle 29 -90 68

¬ triangle 44 95 -21

Thus, we achieve solved ground instances for abstract test data. Now, we
assign these synthesized test data to the new future test data generation. Ad-
ditionally to the synthesized abstract test data, we assign the data for isosceles
and equilateral triangles; these can not be revealed from our synthesis since it is
based on a subset of the constraints available in the global test case generation.

declare abs_triangle.test_data[test"triangle3"]

declare triangle_abscase1[test"triangle3"]

declare triangle_abscase2[test"triangle3"]

declare triangle_abscase3[test"triangle3"]

The setup of the testspec is identical as for triangle2; it is essentially a re-
naming.

test spec "program(x,y,z) = classify_triangle x y z"

apply(simp add: classify_triangle_def)

apply(gen_test_cases "program" simp add: classify_triangle_def)

store test thm "triangle3"

The test data generation is started again on the basis on synthesized and
selected hand-proven abstract data.
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testgen params[iterations=3]
gen test data "triangle3"

thm "triangle3.test_hyps"

thm "triangle3.test_data"

end

5.2. Lists

theory List_test = List + Testing:

5.2.1. Sorting Lists

I the following, we develop the test theory on Lists. Assume we want to test
sorting algorithm for lists. First we specify a primitive recursive predicate that
checks if a list is sorted:

consts
is_sorted:: "(’a::ord) list ⇒ bool"

primrec
"is_sorted [] = True"

"is_sorted (x#xs) = ((case xs of [] => True

| y#ys => (x < y) ∨ (x = y)) ∧
is_sorted xs)"

We proceed with the specification of an insertion sort algorithm:

consts
ins :: "(’a::ord) ⇒ ’a list ⇒ ’a list"

sort:: "(’a::ord) list ⇒ ’a list"

primrec
"ins x [] = [x]"

"ins x (y#ys) = (if (x < y) then x#y#ys else (y#(ins x ys)))"

primrec
"sort [] = [] "

"sort (x#xs) = ins x (sort xs)"

One obvious property to test is captured by the following test specification:
the output of sort should be sorted, whenever the output of insertion sort is
sorted.
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test spec "(is_sorted( sort l)) = (is_sorted(insertion_sort l))"

apply(gen_test_cases "insertion_sort")

apply(simp_all)

store test thm "test_ref"

We enter the test data generation phase. We set up the number of proof
attempts undertaken by the random solver as fairly low in order to save time.
Then we start the generation of test data:

testgen params [iterations=20]

gen test data "test_ref"

By the following statements, the test data, the test hypothesis’s’ and the test
theorem can be inspected interactively.

thm test_ref.test_data

thm test_ref.test_hyps

thm test_ref.test_thm

These are in particular:

is_sorted (insertion_sort [])

is_sorted (insertion_sort [15])

is_sorted (insertion_sort [18, 79])

is_sorted (insertion_sort [93, 89])

is_sorted (insertion_sort [63, 63])

is_sorted (insertion_sort [-11, 19, 32])

is_sorted (insertion_sort [-62, -34, -44])

is_sorted (insertion_sort [-16, 70, 70])

is_sorted (insertion_sort [74, 79, -69])

is_sorted (insertion_sort [-86, 83, -86])

is_sorted (insertion_sort [-35, -74, 38])

is_sorted (insertion_sort [-69, -69, 96])

is_sorted (insertion_sort [32, -16, -5])

is_sorted (insertion_sort [78, 12, 78])

is_sorted (insertion_sort [88, -47, -67])

is_sorted (insertion_sort [8, 8, -71])

is_sorted (insertion_sort [13, -61, -61])

is_sorted (insertion_sort [4, 4, 4])

Since only for few of these test data remain constraints, we are satisfied with
the results and use it for the test script generation.

Alternatively, we could have increased the iterations factor above, or added
other techniques such as
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1. deriving new rules that allow for the generation of a simplified test theo-
rem,

2. introducing abstract test cases or

3. supporting the solving process by derived rules.

In the following, we turn to the generation of test scripts. This generation is
based on the internal code generator of Isabelle and must be set up accordingly.

consts code "op <" ("(_ </ _)")

The key command of the generation is:

gen test script "list_script.sml" test_ref insertion_sort "myList.sort"

Using the generated harness to test the following implementation:
fun ins x [] = [x]

| ins x (y::ys) = if (x < y) then y::(x::ys)

else (y::( ins x ys));

fun sort [] = []

| sort (x::xs) = ins x (sort xs)

fun insertion_sort x = sort x;

gives a result similar to:
Test Results:

=============

Test 0 - SUCCESS , result: []

Test 1 - SUCCESS , result: [~95]

Test 2 - *** FAILURE: post -condition false , result: [~84, ~55]

Test 3 - SUCCESS , result: [19, 2]

Test 4 - SUCCESS , result: [58, 58]

Test 5 - *** FAILURE: post -condition false , result: [76, 9, 77]

Test 6 - *** FAILURE: post -condition false , result: [18, ~19, 11]

Test 7 - *** FAILURE: post -condition false , result: [64, 16, 64]

Test 8 - *** FAILURE: post -condition false , result: [~68, 39, ~88]

Test 9 - *** FAILURE: post -condition false , result: [~27, ~24, ~27]

Test 10 - *** FAILURE: post -condition false , result: [~69, ~54, 96]

Test 11 - *** FAILURE: post -condition false , result: [~40, ~40, ~31]

Test 12 - *** FAILURE: post -condition false , result: [73, ~13, 1]

Test 13 - *** FAILURE: post -condition false , result: [47, ~43, 47]

Test 14 - SUCCESS , result: [86, 39, 8]

Test 15 - SUCCESS , result: [49, 49, 4]

Test 16 - SUCCESS , result: [69, ~11, ~11]

Test 17 - SUCCESS , result: [65, 65, 65]
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Summary:

--------

Number successful tests cases: 8 of 18 (ca. 44%)

Number of warnings: 0 of 18 (ca. 0%)

Number of errors: 0 of 18 (ca. 0%)

Number of failures: 10 of 18 (ca. 55%)

Number of fatal errors: 0 of 18 (ca. 0%)

Overall result: failed

===============

end

5.3. AVL

theory AVL_def = Testing:

This test theory specifies a quite conceptual algorithm insertion and deletion
of AVL Trees. It is essentially a streamlined version of the AFP [1] theory
developed by Pusch, Nipkow, Klein and the authors.

datatype ’a tree = ET | MKT ’a "’a tree" "’a tree"

consts
height :: "’a tree ⇒ nat"

is_in :: "’a ⇒ ’a tree ⇒ bool"

is_ord :: "(’a::order) tree ⇒ bool"

is_bal :: "’a tree ⇒ bool"

primrec
"height ET = 0"

"height (MKT n l r) = 1 + max (height l) (height r)"

primrec
"is_in k ET = False"

"is_in k (MKT n l r) = (k=n ∨ is_in k l ∨ is_in k r)"

primrec
isord_base: "is_ord ET = True"

isord_rec: "is_ord (MKT n l r) = ((∀ n’. is_in n’ l −→ n’ < n) ∧
(∀ n’. is_in n’ r −→ n < n’) ∧
is_ord l ∧ is_ord r)"
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primrec
"is_bal ET = True"

"is_bal (MKT n l r) = ((height l = height r ∨
height l = 1+height r ∨
height r = 1+height l) ∧
is_bal l ∧ is_bal r)"

We also provide a more efficient variant of is_in :

consts
is_in_eff :: "(’a::order) ⇒ ’a tree ⇒ bool"

primrec
"is_in_eff k ET = False"

"is_in_eff k (MKT n l r) = (if k = n then True

else (if k<n then (is_in_eff k l)

else (is_in_eff k r)))"

datatype bal = Just | Left | Right

constdefs
bal :: "’a tree ⇒ bal"

"bal t ≡ case t of ET ⇒ Just

| (MKT n l r) ⇒ if height l = height r then Just

else if height l < height r then Right

else Left"

consts
r_rot :: "’a × ’a tree × ’a tree ⇒ ’a tree"

l_rot :: "’a × ’a tree × ’a tree ⇒ ’a tree"

lr_rot :: "’a × ’a tree × ’a tree ⇒ ’a tree"

rl_rot :: "’a × ’a tree × ’a tree ⇒ ’a tree"

recdef r_rot "{}"

"r_rot (n, MKT ln ll lr, r) = MKT ln ll (MKT n lr r)"

recdef l_rot "{}"

"l_rot(n, l, MKT rn rl rr) = MKT rn (MKT n l rl) rr"

recdef lr_rot "{}"

"lr_rot(n, MKT ln ll (MKT lrn lrl lrr), r) =

MKT lrn (MKT ln ll lrl) (MKT n lrr r)"

recdef rl_rot "{}"

"rl_rot(n, l, MKT rn (MKT rln rll rlr) rr) =
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MKT rln (MKT n l rll) (MKT rn rlr rr)"

constdefs
l_bal :: "’a ⇒ ’a tree ⇒ ’a tree ⇒ ’a tree"

"l_bal n l r ≡ if bal l = Right

then lr_rot (n, l, r)

else r_rot (n, l, r)"

r_bal :: "’a ⇒ ’a tree ⇒ ’a tree ⇒ ’a tree"

"r_bal n l r ≡ if bal r = Left

then rl_rot (n, l, r)

else l_rot (n, l, r)"

consts
insert :: "’a::order ⇒ ’a tree ⇒ ’a tree"

primrec
insert_base: "insert x ET = MKT x ET ET"

insert_rec: "insert x (MKT n l r) =

(if x=n

then MKT n l r

else if x<n

then let l’ = insert x l

in if height l’ = 2+height r

then l_bal n l’ r

else MKT n l’ r

else let r’ = insert x r

in if height r’ = 2+height l

then r_bal n l r’

else MKT n l r’)"

delete

consts
tmax :: "’a tree ⇒ ’a"

delete :: "’a::order × (’a tree) ⇒ (’a tree)"

end

theory AVL_test = AVL_def:

This test plan of this theory follows more or less the standard. However, we
insert some minor theorems into the test theorem generation in order to ease
the task of solving; this both improves speed of the generation and quality of
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the test.

declare insert_base insert_rec [simp del]

lemma size_0[simp]: "(size x = 0) = (x = ET)"

by(induct "x",auto)

lemma height_0[simp]: "(height x = 0) = (x = ET)"

by(induct "x",auto)

lemma [simp]: "(max (Suc a) b) ~= 0"

by(auto simp: max_def)

lemma [simp]: "(max b (Suc a) ) ~= 0"

by(auto simp: max_def)

We adjust the random generator at a fairly restricted level and go for a
solving phase.

testgen params [iterations=10]

test spec "(is_bal t) --> (is_bal (insert x t))"

apply(gen_test_cases "insert")

store test thm "foo"

gen test data "foo"

thm foo.test_data

end

5.4. RBT

This example is used to generate test data in order to test the sml/NJ library,
in particular the implementation underlying standard data-structures like set
and map. The test scenario reveals an error in the library (so in software that
is really used, see [12] for more details). The used specification of the invariants
was developed by Angelika Kimmig.
theory RBT_def = Testing:

The implementation of Red-Black trees is mainly based on the following
datatype declaration:

datatype ml_order = LESS | EQUAL | GREATER
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axclass ord_key < type

consts
compare :: "’a::ord_key ⇒ ’a ⇒ ml_order "

axclass LINORDER < linorder, ord_key

LINORDER_less : "((compare x y) = LESS) = (x < y)"

LINORDER_equal : "((compare x y) = EQUAL) = (x = y)"

LINORDER_greater : "((compare x y) = GREATER) = (y < x)"

types ’a item = "’a::ord_key"

datatype color = R | B

datatype ’a tree = E | T color "’a tree" "’a item" "’a tree"

In this example we have chosen not only to check if keys are stored or deleted
correctly in the trees but also to check if the trees fulfill the balancing invariants.
We formalize the red and black invariant by recursive predicates:

consts
isin :: "’a::LINORDER item ⇒ ’a tree ⇒ bool"

isord :: "(’a::LINORDER item) tree ⇒ bool"

redinv :: "’a tree ⇒ bool"

blackinv :: "’a tree ⇒ bool"

strong_redinv:: "’a tree ⇒ bool"

max_B_height :: "’a tree ⇒ nat"

primrec
isin_empty : "isin x E = False"

isin_branch: "isin x (T c a y b) = (((compare x y) = EQUAL)

| (isin x a) | (isin x b))"

primrec
isord_empty : "isord E = True"

isord_branch: "isord (T c a y b)

= (isord a ∧ isord b

∧ (∀ x. isin x a −→ ((compare x y) = LESS))

∧ (∀ x. isin x b −→ ((compare x y) = GREATER)))"
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recdef redinv "measure (%t. (size t))"

redinv_1: "redinv E = True"

redinv_2: "redinv (T B a y b) = (redinv a ∧ redinv b)"

redinv_3: "redinv (T R (T R a x b) y c) = False"

redinv_4: "redinv (T R a x (T R b y c)) = False"

redinv_5: "redinv (T R a x b) = (redinv a ∧ redinv b)"

recdef strong_redinv "{}"

Rinv_1: "strong_redinv E = True"

Rinv_2: "strong_redinv (T R a y b) = False"

Rinv_3: "strong_redinv (T B a y b) = (redinv a ∧ redinv b)"

recdef max_B_height "measure (%t. (size t))"

maxB_height_1: "max_B_height E = 0"

maxB_height_3: "max_B_height (T B a y b)

= Suc(max (max_B_height a) (max_B_height b))"

maxB_height_2: "max_B_height (T R a y b)

= (max (max_B_height a) (max_B_height b))"

recdef blackinv "measure (%t. (size t))"

blackinv_1: "blackinv E = True"

blackinv_2: "blackinv (T color a y b)

= ((blackinv a) ∧ (blackinv b)

∧ ((max_B_height a) = (max_B_height b)))"

end

theory RBT_test = RBT_def + Testing:

The test plan is fairly standard and very similar to the AVL example: test
spec, test generation on the basis of some lemmas that allow for exploiting
contradictions in constraints, data-generation and test script generation.

Note that without the interactive proof part, the random solving phase is too
blind to achieve a test script of suitable quality. Improving it will definitively
improve also the quality of the test. In this example, however, we deliberately
stopped at the point where the quality was sufficient to produce relevant errors
of the program under test.

First, we define certain functions (inspired from the real implementation)
that specialize the program to a sufficient degree: instead of generic trees over
class LINORDER, we will generate test cases over integers.
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5.4.1. Test Specification and Test-Case-Generation

instance int::ord_key

by(intro_classes)

instance int::linorder

by intro_classes

defs compare_def: "compare (x::int) y

== (if (x < y) then LESS

else (if (y < x)

then GREATER

else EQUAL))"

instance int::LINORDER

apply intro_classes

apply (simp_all add: compare_def)

done

lemma compare1[simp]:"(compare (x::int) y = EQUAL) = (x=y)"

by(auto simp:compare_def)

lemma compare2[simp]:"(compare (x::int) y = LESS) = (x<y)"

by(auto simp:compare_def)

lemma compare3[simp]:"(compare (x::int) y = GREATER) = (y<x)"

by(auto simp:compare_def)

Now we come to the core part of the test generation: specifying the test spec-
ification. We will test an arbitrary program (insertion add, deletion delete)
for test data that fulfills the following conditions:

• the trees must respect the invariants, i.e. in particular the red and the
black invariant,

• the trees must even respect the strong red invariant - i.e. the top node
must be black,

• the program under test gets an additional parameter y that is contained
in the tree (useful for delete),

• the tree must be ordered (otherwise the implementations will fail).

The analysis of previous test case generation attempts showed, that the fol-
lowing lemmas (altogether trivial to prove) help to rule out many constraints

37



that are unsolvable - this knowledge is both useful for increasing the coverage
(not so much failures will occur) as well for efficiency reasons: attempting to
random solve unsolvable constraints takes time. Recall that that the number
of random solve attempts is controlled by the iterations variable in the test
environment of this test specification.

lemma max_0_0 : "((max (a::nat) b) = 0) = (a = 0 ∧ (b = 0))"

by(auto simp: max_def)

lemma [simp]: "(max (Suc a) b) ~= 0"

by(auto simp: max_def)

lemma [simp]: "(max b (Suc a) ) ~= 0"

by(auto simp: max_def)

lemma size_0[simp]: "(size x = 0) = (x = E)"

by(induct "x",auto)

test spec "(isord t & isin (y::int) t & strong_redinv t & blackinv t)

−→ (blackinv(prog(y,t)))"

apply(gen_test_cases 3 1 "prog" simp: compare1 compare2 compare3)

store test thm "red-and-black-inv"

5.4.2. Test Data Generation

Brute Force

This fairly simple setup generates already 25 subgoals containing 12 test cases,
altogether with non-trivial constraints. For achieving our test case, we opt for
a “brute force” attempt here:

testgen params [iterations=40]

gen test data "red-and-black-inv"

thm "red-and-black-inv.test_data"

An Alternative Approach with a little Theorem Proving

which will suffice to generate the critical test data revealing the error in the
sml/NJ library.

Alternatively, one might:

1. use abstract test cases for the auxiliary predicates redinvand blackinv,
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2. increase the depth of the test case generation and introduce auxiliary
lemmas, that allow for the elimination of unsatisfiable constraints,

3. or applying more brute force.

Of course, one might also apply a combination of these techniques in order
to get a more systematic test than the one presented here.

We will describe option 2) briefly in more detail: part of the following lem-
mas require induction and real theorem proving, but help to refine constraints
systematically an to increase

lemma aux :"x = x =⇒ x = x"

by(auto)

lemma height_0:

"(max_B_height x = 0) =

(x = E ∨ (∃ a y b. x = T R a y b ∧
(max (max_B_height a) (max_B_height b)) = 0))"

by(induct "x", simp_all,case_tac "color",auto)

lemma max_B_height_dec :

"((max_B_height (T x t1 val t3)) = 0) =⇒ (x = R) "

by(case_tac "x",auto)

This paves the way for the following testing scenario:

test spec "(isord t & isin (y::int) t & strong_redinv t & blackinv t)

−→ (blackinv(prog(y,t)))"

apply(gen_test_cases 3 1 "prog" simp: compare1 compare2 compare3

max_B_height_dec)

apply(simp_all only: height_0, simp_all add: max_0_0)

apply(simp_all only: height_0, simp_all add: max_0_0)

apply(safe)

unfortunately, at this point a general hyp subst tac would be needed that allows
for instantiating meta variables. TestGen provides a local tactic for this (should be
integrated as a general Isabelle tactic . . . )

apply(tactic "ALLGOALS(fn n => TRY(TestGen.var_hyp_subst_tac n))")

apply(simp_all)
store test thm "red-and-black-inv2"

testgen params [iterations=20]

gen test data "red-and-black-inv2"
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thm "red-and-black-inv2.test_data"

The inspection shows now a stream-lined, quite powerful test data set for
our problem. Note that the ”depth 3” parameter of the test case generation
leads to ”depth 2” trees, since the constructor E is counted. Nevertheless, this
test case produces the error regularly (Warning: recall that randomization is
involved; in general, this makes the search faster (while requiring less control
by the user) than brute force enumeration, but has the prize that in rare cases
the random solver does not find the solution at all):

blackinv (prog (9, T B E 9 E))

blackinv (prog (-77, T B E -77 (T R E 0 E)))

blackinv (prog (37, T B E 5 (T R E 37 E)))

blackinv (prog (47, T B (T R E -99 E) 47 E))

blackinv (prog (21, T B (T R E 21 E) 31 E))

blackinv (prog (-61, T B (T R E -93 E) -61 (T R E -28 E)))

blackinv (prog (-80, T B (T R E -80 E) 16 (T R E 95 E)))

blackinv (prog (51, T B (T R E -11 E) 49 (T R E 51 E)))

When increasing the depth to 5, the test case generation is still feasible - we
had runs which took less than two minutes and resulted in 348 test cases.

5.4.3. Configuring the Code Generator

We have to perform the usual setup of the internal Isabelle code generator,
which involves providing suitable ground instances of generic functions (in cur-
rent Isabelle) and the map of the the data structures to the data structures in
the environment.

Note that in this setup the mapping to the target program under test is done
in the wrapper script, that also maps our abstract trees to more concrete data
structures as used in the implementation.

testgen params [setup_code="open IntRedBlackSet;",

toString="wrapper.toString"]

lemma [code]: "(max (a::nat) b) = (if (a < b) then b else a)"

by(simp add: max_def)

types code
tree ("_ tree")

color ("color")

ml_order ("order")
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consts code

"compare" ("Key.compare (_,_)")

Now we can generate a test script (for both test data sets):

gen test script "rbt_script.sml" "red-and-black-inv" "prog"

"wrapper.del"

gen test script "rbt2_script.sml" "red-and-black-inv2" "prog"

"wrapper.del"

5.4.4. Test Result Verification

Running the test executable (either based on red-and-black-inv or on red-and-black-inv2)
results in an output similar to

Test Results:

=============

Test 0 - SUCCESS, result: E

Test 1 - SUCCESS, result: T(R,E,67,E)

Test 2 - SUCCESS, result: T(B,E,~88,E)

Test 3 - ** WARNING: pre-condition false (exception

during post_condition)

Test 4 - ** WARNING: pre-condition false (exception

during post_condition)

Test 5 - SUCCESS, result: T(R,E,30,E)

Test 6 - SUCCESS, result: T(B,E,73,E)

Test 7 - ** WARNING: pre-condition false (exception

during post_condition)

Test 8 - ** WARNING: pre-condition false (exception

during post_condition)

Test 9 - *** FAILURE: post-condition false, result:

T(B,T(B,E,~92,E),~11,E)

Test 10 - SUCCESS, result: T(B,E,19,T(R,E,98,E))

Test 11 - SUCCESS, result: T(B,T(R,E,8,E),16,E)

Summary:

--------

Number successful tests cases: 7 of 12 (ca. 58%)

Number of warnings: 4 of 12 (ca. 33%)

Number of errors: 0 of 12 (ca. 0%)

Number of failures: 1 of 12 (ca. 8%)

Number of fatal errors: 0 of 12 (ca. 0%)

Overall result: failed
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−11

−42

−92

(a) pre-state

−92

−11

(b) correct result

−92

−11

(c) result of sml/NJ

Figure 5.1.: Test Data for Deleting a Node in a Red-Black Tree

===============

The error that is typically found has the: Assuming the red-black tree pre-
sented in Fig. 5.1(a), deleting the node with value −49 results in the tree
presented in Fig. 5.1(c) which obviously violates the black invariant (the ex-
pected result is the balanced tree in Fig. 5.1(b)). Increasing the depth to at
least 4 reveals several test cases where unbalanced trees are returned from the
SML implementation.cat

end
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A. Glossary

Abstract test data : In contrast to pure ground terms over constants (like
integers 1, 2, 3, or lists over them, or strings ...) abstract test data contain
arbitrary predicate symbols (like triangle 3 4 5 ).

Regression testing: Repeating of tests after addition/bug fixes have been
introduced into the code an checking that behavior of unchanged portions
has not changed.

Stub: Stubs are “simulated” implementations of functions, they are used do
simulate functionality that does not yet exists ore cannot be run in the
test environment.

Test case: An abstract test stimuli that test some aspects of the implementa-
tion and validates the result.

Test case generation: For each operation of the pre/post-condition relation
is divided into sub-relations. It assumes that all members of a sub-relation
lead to a similar behavior of the implementation.

Test data: One or more representative for a given test case.

Test data generation (Test data selection): For each test case (at least)
one representative is chosen so that coverage of all test cases is achieved.
From the resulting test data, test input data processable by the imple-
mentation is extracted.

Test execution: The implementation is run with the selected test input data
in order to determine the test output data.

Test executable: An executable program that consists of a test harness, the
test script and the program under test. The Test executable executes the
test and writes a test trace documenting the events and the outcome of
the test.

Test harness: When doing unit testing the program under test is not a runnable
program in itself. The test harness or test driver is a main program that
initiates test calls (controlled by the test script), i.e., drives the method
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under test and constitutes a test executable together with the test script
and the program under test.

Test hypothesis : The hypothesis underlying a test that makes a successful
test equivalent to the validity of the tested property, the test specification.
The current implementation of HOL-TestGen only supports uniformity
and regularity hypothesis, which were generated “on-the-fly” according
to certain parameters given by the user like depth and breadth.

Test specification : The property the program under test is required to have.

Test result verification: The pair of input/output data is checked against
the specification of the test case.

Test script: The test program containing the control logic that drives the test
using the test harness. HOL-TestGen can automatically generate the test
script for you based on the generated test data.

Test theorem: The test data together with the test hypothesis will imply the
test specification. HOL-TestGen conservatively computes a theorem of
this form that relates testing explicitly with verification.

Test trace: Output made by a test executable.
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