
Outline Introduction Isabelle/HOL-OCL Applications Conclusion

A Shallow Embedding of OCL into Isabelle/HOL
and its Application to Formal Testing

Achim D. Brucker
brucker@inf.ethz.ch

http://www.brucker.ch/

Information Security
ETH Zürich

Zürich, Switzerland

ETH Crypto Day
March 9, 2004

Achim D. Brucker A Shallow Embedding of OCL into Isabelle/HOL and its Application to Formal Testing

brucker@inf.ethz.ch
http://www.brucker.ch/

Outline Introduction Isabelle/HOL-OCL Applications Conclusion

Motivation

The Situation Today:
I Software systems are

I getting more and more complex.
I used in safety and security critical applications.

I We think that
I complex software systems require a precise specification.
I semi-formal methods are not strong enough.

There are many reasons for using formal methods:

I safety critical applications, e.g. flight or railway control.

I security critical applications, e.g. access control.

I legal reasons, e.g. certifications.

I financial reasons (e.g. warranty), e.g. embedded devices.

Achim D. Brucker A Shallow Embedding of OCL into Isabelle/HOL and its Application to Formal Testing

Outline Introduction Isabelle/HOL-OCL Applications Conclusion

Introduction
UML/OCL
Isabelle

Isabelle/HOL-OCL
Isabelle/HOL-OCL

Applications
Test Case Generation

Conclusion

Achim D. Brucker A Shallow Embedding of OCL into Isabelle/HOL and its Application to Formal Testing

Outline Introduction Isabelle/HOL-OCL Applications Conclusion UML/OCL Isabelle

UML Class Diagrams and OCL

I designed for annotating UML
diagrams (and give foundation
for injectivities, . . .)

I based on logic and set theory
I in the context of class–diagrams:

I preconditions
I postconditions
I invariants

I can also be used for other
diagram types

+ makeWithdrawal(amount:Real):Boolean

− balance:Real

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real

context Account::makeDeposit(amount:Real):Boolean
pre: amount >= 0
post: balance = balance@pre + amount

accounts

1..99 Account

Achim D. Brucker A Shallow Embedding of OCL into Isabelle/HOL and its Application to Formal Testing

Outline Introduction Isabelle/HOL-OCL Applications Conclusion UML/OCL Isabelle

Machine Checkable Semantics
I A machine checked semantics

I as a conservative embedding guarantees the consistency.
I builds the basis for analyzing language features.
I allows for incremental changes of semantics.
I builds the basis for further extensions and tool support.

I The definition of the logical and (Kleene-logic):

S and T ≡λc . if DEF (S c) then
if DEF (T c) then bdS ce ∧dT cec
else if S c = (bFalsec) then bFalsec else ⊥

else if T c = (bFalsec) then bFalsec else ⊥

The truth-table can be derived from this definition.
I The union of sets is defined as the strict and lifted version of ∪:

union ≡ lift2 (strict (λX.strict (λY.AbsSSet(
bdRepSSetXe ∪dRepSSetYec))))

Achim D. Brucker A Shallow Embedding of OCL into Isabelle/HOL and its Application to Formal Testing

Outline Introduction Isabelle/HOL-OCL Applications Conclusion Isabelle/HOL-OCL

HOL-OCL: An Interactive OCL Proof Environment

I Foundation:
I Isabelle is a generic theorem prover.
I HOL is a classical logic with higher-order functions.
I Isabelle’s logics are designed to be extensible.

I HOL-OCL is
I build on top of Isabelle/HOL.
I a shallow embedding of OCL into HOL.
I a conservative extension of Isabelle/HOL.

I HOL-OCL is an interactive theorem prover for OCL that
I provides a consistent (machine checked) OCL semantics.
I allows one to examine OCL features.
I has built-in over 2000 theorems (proven language properties).
I builds the basis for OCL tool development.

Achim D. Brucker A Shallow Embedding of OCL into Isabelle/HOL and its Application to Formal Testing

Outline Introduction Isabelle/HOL-OCL Applications Conclusion Isabelle/HOL-OCL

Excursion: Formal Challenges

Only few formal methods are specialized for analyzing object
oriented specifications.

I Problems and open questions:
I object equality and aliasing
I embedding of object structures into logics
I referencing and dereferencing, including “null” references
I dynamic binding
I polymorphism
I . . .

I Turning UML/OCL into a formal method:
I semantics for OCL only given in a semi-formal way
I OCL expressions are only meaningful together with the
underlying UML model

I no proof calculi for OCL
I no refinement notions for OCL
I . . .

Achim D. Brucker A Shallow Embedding of OCL into Isabelle/HOL and its Application to Formal Testing

Outline Introduction Isabelle/HOL-OCL Applications Conclusion Test Case Generation

Specification Based Test Case Generation

− limit: Monetary

+ deposit(amount: Monetary)
+ withdraw(amount: Monetary)
+ getBalance(): Monetary

− balance: Monetary

− owner: Person
Account

context: Account.withdraw(amount : Integer)

pre: 0 < amount and ((caller=owner

and amount < 1000)

or caller.isInRoke(clerk))

post: balance=balance@pre - amount

A owner can only withdraw up to a specific limit, a clerk (assuming,
in behalf of the account owner) can withdraw an unlimited amount.
Only positive amounts can be withdrawn.

Observation: In a an OCL proof environment like HOL-OCL one
can prove security properties on specification-level.

Problem: How can one be sure, that a given implementation
fulfills the given security constraints.

Solution: Generate test case based on the specification and use
them for testing the implementation (in its real-world
environment).

Achim D. Brucker A Shallow Embedding of OCL into Isabelle/HOL and its Application to Formal Testing

Outline Introduction Isabelle/HOL-OCL Applications Conclusion Test Case Generation

Application: Automatic Test Case Generation

I A withdrawal is allowed only in the following two cases:
1. [[0 < amount; amount < 1000; caller = owner]]

2. [[0 < amount; caller.isInRole(clerk)]]
I and should be denied in the following cases:

1. [[¬0 < amount]]

2. [[¬caller.isInRole(clerk); caller 6= owner]]

3. [[¬caller.isInRole(clerk);¬amount < 1000]]

Selecting at least one set of concrete test data out of each partition
assures path coverage on the specification. In addition, additionally
boundary cases (min/max values, etc) are also tested.

Achim D. Brucker A Shallow Embedding of OCL into Isabelle/HOL and its Application to Formal Testing

Outline Introduction Isabelle/HOL-OCL Applications Conclusion

Conclusion

I UML class diagrams with OCL
I are a formal specification notion.
I allowing one to introduce formal specification stepwise.

I HOL-OCL
I provides a consistent semantics for OCL.
I allows the definition of a proof calculi over OCL.
I allows a refinement notion for OCL specifications.
I allows verification and validation of OCL specifications.

Achim D. Brucker A Shallow Embedding of OCL into Isabelle/HOL and its Application to Formal Testing

Appendix

Further Readings

http://www.brucker.ch/research/holocl.en.html.

Achim D. Brucker and Burkhart Wolc. HOL-OCL: Experiences,
consequences and design choices. In Jean-Marc Jézéquel, Heinrich
Hussmann, and Stephen Cook, editors, UML 2002: Model
Engineering, Concepts and Tools, number 2460 in Lecture Notes in
Computer Science, pages 196–211. Springer-Verlag, Dresden, 2002.
http://www.brucker.ch/bibliography/abstract/brucker.

ea-hol-ocl-2002.

Achim D. Brucker and Burkhart Wolc. A proposal for a formal OCL
semantics in Isabelle/HOL. In César Muñoz, Sophiène Tahar, and
Víctor Carreño, editors, Theorem Proving in Higher Order Logics,
number 2410 in Lecture Notes in Computer Science, pages 99–114.
Springer-Verlag, Hampton, VA, USA, 2002. http://www.brucker.
ch/bibliography/abstract/brucker.ea-proposal-2002.

Achim D. Brucker A Shallow Embedding of OCL into Isabelle/HOL and its Application to Formal Testing

http://www.brucker.ch/research/holocl.en.html
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2002
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2002
http://www.brucker.ch/bibliography/abstract/brucker.ea-proposal-2002
http://www.brucker.ch/bibliography/abstract/brucker.ea-proposal-2002

	Outline
	Introduction
	UML/OCL
	Isabelle

	Isabelle/HOL-OCL
	Isabelle/HOL-OCL

	Applications
	Test Case Generation

	Conclusion
	Appendix

