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Abstract Tools for a specification language can be implemented directly
(by building a special purpose theorem prover) or by a conservative em-
bedding into a typed meta-logic, which allows their safe and logically
consistent implementation and the reuse of existing theorem prover en-
gines. For being useful, the conservative extension approach must provide
derivations for several thousand “folklore” theorems.
In this paper, we present an approach for deriving the mass of these
theorems mechanically from an existing library of the meta-logic. The
approach presupposes a structured theory morphism mapping library
datatypes and library functions to new functions of the specification lan-
guage while uniformly modifying some semantic properties; for example,
new functions may have a different treatment of undefinedness compared
to old ones.
Keywords: Formal Methods, Formal Semantics, Shallow Embeddings,
Theorem Proving, OCL

1 Introduction

In contrast to a programming language, which defines computations, a spec-
ification language defines properties of computations, usually by extending a
programming language with additional constructs such as quantifiers or univer-
sally quantified variables. Among the plethora of specification languages that has
been developed, we will refer here only to examples such as Hoare-Logics [1, 2],
Z [3, 4] or its semantic sister Higher-order Logics (HOL) [5], which has been
advertised as “functional language with quantifiers” recently [6].

For the formal analysis of specification languages, their representation, i.e.
their embedding, within a logical framework based on typed λ-calculi such as
NuPRL [7], Coq [8] or Isabelle [9, 10] is a widely accepted technique that has
been applied in many studies in recent years. With respect to tools implementing
specification languages, the situation is not so clear-cut: while direct implementa-
tions in a programming environment are predominant [11, 12, 13], which result
in special logic, special purpose theorem provers sometimes based on ad-hoc
deduction technology, only a few tools are based on embeddings [14, 15, 16].
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There are two main advantages of the embedding approach: Beside the reuse
of existing theorem prover engines, building such tools based on a conserva-
tive embedding into a logical framework also guarantees the safety and relative
logical consistency of the tool. Unfortunately, in order to be practically use-
ful and consistency-aware, the conservative embedding approach must provide
derivations for several thousand “folklore theorems” (such as the associativity
of the concatenation on lists or the commutativity of the union on sets) of the
underlying logics or the basic datatypes of a specification language.

Based on the observation that in many language embeddings the bulk of func-
tion definitions follows a common scheme, our contribution in this paper consists
of a method to structure these definitions into a modular theory morphism and
a technique that exploits this structure and attempts to automatically derive
“folklore theorems” from their counterparts in the meta-logic. Thus, upgraded
libraries of the meta-logic can lead automatically to new theorems in the object
logic since generic tactical support can “transform” theorems over functions of
the meta-level into theorems at the object level. To say it loud and clear: we do
not expect that all functions of a language semantics will be amenable to our
approach; for the 10 percent that are core language constructs, we expect more
or less standard verification work for properties of the language. But for the 90
percent that are library functions, our approach may significantly facilitate the
embedding approach and lead to more portability.

This work was partly motivated by the development of HOL-OCL [17, 18] a
conservative embedding of the Object Constraint Language (OCL) [19, 20, 21]
into HOL. OCL is a textual extension of the object-oriented Unified Modeling
Language (UML) [22] which is widely used within the object oriented software
development process. In principle, OCL is a subtyped, three-valued Kleene-Logic
with equality that allows for specifying constraints on graphs of object instances
whose structure is described by UML class diagrams.

This paper proceeds as follows: after a presentation of the foundation of this
work, we propose a structuring of the theory morphism into layers and present
for each layer some typical combinators that capture the essence of semantic
transformation from a meta-logical function to an object-logical one. We discuss
the theory of these combinators and conceptually describe the tactics that per-
form the generation of generic theorems and the transformation of meta-level
“folklore theorems” to their object-logical counterparts by means of a conserva-
tive theory morphism.

2 Foundations

In the following section, we will introduce a formal framework in order to de-
fine the core notion of “conservative theory morphism” which leads to the key
observations and their practical consequences for the construction of language
embeddings. The purpose of these abstract definitions is to demonstrate that our
approach is in fact fairly general and applies to a wide range of proof systems
based on higher-order typed calculi. In the subsequent sections, we present a
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comparison of embedding techniques and introduce the underlying terminology
of our approach. Finally, we outline the context of our running example.

2.1 Formal Preliminaries: The Generic Framework

In this section, we will introduce a formal framework in order to define the core
notion of “conservative theory morphism” which leads to the key observations
and their practical observations for the construction of shallow embeddings. The
terminology used here follows the framework of institutions [23]. Throughout this
paper, however, it is sufficient to base our notions on simple set-theoretic con-
cepts instead of full-blown category theory. The concept of signature is inspired
by [24], but can be expressed in other typed λ-calculi too.

First we introduce the notion of sorts, types and terms; we assume a set ρ of
sorts and a set χ of type constructors, e.g. bool,_ → _, list,_ set. We assume
a type arity ar , i.e. a finite mapping from type constructors to non-empty lists
of sorts ar : χ →fin list≥1(ρ). We define a set of types τ ::= α | χ(τ, . . . , τ)
based on the set of polymorphic types α. Further, we assume with T (c, x) the set
of inductively defined terms over constants c and variables x. For instance, for
Isabelle-like systems, this set is defined as:

T (c, x) ::= c | x | T (c, x)T (c, x) | λx.T (c, x) ,

while

χ = {_ → _, bool} (type constructors)
ρ = {term} (set of sorts)

ar = {(bool 7→ [term]), (_ → _ 7→ [term, term, term])}. (type arity)

A signature is a quadrupleΣ = (ρ, χ, ar , c→fin τ) and analogously the quadruple
Γ = (ρ, χ, ar , x→fin τ) is called an environment.

The following assumption incorporates a type inference and a notion of well-
typed term: we assume a subset of terms called typed terms (written TΣ,Γ (c, x))
and a subset typed formulae (written FΣ,Γ (c, x)); we require that in these no-
tions, ar , ρ and χ agree in Σ and Γ . For example, a type inference system for
order-sorted polymorphic terms, can be found in [24]. Formulae, for example,
can be typed terms of type bool.

We call S = (Σ,A) with the axioms A ⊆ FΣ,Γ (c, x) a specification. The
following assumption incorporates an inference system: with a theory Th(S) ⊆
FΣ,Γ (c, x) we denote the set of formulae derivable from A; in particular, we
require A ∈ Th(S) and Th to be monotonous in the axioms, i.e. S ⊆ S′ =⇒
Th(S) ⊆ Th(S′) (we also use S ⊆ S′ for the extension of subsets on tuples for
component-wise set inclusion).

A signature morphism is a mapping Σ → Σ which can be naturally extended
to a specification morphism and a theory morphism.

The following specification extensions S ⊆ S′, called conservative specifica-
tion extensions (see [5]), are of particular interest for this paper:
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1. type synonyms,
2. constant definitions, and
3. type definitions.

A type synonym introduces a type abbreviation and is denoted as:

S′ = S ] [types t(α1, . . . , αn) = T (α1, . . . , αn, t
′)] .

It is purely syntactical (i.e. it we will be used for abbreviations in type annota-
tions only) such that the extension is defined by S′ = S.

A constant definition is denoted as:

S′ = S ] [constdefs “c = E”] .

A constant definition is conservative, if the following syntactic conditions hold:
c /∈ dom(Σ), E is closed and does not contain c, and no sub-term of E has a
type containing a type variable, that is not contained in the type of c. Then S′ is
defined by ((ρ, χ, ar , C ′), A′), where S = ((ρ, χ, ar , C), A) and A′ = A∪{c = E}
and C ′ = C ∪ {(c 7→ τ)} where τ is the type of E.

A type definition will be denoted as follows:

S′ = S ] [typedef “T (α1, . . . , αn) = {x | P (x)}”] .

In this case, S′ = ((ρ, χ′, ar ′, C ′), A′) is defined as follows: We assume S =
((ρ, χ, ar , C), A), and P (x) of type P :: R → bool for a base type R in χ. C ′
is constructed from C by adding AbsT : R → T and RepT : T → R. χ′ is
constructed from χ by adding the new type T (i.e. which is supposed to be not
in χ). The axioms A′ is constructed by adding the two isomorphism axioms

A′ = A ∪ {∀x.AbsT (RepT (x)) = x, ∀x.P (x) =⇒ RepT (AbsT (x)) = x} .

The type definition is conservative if the proof obligation ∃x.P (x), holds.
Instead of S ] E1 ] · · · ] En we write S ] E. Technically, conservative lan-

guage embeddings are represented as specification increments E, that contain
the type definitions and constant definitions for the language elements and give
a semantics in terms of a specification S.

The overall situation is summarized in the following commutative diagram:

Th(S ] E)S ] E

S

Th

Th

TMEE−1

Th(S)

]E

The three morphisms on the right of the diagram require some explanation: The
injection (↪→) from Th(S) to Th(S ] E) is a consequence of the fact that ]
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constructs extensions and Th is required to be monotonous. The theory mor-
phism E−1 exists, since our extensions are conservative: all new theorems can
be retranslated into old ones, which implies that the new theory is consistent
whenever the old was (see [5] for the proof). The theory morphism TME (de-
noted by ⇒) connects the Th(S) to Th(S ] E) and serves as specification for
the overall goal of this paper, namely the construction of a partial function
LIFTE : Th(S)→ TME(TH(S′)) that approximates the functor TME .

Our Framework and Isabelle/HOL. Our chosen meta-logic and implemen-
tation platform Isabelle/HOL is the instance of the generic theorem prover Is-
abelle [10] with higher-order logic (HOL) [25, 26]. Isabelle directly implements
order sorted types ([24]; Note, however, that we do not make use of the ordering
on sorts throughout this paper), and supports the conservative extension schemes
abstractly presented above. Isabelle/HOL is the instance of Isabelle that is most
sophisticated with respect to proof-support and has a library of conservative
theories. Among others, the HOL-core provides type bool, the number theories
provide nat and int, the typed set theory provides set(τ) and the list specification
provides list(τ). Moreover, there are products, maps, and even a specification
on real numbers and non-standard analysis. The HOL-library provides several
thousand theorems — yielding the potential for reuse in a specialized tool for a
particular formal method.

Our Framework in the Light of other Type Systems. It is straightfor-
ward to represent our framework in type systems that allow types depending on
types [27], i.e. the four λ-calculi on the backside of Barendregt’s cube. In the
weakest of these systems, λω, the same notion of sorts is introduced as in our
framework. For example, the sort ∗ in λω corresponds to term. The arities cor-
respond to kinds, which are limited to ∗ in λω, however, since kinds are defined
recursively by K = ∗|K→ K, there are higher-order type constructors in λω that
have no correspondence in our framework. The arities of type constructors can be
encoded by kinds: the arity for _ → _, namely [term, term, term] corresponds
to the kind ∗ → ∗ → ∗. Declarations of type synonyms types t(α1, . . . , αn) = T
correspond to λα1 : ∗, . . . , αn : ∗ .T , etc.

2.2 Embedding Techniques — An Overview

For our approach, it is necessary to study the technique of embeddings realized in
a theory morphism in more detail. While these underlying techniques are known
since the invention of typed λ-calculi (see for the special case of the quantifiers
in [25]), it was not before the late seventies that the overall importance of higher-
order abstract syntax (a term coined by [28]) for the representation of binding in
logical rules and program transformations [29] and for implementations [28] was
recognized. The term “shallow embedding” (invented in [30]) extends higher-
order abstract syntax (HOAS) to a semantic definition and is contrasted to
“deep embeddings”. Moreover, throughout this paper, we will distinguish typed
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and untyped shallow embeddings. Conceptually, these three techniques can be
summarized as follows:

Deep embeddings represent the abstract syntax as a datatype; variables and
constants are thus represented as constants in the meta-logic. A semantics
is defined “over” the datatype using a transition relation →r or an interpre-
tation function Sem from syntax to semantics.

Untyped shallow embeddings use HOAS to represent the syntax of a lan-
guage by declaring uninterpreted constant symbols for all constructs except
variables which are directly represented by variables of the meta-logic; thus,
binding and substitution are “internalized” on the meta-level, but not the
typing. A semantics is defined similarly to a deep embedding.

Typed shallow embeddings use HOAS but include also the type system of
the language in the sense that ill-typed expressions can not be encoded well-
typed into the meta-logic. This paves the way for defining the semantics of
the language constructs and its functions by a direct definition in terms of
the meta-logic, i.e. its theories for e.g. orders, sets, pairs, and lists.

The difference between these techniques and their decreasing “representational
distance” is best explained by the simplest example of a typed language: the
simple typed λ-calculus itself. The syntax can be declared as follows:

Deep Untyped Shallow Typed Shallow
VAR: α→L(α ,β)
CON: β →L(α ,β) β →L(β)
LAM: α ×L(α ,β) →L(α ,β) (L(β)→L(β))→L(β) L(γ,δ)→L(γ,δ)
APP: L(α ,β)×L(α ,β)→L(α ,β) L(β)×L(β)→L(β) L(γ,δ)×γ→δ

where the underlying types can be defined by the equations:

Deep Untyped Shallow Typed Shallow
L(α, β) = α |β

|α× L(α, β)
|L(α, β)× L(α, β)

L(β) = β
|L(β)→ ×L(β)
|L(β)× L(β)

L(γ, δ) = γ → δ

The first type equation can be directly interpreted as a datatype and is thus
inductive, the second can interpreted as datatype only with difficulties (requiring
reflexive Scott Domains), while the third has clearly no inductive structure at all.
Since the typed shallow embedding “implements” binding and typing efficiently
by the meta-level, it is more suited for tool implementations. However, induction
schemes over the syntax usually yield the crucial weapon for completeness proofs
in various logics, for instance, and motivate therefore the use of deep embeddings
in meta-theoretic reasoning.

To complete, we compare now the definition of semantics in all three settings:

Deep Untyped Shallow Typed Shallow
APP(LAM(x,F),A) →β APP(LAM(F),A) →βF A APP(F,A) = F A

subst(alfa(F,free(A)),x,A) LAM(F) = F
+ congruence rules + congruence rules
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where →β is just the usual inductively defined β-reduction relation, subst and
free the usual term functions for substitution and computation of free vari-
ables and alfa is assumed to compute an α-equivalent term whose bound vari-
ables are disjoint from free(A). In an untyped shallow setting, these functions
are not needed since variables and substitution are internalized into the meta-
language. In the typed shallow embedding, APP is semantically represented by
the application of the meta-language and LAM by the identity; the β-reduction
APP(LAM(F),A) = F A is just a derived equality in the meta-logic. In a meta-
logic assuming Leipnitz’ Law for equality (such as HOL), congruence rules are
not needed since equality is a universal congruence.

Note that the mapping in our typed shallow embedding between language
and meta-language must not be so trivial as it is in this example; it can involve
exception handling, special evaluation strategies such as call by value, backtrack-
ing, etc. Moreover, the relation between the type systems of the two languages
may also be highly non-trivial. This is what our running example OCL will do
in the next chapters.

Further, note the technical overhead between deep and shallow embeddings
will even be worse if we introduce function symbols such as + and numbers
0,1,2, . . . into our language. In the deep embedding, the whole syntax and
semantics must be encoded into new datatypes and reduction relations over
them, while in the typed shallow embedding, the operators of the meta-logic
(possibly adapted semantically) can be reused more or less directly.

Summing up, a deep embedding on the one end of the spectrum requires a lot
of machinery for binding, substitution and typing, while a the other end, bind-
ing and typing are internalized into the meta-logic, paving the way for efficient
implementations using directly the built-in machinery of the theorem prover.
Therefore, whenever we speak of an embedding in the sequel, we will assume a
typed shallow embedding.

2.3 OCL in a Nutshell

The Unified Modeling Language (UML) is a diagrammatic specification lan-
guage for modeling object oriented software systems. UML is defined in an open
standardization process lead by the Object Management Group (OMG) and
highly accepted in industry. Being specialized for the object-oriented software
development process, UML allows to specify object-oriented data models (via
class diagrams), using data encapsulation, subtyping (inheritance), recursion (in
datatypes and function definitions) and polymorphism (overwriting).

While UML as a whole can only claim to be a semi-formal language, UML
class-diagrams can be completed by the Object Constraint Language (OCL) to
a (fully) formal specification language. A prominent use of OCL in [19] is the
specification of class invariants and pre and post conditions of methods, e.g.:

context Account
i nv : Account . a l l I n s t a n c e s−>f o r A l l ( a1 , a2 |

a1 <> a2 i m p l i e s a1 . i d <> a2 . i d )
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context Account : : makeWithdrawal ( amount : Real )
pre : ( amount > 0) and ( ba l anc e − mount) >= 0
post : b a l ance = ba l ance @pre − amount

and c u r r e n c y = c u r r e n c y @pre

The first example requires, that the attribute id of the class Account is unique
for all instances in a given system state. The second example shows a simple
pre/post condition pair, describing a method for withdrawal on an Account
object. Note, that within post conditions one can access the previous state by
using the @pre-keyword.

Being a typed logic that supports reasoning over object-graphs defined by
object-oriented class diagrams, OCL reasons over path expressions of the un-
derlying class diagram. Any path can be undefined in a given state; thus, the
undefinedness is inherent in OCL.

3 Organizing Theory Morphisms into Layers

In practice, language definitions follow a general principle or a common scheme.
In OCL, for example, there is the following requirement for functions except the
explicitly mentioned logical connectors (_ and _, _ or _, not _) and the logical
equality ( _ = _ ):

Whenever an OCL-expression is being evaluated, there is the possibility that
one or more queries in the expression are undefined. If this is the case, then
the complete expression will be undefined.

Object Constraint Language Specification [19] (version 1.4), page 6–58

In more standard terminology, one could rephrase this semantic principle as “all
operations are strict”, which is a special principle describing the handling of
exceptions1. Further semantic principles are, for example, “all collection types
are smashed” (see below), or, principles related to the embedding technique.

Instead of leaving these principles implicit inside a large collection of defi-
nitions, the idea is to capture their essence in combinators and to make these
principles in these definitions explicit. Such combinators occur both on the level
of types in form of type constructors and on terms in form of constant symbols.

As such, this approach is by no means new; for example, for some semantic
aspects like exception handling or state propagation,monads have been proposed
as a flexible means for describing the semantics of a language “facet by facet” in
a modular way [31, 32]. While we will not use monads in this work (which is a
result of our chosen standard example, OCL, and thus accidental), and while we
do not even suggest a similar fixed semantic framework here, merely a discipline
to capture these principles uniformly in combinators (may they have monad
structure or not), we will focus on the potential of such a discipline, namely to
express their theory once and for all and to exploit it in tactical programs.
1 In this view, the logical equality can be used to “catch exceptions”.
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We turn now to the layering of our theory morphism. We say that a theory
morphism is layered, iff in each form of conservative extension the following
decomposition is possible:

types “T (′a1 . . .
′ am) = Cn(· · · (C1(T ′))”

typedef “T (α1, . . . , αm) = {x :: Cn(· · · (C1(T ′)) | P (x)}”
constdefs “c = (En ◦ · · · ◦ E1)(c′)”

where each Ci or, respectively, Ei are (type constructor) expressions build from
semantic combinators of layer Si and T ′ respectively. Note, that c′ is a construct
from the meta logic. A layer Si is represented by a specification defining the
semantic combinators, i.e. constructs that perform the semantic transformation
from meta-level definitions to object-level definitions. In Fig. 1, we present a
classification for such layers.

HOL
bool

Logic

Int Set

SSetInteger

Data Type Adaption

Functional Adaption

Embedding Adaption

X ∧ Y = Y ∧ X

∧, ∨, = ...

BOOL
and, or, ...

X and Y = Y and X

x+ 0 = 0 + x

int
+, /, |_|, . . .

A ∪ B = A ∪ B

set
∪, ∩, =, . . .

SET
union, includes, . . .

= B->union(A)
A->union(B)

INTEGER
+, /, abs, . . .

X + 0 = 0 + X

Figure 1. Derivation of the OCL-library

In the following sections, we will present a typical collection of layers and
their combinators. We will introduce the semantic combinators one by one and
collect them in a distinguished variable SEMCOM. Finally, we will put them
together for our example OCL and describe generic theorem proving techniques
that exploit the layering of the theory morphism for OCL.
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3.1 Datatype Adaption

Datatype adaption establishes the link between meta-level types and object-level
types and meta-level constants to object-level constants. While meta-level defini-
tions in libraries of existing theorem prover systems are geared toward good tool
support, object-level definitions tend to be geared to a particular computational
model, such that the gap between these two has to be bridged. For example,
in Isabelle/HOL, the head-function applied to an empty list is defined to yield
an arbitrary but fixed element; in a typical executable object-language such as
SML, Haskell or OCL, however, this function should be defined to yield an ex-
ception element that is treated particularly. Thus, datatype adaption copes with
such failure elements, the introduction of boundaries (as maximal and minimal
numbers in machine arithmetics), congruences on raw data (such as smashing;
see below) and the introduction of additional semantic structure on a type such
as complete partial orders (cpo).

We chose the latter as first example for a datatype adaption. We begin with
the introduction of a “simple cpo” structure via the specification extension by
sort cpo0 and the definition of our first semantic (type) combinator; simple cpo
means that we just disjointly add a failure-element such as ⊥ (see, e.g. [1],
where the following construction is also called “lifting”). Note, that an extension
to full-blown cpo’s would require the additional definition of the usual partial
definedness-ordering with ⊥ as least element and completeness requirements;
such an extension is straight-forward and useful to give some recursive constructs
in OCL a semantics but out of the scope of this paper.

We state:

datatype up(α ) = "b(_)c" α | ⊥

which is a syntactic notation for a type definition and two constant definitions
for the injections into the sum-type. In the sequel, we write t⊥ instead of up(t).
For example, we can define the object-level type synonym Bool based on this
combinator:

types Bool = bool⊥ types Integer = integer⊥ . . .

These type abbreviations reflect the effect of the datatype adaption.
We turn now to the semantical combinators of this layer. We define the

inverse to b_c as d_e. We have defined a small specification extension providing
the semantic combinators: (_)⊥,⊥, b_c, d_e ∈ SEMCOM.

As an example for a congruence construction, we chose smashing on sets,
which occurs in the semantics of SML or OCL, for example. In a language with
semantic domains providing ⊥-elements, the question arises how they are treated
in type constructors like product, sum, list or sets. Two extremes are known in
the literature; for products, for example, we can have:

(⊥, X) 6= ⊥ {a,⊥, b} 6= ⊥ . . .
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or:

(⊥, X) = ⊥ {a,⊥, b} = ⊥ . . .

The latter variant is called smashed product and smashed set. In our framework,
we define a semantic combinator for smashing as follows:

constdefs smash :: [[ β :: cpo0, α :: cpo0] →bool, α ] →α
"smash f X ≡ if f ⊥X then ⊥else X"

and define, for example, Set’s as follows:

typedef α Set = "{X :: (α :: cpo0) set up.(smash (λx X. x : dXe) X) = X}"

An embedding of smashed sets into “simple cpo’s” can be done as follows:

instance Set :: ord(term)
arities Set :: cpo0(term)
constdefs UU_Set_def "⊥ ≡AbsSet⊥"

We have defined the semantic combinators smash,⊥ :: Set(α),AbsSet,RepSet ∈
SEMCOM.

3.2 Functional Adaption

Functional adaption is concerned with the semantic transformation of a meta-
level function into an object-level function. For example, this may involve the

– strictification of functions, i.e. the result of the function is undefined if one
of its arguments is undefined,

– late-binding-conversion of a function. This semantic conversion process is
necessary for converting a function into an function in an object-oriented
language.

Technically, strictification can be achieved by the definition of the semantic com-
binators. We will introduce two versions: a general one on the type class cpo0,
another one for the important variant:

constdefs
strictify :: "(α⊥ →β :: cpo0) →α⊥→β"
"strictify f x ≡ if x=⊥ then ⊥else f x"
strictify’ :: "(α⊥ →β :: cpo0) →α⊥→β"
"strictify’ f x ≡ case x of bvc →(f v ) | ⊥→⊥"

(strictify’, strictify ∈ SEMCOM).
A definition like OCL’s union (that is the strictified version of HOL’s union

over the smashed and transformed HOL datatype set) is therefore represented
as:

constdefs
union :: Set(α ) →Set(α ) →Set(α )
"union ≡strictify(λ X. strictify(λ Y. AbsSetbdRepSetXe ∪dRepSetYec))"
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Many object-oriented languages provide a particular call-scheme for func-
tions, called method invocation which is believed to increase the reusabilty of
code. Method invocation is implemented by a well-known construction in pro-
gramming language theory called late-binding. In order to demonstrate the flex-
ibility of our framework, we show in the following example how this important
construction can be integrated and expressed as a semantic combinator. The
late-binding-conversion requires a particular pre-compilation step that is not
semantically treated by combinators: For each method declaration

Method m : t1,. . . , tn →t

in a class-declaration A, a look-up table lookupm has to be declared with type:

lookupm :: set(A) →A →t1 ×. . .×tn →t

In an “invocation” A.m(a1,. . . ,an) of a “method of object A”, the dynamic type
of A is detected, which is used to lookup the concrete function in the table,
that is executed with A as first argument (together with the other arguments).
The dynamic type of a “class of objects A” can be represented by set2. Thus,
the semantics of method invocations can be given by the following semantic
combinators:

match lookup obj ≡the (lookup (LEAST X : α . X : dom lookup ∧obj : X)))
methodify lookup obj arg ≡(match lookup obj)(arg)

where we use predefined Isabelle/HOL functions for “the”, “dom” and “LEAST”
with the ’obvious’ meaning. Since OCL possesses subtyping but not late-binding
at the moment, we will not apply these combinators throughout this paper. The
discussion above serves only for the demonstration that late-binding can in fact
be modeled in our framework. A detailed account on the handling of subtyping
can be found in [17].

3.3 Embedding Adaption for Shallow Embedding

This type of semantic combinators is related to the embedding technique itself.
Recalling section 2.2, any function op : T1 → T2 of the object-language has to
be transformed to a function:

Semσ[[op]] : Vσ(T1)→ Vσ(T2) where types Vσ(δ) = σ → δ .

The transformation is motivated by the usual form of a semantic definition for
an operator op and an expression e in a deep embedding:

Semσ[[op e]] = λσ.(Semσ[[op]]σ)(Semσ[[e]]σ)

for some environment or state σ. Consequently, the semantics of an expression
e of type T is given by a function σ → T (written as Vσ(T )). In a typed shallow
2 This requires a construction of a “universe of objects” closed under subtypes gener-
ated by inheritance; in [17], such a construction can be found.
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embedding, the language is constructed directly without the detour of the con-
crete syntax and Sem. Hence, all expressions are converted to functions from
their environment to their value in T , which implies that whenever a language
operators is applied to some arguments, the environment must be passed to
them accordingly. This “plumbing” with the environment parameter σ is done
by the semantic combinators K, lift1 or lift2 ∈ SEMCOM that do the trick for
constants, unary or binary functions. They are defined as follows:

K :: α→Vσ(α )
"K a ≡ (λst . a)"
lift1 :: (α →β) →Vσ(α ) →Vσ(β)
" lift1 f X ≡ (λst . f (X st))"
lift2 :: ([α ,β] →γ) →[Vσ(α ),Vσ(β)] →Vσ(γ)
" lift2 f X Y ≡ (λst . f (X st)(Y st))"

Our “layered approach” becomes particularly visible for the example of the log-
ical absurdity or the the logical negation operator (standing for similar unary
operators):

constdefs ⊥⊥⊥L :: Vσ(Bool)
"⊥⊥⊥L ≡K(b ⊥c)"
true :: Vσ(Bool)
"true ≡ K(b true c)"
false :: Vσ(Bool)
"false ≡K(b false c)"

not :: Vσ(Bool) →Vσ(Bool)
"not ≡ (lift1◦b_c◦strictify’) (¬)"

From this definition, the usual logical laws for a strict negation can be derived:

not(⊥⊥⊥L ) =⊥⊥⊥L not(true) = false not(false) = true

As an example for a binary function like Union (based on union defined in the
previous section), we present its definition:

constdefs Union :: Vσ(Set(α )) →Vσ(Set(α )) →Vσ(Set(α ))
Union ≡ lift2 union

We will write BOOL for Vσ(Bool), INTEGER for Vσ(Integer) and SET(α ) in
the sequel. These type abbreviations reflect the effect of the embedding adaption
on types.

4 Automatic Generation of Library Theorems

We distinguished two ways to generate theorems for newly embedded operators
of an object language: instantiations from generic theorems over the semantic
combinators or the application of LIFTE , a tactic procedure that attempts to
reconstruct meta-level theorems on the object-level.
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4.1 Generic Theorems
In our example application OCL, definedness is a crucial issue that has been
coped with by semantic combinators. Definedness is handled by the predicate
is_def : Vσ(α ) →BOOL that lifts the predicate DEF t ≡(t 6=⊥) to the level of
the OCL logic. Since the latter “implanted” undefinedness on top of the meta-
level semantics, it is not surprising that there are a number of properties that
are valid for all functions that are defined accordingly to the previous sections.
is_def(lift1 (strictify’(λx. bf xc)) X) = is_def X
is_def(lift1 (strictify’(λx. bf xc)) X) = is_def X
is_def(lift2 (strictify’(λx.

strictify’(λy. bf x yc))) X Y) = (is_def X and is_def Y)

lift1 (strictify’ f ) ⊥⊥⊥L= ⊥⊥⊥L

lift2 (strictify’(λx. strictify’(f x))) ⊥⊥⊥LX = ⊥⊥⊥L

lift2 (strictify’(λx. strictify’(f x))) X ⊥⊥⊥L= ⊥⊥⊥L

For any binary function defined in the prescribed scheme, these theorems already
result in four theorems simply by instantiating f appropriately!

Surprisingly, the embedding adaption combinators K, lift1 and lift2 turn out
to have a quite rich theory of their own. First, it is possible to characterize the
“shallowness” of a context C in the sense that the environment/store is just
“passed through” this context. This characterization can be formulated seman-
tically and looks as follows:
constdefs pass :: ([Vσ(γ), σ] →β) →bool

pass(C) ≡ (∃f . ∀ X st. C X st = f (X st) st)
This predicate enjoys a number of useful properties that allow for the decom-
position of a larger context C to smaller ones; for instance, trivial contexts pass
and passing is compositional:
pass(λX. c) pass(λX. X)
J pass P; pass P’ K ⇒pass(P◦P’)

Moreover, any function following the prescribed scheme is shallow (since this
was the very reason for introducing the pass-predicate):

J pass P K ⇒pass(λX. lift1 f (P X))
J pass P; pass P’ K ⇒pass(λX. lift2 f (P X) (P’ X))"

This leads to a side-calculus enabling powerful logical rules like trichotomy (for
the language composed by the operators):

J pass P; pass P’; P ⊥⊥⊥L= P’ ⊥⊥⊥L ; P true= P’ true; P false= P’ falseK
⇒P X = P’ X

Moreover, there are also fundamental rules that allow for a split of defined and
undefined cases and that form the bases for the generic lifter to be discussed in
the next section:

J pass P; pass P’; P ⊥⊥⊥L= P’ ⊥⊥⊥L ; X 6=⊥⊥⊥L ⇒P X = P’ X K ⇒P (X) = P’ X
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4.2 Approximating the TME by LIFTE

Now we are ready to describe conceptually the tactic procedure. The main parts
of the implementation in Isabelle/HOL are presented in the appendix, see sec-
tion ??. It is based on the set of semantic combinators SEMCOM and their
theory, which has been defined elementwise in the previous sections. In order to
allow a certain flexibility in the syntactic form of theorems to be lifted, we extend
SEMCOM to the set CO with the set of logical connectives of our meta-language
(=, ∧, ∨ or ∀).

The core(E) of a conservative theory extension E is is defined as the map

{(c 7→ c′)|constdefs “c ≡ e(c′)” ∈ axioms_of(E) ∧ constants_of(e) ⊆ CO} ,

i.e. we filter all constant definitions that are constructed by our semantical com-
binators and simple logical compositions thereof.

A theorem thm ∈ Th(S) is liftable iff it only contains constant symbols that
are elements of ran(core(E)) or a logical connective.

Liftable theorems can now be converted by substituting the constants in
the term of thm along core(E), i.e. we apply an inverse signature morphism
constructed from core(E) (note that the inverse signature morphism may not be
unique; in such cases, all possibilities must be enumerated). A converted theorem
may be convertable iff the converted term is typable in Σ ] E. All convertable
terms thm′ are fed as proof goals into a a generic tactical proof procedure that
executes the following steps (exemplified with the commutativity):

1. the proof-state is initialized with thm′, e.g. ((X :: α INTEGER)+ Y)=Y+X,
2. we apply extensionality and unfold the definitions for lift1 and lift2 yielding

1.
∧
st. strictify’(λx. strictify’ (λy. bx + yc)) (X st) (Y st)

= strictify’(λx. strictify’ (λy. bx + yc)) (Y st) (X st)

3. for each of the free variables (e.g. X and Y ) we introduce a case split over de-
finednessDEFx, i.e. difference of x from ⊥ (e.g. DEF(Xst) and DEF(Y st)),

1.
∧
st. J DEF (X st); DEF (Y st) K

⇒ strictify’(λx. strictify’ (λy. bx + yc)) (X st) (Y st)
= strictify’(λx. strictify’ (λy. bx + yc)) (Y st) (X st)

2.
∧
st. J DEF (X st); ¬DEF (Y st) K

⇒ strictify’(λx. strictify’ (λy. bx + yc)) (X st) (Y st)
= strictify’(λx. strictify’ (λy. bx + yc)) (Y st) (X st)

3.
∧
st. ¬ DEF (X st)

⇒ strictify’(λx. strictify’ (λy. bx + yc)) (X st) (Y st)
= strictify’(λx. strictify’ (λy. bx + yc)) (Y st) (X st)

4. we exploit the additional facts in the subgoals by simplifying with the rules
for strictify′. This yields:

1.
∧
st x xa. J . . . K ⇒x + xa = xa + x

5. and by applying thm (the commutativity on int) we are done.
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These steps correspond to the treatment of the different layers discussed in
the previous chapter: step one erases the embedding adaption layer, step two es-
tablishes case distinctions for all occurring variables and applies generic lemmas
for the elimination of the semantic combinators of functional layer. In an exam-
ple involving a datatype adaption layer (for example quotients like smashing in
OCL), similar techniques will have to be applied.

Of course, this quite simple — since conceptual — lifting routine can be
extended to a more sophisticated one that can cover a larger part of the set
of convertables. For example, the combinators of the datatype adaption layer
may involve reasoning over invariants that must be maintained by the underly-
ing library functions. In our OCL theory, for example, such situations result in
subproofs for

J ⊥ 6∈ RepSetA; ⊥6∈RepSetB K ⇒⊥6∈ (RepSet A ∪RepSetB)

Depending from the complexity of the combinators for the datatype adaption,
such invariant proof can be arbitrarily complex and will require hand-proven
invariance lemmas.

A particular advantage of our approach is that the lifting of theorems can
be naturally extended to the lifting of the configurations of the automatic proof
engine as well. With configuration, we mean here a number of rule sets for intro-
duction and elimination rules for the classical reasoner fast_tac or blast_tac
and sets for standard rewriting or ACI rewriting. By LIFTE , these sets can be
partially lifted and extended by corresponding rules on the object level. Since
it is usually an expert task to provide a suitable configuration for a logic, this
approach attempts to systematically extend this kind of expert knowledge from
the meta-level to object level.

5 Experience gained from our OCL example

We give a short overview of the application of our approach in the typed shallow
embedding of OCL into Isabelle/HOL (see [17, 18] for details). In our example
scenario, we can profit a lot from the fact, that most of the functions for the
datatypes Integer, Real (e.g. =,−, /,≤, <, . . . ), Sequences (e.g. union, append,
size, etc.), and String (e.g. concat, size, . . . ) can be derived in the same way as
described for + in the last section.

The current application of our module thy_morpher.ML to our OCL embed-
ding with 85 operators produces the following statistics (based on Isabelle/HOL
version 98):

Relevant HOL theorems : 1593
Liftable theorems : 423
Convertable theorems : 212
Lifted theorems : 102
Generic theorems : 254

From the 85 operators of OCL, 77 are amenable to our approach in principle.
With “relevant theorems” we mean those contained in specifications imported by
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the specifications containing our embedding. From our experience, improvements
in the generic theorems section will lead to better results easily. In contrast, the
design of new schemata of lifting proof routines is a more complex, but still
rewarding task. Summing up, based on a still quite simple LIFTE technology,
we successfully generated over 350 theorems which are automatically derived
from the base libraries and generic theorems over semantic combinators.

6 Conclusion

We have presented a method for organizing the mass of library function defi-
nitions for typed shallow embeddings in a layered theory morphism. Moreover,
we developed a technique that allows for the exploitation of this structure in a
tactic-based (partial) program that lifts meta-level theorems to their object-level
counterparts and meta-level prover configurations to object-level ones. Our ap-
proach can be seen as an attempt to liberate the shallow embedding technique
from the “point-wise-definition-style” in favor of more global semantic transfor-
mations from one language level to another. We abstracted the underlying con-
ceptual notions into a generic framework that shows that the overall technique
is applicable in a wide range of embeddings in type systems; embedding-specific
dependencies arise only from the specifications of semantic combinators (the
layers), and technology specific dependencies from the used tactic language.

At present, the technique is limited essentially to the class of first-order Horn-
clause equations; for this class, the (partial) program succeeds in our application
in all cases in our non-trivial application language. Although a more precise char-
acterization of success is impossible here due to the generality of the framework,
we believe that the approach will be applicable for language embeddings for SML,
Haskell or Z [16] with similar success since the underlying semantic combinators
are the same. Additionally, our implementation of LIFTE will also be reusable.
The same holds for many basic generic theorems over semantical combinators
from the embedding adaption layer, the functional adaption layer and — to a
lesser extent — the data adaption layer. In principle, the overall construction
is also applicable for other higher-order typed theorem proving systems such as
Coq [8] or ALF [33]; however, the theories over the semantic combinators and
the core of the tactic procedure will have to be adapted to these frameworks.

Besides the obvious need for more generic theorems and more powerful lifting
proof procedures, in particular for formulae like ¬∀x : A.Px = ∃x : A.¬Px, the
potential of our approach for untyped shallow or even deep embeddings should
be explored. This means, that similarly to invariance proofs of data adaption
operators, automatic proofs for the maintenance of well-typing have to be con-
structed, whereas in a deep embedding, the invariance of binding correctness
(“no name-clashes”) has also be handled in these proof routines. Beyond the ob-
vious increase of complexity, it seems unclear what kind of limitations for such
a setting will arise.
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