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Textbook Semantics: An Example

☛ The interpretation of the logical and is given by a truth-table:

a b a and b
false false false
false true false
false ⊥⊥⊥L false

a b a and b
true false false
true true true
true ⊥⊥⊥L ⊥⊥⊥L

a b a and b
⊥⊥⊥L false false
⊥⊥⊥L true ⊥⊥⊥L
⊥⊥⊥L ⊥⊥⊥L ⊥⊥⊥L

☛ The Interpretation of“X->union(Y)” for sets (“X ∪ Y ”):

I(∪)(X, Y ) ≡

X ∪ Y if X 6= ⊥⊥⊥L and Y 6= ⊥⊥⊥L

⊥⊥⊥L otherwise

This is a strict and lifted version of the union of“mathematical sets”.
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Textbook Semantics

• “Paper-and-Pencil”work in mathematical notation.

(+) Useful to communicate semantics.

(+) Easy to read.

(−) No rules, no laws.

(−) Informal or meta-logic definitions (“The Set is the mathematical set.”).

(−) It is easy to write inconsistent semantic definitions.
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Machine-Checkable Semantics

Motiviation: Honor the semantical structure of the language.

☛ A machine-checked semantics

– conservative embeddings guarantee consistency of the semantics.

– builds the basis for analyzing language features.

– allows incremental changes of semantics.

☛ As basis of further tool support for

– reasoning over specifications.

– refinement of specifications.

– automatic test data generation.
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Machine Checkable Semantics

☛ The definition of the logical and (Kleene-logic):

S and T ≡λc. if DEF (S c) then

if DEF (T c) then bdS ce ∧dT cec
else if S c = (bFalsec) then bFalsec else ⊥

else if T c = (bFalsec) then bFalsec else ⊥

The truth-table can be derived from this definition.

☛ The union of sets is defined as the strict and lifted version of ∪:

union ≡lift2(strictifyN (λX. strictifyN (

λY. Abs SSet (bdRep SSet Xe ∪λdRep SSet Yec))))

☛ These definitions can be automatically rewritten into“Textbook-style”.
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Foundations: Using Isabelle/HOL for defining semantics

☛ Foundation:

– Isabelle is a generic theorem prover.

– Higher-order logic (HOL) is a classical logic with higher-order functions.

– Isabelle’s logics: designed for extensible.

☛ Defining semantics via extending logics can be done

– by a deep embedding or a shallow embedding.

Shallow: Direct definition of the semantics, e.g. each construct is represented by
some function on a semantic domain.

Deep: The abstract syntax is presented as a datatype and a semantic function I
from syntax to semantics.

– by introducing new axioms or by conservative (proving new properties) extensions.
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HOL-OCL: A Shallow Embedding of OCL into HOL

☛ is build on top of Isabelle/HOL.

☛ is a shallow embedding of OCL into HOL.

☛ provides a consistent (machine checked) OCL semantics.

☛ allows the examination of OCL features.

☛ builds the basis for OCL tool development.

☛ follows OCL 1.4 and the RfP for OCL 2.0

☛ over 2000 theorems (language properties) proven.
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The Technical Design of HOL-OCL

☛ Reuseability:

– Reuse old proofs for class diagrams constructed via inheritance introduction of new

classes.

– Extendible semantics approach.

☛ Representing semantics structurally:

– Organize semantic definitions by certain combinators capturing the semantical

essence (e.g. lifting and strictness).

– Automatically construct theorems out of uniform definitions.
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HOL-OCL Language Research: Smashed Sets

For handling undefined elements (⊥⊥⊥L ) in Sets we have two possibilities:

1. Not smashed:

{X,⊥⊥⊥L } 6= ⊥⊥⊥L with the consequence X ∈ {X,⊥⊥⊥L } and ⊥⊥⊥L ∈ {X,⊥⊥⊥L }

2. Smashed:

{X,⊥⊥⊥L } = ⊥⊥⊥L with the consequence X 6∈ {X,⊥⊥⊥L } and ⊥⊥⊥L 6∈ {X,⊥⊥⊥L }
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HOL-OCL Language Research: Smashed Sets

☛ The OCL 2.0 proposal suggest not smashed Sets, Bags, Sequences and Tuples:

I(count : Set(t)× tInteger)(s, v) =


1 if v ∈ s

0 if v 6∈ s

⊥⊥⊥L if s = ⊥⊥⊥L

And therefore“X->includes(Y)” is not executable!

☛ We encourage the use of smashed Sets, Bags, Sequences and Tuples:

– This mirrors the operational behavior of programming languages (e.g. Java).

– This allows the definition of a executable OCL subset.
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HOL-OCL Application: Test Data Generation

Based on a UML/OCL specification a minimal set of test data is calculated which can be used

for validating an implementation.

+ isTriangle(s0, s1, s2: Integer): Boolean
+ triangle(s0, s1, s2: Integer): TriType

Triangle

<<Enumeration>>
TriangType

invalid
scalene
isosceles
equilateral

context
Tr i a n g l e : : i s T r i a n g l e ( s0 , s1 , s2 : Integer ) : Boolean

pre :
( s0 > 0) and ( s1 > 0) and ( s2 > 0)

post :
r e s u l t = ( s2 < ( s0 + s1 ) )

and ( s0 < ( s1 + s2 ) )
and ( s1 < ( s0 + s2 ) )

<<UML>> 2002



SoftechSoftechf
reiburgreiburg

HOL-OCL: Experiences and Applications 16

HOL-OCL Application: Test Data Generation

Based on a UML/OCL specification a minimal set of test data is calculated which can be used

for validating an implementation.

+ isTriangle(s0, s1, s2: Integer): Boolean
+ triangle(s0, s1, s2: Integer): TriType

Triangle

<<Enumeration>>
TriangType

invalid
scalene
isosceles
equilateral

context
Tr i a n g l e : : t r i a n g l e ( s0 , s1 , s2 : Integer ) : Tr iangType

pre :
( s0 > 0) and ( s1 > 0) and ( s2 > 0)

post :
r e s u l t = i f ( i s T r i a n g l e ( s0 , s1 , s2 ) ) then

i f ( s0 = s1 ) then
i f ( s1 = s2 ) then
E q u i l a t e r a l : : Tr iangType

e l se
I s o s c e l e s : : Tr iangType endi f

e l se
i f ( s1 = s2 ) then

I s o s c e l e s : : Tr iangType
e l se

i f ( s0 = s2 ) then
I s o s c e l e s : : Tr iangType

e l se
Sca l en e : : Tr iangType

endi f end i f end i f
e l se

I n v a l i d : : Tr iangType endi f
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HOL-OCL Application: Test Data Generation

1. Reduce all logical operation to the basis operators:

and, or, und not

2. Determine disjunctive normal Form (DNF):

x and (y or z) ; (x and y) or (x and z)

3. Eliminate unsatisfiable sub-formulae, e.g.:

scalene and invalid

4. Select test data with respect to boundary cases.
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Partitioning of the Test Data

triangle s0 s1 s2 = @result• �

result , invalid and not isTriangle s0 s1 s2

or

result , equilateral and isTriangle s0 s1 s2 and s0 , s1 and s1 , s2

or

result , isosceles and isTriangle s0 s1 s2 and s0 , s1 and s1 6, s2

or

result , isosceles and isTriangle s0 s1 s2 and s0 , s2 and s0 6, s1

or

result , isosceles and isTriangle s0 s1 s2 and s1 , s2 and s0 6, s1

or

result , scalene and isTriangle s0 s1 s2 and s0 6, s1 and s0 6, s2 and s1 6, s2
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Partitioning of the Test Data

1. Input describes no triangle.

2. Input describes an equilateral triangle.

3. Input describes an isosceles triangle:

(a) with s0 equals s1.

(b) with s0 equals s2.

(c) with s1 equals s2.

4. Input describes an scalene triangle.

For each partition, concrete test data has to be selected with respect to boundary cases (e.g.

max./min. Integers, . . . ).
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Conclusion

A theorem prover based OCL definition of the OCL semantics:

☛ provides a sound and consistent semantic“Textbook”.

☛ allows the definition of a proof calculi over OCL.

☛ Gives OCL/UML the power of well-known Formal Methods (e.g. Z, VDM), e.g. for:

– validation..

– verification.

– Refinement.

– automated test data generation.

– . . .
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Conclusion: Tabular overview

OCL 1.4 OCL 2.0 RfP HOL-OCL preference
extendible universes 2 2 2�
general recursion 2 2 2�
smashing ? 2 2�
automated flattening 2� 2 2
tuples 2 2� 2�
finite state 2� 2� 2
general Quantifiers 2 2 2�
allInstances finite 2� 2� 2
Kleene logic 2� 2� 2�
strong and weak equality 2 2� 2�
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The Unified Modeling Language (UML)

☛ diagrammatic OO modeling

language

☛ many diagram types, e.g.

– class diagrams (static)

– state charts (dynamic)

– use cases

☛ semantics currently

standardized by the OMG

☛ we expect wide use in

SE-Tools (ArgoUML,

Rational Rose,. . . )

inv:
balance >= credit

+ getCredit():Real
+ setCredit(amount:Real):Boolean

− credit:Real

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real

+ makeWithdrawal(amount:Real):Boolean

− balance:Real

context Account::makeDeposit(amount:Real):Boolean

post: balance = balance@pre + amount
pre:  amount >= 0

− Identification:String

+ getAddress():String
+ getIdentification():String

+ setAddress(address:Real)

− address:String

Direction

Direction

1

owner accounts
belongsTo

1..99

CreditAccount

AccountCustomer
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The Object Constraint Language (OCL)

☛ designed for annotating UML diagrams

(and give foundation for injectivities, . . . )

☛ based on logic and set theory

☛ in the context of class–diagrams:

– preconditions

– postconditions

– invariants

☛ will be used for other diagram types too

+ makeWithdrawal(amount:Real):Boolean

− balance:Real

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real

context Account::makeDeposit(amount:Real):Boolean
pre:  amount >= 0
post: balance = balance@pre + amount

accounts

1..99 Account

<<UML>> 2002
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Recursive Methods

OCL allows recursive method invocation“as long as the recursion is not infinite”.

For handling non-terminating recursion two possibilities are possible:

☛ It is forbidden:

– non-termination is undecidable

– needs a notion of well-formedness

– not machine-checkable

– alternative: well-founded recursion (requires new syntactic and semantic concepts)

☛ It is undefined (⊥⊥⊥L ):

– consistent with least-fixpoint in the cpo-theory

<<UML>> 2002
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Recursive Methods

☛ We encourage the use of recursive methods, because

– they are executable

– increase the expressive power of OCL

☛ But recursion comes not for free:

– the semantics of method invocations needs to be clarified.

– more complexity for code generation tools.

<<UML>> 2002
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Invariants in OCL

An OCL expression is an invariant of the type and must be true for all instances of

that type at any time.

Object Constraint Language Specification [?] (version 1.4), page 6-52

☛ No problem, as we understand at any time as at any reachable state.

☛ Intermediate states violating this conditions have to be solved in the refinement notion.

☛ This also works with general recursion based on fix-points for query-functions.
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On Executability of OCL

☛ The view of OCL as an object-oriented assertion language led to several restrictions, e.g.

– allInstances() of basic data types is defined as ⊥⊥⊥L .

– states must be finite.

☛ Thus OCL is not self-contained.

☛ These restrictions hinder the definitions of general mathematical functions and theorems.

☛ We suggest to

1. omit all these restrictions.

2. define a executable OCL subset.

<<UML>> 2002
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Shallow vs. Deep Embeddings

Representing the logical operations or and and via a

☛ shallow embedding:
Direct definition of the semantics, e.g. each construct is represented by some function on

a semantic domain.

☛ deep embedding:
The abstract syntax is presented as a datatype and a semantic function I from syntax to

semantics.

<<UML>> 2002
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☛ shallow embedding:

x and y ≡ λ e . x e ∧ y e x or y ≡ λ e . x e ∨ y e

☛ deep embedding:
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Shallow vs. Deep Embeddings

Representing the logical operations or and and via a

☛ shallow embedding:

x and y ≡ λ e . x e ∧ y e x or y ≡ λ e . x e ∨ y e

☛ deep embedding:

expr = var var | expr and expr | expr or expr

and the explicit semantic function I:

I[[var x]] = λ e . e(x)

I[[x and y]] = λ e . I[[x]] e ∧ I[[y]] e

I[[x or y]] = λ e . I[[x]] e ∨ I[[y]] e
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