
CASE tool-based system development
using UML/OCL

Achim D. Brucker
Institut für Informatik

Albert-Ludwigs-Universität Freiburg
brucker@informatik.uni-freiburg.de

http://www.informatik.uni-freiburg.de/~brucker

April 12, 2002

SoftechSoftech
reiburgreiburg

CASE tool-based system development 1

Motivation

☛ Why specify?

– Complex software systems require a precise specification of
architecture and components.

– Semi-formal methods (like UML) are not strong enough.

☛ Why UML/OCL?

– UML is the standard modeling language in OO development.

– OCL is part of the OMG UML standard.

Specification should not only generate documentation!

SoftechSoftech
reiburgreiburg

CASE tool-based system development 2

Overview

1. The V-Model

2. UML/OCL

3. Using specifications: code generation, verification, validation,. . .

4. Two examples:

☛ Automated test case generation using UML/OCL

☛ ArcSecure

SoftechSoftech
reiburgreiburg

CASE tool-based system development 3

The V-Model (simplified)

☛ process and
development model

☛ describes dependencies
and (work) flows

☛ ISO standard
☛ an example of a

phase-based
development model

System
Requirem.
Analysis

System
Design

Software
Design

Software
Implementation

Software
Integration

System
Integration

Transition
to

Utilziation

Software
Requirem.
Analysis

SoftechSoftech
reiburgreiburg

CASE tool-based system development 4

Benefits of using a (semi-) formal
specification

☛ understanding and communication

☛ Formal reasoning and analysis (verification, model checking)

☛ generating code

☛ runtime assertion checking

☛ generation of test data for validation (testing)

☛ use constraints for runtime assertion checking

☛ Documentation

SoftechSoftech
reiburgreiburg

CASE tool-based system development 5

CASE Tools

Computer Aided Software Engineering tools support the
software development process by providing a framework for:

☛ documentation

☛ specification

☛ code generation

☛ validation

☛ verification

SoftechSoftech
reiburgreiburg

CASE tool-based system development 6

The Unified Modeling Language (UML)

☛ visual modeling language
☛ many diagram types, e.g.

– class diagrams (static)
– state charts (dynamic)
– use cases

☛ diagrammatic method
☛ OO development
☛ OMG standard
☛ widely used

Customer

name : String

+ getName(): String
+ netValue(): Real

1..∗
Role

Account

balance : Real

+ getBalance(): Real
+ makeDeposit(a: Real)
+ makeWithdrawal(a: Real)

: Account

: Customer

getBalance()

SoftechSoftech
reiburgreiburg

CASE tool-based system development 7

The Object Constraint Language (OCL)

☛ extension based on logic and
set theory

☛ designed for annotating UML
diagrams

☛ in the context of class–
diagrams:
– preconditions
– postconditions
– invariants

☛ can be used for other diagram

context Account::makeDeposit(amount:Real):Boolean
pre: amount >= 0
post: balance = balance@pre + amount

accounts

1..99

+ makeWithdrawal(amount:Real):Boolean

Account

- balance:Real

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real

SoftechSoftech
reiburgreiburg

CASE tool-based system development 8

Verification and Model Checking

☛ prove that a implementation fulfills its spec-
ification

☛ abstract: prove properties of an abstract
model

☛ source code level: prove properties of a con-
crete implementation

☛ often not fully automated
☛ needs a formal specification

System
Requirem.
Analysis

System
Design

Software
Design

Software
Implementation

Software
Integration

System
Integration

Transition
to

Utilziation

Software
Requirem.
Analysis

SoftechSoftech
reiburgreiburg

CASE tool-based system development 9

Code Generation

☛ semi-formal: generate skeleton/stubs
☛ formal: generate implementation

+ balance: Real

+ makeWithdrawal(a: Real):void

Account

class Account{
float balance;

float getBalance(){
return balance;

}

void setBalance(float balance){
this .balance = balance;

}

void makeDeposit(float a){
// user defined code begins here

this .balance = this.balance + a;

// end of user defined code

}
}

System
Requirem.
Analysis

System
Design

Software
Design

Software
Implementation

Software
Integration

System
Integration

Transition
to

Utilziation

Software
Requirem.
Analysis

SoftechSoftech
reiburgreiburg

CASE tool-based system development 10

Assertion Checking

☛ generates runtime checks for constraints
(pre-/post-conditions, invariants,. . .)

☛ slightly similar to assert.h

☛ a post-hoc debugging method

☛ needs a formal specification

System
Requirem.
Analysis

System
Design

Software
Design

Software
Implementation

Software
Integration

System
Integration

Transition
to

Utilziation

Software
Requirem.
Analysis

SoftechSoftech
reiburgreiburg

CASE tool-based system development 11

Test Case Generation (Validation)

☛ test the implementation with a specified input
☛ validates the implementation against its

specification
☛ meaningful testing requires high grade sets of

test data
☛ no formal proof of correctness
☛ needs a formal specification

if ((a < 5) || (a > 10) && (b=5)

{
// Block A

}else{
// Block B

}

System
Requirem.
Analysis

System
Design

Software
Design

Software
Implementation

Software
Integration

System
Integration

Transition
to

Utilziation

Software
Requirem.
Analysis

SoftechSoftech
reiburgreiburg

CASE tool-based system development 12

Test Case Generation (Example)

Input: three integer, representing the length of the sides of a triangle

Output: whether the input describes an equilateral, isosceles, scalene or
invalid triangle

Based on an OCL specification, it is possible to determine
partition for test case selection automatically.

☛ already six partitions

☛ select test cases from these partitions, exploiting boundary cases

SoftechSoftech
reiburgreiburg

CASE tool-based system development 13

Specifying Security (ArcSecure)

☛ model information needed for authorization
☛ based on RBAC with dynamic extensions
☛ code generation honors authorization con-

straints

☛ only for specification: informal possible
☛ further analysis requires semi-formal or formal

specification

☛ ArcSecure can profit in all presented ways from
the specification

System
Requirem.
Analysis

System
Design

Software
Design

Software
Implementation

Software
Integration

System
Integration

Transition
to

Utilziation

Software
Requirem.
Analysis

SoftechSoftech
reiburgreiburg

CASE tool-based system development 14

Specifying Security (Example)

EntryOwnerPerm

- actiontype : update
Ownership

<<secuml.constraint>>

BusinessHoursOnly
<<secuml.constraint>>

UserCalendarPerm

- actiontype : change

{call.current().principal.name
= owner}

{time.currentHour() > 8 and
time.currentHour() < 17}

CalendarView
<<secuml.resourceView>>

+ name : string

Calendar

+ name : string

+ createEntry()
+ updateEntry()
+ removeEntry()
+ findAllEntries()

<<ejb>>

<<secuml.context>>

User
<<secuml.role>>

<<secuml.permission>>

SuperUser
<<secuml.role>>

Entry

+ Location : string
+ Start : date
+ End : date
+ Owner : string

+ getEntryInfo()
+ setEntryInfo()

<<ejb>>

0..
*

0..
*

<<secuml.permission>>

<<secuml.permission>>

<<secuml.permission>>

SuperUserPerm

- actiontype : update
- actiontype1 : delete

UserEntryPerm

- actiontype : read
authorization constraint

role permission

SoftechSoftech
reiburgreiburg

CASE tool-based system development 15

Conclusion

☛ Specification helps mastering complex projects

☛ Widely used CASE tools support:

– documentation generation

– code generation

– assertion checking

☛ Specialized CASE tools and academia provide support for
validation and verification.

