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Motivation

☛ Why specify?

– Complex software systems require a precise specification of
architecture and components.

– Semi-formal methods (like UML) are not strong enough.

☛ Why UML/OCL?

– UML is the standard modeling language in OO development.

– OCL is part of the OMG UML standard.

Specification should not only generate documentation!
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Overview

1. The V-Model

2. UML/OCL

3. Using specifications: code generation, verification, validation,. . .

4. Two examples:

☛ Automated test case generation using UML/OCL

☛ ArcSecure
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The V-Model (simplified)

☛ process and
development model

☛ describes dependencies
and (work) flows

☛ ISO standard
☛ an example of a

phase-based
development model
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Benefits of using a (semi-) formal
specification

☛ understanding and communication

☛ Formal reasoning and analysis (verification, model checking)

☛ generating code

☛ runtime assertion checking

☛ generation of test data for validation (testing)

☛ use constraints for runtime assertion checking

☛ Documentation
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CASE Tools

Computer Aided Software Engineering tools support the
software development process by providing a framework for:

☛ documentation

☛ specification

☛ code generation

☛ validation

☛ verification
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The Unified Modeling Language (UML)

☛ visual modeling language
☛ many diagram types, e.g.

– class diagrams (static)
– state charts (dynamic)
– use cases

☛ diagrammatic method
☛ OO development
☛ OMG standard
☛ widely used

Customer

name : String

+ getName(): String
+ netValue(): Real

1..∗
Role

Account

balance : Real

+ getBalance(): Real
+ makeDeposit(a: Real)
+ makeWithdrawal(a: Real)

: Account

: Customer

getBalance()
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The Object Constraint Language (OCL)

☛ extension based on logic and
set theory

☛ designed for annotating UML
diagrams

☛ in the context of class–
diagrams:
– preconditions
– postconditions
– invariants

☛ can be used for other diagram

context Account::makeDeposit(amount:Real):Boolean
pre:  amount >= 0
post: balance = balance@pre + amount

accounts

1..99

+ makeWithdrawal(amount:Real):Boolean

Account

- balance:Real

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real
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Verification and Model Checking

☛ prove that a implementation fulfills its spec-
ification

☛ abstract: prove properties of an abstract
model

☛ source code level: prove properties of a con-
crete implementation

☛ often not fully automated
☛ needs a formal specification
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Code Generation

☛ semi-formal: generate skeleton/stubs
☛ formal: generate implementation

+ balance: Real

+ makeWithdrawal(a: Real):void

Account

class Account{
float balance;

float getBalance(){
return balance;

}

void setBalance(float balance){
this .balance = balance;

}

void makeDeposit(float a){
// user defined code begins here

this .balance = this.balance + a;

// end of user defined code

}
}
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Assertion Checking

☛ generates runtime checks for constraints
(pre-/post-conditions, invariants,. . . )

☛ slightly similar to assert.h

☛ a post-hoc debugging method

☛ needs a formal specification
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Test Case Generation (Validation)

☛ test the implementation with a specified input
☛ validates the implementation against its

specification
☛ meaningful testing requires high grade sets of

test data
☛ no formal proof of correctness
☛ needs a formal specification

if ( (a < 5) || ( a > 10) && (b=5)

{
// Block A

}else{
// Block B

}
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Test Case Generation (Example)

Input: three integer, representing the length of the sides of a triangle

Output: whether the input describes an equilateral, isosceles, scalene or
invalid triangle

Based on an OCL specification, it is possible to determine
partition for test case selection automatically.

☛ already six partitions

☛ select test cases from these partitions, exploiting boundary cases
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Specifying Security (ArcSecure)

☛ model information needed for authorization
☛ based on RBAC with dynamic extensions
☛ code generation honors authorization con-

straints

☛ only for specification: informal possible
☛ further analysis requires semi-formal or formal

specification

☛ ArcSecure can profit in all presented ways from
the specification
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Specifying Security (Example)

EntryOwnerPerm

- actiontype : update
Ownership

<<secuml.constraint>>

BusinessHoursOnly
<<secuml.constraint>>

UserCalendarPerm

- actiontype : change

{call.current().principal.name
= owner}

{time.currentHour() > 8 and
time.currentHour() < 17}

CalendarView
<<secuml.resourceView>>

+ name : string

Calendar

+ name : string

+ createEntry()
+ updateEntry()
+ removeEntry()
+ findAllEntries()

<<ejb>>

<<secuml.context>>

User
<<secuml.role>>

<<secuml.permission>>

SuperUser
<<secuml.role>>

Entry

+ Location : string
+ Start : date
+ End : date
+ Owner : string

+ getEntryInfo()
+ setEntryInfo()

<<ejb>>

0..
*

0..
*

<<secuml.permission>>

<<secuml.permission>>

<<secuml.permission>>

SuperUserPerm

- actiontype : update
- actiontype1 : delete

UserEntryPerm

- actiontype : read
authorization constraint

role permission
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Conclusion

☛ Specification helps mastering complex projects

☛ Widely used CASE tools support:

– documentation generation

– code generation

– assertion checking

☛ Specialized CASE tools and academia provide support for
validation and verification.


