
V.A. Carreño, C.A. Muñoz, and S. Tahar (Eds.): TPHOLs 2002, LNCS 2410, pp. 99–114, 2002.
c© 2002 Springer-Verlag. This is the author’s version of the work. It is posted at http://www.brucker.

ch/bibliography/abstract/brucker.ea-proposal-2002 by permission of Springer-Verlag for your per-
sonal use. The definitive version was published with doi: 10.1007/3-540-45685-6_8.

A Proposal for a Formal OCL Semantics in
Isabelle/HOL

Achim D. Brucker and Burkhart Wolff

Institut für Informatik, Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 52, D-79110 Freiburg, Germany

{brucker,wolff}@informatik.uni-freiburg.de
http://www.informatik.uni-freiburg.de/~{brucker,wolff}

Abstract. We present a formal semantics as a conservative shallow em-
bedding of the Object Constraint Language (OCL). OCL is currently
under development within an open standardization process within the
OMG; our work is an attempt to accompany this process by a proposal
solving open questions in a consistent way and exploring alternatives of
the language design. Moreover, our encoding gives the foundation for
tool supported reasoning over OCL specifications, for example as basis
for test case generation.
Keywords: Isabelle, OCL, UML, shallow embedding, testing

1 Introduction

The Unified Modeling Language (UML) [1] has been widely accepted throughout
the software industry and is successfully applied to diverse domains [2]. UML
is supported by major CASE tools and integrated into a software development
process model that stood the test of time. The Object Constraint Language
(OCL) [3, 4, 5] is a textual extension of the UML. OCL is in the tradition of data-
oriented formal specification languages like Z [6] or VDM [7]. For short, OCL is a
three-valued Kleene-Logic with equality that allows for specifying constraints on
graphs of object instances whose structure is described by UML class diagrams.

In order to achieve a maximum of acceptance in industry, OCL is currently
developed within an open standardization process by the OMG. Although the
OCL is part of the UML standard since version 1.3, at present, the official
OCL standard 1.4 concentrates on the concrete syntax, covers only in parts the
well-formedness of OCL and handles nearly no formal semantics. So far, the
description of the OCL is merely an informal requirement analysis document
with many examples, which are sometimes even contradictory.

Consequently, there is a need1 for both software engineers and CASE tool
developers to clarify the concepts of OCL formally and to put them into per-
spective of more standard semantic terminology. In order to meet this need, we
started to provide a conservative embedding of OCL into Isabelle/HOL. As far
1 This work was partially funded by the OMG member Interactive Objects Software
GmbH (www.io-software.com).

http://www.brucker.ch/bibliography/abstract/brucker.ea-proposal-2002
http://www.brucker.ch/bibliography/abstract/brucker.ea-proposal-2002
http://dx.doi.org/10.1007/3-540-45685-6_8
http://www.brucker.ch/

100 Achim D. Brucker and Burkhart Wolff

as this was possible, we tried to follow the design decisions of OCL 1.4 in order
to provide insight into the possible design choices to be made in the current
standardization process of version 2.0.

Attempting to be a “practical formalism” [4], OCL addresses software devel-
opers who do not have a strong mathematical background. Thus, OCL deliber-
ately avoids mathematical notation; rather, it uses a quite verbose, programming
language oriented syntax and attempts to hide concepts such as logical quanti-
fiers. This extends also to a design rationale behind the semantics: OCL is still
viewed as an object-oriented assertion language and has thus more similarities
with an object-oriented programming language than a conventional specification
language. For example, standard library operators such as “concat” on sequences
are defined as strict operations (i.e. they yield an explicit value undefined as re-
sult whenever an argument is undefined), only bounded quantifiers are admitted,
and there is a tendency to define infinite sets away wherever they occur. As a
result, OCL has a particularly executable flavor which comes handy when gen-
erating code for assertions or when animating specifications.

Object-oriented languages represent a particular challenge for the “art of em-
bedding languages in theorem provers” [8]. This holds even more for a shallow
embedding, which we chose since we aim at reasoning in OCL specifications and
not at meta-theoretic properties of our OCL representation. In a shallow em-
bedding, the types of OCL language constructs have to be represented by types
of HOL and concepts such as undefinedness, mutual recursion between object
instances, dynamic types, and extensible class hierarchies have to be handled.

In this paper, we present a new formal model of OCL in form of a conserva-
tive embedding into Isabelle/HOL that can cope with the challenges discussed
above. Its modular organization has been used to investigate the interdepen-
dence of certain language features (method recursion, executability, strictness,
smashing, flattening etc.) in order to provide insight into the possible design
choices for the current design process [9]. We extend known techniques for the
shallow representation of object orientation and automated proof techniques to
lift lemmas from the HOL-library to the OCL level. As a result, we provide a first
calculus to formally reason over OCL specifications and provide some foundation
for automated reasoning in OCL.

This paper proceeds as follows: After a introduction into our running example
using UML/OCL, we will guide through the layers of our OCL semantics, namely
the object model and resulting semantic universes, the states and state relations,
the OCL logic and the OCL library. It follows a description of automated deduc-
tion techniques based on derived rules, let it be on modified tableaux-deduction
techniques or congruence rewriting. We will apply these techniques in a paradig-
matic example for test-case generation in a black-box test setting.

2 A Guided Tour Through UML/OCL

The UML provides a variety of diagram types for describing dynamic (e.g. state
charts, activity diagrams, etc.) and static (class diagrams, object diagrams, etc.)
system properties. One of the more prominent diagram types of the UML is the

http://www.brucker.ch/

A Proposal for a Formal OCL Semantics in Isabelle/HOL 101

Direction

Direction

1

owner accounts

belongsTo

1..99

context Account::makeDeposit(amount:Monetary):Boolean

post: balance = balance@pre + amount
pre: amount >= 0

CreditAccount
- credit:Monetary

+ getCredit():Monetary
+ setCredit(amount:Monetary):Boolean
+ makeDeposit(amount:Monetary):Boolean
+ makeWithdrawal(amount:Monetary):Boolean

inv:
balance >= credit

- balance:Monetary- Identification:String

+ getAddress():String
+ getIdentification():String

+ setAddress(address:String)

- address:String + getBalance():Monetary
+ makeDeposit(amount:Monetary):Boolean
+ makeWithdrawal(amount:Monetary):Boolean

Customer Account

Fig. 1. Modeling a simple banking scenario with UML

class diagram for modeling the underlying data model of a system in an object
oriented manner. The class diagram in our running example in Fig. 1 illustrates a
simple banking scenario describing the relations between the classes Customer,
Account and its specialization CreditAccount. To be more precise, the relation
between data of the classes Account and CreditAccount is called subtyping. A
class does not only describe a set of record-like data consisting of attributes such
as balance but also functions (methods) defined over the classes data model.

It is characteristic for the object oriented paradigm, that the functional be-
havior of a class and all its methods are also accessible for all subtypes; this is
called inheritance. A class is allowed to redefine an inherited method, as long as
the method interface does not change; this is called overwriting, as it is done in
the example for the method makeWithdrawal().

It is possible to model relations between classes (association), possibly con-
strained by multiplicities. In Fig. 1, the association belongsTo requires, that
every instance of Account is associated with exactly one instance of Customer.
Associations were represented by introducing implicit set-valued attributes into
the objects, while multiplicity were mapped to suitable data invariants. In the
following, we assume that associations have already been “parsed away”.

Understanding OCL as a data-oriented specification formalism, it seems nat-
ural to refine class diagrams using OCL for specifying invariants, pre- and post-
conditions of methods. For example, see Fig. 1, where the specification of the
method makeWithdrawal() is given by its pair of pre- and postcondition.

In UML class members can contain attributes of the type of the defining
class. Thus, UML can represent (mutually) recursive data types. Moreover, OCL
introduces also recursively specified methods [3]; however, at present, a dynamic
semantics of a method call is missing (see [9] for a short discussion of the resulting
problems).

3 Representing OCL in Isabelle/HOL

OCL formulae are built over expressions that access the underlying state. In
postconditions, path-expressions can access the current and the previous state,
e.g. balance = balance@pre + amount. Accesses on both states may be arbitrarily
mixed, e.g. self.x@pre.y denotes an object, that was constructed by dereferencing
in the previous state and selecting attribute x in it, while the next dereferencing

102 Achim D. Brucker and Burkhart Wolff

step via y is done in the current state. Thus, method specifications represent
state transition relations built from the conjunction of pre and post condition,
where the state consists of a graph of object instances whose type is defined by
the underlying class diagram. Since the fundamental OCL-operator allInstances
allows for the selection of all instances (objects) of a certain class, there must be
a means to reconstruct their dynamic types in the object graph.

In a shallow embedding, the key question arises how to represent the static
type structure of the objects uniformly within a state or as argument of a dy-
namic type test is_T. Constructions like “the universe of all class diagram inter-
pretations” are too large to be represented in the simple type system underlying
higher-order logic.

Our solution is based on the observation that we need not represent all class
diagram interpretations inside the logic; it suffices if we can provide an extra-
logical mechanism that represents any concrete class hierarchy and that allows
for extensions of any given class hierarchy. For practical reasons, we require that
such an extension mechanism is logically conservative both in the sense that only
definitional axioms are used and that all existing proofs on data of the former
class hierarchy remain valid for an extended one.

Based on these considerations, HOL-OCL is organized in several layers:

– a semantic coding scheme for the object model layer along the class-hierarchy,
– the system state and relations over it, forming the denotational domain for

the semantics of methods,
– the OCL logic for specifying state relations or class invariants,
– the OCL library describing predefined basic types.

3.1 The Encoding of Extensible Object Models

The main goals of our encoding scheme is to provide typed constructors and
accessor functions for a given set of classes or enumeration types to be inserted
in a previous class hierarchy. The coding scheme will be represented in two steps:
in this section, we will describe raw constructors and accessors, while in Sec. 3.2
a refined scheme for accessors is presented.

The basic configuration of any class hierarchy is given by the OCL standard;
the library for this basic configuration is described in Sec. 3.5.

Handling Undefinedness. In the OCL standard 1.4, the notion of explicit
undefinedness is part of the language, both for the logic and the basic values.

Whenever an OCL-expression is being evaluated, there is the possibility that
one or more queries in the expression are undefined. If this is the case, then
the complete expression will be undefined.

Object Constraint Language Specification [3] (version 1.4), page 6–58

This requirement postulates the strictness of all operations (the logical operators
are explicit exceptions) and rules out a modeling of undefinedness via underspec-
ification. Thus, the language has a similar flavor than LCF or Spectrum [10]
and represents a particular challenge for automated reasoning.

http://www.brucker.ch/

A Proposal for a Formal OCL Semantics in Isabelle/HOL 103

In order to handle undefinedness, we introduce for each type τ a lifted type
τ⊥, i.e. we introduce a special type constructor. It adds to each given type
an additional value ⊥. The function b_c : α ⇒ α⊥ denotes the injection, the
function d_e : α⊥ ⇒ α its inverse. Moreover, we have the case distinction
function case_up c f x that returns c if x = ⊥ and f k if x = bkc. We will also
write casex ofbkc ⇒ f k | ⊥ ⇒ c.

Note that the definition of lifted types leads to the usual construction of flat
cpo’s well known from the theory of complete partial orders (cpo) and denota-
tional semantics [11]. For the sake of simplification, we avoid a full-blown cpo-
structure here (while maintaining our semantics “cpo-ready”) and define only a
tiny fragment of it that provides concepts such as definedness DEF(x) ≡ (x 6= ⊥)
or strictness of a function is_strict f ≡ (f⊥ = ⊥).
Managing Holes in Universes. Since objects can be viewed as records con-
sisting of attributes, and since the object alternatives can be viewed as variants,
it is natural to construct the “type of all objects”, i.e. the semantic universe Ux

corresponding to a certain class hierarchy x, by Cartesian products and by type
sums (based on the constructors Inl : α ⇒ α + β and Inr : β ⇒ α + β from the
Isabelle/HOL library). In order to enable extensibility, we provide systematically
polymorphic variables — the “holes” — into a universe that were filled when
extending a class hierarchy.

s: String

i: Integer

i: Integer

C D

A

A

C

A

D

A

×ref set

Integer

String

β

α′

ref set
β′

α′′

α

Integer
β U 1

(α,β) = A× α⊥ + β

U 2
(α,α′,α′′,β′,β) = A× (C × α′⊥

+D × α′′⊥
+ β′)⊥

+ β

Fig. 2. Extending Class Hierarchies and Universes with Holes

In our scheme, a class can be extended in two ways: either, an alternative
to the class is added at the same level which corresponds to the creation of an
alternative subtype of the supertype (the β-instance), or a class is added below
which corresponds to the creation of a subtype (the α-instance). The insertion
of a class corresponds to filling a hole ν by a record T is implemented by the
particular type instance:

ν 7→ ((T × α⊥) + β)

104 Achim D. Brucker and Burkhart Wolff

As a consequence, the universe U 2 in Fig. 2 is just a type instance of U 1, in
particular: an α-extension with C β-extended by D. Thus, properties proven
over U 1 also holds for U 2.

The initial universe corresponding to the minimal class hierarchy of the OCL
library consists of the real numbers, strings and bool. It is defined as follows:

Real = real⊥ Boolean = bool⊥ String = string⊥ OclAnyα = α⊥

Uα = Real + Boolean + String + OclAnyα

Note that the α-extensions were all lifted, i.e. additional ⊥ elements were
added. Thus, there is a uniform way to denote “closed” objects, i.e. objects
whose potential extension is not used. Consequently, it is possible to determine
the dynamic type by testing for closing ⊥’s. For example, the OclAny type has
exactly one object represented by Inr(Inr(Inr⊥)) in any universe Uα.

Note, moreover, that all types of attributes occurring in the records A,C or
D may contain basic types, and sets, sequences or bags over them, but not refer-
ences to the types induced by class declarations. These references were replaced
the abstract type ref to be defined later; thus, recursion is not represented at
the level of the universe construction, that just provides “raw data”.

Outlining the Coding Scheme. Now we provide raw constructors, raw ac-
cessors, and tests for the dynamic types over the data universe.

The idea is to provide for each class T with attributes t1 : τ1,. . . ,tn : τn a
type T = τ1×· · ·×τn and a constructor mk_T : T ⇒ Ux, which embeds a record
of type T into the actual version of the universe (for example mk_Boolean with
type Boolean⇒ Uα is defined by mk_Boolean ≡ Inr ◦ Inl). Accordingly, there is
a test is_T : Ux ⇒ bool that checks if an object in the universe is embedded as T ,
and an accessor get_T : Ux ⇒ T that represents the corresponding projection.
Finally, a constant T : Ux set is provided that contains the characteric set of T
in the sense of a set of all objects of class T .

Data invariants I are represented by making the constructor partial w.r.t.
I, i.e. the constructor will be defined only for input tuples T that fulfill I;
correspondingly, the test for the dynamic type is also based on I.

At present, we encode our examples by hand. The task of implementing a
compiler that converts representations of UML-diagrams (for example, formats
produced by ArgoUML) is desirable but not in the focus of this research.

3.2 System State

Basic Definitions. The task of defining the state or state transitions is now
straight-forward: We define an abstract type ref for “references” or “locations”,
and a state that is a partial mapping from references to objects in a universe:

types ref
σ state = ref ⇒ α option
σ st = σ state×σ state

http://www.brucker.ch/

A Proposal for a Formal OCL Semantics in Isabelle/HOL 105

Based on state, we define the only form of universal quantification of OCL:
the operator allInstances extracts all objects of a “type” — represented by its
characteristic set — from the current state. The standard specifies allInstances
as being undefined for Integer or Real or String. Thus, infinite sets are avoided
in an ad-hoc manner. However, nothing prevents from having infinite states; and
we did not enforce finiteness by additional postulates.

allInstances : [Uα set,Uα st]⇒ β Set
allInstances type ≡ λ(s, s′) • if(type = Integer∨ type = Real∨ type = String)

then⊥ else if(type = Boolean)
thenbBooleanc elsebtype ∩ (range s′)c

Defining OCL operators like oclIsNew : Uα ⇒ Uα st ⇒ Boolean or oclIsTypeOf
is now routine; the former checks if an object is defined in the current but not
in the previous state, while the latter redefines the test is_T of Sec. 3.1.

The HOL Type of OCL Expressions. Functions from state transition pairs
to lifted OCL values will be the denotational domain of our OCL semantics.
From a transition pair, all values will be extracted (via path expressions), that
can be passed as arguments to to basic operations or user-defined methods. More
precisely, all expressions with OCL type τ will be represented by an HOL-OCL
expression of type Vα(τ⊥) defined by:

types Vα(θ) = Uα st⇒ θ

where α will represent the type of the state transition. For example, all logical
HOL-OCL expressions have the type Vγ(Boolean) (recall that Boolean is the
lifted type bool from HOL).

As a consequence, all operations and methods embedded into HOL-OCL will
have to pass the context state transition pair to its argument expressions, collect
the values according their type, and compute a result value. For example, let a
function f have the OCL type τ1 × · · · × τn ⇒ τn+1, then our representation f ′
will have the type Vα(τ1) × · · · × Vα(τn) ⇒ Vα(τn+1). Now, when defining f ′,
we proceed by f ′(e1, . . . , en)(c) = E(e1c, . . . , enc) for some E and some context
transition c. We call the structure of definitions state passing. Functions with
one argument of this form are characterized semantically:

pass f = ∃E • ∀X c • f X c = E(X c)

Being state passing will turn out to be an important invariant of our shallow
semantics and will be essential for our OCL calculus. The conversion of a function
f into f ′ in state passing style will be called the lifting of f (which should not
be confused with the lifting on types of Sec. 3.1).

A Coding Scheme for State-Based Accessors. Now we define the accessor
functions with the “real OCL signature”, that can be used to build up path

106 Achim D. Brucker and Burkhart Wolff

expressions, on the basis of raw accessors. Two problems have to be solved:
first, references to class names occurring in types of attributes must be handled
(i.e. ref set in raw accessors types must be mapped to Set(A)), and second, raw
accessors must be lifted to state passing style. In a simple example, an accessor
x of type τ in a class C must have the HOL type x : Ux ⇒ Vx(τ) which is
normally achieved by wrapping the raw accessor x0 in an additional abstraction:
x u = λ c • x0 u. If the class has a class invariant, a test for the invariant must
be added (violations are considered as undefinedness and therefore treated like
to undefined references into the state). If the accessor yields an OCL-type with
references to other classes (e.g. in Set(A)), these references must be accessed
and inserted into the surrounding collection; this may involve smashing (see the
discussion of collection types in Sec. 3.5).

Following this extended code scheme, we can define conservatively new ac-
cessors over some extended universe whenever we extend a class hierarchy; this
allows for modeling mutual data recursion that is introduced by extension while
maintaining static typechecking.

3.3 Encoding our Example

In order to encode our UML model in Fig. 1, we declare the type for the class Ac-
count (we skip CreditAccount and Customer). An account is a tuple describing
the balance (of type Monetary) and the encoded association end ‘owner ’ (of type
ref set). For our first universe, with the two “holes” α (for extending “below”)
and β (for extending on “the same level”), we define:

types Account_type = Monetary× ref set
Account = Account_type⊥

U 1
(α,β) = U(Account_type×α⊥+β)

We need the raw constructor for an account object. Note that this function
“lives” in the universe U 3

(α′,α′′,β′,β) which contains all classes from Fig. 1.

mk_Account : Account_type⇒ U 3
(α′,α′′,β′,β)

mk_Account ≡ mk_OclAny ◦ lift ◦ Inl ◦λx • (x,⊥)

In the next step, we need to define the the accessors for the attribute. As an
example, we present the definition for accessing the association end owner (of
type Customer) in the current state s′:

.owner : U 3
(α′,α′′,β′,β) ⇒ V(α′,α′′,β′,β)(Customer)

(obj.owner) ≡ (λ(s, s′) • up_case(lift ◦((op “)(λx • option_Case⊥
get_Customer(s′ x))) ◦ snd)(⊥)(get_Account obj))

Note, that accessor functions are lifted, e.g. they operate over a previous and
current state pair (s, s′).

http://www.brucker.ch/

A Proposal for a Formal OCL Semantics in Isabelle/HOL 107

3.4 OCL Logic

We turn now to a key chapter of the OCL-semantics: the logics. According to the
OCL standard (which follows Spectrum here), the logic operators have to be
defined as Kleene-Logic, requiring that any logical operator reduces to a defined
logical value whenever possible.

In itself, the logic will turn out to be completely independent from an under-
lying state transition pair or universe and is therefore valid in all universes. An
OCL formula is a function that is either true, false or undefined depending on
its underlying state transition. Logical expressions are just special cases of OCL
expressions and must produce Boolean values. Consequently, the general type of
logical formulae must be:

types BOOLα = Vα(Boolean)

The logical constants true resp. false can be defined as constant functions, that
yield the lifted value for meta-logical undefinedness, truth or falsehood, i.e. the
HOL values of the HOL type bool. Moreover, the predicate is_def decides for
any OCL expression X that its value (evaluated in the context c) is defined:

constdefs is_def : Vα(β⊥)⇒ BOOLα is_def X ≡ λ c • bDEF(X c)c
⊥⊥⊥L : BOOLα ⊥⊥⊥L ≡ λx • b⊥c
true : BOOLα true ≡ λx • bTruec
false : BOOLα false ≡ λx • bFalsec

The definition of the strict not and and, or, and implies are straight-forward:

not : BOOLα ⇒ BOOLα notS ≡ λ c • if DEF(S c) thenb¬dS cec else⊥
and : [BOOLα,BOOLα]⇒ BOOLα
S andT ≡ λ c • if DEF(S c) then if DEF(T c) thenbdS ce ∧ dT cec else

if(S c = bFalsec) thenbFalsec else⊥ else
if(T c = bFalsec) thenbFalsec else⊥

From these definitions, the following rules of the truth table were derived:
a not a

true false
false true
⊥⊥⊥L ⊥⊥⊥L

a b a and b
false false false
false true false
false ⊥⊥⊥L false

a b a and b
true false false
true true true
true ⊥⊥⊥L ⊥⊥⊥L

a b a and b
⊥⊥⊥L false false
⊥⊥⊥L true ⊥⊥⊥L

⊥⊥⊥L ⊥⊥⊥L ⊥⊥⊥L

Based on these basic equalities, it is not difficult to derive with Isabelle the laws of
the perhaps surprisingly rich algebraic structure of Kleene-Logics: Both and and
or enjoy not only the usual associativity, commutativity and idempotency laws,
but also both distributivity and de Morgan laws. It is essentially this richness
and algebraic simplicity that we will exploit in the example in Sec. 5.

OCL needs own equalities, a logical one called strong equality (,) and a
strictified version of it called weak equality (.=) that is executable. They have
the type [Vα(β), Vα(β)]⇒ BOOLα and are defined similarly to and above based
on the standard HOL equality.

108 Achim D. Brucker and Burkhart Wolff

3.5 The Library: OCL Basic Data Types
The library provides operations for Integer, Real (not supported at present)
and Strings. Moreover, the parametric data types Set, Sequence and Bag with
their functions were also provided; these were types were grouped into a class
“Collection” in the standard. At present, the standard prescribes only ad-hoc
polymorphism for the operations of the library and not late binding.

Since the standard suggests a uniform semantic structure of all functions in
the library, we decided to make the uniformity explicit and to exploit it in the
proof support deriving rules over them.

In the library, all operations are lifted, strictified and (as far as collection
functions are concerned; see below) smashed versions of functions from the HOL
library. However,methodification (i.e. introduction of late binding), is not needed
here due to the standards preference of ad-hoc polymorphism. However, we also
consider general recursion based on fixed-point semantics and a shallow repre-
sentation for methodification, which is an essential feature of an object-oriented
specification language in our view. The interested reader is referred to the ex-
tended version of this paper.

The generic functions for lift2 and strictify are defined as follows:

strictify f x ≡ casex ofbvc ⇒ (f v)|⊥ ⇒ ⊥
lift2 f ≡ (λX Y st • f(X st)(Y st))

According to this definition, lift2 converts a function of type [α, β] ⇒ γ to a
function of type [Vσ(α), Vσ(β)]⇒ Vσ(γ).

A Standard Class: Integer. Based on combinators like strictify and lift2, the
definitions of the bulk of operators follow the same pattern exemplified by:

types INTEGERα = Vα(Integer)
defs op + ≡ lift2(strictify(λx : int • strictify(λ y • bx+ yc)))

A Collection Class: Set. For collections, the requirement of having strict
functions must consequently be extended to the constructors of sets. Since it
is desirable to have in data types only denotations that were “generated” by
the constructors, this leads to the concept of smashing of all collections. For
example, smashed sets are identified with ⊥⊥⊥L provided one of their elements
is ⊥: {a,⊥⊥⊥L } = ⊥⊥⊥L ; Analogously, smashed versions of Bags, Seq or Pairs
can be defined. Smashed sets directly represent the execution behavior in usual
programming languages such as Java. We omit the details of the construction
of smashed sets here for space reasons; apart from smashing arguments, the
definitions of set operations such as includes, excludes, union or intersection follow
the usual pattern.

The OCL standard prescribes also a particular concept called flattening. This
means for example that a set {a, {b}, c} is identified as {a, b, c}. We consider
flattening as a syntactic issue and require that a front-end “parses away” such
situations and generates conversions.

http://www.brucker.ch/

A Proposal for a Formal OCL Semantics in Isabelle/HOL 109

4 Towards Automated Theorem Proving in HOL-OCL

Based on derived rules, we will provide several calculi and proof techniques for
OCL that are oriented towards Isabelle’s powerful proof-procedures like fast_tac
and simp_tac. While the former is geared towards natural deduction calculi, the
latter is based on rewriting and built for reasoning in equational theories.

4.1 A natural deduction-Calculus for OCL

As a foundation, we introduce two notions of validity: a formula may be valid for
all transitions or just valid (written � P) or be valid for a transition t (written
t � P). We can define these notions by � P ≡ P = true or t � P ≡ P t = true t
respectively. Recall that a formula may neither be valid nor invalid in a state, it
can be undefined:

[st � not(is_def(A))]··
R

[st � not(A)]··
R

[st � A]··
R

R

This rule replaces in a Kleene-Logic the usual classical rule. Note that R may
be an arbitrary judgment.

The core of the calculus consists of the more conventional rules like:

� A � B

� A andB
� A andB
� A

� A andB
� A

� A andB
[� A, � B]··
� R

� R

and their counterparts and-valid-in-transition, or-validity, or-valid-in-transition
and the suitable not-elimination rules.

Unfortunately, the rules handling the implication are only in parts elegantly:

� A � A impliesB
� B

� B

� A impliesB
∀st •

[st � not(is_def(A)]··
st � B ∀st •

[st � A]··
st � B

� A impliesB

The problem is the implication introduction rule to the right that combines the
two validity levels of the natural deduction calculus.

Undefinedness leads to an own side-calculus in OCL: Since from � A andB
we can conclude definedness both for A and B in all contexts, and since from
� E , E′ we can conclude that any subexpression in E and E′ is defined
(due to strictness to all operations in the expression language of OCL), a lot
of definedness information is usually hidden in an OCL formula, let it be a
method precondition or an invariant. In order to efficiently reason over OCL
specification, it may be necessary precompute this information.

At present, we have only developed a simple setup for fast_tac according to
the rules described above, which is already quite powerful, but not complete.

110 Achim D. Brucker and Burkhart Wolff

4.2 Rewriting
Rewriting OCL-formulae seems to have a number of advantages; mainly, it allows
for remaining on the level of absolute validity which is easier to interpret, and
it allows to hide the definedness concerns miraculously inside the equational
calculus. The nastiness of the implication introduction can be shifted a bit further
inside in an equational calculus: The two rules

A implies(B impliesC) = (A andB) impliesC
A implies(B orC) = (A impliesB) or(A impliesC)

hold for all cases which — together with the other lattice rules for the logic —
motivates a Hilbert-Style calculus for OCL; unfortunately, the assumption rule
A impliesA holds only if A is defined in all contexts. At least, this gives rise to
proof procedures that defer definedness reasoning to local places in a formula.

A useful mechanism to transport definedness information throughout an OCL
formula can be based on Isabelle’s simplifier that can cope with a particular type
of rules. Derived congruence rewriting rules for HOL-OCL look like:

[st � A ∨ st � not is_def(A)]··
B st = B st′

(A andB) st = (A andB′) st
A st = A′ st B st = B′ st

(A orB) st = (A′ orB′) st
allow for replacing, for example, variables occurrences by ⊥⊥⊥L or true if their
undefinedness or validity follows somewhere in the context.

We discovered a further interesting technique for proving the equality of two
formulae P X and Q X based on the idea to perform a case split by substituting
X by ⊥⊥⊥L , true or false. Unfortunately, it turns out that the rule:

P ⊥⊥⊥L = P ′ ⊥⊥⊥L P true = P ′ true P false = P ′ false
P X = P ′ X

is simply unsound due to the fact that it does not hold for all functions P X c,
only if P and P ′ are state passing, which represents an invariant of our embed-
ding (see Sec. 3.2). Fortunately, for all logical operators, state passing rules such
as:

passP

pass(λX • not(P X))
passP passP ′

pass(λX • (P X) and(P ′ X))
hold. Moreover, any function constructed by a lifting (and these are all library
function definitions) are state passing. This allows for proof procedures built on
systematic case distinctions which turn out to be efficient and useful.

The situation is similar for reasoning over strong and weak equality. For
strong equality, we have nearly the usual rules of an equational theory with
reflexivity, symmetry and transitivity. For Leibniz rule (substitutivity), however,
we need again that the context P is state passing:

� a , b � P a passP

� P b

This is similar for strict equality, except for additional definedness constraints.

http://www.brucker.ch/

A Proposal for a Formal OCL Semantics in Isabelle/HOL 111

4.3 Lifting Theorems from HOL to the HOL-OCL Level

Since all operations in the library are defined extremely canonically by a combi-
nation of (optional) smashing, strictification and lifting operators, it is possible
to derive automatically from generic theorems such as strictness rules, defined-
ness propagation etc.:

lift1(strictify f)⊥⊥⊥L =⊥⊥⊥L

lift2(strictify(λx • strictify(f x)))⊥⊥⊥L X =⊥⊥⊥L

lift2(strictify(λx • strictify(f x))) X⊥⊥⊥L =⊥⊥⊥L

is_def(lift1(strictify(λx • lift(f x))) X) = is_def(X)
(∀x y • f x y = f y x)⇒ lift2 f X Y = lift2 f Y X

The last rule is used to lift a commutativity property from the HOL level to
the HOL-OCL-level. With such lifting theorems, many standard properties were
proven automatically in the library.

5 Application: Test Case Generation

A prominent example for automatic test case generation is the triangle prob-
lem [12]: Given three integers representing the lengths of the sides of a triangle,
a small algorithm has to check, whether these integers describe invalid input
or an equilateral, isosceles, or scalene triangle. Assuming a class Triangle with
the operations isTriangle() (test if the input describes a triangle) and triangle()
(classify the valid triangle) leads to the following OCL specification:

context Triangle :: isTriangle (s0 , s1 , s2 : Integer): Boolean
pre : (s0 > 0) and (s1 > 0) and (s2 > 0)
post: result = (s2 < (s0 + s1)) and (s0 < (s1 + s2)) and (s1 < (s0 + s2))

context Triangle :: triangle (s0 , s1 , s2 : Integer): TriangType
pre : (s0 > 0) and (s1 > 0) and (s2 > 0)
post: result = if (isTriangle (s0,s1,s2)) then if (s0 = s1) then if (s1 = s2)

then Equilateral :: TriangType else Isosceles :: TriangType endif
else if (s1 = s2) then Isosceles :: TriangType else if (s0 = s2)
then Isosceles :: TriangType else Scalene :: TriangType endif
endif endif else Invalid :: TriangType endif

Transforming this specification into HOL-OCL2 leads to the following specifica-
tion triangle_spec of the operation triangle():

triangle_spec ≡ λ result s1 s2 s3 • result , (if isTriangle s1 s2 s3 then if s0 , s1

then if s1 , s2 then equilateral else isosceles endif else if s1 , s2 then isosceles
else if s0 , s2 then isosceles else scalene endif endif endif else invalid endif)

2 In the following, we omit the specification of isTriangle().

112 Achim D. Brucker and Burkhart Wolff

For the actual test-case generation, we define triangle, which selects via Hilbert’s
epsilon operator (@) an eligible “implementation” fulfilling our specification:

triangle : [Integerα, Integerα, Integerα]⇒ Triangle⊥
triangle s0 s1 s2 ≡ @result• � triangle_spec result s0 s1 s2

We follow the approach presented in [13] using a disjunctive normal form (DNF)
for partition analysis of the specification and as a basis for the test case genera-
tion. In our setting this leads to the following main steps:

1. Eliminate logical operators except and, or, and not.
2. Convert the formula into DNF.
3. Eliminate unsatisfiable disjoints by using concurrence rewriting.
4. Select the actual set of test-cases.

Intermediate results are formulae with over 50 disjoints. The logical simplifica-
tion can only eliminate simple logical falsifications, but this representation can
tremendously be simplified by using congruence rewriting. Based on its deeper
knowledge of the used data types (taking advantage of e.g. 2 isosceles , invalid)
this step eliminates many unsatisfiable disjoints caused by conflicting constraints.
After the congruence rewriting, only six cases are left, respectively one for in-
valid inputs and one for equilateral triangles, and three cases describing the
possibilities for isosceles triangles.

triangle s0 s1 s2 = @result• � result , invalid and not isTriangle s0 s1 s2
or result , equilateral and isTriangle s0 s1 s2 and s0 , s1 and s1 , s2

or result , isosceles and isTriangle s0 s1 s2 and s0 , s1 and s1 6, s2

or result , isosceles and isTriangle s0 s1 s2 and s0 , s2 and s0 6, s1

or result , isosceles and isTriangle s0 s1 s2 and s1 , s2 and s0 6, s1

or result , scalene and isTriangle s0 s1 s2 and s0 6, s1 and s0 6, s2 and s1 6, s2

These six disjoints represent the partitions, from which test cases can be selected,
possible exploiting boundary cases like minimal or maximum Integers of the
underlying implementation.

6 Conclusion

6.1 Achievements

We have presented a new formal semantic model of OCL in form of a conser-
vative embedding into Isabelle/HOL that can cope with the requirements and
the examples of the OCL standard 1.4. On the basis of the embedding, we de-
rived several calculi and proof techniques for OCL. Since “deriving” means that
we proved all rules with Isabelle, we can guarantee both the consistency of the
semantics as well as the soundness of the calculi. Our semantics is organized in

http://www.brucker.ch/

A Proposal for a Formal OCL Semantics in Isabelle/HOL 113

a modular way such that it can be used to study the interdependence of certain
language features (method recursion, executability, strictness, smashing, flatten-
ing etc.) which might be useful in the current standardization process of OCL.
We have shown the potential for semantic based tools for OCL using automated
reasoning by an exemplary test-case generation.

6.2 Related Work

Previous semantic definitions of OCL [14, 15, 5] are based on “mathematical
notation” in the style of “naive set theory”, which is in our view quite inadequate
to cover so subtle subjects such as inheritance. Moreover, the development of
proof calculi and automated deduction for OCL has not been in the focus of
interest so far.

In [14], a formal operational semantics together with a formal type system
for OCL 1.4 was presented. The authors focus on the issue of subject reduction,
but do not define the semantic function for expressions whose evaluation may
diverges. In [16], it is claimed that a similar OCL semantics is Turing complete.
In contrast, our version of OCL admits an infinite state which turns allInstances
into an unbounded universal quantifier; when adding least-fixpoint semantics
for recursive methods (as we opt for), we are definitively in the world of non-
executable languages.

Using a shallow embedding for an object oriented language is still a challenge.
While the basic concepts in our approach of representing subtyping by the sub-
sumption relation on polymorphic types is not new (c.f. for example [17, 18]),
we have included concepts such as undefinedness, mutual recursion between ob-
ject instances, dynamic types, recursive method invocation and extensible class
hierarchies that pushes the limits of the approach a bit further.

6.3 Future Work

Beyond the usual sigh that the existing library is not developed enough (this
type of deficiency is usually resolved after the first larger verification project in
an embedding), we see the following extensions of our work:

– While our fast_tac-based proof procedure for OCL logic is already quite
powerful, it is neither efficient nor complete (but should be for a fragment
corresponding to propositional logic extended by definedness). More research
is necessary (multivalued logics [19], Decision Diagrams).

– Since HOL-OCL is intended to be used over several stages of a software
development cycle, a refinement calculus that formally supports this activity
may be of particular relevance.

– Combining HOL-OCL with a Hoare-Logic such as µJava[8] can pave the way
for an integrated formal reasoning over specifications and code.

114 Achim D. Brucker and Burkhart Wolff

References

[1] OMG: Unified Modeling Language Specification (Version 1.4). (2001)
[2] Kobryn, C.: Will UML 2.0 be agile or awkward? CACM 45 (2002) 107–110
[3] OMG: Object Constraint Language Specification. [1] chapter 6
[4] Warmer, J., Kleppe, A.: The Object Contraint Language: Precise Modelling with

UML. Addison-Wesley Longman, Reading, USA (1999)
[5] Warmer, J., Kleppe, A., Clark, T., Ivner, A., Högström, J., Gogolla, M., Richters,

M., Hussmann, H., Zschaler, S., Johnston, S., Frankel, D.S., Bock, C.: Response
to the UML 2.0 OCL RfP. Technical report (2001)

[6] Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall (1992)
[7] Jones, C.B.: Systematic Software Development Using VDM. Prentice Hall (1990)
[8] Nipkow, T., von Oheimb, D., Pusch, C.: µJava: Embedding a programming lan-

guage in a theorem prover. In Bauer, F.L., Steinbrüggen, R., eds.: Foundations
of Secure Computation. Volume 175 of NATO Science Series F: Computer and
Systems Sciences., IOS Press (2000) 117–144

[9] Brucker, A.D., Wolff, B.: A note on design decisions of a formalization of the
OCL. Technical Report 168, Albert-Ludwigs-Universität Freiburg (2002)

[10] Broy, M., Facchi, C., Grosu, R., Hettler, R., Hussmann, H., Nazareth, D., Slotosch,
O., Regensburger, F., Stølen, K.: The requirement and design specification lan-
guage Spectrum, an informal introduction (V 1.0). Technical Report TUM-I9312,
TU München (1993)

[11] Winskel, G.: The Formal Semantics of Programming Languages. MIT Press,
Cambridge (1993)

[12] North, N.D.: Automatic test generation for the triangle problem. Technical Report
DITC 161/90, National Physical Laboratory, Teddington (1990)

[13] Dick, J., Faivre, A.: Automating the generation and sequencing of test cases from
model-based specications. In Woodcock, J., Larsen, P., eds.: FME 93: Industrial-
Strength Formal Methods. Volume 670 of LNCS., Springer (1993) 268–284

[14] Mandel, L., Cengarle, M.V.: A formal semantics for OCL 1.4. In M. Gogolla, C.K.,
ed.: UML 2001: The Unified Modeling Language. Modeling Languages, Concepts,
and Tools. Volume 2185 of LNCS., Toronto, Springer (2001)

[15] Richters, M., Gogolla, M.: On Formalizing the UML Object Constraint Language
OCL. In Ling, T.W., Ram, S., Lee, M.L., eds.: Proc. 17th Int. Conf. Conceptual
Modeling (ER’98). Volume 1507 of LNCS., Springer (1998) 449–464

[16] Mandel, L., Cengarle, M.V.: On the expressive power of OCL. FM’99 (1999)
[17] Santen, T.: A Mechanized Logical Model of Z and Object-Oriented Specification.

PhD thesis, Technical University Berlin (1999)
[18] Naraschewski, W., Wenzel, M.: Object-oriented verification based on record sub-

typing in Higher-Order Logic. In Grundy, J., Newey, M., eds.: Theorem Proving
in Higher Order Logics. Volume 1479 of LNCS., Springer (1998) 349–366

[19] Hähnle, R.: Automated Deduction in Multiple-valued Logics. Oxford University
Press (1994)

http://www.brucker.ch/

	A Proposal for a Formal OCL Semantics in Isabelle/HOL
	Achim D. Brucker and Burkhart Wolff
	Introduction
	A Guided Tour Through UML/OCL
	Representing OCL in Isabelle/HOL
	The Encoding of Extensible Object Models
	System State
	Encoding our Example
	OCL Logic
	The Library: OCL Basic Data Types

	Towards Automated Theorem Proving in HOL-OCL
	A natural deduction-Calculus for OCL
	Rewriting
	Lifting Theorems from HOL to the HOL-OCL Level

	Application: Test Case Generation
	Conclusion
	Achievements
	Related Work
	Future Work

@InCollection{	 brucker.ea:proposal:2002,
 abstract	= {We present a formal semantics as a conservative shallow
		 embedding of the Object Constraint Language (OCL). OCL is
		 currently under development within an open standardization
		 process within the OMG; our work is an attempt to accompany
		 this process by a proposal solving open questions in a
		 consistent way and exploring alternatives of the language
		 design. Moreover, our encoding gives the foundation for
		 tool supported reasoning over OCL specifications, for
		 example as basis for test case generation.},
 keywords	= {Isabelle, OCL, UML, shallow embedding, testing},
 location	= {Hampton, VA, USA},
 author	= {Achim D. Brucker and Burkhart Wolff},
 booktitle	= {Theorem Proving in Higher Order Logics (TPHOLs 2003)},
 editor	= {V{\'\i}ctor A. Carre{\~n}o and C{\'e}sar A. Mu{\~n}oz and
		 Sophi{\`e}ne Tahar},
 language	= {USenglish},
 pdf		= {http://www.brucker.ch/bibliography/download/2002/brucker.ea-proposal-2002.pdf},
 ps		= {http://www.brucker.ch/bibliography/download/2002/brucker.ea-proposal-2002.ps.gz},
 filelabel	= {extended},
 file		= {http://www.brucker.ch/bibliography/download/2002/ocl_semantic_extended.pdf},
 publisher	= {Springer-Verlag},
 address	= {Heidelberg},
 series	= {Lecture Notes in Computer Science},
 number	= {2410},
 pages		= {99--114},
 project	= {CSFMDOS},
 doi		= {10.1007/3-540-45685-6_8},
 title		= {A Proposal for a Formal {OCL} Semantics in
		 {Isabelle/HOL}},
 categories	= {holocl},
 classification= {conference},
 isbn		= {3-540-44039-9},
 issn		= {0302-9743},
 year		= {2002},
 url		= {http://www.brucker.ch/bibliography/abstract/brucker.ea-proposal-2002}
		
}

%0 Book Section
%T A Proposal for a Formal OCL Semantics in Isabelle/HOL
%A Brucker, Achim D.
%A Wolff, Burkhart
%E Carreño, Víctor A.
%E Muñoz, César A.
%E Tahar, Sophiène
%B Theorem Proving in Higher Order Logics (TPHOLs 2003)
%D 2002
%N 2410
%I Springer-Verlag
%C Heidelberg
%@ 3-540-44039-9
%F brucker.ea:proposal:2002
%X We present a formal semantics as a conservative shallow embedding of the Object Constraint Language (OCL). OCL is currently under development within an open standardization process within the OMG; our work is an attempt to accompany this process by a proposal solving open questions in a consistent way and exploring alternatives of the language design. Moreover, our encoding gives the foundation for tool supported reasoning over OCL specifications, for example as basis for test case generation.
%K Isabelle, OCL, UML, shallow embedding, testing
%U http://www.brucker.ch/bibliography/abstract/brucker.ea-proposal-2002
%P 99-114

TY - CHAP
AU - Brucker, Achim D.
AU - Wolff, Burkhart
ED - Carreño, Víctor A.
ED - Muñoz, César A.
ED - Tahar, Sophiène
PY - 2002//
TI - A Proposal for a Formal OCL Semantics in Isabelle/HOL
BT - Theorem Proving in Higher Order Logics (TPHOLs 2003)
T3 - Lecture Notes in Computer Science
SP - 99
EP - 114
IS - 2410
PB - Springer-Verlag
CY - Heidelberg
KW - Isabelle, OCL, UML, shallow embedding, testing
AB - We present a formal semantics as a conservative shallow embedding of the Object Constraint Language (OCL). OCL is currently under development within an open standardization process within the OMG; our work is an attempt to accompany this process by a proposal solving open questions in a consistent way and exploring alternatives of the language design. Moreover, our encoding gives the foundation for tool supported reasoning over OCL specifications, for example as basis for test case generation.
SN - 3-540-44039-9
UR - http://www.brucker.ch/bibliography/abstract/brucker.ea-proposal-2002
ID - brucker.ea:proposal:2002
ER -

