
Technical Report 168

A Note on Design Decisions of a
Formalization of the OCL
— The View of Freiburg —

Achim D. Brucker Burkhart Wolff

January 23, 2002

{brucker,wolff}@informatik.uni-freiburg.de
www.informatik.uni-freiburg.de/~{brucker,wolff}

Institut für Informatik Interactive Objects Software GmbH
Georges-Köhler-Allee 52 Basler Straße 65
79110 Freiburg, Germany 79100 Freiburg, Germany

http://www.informatik.uni-freiburg.de/~brucker
http://www.informatik.uni-freiburg.de/~wolff

Abstract

We compare several formal and informal approaches to define the semantics of the
Object Constraint Language (OCL) [22]. This comparison reveals a number of minor
and major design problems to be settled in upcoming versions of the OCL standard.
We review these problems in the context of our work of providing a formal semantics of
OCL through an conservative embedding in HOL using the Isabelle theorem prover.1.

Keywords: UML, OCL, formal semantics, HOL, Isabelle

1This work was partially funded by Interactive Objects Software GmbH (www.io-software.com) in a
collaboration with the Software Engineering Group at the University Freiburg.

http://www.io-software.com
www.io-software.com
http://www.informatik.uni-freiburg.de/~softech

Contents

1 Introduction 7

2 A Brief Informal Introduction to UML/OCL 9
2.1 A Simple Example . 9
2.2 Where to Use OCL in UML Diagrams . 9

3 Approaches for Formalizing the OCL 11

4 Semantic Concerns about UML/OCL 13
4.1 On Object Models and Class Hierarchies 14

4.1.1 Dynamically Extensible Class Hierarchies 14
4.1.2 Access Modifiers: Visibilities . 15
4.1.3 Finalization of Class Hierarchies 15
4.1.4 Smashing of Collections . 15
4.1.5 Flattening of Collection . 16
4.1.6 Navigations over Associations with Multiplicity Zero or One . . 17
4.1.7 Invariants . 18
4.1.8 The role of self in the OCL standard 19
4.1.9 Object-IDs (self) and identity . 19
4.1.10 The OCL type system . 20
4.1.11 OCL Formulae and Inheritance: Non-monotonic Extensions . . . 21

4.2 On System States and System State Relations 21
4.2.1 The Role of @pre . 21

4.3 On Operations and Methods . 22
4.3.1 Strictness . 22
4.3.2 Recursion . 23
4.3.3 Definition of collection->sum():T 24

4.4 The OCL logic . 24
4.4.1 Discussion of allInstances() . 24
4.4.2 Context Declaration . 25

5 Discussion: Concepts of OCL and their Interaction 27
5.1 Discussion: OCL 1.4 vs. the Proposals for OCL 2.0 27

5

Contents

5.2 Summary . 28
5.3 What Concepts are Expensive in HOL-OCL 28

Bibliography 31

6

1 Introduction

The Object Constraint Language (OCL) [22, 33, 34] is a textual extension of the Unified
Modeling Language (UML) [23] based on mathematical logic. Thus, OCL is in the tradi-
tion of other data-oriented formal specification languages like Z [1, 30, 37] or VDM [14].
For short, OCL is a side-effect free classical logic with equality and undefinedness that
allows for specifying constraints on graphs of object instances.

In order to achieve a maximum of acceptance in industry, OCL is currently developed
within an open standardization process by the OMG, particularly since version 1.3 the
OCL is a part of the UML standard. In contrast to the various specification languages
developed in the research communities, the OCL standard does not (yet) provide a for-
mally defined semantics. Further, the syntax is only given by a grammar description;
there is no metamodel, like the metamodel for the UML, given for the OCL, thus no
well-formedness rules are given. The description of the OCL is merely an informal
requirement analysis document with many examples, which are sometimes even con-
tradictory. Consequently, no well-formed deduction rules are described in the standard
so far.

In order to clarify the concepts of OCL formally and to put them into perspective of
more standard semantic terminology, we started to provide a conservative embedding
of OCL into Isabelle/HOL (As already done for other, formal specification languages;
see [17] for an embedding of Z [1] into Isabelle/HOL). Thus, we attempted to built a
provably consistent model for the language. As far as this was possible, we tried to
follow the design decisions of OCL 1.4 in order to provide scientific insight into the
possible design choices to be made in the current standardization process.

We are not describing our embedding here — this is subject of an own forthcoming
paper1. Rather, the purpose of this document is to summarize some experiences and
observations made during our work and to provide some insight into the interdepen-
dence of the impending design decisions.

This paper proceeds as follows: After a general introduction to UML and its add-on
OCL by example, we will briefly discuss previous attempts to formalize OCL — in-
cluding the new proposal OCL 2.0, which is an important step toward a formalization,
but has no official status so far and and reveals a number of shortcomings and prob-
ably undesired effects, as we will see. The fourth chapter contains the technical core

1to be submitted to TPHOLs 2002

7

1 Introduction

of this paper: Following the overall organization of our semantics of OCL, we present
critical points of the OCL 1.4 standard, by contrasting the original informal specifica-
tion with informal mathematical arguments revealing alternatives in its interpretation.
In the last chapter we will summarize our tour d’horizon and our own perspective on
design decisions for the semantics of OCL drawn from our experience with HOL-OCL.

8

2 A Brief Informal Introduction to
UML/OCL

This section gives a brief introduction to UML/OCL by example; an expert reader is
invited to skip it.

2.1 A Simple Example

In figure 2.1 an example of an UML class diagram, annotated with OCL constraint is
given. The class diagram shows a simple banking scenario. The functional behavior
of the methods makeDeposit(), belonging to the class Account , is given by the specifi-
cation of its precondition and post-condition. This class has several methods and one
sub-class CreditAccount which is inherited from Account . The purpose of the class
CreditAccount is introducing a new account type in our system, which allows to make
debts only up to a specific credit limit. Further we have a class Customer with some
attributes and methods. We also model a relation between Account and Customer ,
in UML such a relation is called an association: Every instance of the class. Account
“belongs to” an instance of class Customer . In detail, the association belongsTo re-
quires, that every instance of class Account is associated with exactly one instance of
class Customer . It characterizes that every account has a unique owner. In the other
direction, the association models that an instance of class Customer is related to a set of
instances of class Account , the size of this set is limited to number between one and 99.
In this aspect, the association characterizes, that a customer must have at least one ac-
count and no more than 99 accounts. Being of type Account means in this context to be
an instance of class Account or class CreditAccount . The range limits for association
are called multiplicities in the UML.

2.2 Where to Use OCL in UML Diagrams

The OMG presented OCL as an universal language for expressing constraints in an ob-
ject oriented context. The UML standard itself uses OCL within the “UML semantics”
chapter for formally describing the well-formedness rules over UML diagrams. On the
other side, within the OCL chapter, all examples presented are in the context of class

9

2 A Brief Informal Introduction to UML/OCL

Figure 2.1 Modeling a simple bank scenario with UML

Direction

Direction

1

owner accounts

belongsTo

1..99

+ getCredit():Real
+ setCredit(amount:Real):Boolean

− credit:Real

inv:
balance >= credit

context Account::makeDeposit(amount:Real):Boolean

post: balance = balance@pre + amount
pre: amount >= 0

- Identification:String

+ getAddress():String
+ getIdentification():String

+ setAddress(address:Real)

- address:String

Customer

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real

+ makeWithdrawal(amount:Real):Boolean

Account

- balance:Real

CreditAccount

diagrams, nevertheless, the OCL standard [22] suggests the following use of OCL for
enriching the UML:

• invariants on classes and types in the class model,

• type invariants for stereotypes,

• specification of pre- and post conditions on operations and methods,

• guards

• navigation in data structures

• constraints on operations

Object Constraint Language Specification [22] (version 1.4), page 6–50

We are focusing our effort on using OCL for making class diagrams more precise, and
thus allowing logical reasoning over OCL formulae (and the underlying object oriented
data model). Other approaches are discussed in chapter 3.

10

3 Approaches for Formalizing the OCL

Investigations in the research community showed several shortcomings of OCL and the
need for formal syntax and semantics [32, 19, 11]. Therefore several research groups are
working on formalizing OCL. These groups are focusing on different applications for
OCL. Different definitions of the OCL syntax using a metamodel (in analogy to the
UML standard) are given in [4, 28, 3].

Based on a intuitive operational semantics the university Dresden developed an OCL
type checker and Java based constraint checking code generator was implemented [9,
35].

Recently a formal operational semantics together with a formal type system for OCL
1.4 was presented in [20]. The authors focus on the issue of subject reduction — i.e. a
compatibility property of the type system with the operational semantics — but do not
define the semantic function for expressions whose evaluation diverges.

The most recognized approach for a formal semantics (at least from the perspective
of the OMG) has been carried out by the database group at the university Bremen [27,
28, 29]. The Bremen approach is much inspired by algebraic specification techniques
and is based on a preconceived, but generic static class hierarchy (see discussion about
“universes” in Section 4.1.1).

Both approaches have in common that they capture only subsets of the standard
(selected with respect to specific application areas such as data-base query languages
within OCL etc.). Moreover, they are based on “mathematical notation” in the style
of “naive set theory”, which is in our view quite inadequate to cover such evolved
subjects such as inheritance and a considerable step back from other standardization
efforts such as Z [1], where Zermelo-Fränkel set-theory is explicitly used and worked
out with a considerable degree of detail. Moreover, both approaches do not attempt
to provide a formalization precise enough and suited for mechanization in a theorem
prover.

The proposal OCL 2.0 represents a considerable step toward a formalization. It
evolved from the Bremen approach to OCL semantics, but has no official status so far
and reveals in our view a number of shortcomings and probably undesired effects. (see
section “Discussion” at the end of this paper).

11

3 Approaches for Formalizing the OCL

12

4 Semantic Concerns about UML/OCL

The semantics of UML/OCL has to be built in several layers:

• the object model layer, that provides the concepts of a class-hierarchy, typed con-
structors and destructors of data structures,

• the system state containing essentially a graphs of data constructed along a class
hierarchy,

• relations on system states, (forming the denotational domain for the semantics of
methods),

• the OCL logic consisting of operators that enable us to describe relations on states
(for describing methods in a pre-/post-condition style).

OCL is based on UML class diagrams1. Roughly speaking, object models consist
of (sets of) trees, where each node represents a “class” and each edge the inheritance
relation. For simplicity, it is possible to relate all roots of the trees in this set to a special
superclass OclAny; thus, without loss of generality, we can consider the class hierarchy
(with an special exception made for the OCL collection types) as one single tree with
OclAny as root.

Classes in a hierarchy provide two different entities: attributes and methods. The at-
tributes of a class can be seen as components in a record, an object. The name of an
attribute can be used to select the components in an object; sequences of such selections
form so-called path expressions allowing the navigation in object structures2.

Objects constructed according to a class hierarchy are linked via implicit references
or unique object identifiers in a (possibly cyclic) graph, the system state. These graphs
are meant when talking over “associations” and their “cardinalities”. Since references
in objects may be undefined within an object model of OCL, the higher constructs of
the language must cope with possibly undefined (path-) expressions. Other erroneous
evaluations such as divide by zero where handled by undefinedness as well.

In principle, methods of a class are modeled as relations on system states. Since
paths may be constructed such that they refer both on the object model before and after

1Attempts to use OCL within other diagram types are far too premature to be discussed within a formal
semantics.

2However, OCL provides no syntax for constructors of objects

13

4 Semantic Concerns about UML/OCL

a method call, it is necessary to build the operators of the OCL logic as interpretations
on object model relations.

In the following, we will describe these four layers in more detail and use the layering
to structure our critique on (the various versions of) the OCL language design.

4.1 On Object Models and Class Hierarchies

4.1.1 Dynamically Extensible Class Hierarchies

Within the standard UML/OCL, it is self-understood that class diagrams are extensible
— in a given class hierarchy (see figure 2.1) A, a new group of classes may be added at
any possible leaf or node of A. In our example (see figure 2.1) one could add a new type
of credit accounts by inheriting from CreditAccount or add a class Clerk without a
direct link to a currently existing class. Within a group, added classes may have mutual
static dependencies between types and method calls. Dependency cycles may arise as
a consequence of extensions; for a given hierarchy, it is hence not predictable that some
part of a class diagram will not depend on another after some extension. Nevertheless,
it is highly desirable that proofs done for one class hierarchy also hold for its extensions.

The data (the “objects”) generated via constructors of classes may also have mutual
dependencies — actually, it is hard to avoid the idea of general graphs, although this is
stated nowhere in the standard. Since data dependencies can be also cyclic, at least co-
inductive datatype constructions would be necessary for its semantic representation.
However, since the nature of these cycles is only clear within a given class hierarchy
(hence the number of elements in a co-inductive data-type statement is not fixed), the
semantics for these is a further challenge for proof support by co-inductive datatype
packages [26].

Living with a dynamic data model represents a major challenge for a formal seman-
tics of OCL — especially if the subtypes resulting from class hierarchy extensions have
to “fit” into methods defined earlier on supertypes on them. If one chooses a typed
logical meta-language, than subtyping of OCL must be embedded into the type notion
of this meta-language.

Semantically, it is considerable to construct as domain of the OCL-semantics a “super
universe” that comprises all carrier sets for types induced by all class hierarchies closed
under extension. Unfortunately, such a universe is too large (in a set-theoretic sense)
to be representable inside the standard models of higher-order logic (HOL; for models
in the ’standard’-sense, cf. [2, 10]), at least as long as we represent methods as total
functions. A theoretically viable alternative would be to represent methods as “con-
tinuous functions” and to embed them in a so called “reflexive domain” of D. Scott’s
D∞-model (see [36] for a more recent account). Such an approach would require a (con-
servative) Isabelle-theory for reflexive domains, which is not yet available. Moreover,

14

4.1 On Object Models and Class Hierarchies

this approach would internalize all typing into set-reasoning inside the logic (similarly
to Isabelle’s ZF-theory), which is pragmatically not desirable since we are more inter-
ested in an embedding that is amenable to applications instead of meta-theory.

For this reasons, we avoid a “super universe”-approach; instead, in our semantic
embedding, we exploit the fact that any concrete class-hierarchy is finite and provide
semantic mechanisms to cope with dynamic extensions.

Both semi-formal semantic definitions do not cope with the aspect of dynamism;
they declare OCL semantics only in terms of a given, pre-conceived class hierarchy.
They essentially construct a new “denotational domain” for each new class hierarchy.
Since a new domain is not related to an old one other than by a pair of surjective-
injective morphisms, it is technically non-trivial to save proofs built upon a former
class hierarchy. Any semantic representation of OCL usable for a theorem prover will
have to find an answer to this problem.

4.1.2 Access Modifiers: Visibilities

The access modifiers private, protected or public in UML are called visibility. They have
the usual semantics (for example, like in Java [15, section ”6.6 Access Control”]). It
has to be discussed, what kind of (static) visibility rules hold for constraints annotating
methods or classes. As an alternative, one could interpret the access to private vari-
ables in OCL-formulas as undefined ⊥, but this results in a quite complex calculus and
problems with respect to the executability of (a fragment of) the OCL.

4.1.3 Finalization of Class Hierarchies

Many of the well known object oriented programming languages, like Java, provide a
special keyword for marking classes that are not extensible, e.g. in Java this statement
is called finalize.

In contrast to this tradition, the UML standard seems not to introduce a statement for
finalization, nevertheless our formalization will be able to handle finalization, which
can be useful when doing reasoning over class hierarchies.

4.1.4 Smashing of Collections

For Collections (Sets, Bags, Sequences, and Tuples3), the question arises how to han-
dle the case of undefined values inserted into a collection. There are essentially two
different possibilities for their treatment: Tuples, for instance, may be defined:

(⊥, X) = (Y, ⊥) = ⊥

with the consequence:

3only in [34]

15

4 Semantic Concerns about UML/OCL

first (X, ⊥) = ⊥ second(⊥, Y) = ⊥

or, in contrast:

(⊥, X) 6= (Y, ⊥) 6=⊥

with the natural consequence:

first (X, ⊥) = X second(⊥, Y) = Y

In the literature [36, 21], the former version is called a “smashed product”, while the
latter is just the standard product. We also apply this terminology for sets, bags and se-
quences. Smashing of Collections (or not) is directly connected to the question whether
the constructors of collections are strict (or not):

{⊥, X } = { Y, ⊥} = ⊥
<1, 2, ⊥> = ⊥

et cetera.

4.1.5 Flattening of Collection

The OCL standard postulates that Collection of Collection are automatically flattened,
therefore hierarchical set constructs are not available within OCL (but could be con-
structed within user defined UML/OCL data types). Astonishingly, the flattening pro-
cess is only defined by the following (trivial) example:

Within OCL, all Collections of Collections are flattened automatically there-
fore, the following two expressions have the same value:

Set{Set {1, 2}, Set {3, 4}, Set {5, 6}}
Set {1, 2, 3, 4, 5, 6}

Object Constraint Language Specification [22] (version 1.4), page 6–67

This is one of the most controversial discussed points of the OCL standard. Among
other problems, it is unclear, how nested collections such as sets-of-lists or bags-of-
sequences-of-sets should be treated. As a consequence, recent approaches for formaliz-
ing the OCL avoid flattening. For example, the semantics presented in [27] is based on
non-flattened sets.

In the OCL 2.0 proposal [34, table 5.7] a particular flattening strategy, which we call
flattening to the first, is proposed. The central concept, is that the first collection type
“wins”, e.g. Sequence(Set(A)) is flattened to Sequence(A). Unfortunately sequences
have a stronger algebraic structure than sets. As a result, there are several possibilities
to define the flattening operation in these cases, e.g.

Sequence {Set {3, 4}, Set{1, 2}}

16

4.1 On Object Models and Class Hierarchies

Table 4.1 Flattening of nested collections

Nested collection types Type after flattening
Set(Sequence(t)) Set(t)
Set(Set(t)) Set(t)
Set(Bag(t)) Set(t)
Bag(Sequence(t)) Bag(t)
Bag(Set(t)) Set(t)
Bag(Bag(t)) Bag(t)
Sequence(Sequence(t)) Sequence(t)
Sequence(Set(t)) Set(t)
Sequence(Bag(t)) Bag(t)

can be flattened to

1. Sequence 1, 2, 3, 4

2. Sequence 3, 2, 1, 4

3. Sequence 4, 3, 2, 1

4. . . . (up to 4! possibilities)

Thus [34] is semantically under-defined. There a two ways out of this:

1. The OCL standard could leave to an tool implementor, what particular choice is
made (in the past, for languages like C, this preceding proofed to be the worst).

2. One could explicitly define an ordering between all objects of OCL. This approach
is feasible in principle, but quite complex in details.

There is an alternative to flattening to first, that we call flattening to the weakest (i.e. Se-
quence(Set(A)) is Set(A) and not Sequence(A)). In this view, sequences, bags, and sets
are ordered by their algebraic strength regarding their structure (monoids are stronger
than monoids with commutativity are stronger than semi-lattices). Flattening to the
weakest (see table 4.1) semantically possible without requiring an ordering.

4.1.6 Navigations over Associations with Multiplicity Zero or One

For navigations over associations with multiplicity zero or one, the UML standard
states a equivocally semantics:

17

4 Semantic Concerns about UML/OCL

Because the multiplicity of the role manager is one, self.manager is an object
of type Person. Such a single object can be used as a Set as well. It then
behaves as if it is a Set containing the single object.

Object Constraint Language Specification [22] (version 1.4), page 6–60

Within OCL the choice of the “accessor-operator” (. or ->) decides, if the attribute is set
or a singular type, this interpretation seems to be syntactically consistent. Nevertheless
this type dualism does not harmonized with a stricter type system as it will be needed
for our formalization.

At current, we will only allow a set based type for association ends within our em-
bedding, but we will consider a conversion of external specifications during parsing.

4.1.7 Invariants

The UML standard introduces special OCL formulae: invariants, pre- and post-conditions.
Pre- and post-conditions are specific to a method and should hold directly before, re-
spectively directly after, the method invocation. For invariants, there is a the following
postulation (which also is written in the OCL 2.0 RfP [34]):

An OCL expression is an invariant of the type and must be true for all in-
stances of that type at any time.

Object Constraint Language Specification [22] (version 1.4), page 6–52

As explained in [8] we will relax this postulation by introducing different types of in-
variants:

Class invariants: We denote invariants attached to classes or attributes as class invari-
ants and postulate that they must be true for all instances of that class at any time.

Method invariants: We call invariants attached to methods as method invariants and
postulate that they must hold before and after the method invocation. Method
invariants are a shorthand for formulae that should are part of the pre- and post-
condition of a method. Particularly, we allow, that method invariants can be vio-
lated during the method invocation.

Association invariants: We denote invariants belonging to associations as associations
invariants, which we convert to class invariants at all opposite ends (see [7, 22] for
details). Note, that multiplicities are syntactical notation for association invari-
ants, see [7] for details.

Invariants on other classifiers: At the moment, we restrict ourself to invariants used
in the context of class diagrams.

18

4.1 On Object Models and Class Hierarchies

Summarizing, we propose to distinguish class invariants (that correspond to invariants
on data-types and would be handled in Z, for instance, in a schema representing a
data entity) from method invariants, that simply abbreviate formulae occurring both
in pre-conditions and post-conditions. This means that method invariants only hold
when entering and leaving a method — which leaves enough flexibility for a powerful
Hoare-like calculus — while class invariants really hold “at any time”.

This denotational semantics is stricter than the operational semantics presented in [8,
7], in particular the operational semantics only checks all kinds of invariants at the entry
and exit points of method calls.

Possibly, we have to introduce several other variation of invariants, for example com-
ponent invariants as described in [12].

4.1.8 The role of self in the OCL standard

In OCL standard introduces a reserved word self. At a moment, this could be associated
with a kind of an unique object identifier, but the standard states only:

Each OCL expression is written in the context of an instance of a specific
type. In an OCL expression, the reserved word self is used to refer to the
contextual instance.

Object Constraint Language Specification [22] (version 1.4), page 6–51

That means, that self is in no way special. In our semantics it is only a all quantified
variable of the corresponding type.

In general, self can be replaced by a variable of the type of the classifier described in
the context. This formalization conforms also to the suggestions for OCL 2.0 [34].

4.1.9 Object-IDs (self) and identity

Even if the standard does not propose a unique identifier (object reference) for every
object, as usually available in object oriented programming languages (often called self,
as in Java, or this, as in C++), our semantic representation of data is designed to be easily
extensible by such a construct. But introducing a unique object identifier would imply
a great hassle, particularly several variants of equality operations would be needed, at
least:

a
.
= b: Returns true, if and only if a and b are from the same type and all attributes are

equal (equality on values).

a =. b: Returns true, if and only if a and b have the same (unique) object identity (equal-
ity on objects).

19

4 Semantic Concerns about UML/OCL

Figure 4.1 The type system of OCL

Set(T) Bag(T) Sequence(T)

Collection(T) OclAny

String Boolean
User defined types

Real

Integer

OclExpression

OclType

OclState

Enumeration

This distinct equality operation will lead to several new operations around it, for exam-
ple we would have to answer the questions: What is the semantic of the includes relation?
In detail we have to decide, if we define includes in relation to “ .

=” or in relation to “=. ”.
Note that undefinedness ⊥ makes already several different equalities (strict weak

equality vs. strong equality) necessary.
Note moreover, that the relation (a =. b) =⇒ (a

.
= b) holds, which is easy to see.

4.1.10 The OCL type system

OCL introduces its datatypes within the UML package UML_OCL, which in principle
consists of sets, numbers, strings and boolean types (see figure 4.1 for details). With
regard to the standard, some points were not quite clear, therefore we lay down:

• OclState, OclExpression, OclType, Enumeration and the set hierarchy (Collection
and subtypes) are not inherited from OclAny.

• The basic data types (Integer, Real, String) are (conceptually) inherited from OclAny.
Even if one respects this (purely conceptually motivated, but artificial) inheri-
tance, there are two ways to values of data-types: either in the system state or
not. Having them inside the state means that implicit references can be created
for them, which allows to handle them uniformly with all other data; such an
approach makes the state infinite. Having values of basic data outside the store
means, however, that accessing them has to be done differently as other objects.
(We chose this variant).

• We will not explicitly model the OclExpression type, as it is not really needed.
This conforms to the Proposal for OCL 2.0 [34].

• We will not explicitly model the OclType type, as it is not really needed. This
conforms to the Proposal for OCL 2.0 [34].

20

4.2 On System States and System State Relations

Table 4.2 Refinement relations within a monotonic extension (B is inherited from A)
constraint refinement note
pre-condition A =⇒ B

post-condition B =⇒ A

method-invariant A ⇐⇒ B

class-invariant B =⇒ B

4.1.11 OCL Formulae and Inheritance: Non-monotonic Extensions

The OCl standard doesn’t gives a hint, how OCL specification are “inherited”. One
idea of handling this implemented by Eiffel’s subcontracting: Preconditions may only
be weakened while post-conditions may only be strengthened. An additional postulation,
that invariants may also only be strengthened, or more formal, the refinement relations
shown in table 4.2 are holding.

This allows only monotonic extensions, which means, that all clauses holding be-
fore an extension also hold in the extension. Further, this guarantees the compliance
with the Liskov principle [18]. With a loss of generality, we postulate that only type
hierarchies respecting the Liskov principle, including its OCL formulae (and thus our
refinement) are well typed.

4.2 On System States and System State Relations

4.2.1 The Role of @pre

Within the OCL, the postfix operation @pre plays an important role in introducing
the state concept. It allows within accessing of the pre-state within a post-condition
formula.

Whereas our semantics forbids the use of the postfix operation @pre for the basic
data types (Integer, Real, String and Boolean), the OCL standard does not limit its use.
Given the class Account (see figure 2.1) with the attribute balance, which is a basic data
type, we define, that Account@pre.balance and Account.balance@pre have the same
semantics. Therefore this is no loss of generality (from this viewpoint, its only syntax).
But in our semantics, there is no way to write Account@pre.balance@pre, which could
is syntacticly allowed in the standard (see page 6–68 for an example of using @pre
operator with an basic data type as argument). Further @pre can also used as a postfix
operator on method calls, returning the result if the function was called in the previous
state.

Further, the OCL standard gives only vague idea of the semantic of path expression
containing several several @pre operations, e.g. Customer@pre.accounts@pre.balance:

21

4 Semantic Concerns about UML/OCL

When the pre-value of a property evaluates to an object, all further proper-
ties that are accessed of this object are the new values (upon completion of
the operation) of this object. So:

a.b@pre.c −− takes the old value of property b of a,
−− say x and then the new value of c of x

a.b@pre.c@pre −− takes the old value of property b of a,
−− say x and then the old value of c of x

Object Constraint Language Specification [22] (version 1.4), page 6–68

In [13] a detailed discussion of this problematic from the view point of an tool vendor
(based on an operational semantics) is given. For our formalization there is no need to
restrict the use of @pre in this way.

4.3 On Operations and Methods

4.3.1 Strictness

Since path expressions may be undefined in a concrete state, all types are implicitly as-
sumed to contain an element representing undefinedness (we call it ⊥). The question is
what arbitrary operations and methods should behave, when applied to an undefined
expression. The OCL standard quite clearly favors what is called “strict extension” in
the literature, with an exception made for Boolean operations [22]:

Whenever an OCL expression is being evaluated, there is a possibility that
one or more of the queries in the expression is undefined. If this is the case,
then the complete expression will be undefined.
There are two exceptions to this for the Boolean operators:

• True OR-ed with anything is True

• False AND-ed with anything is False
The above two rules are valid irrespective of the order of the arguments
and the above rules are valid whether or not the value of the other sub-
expression is known.

Object Constraint Language Specification [22] (version 1.4), page 6–58

This definitions leads to a Kleene logic [16] for the Boolean values. The nice thing about
Kleene logic is, that the known algebraic structure of the boolean algebra is preserved,
particularly a Kleene logic is a distributive lattice. For example the associativity and
commutativity holds for the usual boolean operations and the idempotency holds with
the exception of the implication, which only works for defined values.

22

4.3 On Operations and Methods

The main drawback of a three-valued Kleene logic is, that the axiom of the excluded
middle (a ∨ ¬a = true, mind ⊥ ∨¬ ⊥=⊥) and the idempotency of the implies (x =⇒
x = true, mind ⊥ =⇒ ⊥=⊥) operation does not hold. This has the consequence that
many proof procedures for existing theorem proving systems like grind in PVS [24] or
fast_tac in Isabelle [25] do not work any longer (or have to be adapted in a non-trivial
way).

All other operations (including user-defined methods) should be strict in their argu-
ments. With respect to collections, this raises the question about terms like {a,⊥} and
smashing which is discussed in section 4.1.4.

4.3.2 Recursion

Methods can be specified by recursion (see page 6–59), for example given a class num-
ber that implements a fac() the following is a correct OCL definition:

context number.fac(n: Integer): Integer
post : result = if (n=0)

then 1
else n ∗ self . fac(n−1)

endif

There are two fundamentally different approaches to interpret recursive constraints in
OCL, both of which are consistent with the standard:

• The predicative approach. In this view, we admit all possible function interpreta-
tions for fac — that is, not just the least fixpoint, but any fixpoint that solves a
recursive constraint. Surprisingly, the solution for fac(-1), for example, is just -1,
which involves a small proof using induction and a lemma on divividability.

• The denotational approach. In this view, recursive constraints are interpreted as
least fixpoint, defining fac(-1) as ⊥. Semantically, this means that we have to add
to any data domain including Bool a cpo4 — structure (with an ordering, com-
pleteness properties, etc.; see [36]), saying that all data-domains are flat cpo’s etc.
This is perfectly feasible — also in Isabelle — but implies a more involved seman-
tic foundation of OCL.

The OCL standard says the following:

The right-hand-side of this definition may refer to the operation being de-
fined (i.e. the definition may be recursive) as long as the recursion is not
infinite.

Object Constraint Language Specification [22] (version 1.4), page 6–59

4complete partial ordering; see [36]

23

4 Semantic Concerns about UML/OCL

This leaves open what the exact nature of statements like:

context number.M(n: Integer): Integer
post : result = self .M(n)

should be: is it illegal OCL? Or is M the undefined function? If it is illegal, then it would
be advisable to provide a termination ordering and to provide proofs that this order-
ing is respected by the arguments of all recursive calls (this is the well-foundedness-
condition in systems like PVS or Isabelle). Leaving the question open is highly un-
satisfactory in our view, since a check for well-foundedness is undecidable, and well-
foundedness requires a non-trivial proof theory that has to be explicit to the user. Much
easier for the user of OCL would be the denotational approach, where no termination
ordering and termination proofs must be provided and the result for such statements
is just what one gets operationally.

4.3.3 Definition of collection->sum():T

What is a well-formed definition of the sum of a arbitrary set. The OCL standards
(under the assumption of finite sets) defines collection->sum():T as:

The addition of all elements in a collection. The elements must be of a type,
supporting the + Operation. The + operation must take one parameter of
type T and be both associative: (a + b) + c = a + (b + c) and commutative:
a + b = b + a. Integer and Real fulfill this condition.

post : result = collection −>iterate (elem; acc:T = 0 |
acc + elem)

Object Constraint Language Specification [22] (version 1.4), page 6–85

Analyzing this definition, we have to remark, that: OCL 1.4 is not strong enough for
formulating the associativity and commutativity of an arbitrary + operation (e.g. an
precondition of sum). This is caused by the lack of an general universal quantifier (e.g.
for all whole numbers should hold, . . .). In contraction, our formalization will be able
to express such Properties. Going even further our embedding will claim a proof for
the associativity and the commutativity of the + operation.

4.4 The OCL logic

4.4.1 Discussion of allInstances()

The use of this operator is discouraged in the actual OCL standard:

24

4.4 The OCL logic

The use of allInstances() has some problems and its use is discouraged in
most cases. The first problem is best explained by looking at the types like
Integer, Real and String. For these types the meaning of allInstances() is
undefined. What does it mean for an Integer to exist? The evaluation of
the expression Integer.allInstances results in a infinite set and is therefore
undefined within OCL. The second problem with allInstances is, that the
existence of objects must be considered within some overall context, like a
system or a model. This overall context must be defined, which is not done
within OCL. A recommended style is to model the overall contextual sys-
tem explicitly as an object within the system and navigate from that object
to its containing instances without using allInstances.

Object Constraint Language Specification [22] (version 1.4), page 6–66

This statement obviously results from the tradition to view OCL as an assertion lan-
guage5, in which assertions in themselves must be executable. From a logical point of
view (having typed, infinite sets), there is no reason to exclude allInstancesOf(Integer)
from being the — infinite — set of integers. This just results in a universal quantifi-
cation. In our view, we would prefer to distinguish OCL as specification language
from an “executable subset” of OCL, that can be used for generated checks of pre- and
post-conditions, for instance. However, in our actual proposal for OCL we followed
the quite explicit requirement of the standard to define allInstances to be ⊥ (having in
mind that a change here is a minor issue from our perspective).

4.4.2 Context Declaration

In the OCL standard the context seems to have a completely syntacticly meaning, it is
even stated, that

The context declaration is optional.

Object Constraint Language Specification [22] (version 1.4), page 6–52

We interpret this statement in the following way: A explicit (textual) context dec-
laration is optional, if the context of the OCL expression is given by the UML/OCL
specification. For example, a graphical notation for defining the context can be used.
For example, in figure 2.1, the OCL formulae are written in “UML notes” directly linked
to classes defining their context.

Further, we are giving the context statement the semantics of an universal quantifi-
cation: “For all classifiers described by the context, the following OCL formulae should

5. . . and is in this respect somewhat similar to some initiatives to standardize hardware verification lan-
guages such as http://www.verificationlib.org/

25

http://www.verificationlib.org/

4 Semantic Concerns about UML/OCL

hold”. This interpretation of the context statements corresponds to the OCL 2.0 RfP [34]
and further allows the specification of nested contexts, e.g.:

context c:Customer, a:Account
inv : accounts. forall (a.owner = owner)

26

5 Discussion: Concepts of OCL and their
Interaction

5.1 Discussion: OCL 1.4 vs. the Proposals for OCL 2.0

Comparing the standard OCL 1.4 with the several approaches to formalize it, two fun-
damental design questions of OCL have to be answered:

• What is the role of “undefinedness” in OCL: Just a symbol for exceptional behav-
ior (like dereferencing an object reference in a state where the object does exist)
or the “undefinedness” in the sense of denotational semantics: “I don’t know yet
the value”?

• Should OCL be operational or at least contain easy identifiable language subsets
that can be compiled to code? Or should OCL be a powerful logical language like
HOL?

.
While OCL 1.4 had the explicit intention to keep the language strict (in order to keep

its semantics close to standard programming languages such as Java or SML in order
to simplify code generation), the version 2.0 seems to drift toward standard products,
sets, bags etc., that are difficult to execute (if at all), while inconsequently insisting
on strictness on all other places. The overall idea in OCL 2.0 is that ⊥ is a kind of
exception, that can be tested. However, in OCL 1.4 the idea was “no information”,
which is compatible with the usual denotational semantics for recursive methods, that
explains recursive functions semantically by limits to approximations in complete partial
orderings called “least fixed points”.

In the “no information view”, the equality on elements is no longer decidable in
general, and non-strict operations like count in the sense of version 2.0, for example:

are no longer executable. This is different for a smashed version of Collections, where
count would have the property:

count({⊥}, ⊥) = ⊥

27

5 Discussion: Concepts of OCL and their Interaction

A definition of count in the latter sense is executable1. Recursive functions uniquely
built from strict operations can be syntactically identified and are thus a simple basis for
an executable subset close to a strict programming language. Of course, the exceptional
behavior view for undefinedness (as imposed in OCL 2.0) is in itself also executable;
however, it is neither compatible with denotational recursion semantics, nor with ex-
isting tools such as the Dresden Code Generator. Since the authors of OCL 2.0 still
maintain the claim that OCL is a specification language, not a programming language2

the overall rationale behind OCL 2.0 seems to be remarkably unclear with this respect
since their proposal inherits many limitations that make only sense in connection with
executability (such as finiteness of sets, etc.).

In our view the original design of OCL 1.4 (partially inspired by specification lan-
guages such as SPECTRUM [5, 6] and thus in the tradition of LCF based on denotational
semantics) seemed to have a different approach toward executability, both with respect
to proliferation to engineers (that are used to strict programming languages) as well as
tool support of OCL. Instead of this “programming approach to specification”, there is
in OCL 2.0 a somewhat inconsequential step toward a universal logical language in the
sense that usual quantifiers are still avoided, restricted to weird finiteness , etc. Such an
in-between design of the language is prone to a two-fold failure: Failure to be usable
in tools for software engineers and failing to be a success on the market of specification
languages.

5.2 Summary

Clearly, 2.0 is a substantial step forward to a formalization of the OCL. However, there
is also a conceptual shift with respect to strictness and the interpretation of ⊥. Some el-
ements were added (like tuples) that we consider an achievement, while others (finite-
ness of sets, undefinedness) are considered harmfully. Although a direct comparison
might look a bit unfair since 2.0 contains a relatively detailed (mathematically rigorous)
model while 1.4 is merely a collection of vaguely described requirements, such a com-
parison may be helpful to exemplify the conceptual shift and to substantiate our claim,
that essential parts are still missing. For a summary, see table 5.1

5.3 What Concepts are Expensive in HOL-OCL

As already mentioned, this paper arose from a concrete formalization project of OCL
using the generic theorem prover Isabelle by building a shallow, conservative embed-

1since it is continuous in the sense of complete partial orderings; note that the Kleene-Logic operators are
also continuous, which was the original motivation for their definition . . .

2although we do not understand why; apparently the authors simply say that they don’t care for exe-
cutability

28

5.3 What Concepts are Expensive in HOL-OCL

Table 5.1 Comparison of important properties

OCL 1.4 OCL 2.0 RfP Freiburgs advice
dynamic universe 2 2 2�
recursion 2� 2 2�
smashing ? 2 2�
flattening 2� 2 2
tuples 2 2 2�
finite state 2� 2� 2
object id’s 2 implicit ?
strict Ops 2� 2 2�
general Quantifiers 2 2� ?
allInst finite 2� 2� 2
several @pre 2� 2� 2�

2�: supported 2: unsupported

Table 5.2 Costs of the several design decisions

decision costs note
smashing/standard FFF smashing slightly expensive
flattening FFFF
tuples F generally recommended
infinite state F
object id’s FF possible, if needed
general quantifiers F recommendable for a verification calculus
allInstances infinite F recommendable for a verification calculus
several @pre F but no for basic datatypes

F: inexpensive FFFF: expensive

ding into Higher-Order Logic (HOL). In our approach, the different semantics could
be achieved by usually simply changing a line here or to re-adjust a screw there. Hav-
ing this enormous flexibility, we could adopt to many different design choices easily.
Still, from the perspective of our experience, we would like to give an estimation of the
“costs” of various design decisions. With costs, we mean either difficulty in implemen-
tation or theorem proving complexity (see table 5.2).

Strictness in general and smashing is easy to define theoretically and also easy to im-
plement in code generation tools. In contrast, strictness and smashing are expensively
during theorem proving, since fundamental operations, such as substituting arguments
into the body of an operation, pervasively requires reasoning over the definedness of
these arguments. This unpleasant problem is well-known and can be managed (for
example as in LCF or HOLCF), if necessary.

29

5 Discussion: Concepts of OCL and their Interaction

Flattening is perfectly feasible, but requires a number of non-standard techniques in
type-checking and will turn out to be difficult to grasp by engineers at the very end, in
particular in its problems with set/bag/list-combinations.

Tuples are a simple, but very useful, thing that should simply be incorporated into
the standard.

Infinite states, infinite sets (as allInstances(Int)) and unbounded quantifiers are easy
to implement from our perspective (they were mapped to suitable quantifiers or sets
in HOL) and necessary elements for a practically useful calculus for OCL. They do not
hamper the identification of executable subsets of OCL.

Object id’s can be added to our semantics remarkably easily. However, the practical
consequences for OCL as a language may be quite severe, since this implies further
equalities. Besides weak equality and strong equality, we will have referential equalities
and value equalities and all sorts of combinations.

30

Bibliography

[1] Formal Specification – Z Notation – Syntax, Type and Semantics. October 2001.
http://www.cs.york.ac.uk/~ian/zstan/ . Consensus Working Draft 2.7.

[2] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truh
Through Proof. Academic Press, 1986. http://gtps.math.cmu.edu/andrews.
html .

[3] Thomas Baar and Reiner Hähnle. An integrated metamodel for OCL types. In
R. France, editor, OOPSLA 2000 Workshop Refactoring the UML: In Search of the Co-
re, Minneapolis, Minnesota, USA. October 2000. http://i12www.ira.uka.de/
~key/doc/2000/baarhaehnle00.ps.gz .

[4] Marc Bodenmüller. The OCL Metamodel and the UML_OCL package. In Workshop
on the Object Constraint Language. Canterbury, March 2000. http://www.dcs.
kcl.ac.uk/staff/tony/OCL2000/BodenMueller.pdf .

[5] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth, F. Regens-
burger, O. Slotosch, and K. Stølen. The Requirement and Design Specificati-
on Language SPECTRUM. An Informal Introduction. Version 1.0. Part I. Tech-
nical Report TUM-I9311, Technische Universität München. Institut für Informa-
tik, May 1993. http://www4.informatik.tu-muenchen.de/proj/korso/
papers/v10.html .

[6] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth, F. Regens-
burger, O. Slotosch, and K. Stølen. The Requirement and Design Specificati-
on Language SPECTRUM. An Informal Introduction. Version 1.0. Part II. Tech-
nical Report TUM-I9312, Technische Universität München. Institut für Informa-
tik, May 1993. http://www4.informatik.tu-muenchen.de/proj/korso/
papers/v10.html .

[7] Achim D. Brucker and Burkhart Wolff. Checking OCL Constraints in Distributed
Systems Using J2EE/EJB. Technical Report 157, Albert-Ludwigs-Universität
Freiburg, July 2001. http://wailoa.informatik.uni-freiburg.de/cgi/
publications/extract_abstract.cgi?KEY=brucker.ea:checking:
2001 .

31

http://www.cs.york.ac.uk/~ian/zstan/
http://gtps.math.cmu.edu/andrews.html
http://gtps.math.cmu.edu/andrews.html
http://i12www.ira.uka.de/~key/doc/2000/baarhaehnle00.ps.gz
http://i12www.ira.uka.de/~key/doc/2000/baarhaehnle00.ps.gz
http://www.dcs.kcl.ac.uk/staff/tony/OCL2000/BodenMueller.pdf
http://www.dcs.kcl.ac.uk/staff/tony/OCL2000/BodenMueller.pdf
http://www4.informatik.tu-muenchen.de/proj/korso/papers/v10.html
http://www4.informatik.tu-muenchen.de/proj/korso/papers/v10.html
http://www4.informatik.tu-muenchen.de/proj/korso/papers/v10.html
http://www4.informatik.tu-muenchen.de/proj/korso/papers/v10.html
http://wailoa.informatik.uni-freiburg.de/cgi/publications/extract_abstract.cgi?KEY=brucker.ea:checking:2001
http://wailoa.informatik.uni-freiburg.de/cgi/publications/extract_abstract.cgi?KEY=brucker.ea:checking:2001
http://wailoa.informatik.uni-freiburg.de/cgi/publications/extract_abstract.cgi?KEY=brucker.ea:checking:2001

Bibliography

[8] Achim D. Brucker and Burkhart Wolff. Testing distributed component
bases systems using UML/OCL. In K. Bauknecht, W. Brauer, and
Th. Mück, editors, Informatik 2001, volume 1 of Tagungsband der GI/ÖCG
Jahrestagung, pages 608–614. Wien, November 2001. ISBN 3-85403-157-
2. http://wailoa.informatik.uni-freiburg.de/cgi/publications/
extract_abstract.cgi?KEY=brucker.ea:testing:2001 .

[9] Frank Finger. Design and Implementation of a Modular OCL Compiler. Diploma
thesis, Technische Universität Dresden, March 2000. http://www-st.inf.
tu-dresden.de/ocl/ff3/diplom.pdf .

[10] Mike J. C. Gordon and Tom F. Melham. Introduction to HOL. Cambridge University
Press, 1993.

[11] A. Hamie, F. Civello, J. Howse, S. Kent, and M. Mitchell. Reflections on the Ob-
ject Constraint Language. In Post Workshop Proceedings of UML98. Springer-Verlag,
Heidelberg, June 1998. http://www.cs.ukc.ac.uk/pubs/1998/788 .

[12] Rolf Hennicker, Hubert Baumeister, Alexander Knapp, and Martin Wirsing. Speci-
fiying component invariants with ocl. In K. Bauknecht, W. Brauer, and Th. Mück,
editors, Informatik 2001, volume 1 of Tagungsband der GI/ÖCG Jahrestagung, pages
608–614. Wien, November 2001. ISBN 3-85403-157-2.

[13] Heinrich Hussmann, Frank Finger, and Ralf Wiebicke. Using previous values in
OCL postconditions: An implementation prespective. In UML 2.0 - The Future of
the UML Constraint Langauge OCL. York, UK, October 2000. http://www.inf.
tu-dresden.de/TU/Informatik/ST2/ST/papers/uml2000_oclws.pdf .

[14] Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall Inter-
national, Englewood Cliffs, New Jersey, second edition, 1990. ftp://ftp.ncl.
ac.uk/pub/users/ncbj/ssdvdm.ps.gz . 0-13-880733-7.

[15] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The JavaLanguage Spe-
cification. Addison-Wesley Europe, Amsterdam, The Netherlands, second edi-
tion, 2000. ISBN 0-201-31008-2. http://java.sun.com/docs/books/jls/
index.html .

[16] S. C. Kleene. Introduction to Meta Mathematics. Wolters-Noordhoff Publishing, Am-
sterdam, 1971. ISBN 0-7204-2103-9. Originally published by Van Nostrand, 1952.

[17] Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of z in is-
abelle/hol. In J. von Wright, J. Grundy, and J. Harrison, editors, Theorem Proving
in Higher Order Logics — 9th International Conference, LNCS 1125, pages 283–298.
Springer Verlag, 1996.

32

http://wailoa.informatik.uni-freiburg.de/cgi/publications/extract_abstract.cgi?KEY=brucker.ea:testing:2001
http://wailoa.informatik.uni-freiburg.de/cgi/publications/extract_abstract.cgi?KEY=brucker.ea:testing:2001
http://www-st.inf.tu-dresden.de/ocl/ff3/diplom.pdf
http://www-st.inf.tu-dresden.de/ocl/ff3/diplom.pdf
http://www.cs.ukc.ac.uk/pubs/1998/788
http://www.inf.tu-dresden.de/TU/Informatik/ST2/ST/papers/uml2000_oclws.pdf
http://www.inf.tu-dresden.de/TU/Informatik/ST2/ST/papers/uml2000_oclws.pdf
ftp://ftp.ncl.ac.uk/pub/users/ncbj/ssdvdm.ps.gz
ftp://ftp.ncl.ac.uk/pub/users/ncbj/ssdvdm.ps.gz
http://java.sun.com/docs/books/jls/index.html
http://java.sun.com/docs/books/jls/index.html

Bibliography

[18] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM
Transactions on Programming Languages and Systems, 16(6):1811–1841, November
1994. ISSN 0164-0925. http://www.acm.org/pubs/citations/journals/
toplas/1994-16-6/p1811-liskov/ .

[19] Luis Mandel and Marìa Victoria Cengarle. On the expressive power of ocl. World
Congress on Formal Methods (FM’99, Proceedings),, September 1999. http://www.
pst.informatik.uni-muenchen.de/personen/cengarle/ocl.ps .

[20] Luis Mandel and Marìa Victoria Cengarle. A formal semantics for ocl 1.4. In
C. Kobryn M. Gogolla, editor, UML 2001 — The Unified Modeling Language. Mode-
ling Languages, Concepts, and Tools, volume 2185 of LNCS, pages 91–. Springer, To-
rontoo, Canada, October 2001. http://link.springer.de/link/service/
series/0558/tocs/t2185.htm .

[21] P. D. Mosses. Denotational Semantics, chapter 11. In van Leeuwen [31], first edition,
1990.

[22] Object Constraint Language Specification, chapter 6. In Object Management Group
[23], February 2001. ftp://ftp.omg.org/pub/docs/ad/01-02-13.pdfl .
Version 1.4.

[23] OMG Unified Modeling Language Specification (draft). February 2001. ftp://
ftp.omg.org/pub/docs/ad/01-02-13.pdfl . Version 1.4.

[24] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining
specification, proof checking, and model checking. In Rajeev Alur and Thomas A.
Henzinger, editors, Computer-Aided Verification, CAV ’96, volume 1102 of Lecture
Notes in Computer Science, pages 411–414. Springer-Verlag, New Brunswick, NJ,
July/August 1996. http://pvs.csl.sri.com .

[25] Lawrence C. Paulson. Isabelle: a generic theorem prover, volume 828. Springer-
Verlag Inc., New York, NY, USA, 1994. ISBN 3-540-58244-4, 0-387-58244-4, xvii +
321 pages.

[26] Lawrence C. Paulson. A fixedpoint approach to (co)inductive and (co)datatype de-
finitions. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language, and Inter-
action: Essays in Honour of Robin Milner, pages 187–211. MIT Press, 2000. http://
www.cl.cam.ac.uk/users/lcp/papers/Sets/milner-ind-defs.pdf .

[27] Mark Richters and Martin Gogolla. On Formalizing the UML Object Constraint
Language OCL. In Tok-Wang Ling, Sudha Ram, and Mong Li Lee, editors,
Proc. 17th Int. Conf. Conceptual Modeling (ER’98), pages 449–464. Springer, Berlin,
LNCS 1507, 1998. ISBN ISBN 3-540-65189-6. http://www.db.informatik.
uni-bremen.de/publications/Richters_1998_ER.ps.gz .

33

http://www.acm.org/pubs/citations/journals/toplas/1994-16-6/p1811-liskov/
http://www.acm.org/pubs/citations/journals/toplas/1994-16-6/p1811-liskov/
http://www.pst.informatik.uni-muenchen.de/personen/cengarle/ocl.ps
http://www.pst.informatik.uni-muenchen.de/personen/cengarle/ocl.ps
http://link.springer.de/link/service/series/0558/tocs/t2185.htm
http://link.springer.de/link/service/series/0558/tocs/t2185.htm
ftp://ftp.omg.org/pub/docs/ad/01-02-13.pdfl
ftp://ftp.omg.org/pub/docs/ad/01-02-13.pdfl
ftp://ftp.omg.org/pub/docs/ad/01-02-13.pdfl
http://pvs.csl.sri.com
http://www.cl.cam.ac.uk/users/lcp/papers/Sets/milner-ind-defs.pdf
http://www.cl.cam.ac.uk/users/lcp/papers/Sets/milner-ind-defs.pdf
http://www.db.informatik.uni-bremen.de/publications/Richters_1998_ER.ps.gz
http://www.db.informatik.uni-bremen.de/publications/Richters_1998_ER.ps.gz

Bibliography

[28] Mark Richters and Martin Gogolla. A Metamodel for OCL. In Robert Fran-
ce and Bernhard Rumpe, editors, Proc. 2nd Int. Conf. Unified Modeling Langua-
ge (UML’99), pages 156–171. Springer, Berlin, LNCS 1723, 1999. ISBN ISBN 3-540-
66712-1. http://www.db.informatik.uni-bremen.de/publications/
Richters_1999_UML.ps.gz .

[29] Mark Richters and Martin Gogolla. On the Need for a Precise OCL Semanti-
cs. In Robert France, Bernhard Rumpe, Brian Henderson-Sellers, Jean-Michel
Bruel, and Ana Moreira, editors, Proc. OOPSLA Workshop “Rigorous Modeling
and Analysis with the UML: Challenges and Limitations”. Colorado State Universi-
ty, Fort Collins, Colorado, 1999. http://www.db.informatik.uni-bremen.
de/publications/Richters_1999_OOPSLA-WS.ps.gz .

[30] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series
in Computer Science, second edition, 1992. ISBN 013-978529-9. http://spivey.
oriel.ox.ac.uk/~mike/zrm/ .

[31] Jan van Leeuwen, editor. Handbook of Theoretical Computer Science - Volume B: Formal
Models and Semantics. Elsevier, Amsterdam, first edition, 1990. ISBN 0-444-88075-5.

[32] Mandana Vaziri and Daniel Jackson. Some shortcomings of ocl, the object con-
straint language of uml, December 1999. Response to Object Management Group’s
Request for Information on UML 2.0.

[33] Jos Warmer and Anneke Kleppe. The Object Contraint Language: Precise Modelling
with UML. Addison-Wesley Longman, Inc., Reading, MA, USA, 1999. ISBN 0-201-
37940-6. http://www.klasse.nl/ocl-boek/intro.htm . This book covers
only OCL 1.1.

[34] Jos Warmer, Anneke Kleppe, Tony Clark, Anders Ivner, Jonas Högström, Martin
Gogolla, Mark Richters, Heinrich Hussmann, Steffen Zschaler, Simon Johnston,
David S. Frankel, and Conrad Bock. Response to the UML 2.0 OCL RfP. Technical
report, August 2001.

[35] Ralf Wiebicke. Utility Support for Checking OCL Business Rules in Java Programs.
dilploma thesis, Technische Universität Dresden, December 2000. http://rw7.
de/ralf/diplom00/ocl-java.ps .

[36] Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press, Cam-
bridge, Massachusetts, 1993. ISBN 0-262-23169-7, 384 pages.

[37] Jim Woodock and Jim Davies. Using Z. Prentice Hall, 1996. ISBN 0-13-948472-8.
http://softeng.comlab.ox.ac.uk/usingz/ .

34

http://www.db.informatik.uni-bremen.de/publications/Richters_1999_UML.ps.gz
http://www.db.informatik.uni-bremen.de/publications/Richters_1999_UML.ps.gz
http://www.db.informatik.uni-bremen.de/publications/Richters_1999_OOPSLA-WS.ps.gz
http://www.db.informatik.uni-bremen.de/publications/Richters_1999_OOPSLA-WS.ps.gz
http://spivey.oriel.ox.ac.uk/~mike/zrm/
http://spivey.oriel.ox.ac.uk/~mike/zrm/
http://www.klasse.nl/ocl-boek/intro.htm
http://rw7.de/ralf/diplom00/ocl-java.ps
http://rw7.de/ralf/diplom00/ocl-java.ps
http://softeng.comlab.ox.ac.uk/usingz/

	Contents
	1 Introduction
	2 A Brief Informal Introduction to UML/OCL
	2.1 A Simple Example
	2.2 Where to Use OCL in UML Diagrams

	3 Approaches for Formalizing the OCL
	4 Semantic Concerns about UML/OCL
	4.1 On Object Models and Class Hierarchies
	4.1.1 Dynamically Extensible Class Hierarchies
	4.1.2 Access Modifiers: Visibilities
	4.1.3 Finalization of Class Hierarchies
	4.1.4 Smashing of Collections
	4.1.5 Flattening of Collection
	4.1.6 Navigations over Associations with Multiplicity Zero or One
	4.1.7 Invariants
	4.1.8 The role of self in the OCL standard
	4.1.9 Object-IDs (self) and identity
	4.1.10 The OCL type system
	4.1.11 OCL Formulae and Inheritance: Non-monotonic Extensions

	4.2 On System States and System State Relations
	4.2.1 The Role of @pre

	4.3 On Operations and Methods
	4.3.1 Strictness
	4.3.2 Recursion
	4.3.3 Definition of collection->sum():T

	4.4 The OCL logic
	4.4.1 Discussion of allInstances()
	4.4.2 Context Declaration

	5 Discussion: Concepts of OCL and their Interaction
	5.1 Discussion: OCL 1.4 vs. the Proposals for OCL 2.0
	5.2 Summary
	5.3 What Concepts are Expensive in HOL-OCL

	Bibliography

