
Technical Report 157

Checking OCL Constraints in Distributed
Component Based Systems

Achim D. Brucker Burkhart Wolff

July 2001

Institut für Informatik
Albert–Ludwigs–Universität Freiburg

Georges-Köhler-Allee 52
D-79110 Freiburg, Germany

Tel: +49 (0)761 203-8240, Fax: +49 (0)761 203-8242

{brucker,wolff}@informatik.uni-freiburg.de
http://www.informatik.uni-freiburg.de/~{brucker,wolff}

http://www.informatik.uni-freiburg.de/~brucker
http://www.informatik.uni-freiburg.de/~wolff

Abstract

We present a pragmatic approach using formal methods to increase the quality of dis-
tributed component based systems: Based on UML class diagrams annotated with OCL
constraints, code for runtime checking of components in J2EE/EJB is automatically
generated. Thus, a UML–model for a component can be used in a black–box test for
the component. Further we introduce different design patterns for EJBs, which are mo-
tivated by different levels of abstraction, and show that these patterns work smoothly
together with our OCL constraint checking.

A prototypic implementation of the code generator, supporting our design patterns
with OCL support, has been integrated into a commercial software development tool1.

Keywords: OCL, Constraint checking, EJB, J2EE, Design by Contract, Design Pat-
tern, Distributed Systems

1This work was partially funded by Interactive Objects Software GmbH (www.io-software.com) in a
collaboration with the Software Engineering Group at the University Freiburg.

http://www.io-software.com
www.io-software.com
http://www.informatik.uni-freiburg.de/~softech

Contents

1 Introduction 7

2 A Short Introduction to UML and OCL 9

2.1 The Unified Modeling Language . 9
2.2 The Object Constraint Language . 10

3 A Short Introduction to Distributed Systems Using J2EE/EJB 13

3.1 The Java Enterprise Edition . 13
3.2 Enterprise Java Beans . 15

4 Concepts of an EJB–Specification 17

4.1 General Principles . 17
4.1.1 The Syntactical Side . 17
4.1.2 The Semantical Side . 18

5 Design Patterns for Enterprise Java Beans 21

5.1 The CompactBean Design Pattern . 21
5.2 The ExpandedBeanHome Design Pattern 21
5.3 The ExpandedBeanRemote Design Pattern 23

6 Tool Integration 25

6.1 The General Structure of a CASE Tool . 25
6.2 Support for our Design Patterns . 25

6.2.1 Supporting the CompactBean Pattern 25
6.2.2 Supporting the ExpandedBeanHome Pattern 27
6.2.3 Supporting the ExpandedBeanRemote Pattern 28

7 Technological Details 31

7.1 Checking OCL Constraints using EJBs . 31
7.2 Using Different Distributed Component Technologies 32

8 Conclusion and Future Work 33

5

Contents

Bibliography 35

Glossary 37

6

1 Introduction

Developing state of the art software systems requires powerful software engineering tools
that support the development process. In many development process models there is
a common understanding that a process should consist of requirement analysis, specifi-
cation, implementation and validation. At present, in industry and academia different
emphasis is put on tool support; while in industry, the effective production of large
software systems is a major concern, in academia correctness and quality of software
systems is the predominant research goal.

Following the needs of industrial CASE tool supported development, the Unified
Modeling Language (UML) [15] was proposed by the CASE tool industry, leading to a
standardization process under the direction of the Object Management Group (OMG).
UML is a graphical notation for object oriented data modeling and process modeling. In
particular UML offers class diagrams for the description of the static system structure.
In an industrial context, the generation of code stubs, which is possible out of an class
diagram is already an substantial achievement. This stub generation reduces the amount
of code that has to be written, and thus the development time, by a large amount.

On the academic side, research was mainly focused on the validation and verification
part of the software development process. Thus, formal specification languages, having
their roots in mathematical logic have been proposed. Prominent examples of such
languages are Z [17] and VDM [10] which provide powerful techniques for refinement
and validation, e.g. test data generation or even verification.

There are several reasons, that formal methods are gaining more and more attention
in industry, e.g. caused by the increasing use of software in security and safety critical
areas like e-commerce or life–saving systems (e.g. airbag systems). Also the customer
protection is more and more improved through stricter laws about product liability.
Among other things, these are the reasons for an increased interest, in industry and
academia, in testing and verification techniques. Driven by this need, new specification
languages have been proposed, that attempt to close the gap between industry and
academia. One of these languages proposals is the Object Constraint Language (OCL),
a textual extension of the UML, promising the vision of easy use, object-orientation and
the adaption of analysis methods well known from formal methods. There is already
some tool support for OCL, for example the type checker and runtime constraint checker
developed at the university Dresden [5].

7

1 Introduction

On the technological front a new challenge appeared some years ago in the shape of
component based systems. The overall idea of this approach is to partition the system in
several parts (components), that are language and machine independent and can be con-
nected via a network. The intensive reuse of code in form of components is accepted in
research and industry as an way for speeding up development and enabling the organiza-
tion of systems with increasing size. The increasing complexity of such systems enlarges
the demand for quality assurance and — as a prerequisite — the need for specification
and validation. Thus, the acceptance of component technologies, often called middle-
ware, like J2EE/EJB from Sun Microsystems or the Common Object Request Broker
Architecture (CORBA) [12], from the Object Management Group (OMG) is opening a
new field for formal modeling techniques.

In this report we present an application of formal specification, in particular we show
how to generate dynamic constraint checks from preconditions, postconditions, and class
invariants specified in the context of UML class diagrams. Our main contribution is
to provide concepts and design patterns the specification of distributed components.
We integrate runtime constraint checking code generation techniques using UML/OCL
based specifications of distributed J2EE/EJB components. Our implementation in a
commercial CASE tool enables black–box testing of components and provides thus the
technical basis for more advanced approaches such as systematic test case generation or
formal refinement proofs.

The rest of this paper is structured as follows: First we will give an introduction to
the used specification formalisms proposed by the OMG: the Unified Modeling Language
and the Object Constraint Language. In the following section we give an overview of
distributed systems in general and the J2EE architecture in particular. On this basis we
present in section 4 a new level of abstraction for describing a distributed component.
We will show, how this abstraction facilitates testing of distributed systems. Further we
show, that this abstraction also is easing the design of such system, by introducing three
different modeling styles, similar to design patterns [7]. In Section 6 we discuss some
technology–details about CASE tool support for our our design patterns. Further we
will outline some specialties of J2EE/EJB and their impact on specification and runtime
checking. Finally we give a comparison with CORBA.

8

2 A Short Introduction to UML and OCL

2.1 The Unified Modeling Language

The Unified Modeling Language (UML) [15, 16] is a standard from the Object Manage-
ment Group (OMG), proposed as a semi-formal specification language for object oriented
specification and design. The Object Constraint Language (OCL) [3, 19] is part of the
UML standard since version 1.1. OCL is an attempt to extend the UML by a more
formal specification language. UML itself contains several different diagram types, for
example state-chart diagrams, collaboration diagrams and many others, whereas OCL is
a textual specification language, which is suited for refinement of the UML diagrams by
writing constraints on them. We will discuss some details of OCL in the next section.

One of the more important diagram types of the UML is the class diagram show-
ing the static structure of the software design; its main purpose is to illustrate the
dependencies (any kind of associations, inheritance. . .) of classifiers (classes, interfaces,
templates. . .) used in the system. In this paper will concentrate our effort on this di-
agram type. In the context of class diagrams, OCL is used to write class invariants,
preconditions and postconditions of methods.

In figure 2.1 an example of an UML class diagram, annotated with OCL constraint
is given. The class diagram shows a simple banking scenario. The functional behavior of
the methods makeDeposit(), belonging to the class Account, is given by the specification
of its precondition and postcondition. This class has several methods and one sub-class
CreditAccount which is inherited from Account. The purpose of the class CreditAc-
count is introducing a new account type in our system, which allows to make debts only
up to a specific credit limit. Further we have a class Customer with some attributes
and methods. We also model a relation between Account and Customer, in UML such
a relation is called an association: Every instance of the class. Account “belongs to”
an instance of class Customer. In detail, the association belongsTo requires, that every
instance of class Account is associated with exactly one instance of class Customer. It
characterizes that every account has a unique owner. In the other direction, the associ-
ation models that an instance of class Customer is related to a set of instances of class
Account, the size of this set is limited to number between one and 99. In this aspect,
the association characterizes, that a customer must have at least one account and no
more than 99 accounts. Being of type Account means in this context to be an instance

9

2 A Short Introduction to UML and OCL

Figure 2.1 Modeling a simple bank scenario with UML

Direction

Direction

1

owner accounts

belongsTo

1..99

+ getCredit():Real
+ setCredit(amount:Real):Boolean

− credit:Real

inv:
balance >= credit

context Account::makeDeposit(amount:Real):Boolean

post: balance = balance@pre + amount
pre: amount >= 0

- Identification:String

+ getAddress():String
+ getIdentification():String

+ setAddress(address:Real)

- address:String

Customer

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real

+ makeWithdrawal(amount:Real):Boolean

Account

- balance:Real

CreditAccount

of class Account or class CreditAccount. The range limits for association are called
multiplicities in the Unified Modeling Language.

2.2 The Object Constraint Language

The Object Constraint Language (OCL) is textual extension of the UML based on math-
ematical logic, and thus OCL is in the tradition of other data-oriented formal specifi-
cation languages like Z [1, 17, 21] or VDM [10]. OCL is a side-effect free classical logic
with equality and undefinedness that allows to specify constraints on graphs of object
instances.

In the UML (and also in Java [11]) an interface is only an implementation obliga-
tion, that describes the methods a class has to provide. An interface can not describe
any attributes. For specifying methods on the interface, there is a strong need for hav-
ing access to attributes (the state) of classes. To solve this gap between the need of
specification and the possibilities of interfaces we generate accessor methods for every
attribute, taking its visibility (private, public, protected) into account. This can be done
automatically, e.g. for every attribute a:type a method GetA():type is provided. As we
see later, this solve also a technical problem in the area of runtime checking of invariants.

In the context of class diagrams, the Unified Modeling Language standard [15], allows

10

2.2 The Object Constraint Language

for the specifications of invariants, precondition and postconditions for every classifier
used. We restrict ourself to the following constraints:

Invariants for classifiers. Following the OCL standard [14, page 6-52], these invariants
must hold for all instances of this classifiers at any time. In practice, this seems to
be to strict, so we suggest the following semantics in the context of class diagrams:

• If the invariant belongs to a class or an attribute of this class, the invariant
should hold before and after any method invocation of the corresponding
class. We will call these invariants class invariants. A class–invariant can be
expressed as a constraint, that is part of the precondition and postconditions
of any method1 of that class.

• If the invariant belongs to an specific method, the invariant should hold before
and after the innovation of this method. We will call these invariants method
invariants. In general method invariants describe the invariant part during
execution of a specific method. This invariant is more special and often more
strict than the class invariant. A method invariant can be expressed as a
constraint that is part of the precondition and postcondition of that method.

• If the invariant belongs to an association we convert this invariant to a class-
invariant at all opposite ends. For more details, see the discussion at the end
of this section.

We assume that we never access class attributes directly, instead we always use
accessor methods. This is necessary since controlling direct access to attributes is
technically not feasible. In contrary it is technically simple to check any kind of
constraint directly before or after a method call, e.g. through wrapping. Further-
more, this is no restriction when using Enterprise Java Beans, because we always
have to communicate with the bean implementation through a remote interface
or home interface. Because an interface cannot have any attributes, we have to
provide the accessor methods anyway. See section 3.2 for a detailed discussion of
these interfaces.

Preconditions for methods are describing the requirements on the program state before
method invocation.

Postconditions for methods are describing the requirements on the state after method
invocation, provided the precondition was fulfilled on the state before the invoca-
tion.

1An special exception must be made for the constructor and destructor of classes, e.g. the constraint
has only to be part of the postcondition of the constructor and the precondition of the destructor,
see section 7.1 details.

11

2 A Short Introduction to UML and OCL

Further, the concept of associations with multiplicities in UML can be understood as
abbreviation for relations with certain constraints, which can be expressed in OCL. It is
easy to see, that the multiplicity expressed at the end of the association can be converted
directly to an invariant at the other ends. For example for the association with the roles
owner and accounts in the class diagram shown in figure 2.1 can be transformed to the
following OCL formulae:

context Customer inv : (1 <= s e l f . accounts . s ize ())
and (s e l f . accounts . s ize () <= 99)

context Account inv : (1 = s e l f . owner . s ize ())

Using invariants for associations, we can also describe if such a relation is partial, injec-
tive, surjective or bijective. In our example we would like to express that the associations
belongsTo is surjective:

context Customer inv : s e l f . accounts . f o r a l l (a | a . owner = s e l f)
context Account inv : s e l f . owner . accounts−>includes (s e l f)

This guarantees that every account a customer controls (e.g. is in the set accounts) is
owned by this customer.

12

3 A Short Introduction to Distributed
Systems Using J2EE/EJB

3.1 The Java Enterprise Edition

Distribution is a key issue in modern system design. Almost every system using the
Internet can be seen as a distributed system consisting of one or more servers and
clients. In typical applications, the servers provide information or data management,
while the clients collect user data and display results.

In the last years several middleware component standards for designing and imple-
menting client server architectures were introduced. The most well known of these are
the Common Object Request Broker Architecture (CORBA) from the Object Manage-
ment Group (OMG) and the J2EE/EJB architecture from Sun Microsystems.

At the moment, our approach only considers the J2EE (Java 2 Platform, Enterprise
Edition) architecture, which is widely used in the area of e-commerce. The J2EE based
middleware is especially designed as an extension of the “normal” development kit of
the Java language [11]. The J2EE architecture provides a wealth of services, like the
Java Naming and Directory Interface (JNDI), Java Transaction Service (JTS) or the
EJB container. The latter represent an integral part of the J2EE model and is discussed
in the next section.

J2EE/EJB follows strictly the thin client approach; this means, that the main pur-
pose of the client is presenting the results and all of the computing work is done on
the server side. In general, J2EE proposes the classical three–tier client server archi-
tecture. The system is divided in a thin client side presentation layer (first tier) and a
server side consisting of two tiers, see figure 3.1. In detail the server consist of a server
side presentation layer which does the communication with the clients, the server side
business logic layer (both layers constitute the second tier) in which the business model
is implemented, and the information management and storage system, called enterprise
information system (third tier). In this paper, we will concentrate on the server side, in
particular the implementation of the business model (server side business logic layer).

13

3 A Short Introduction to Distributed Systems Using J2EE/EJB

Figure 3.1 The J2EE application model.

client
implementation

e.g.
applets

or
www-browser

server
presentation

implementation

e.g.
www-sever
java servlets
java server

pages EJB

EJB

server
business logic

implementation

e.g. EJBs

server data
management

e.g.
database
systems

system
layer

enterprise informationpresentation
layer presentation

layer
business logic

layer

EJB container

first tier second tier third tier

serverclient

Figure 3.2 The basic organization of an EJB container.

M
et

ho
d

EJB Client

Enterprise
Java Bean

EJB Server

EJB Container

C
on

ta
in

er

EJB
Method

14

3.2 Enterprise Java Beans

3.2 Enterprise Java Beans

The distributed component in the J2EE architecture is called Enterprise Java Bean
(EJB). The life cycle of an EJB is managed by an EJB container, which is the main part
of the server side business logic layer.

The typical architecture of an EJB container is shown in figure 3.2; it consists of the
EJB server on which one or several EJB containers are running. An EJB container is
a runtime environment providing infrastructure for one or many Enterprise Java Beans.
The EJB client is only able to communicate with one or more EJB containers; the
client is not able to address an Enterprise Java Bean directly. The main task of the
EJB container is to delegate, through special interfaces, the request of a client to the
corresponding EJB. An Enterprise Java Bean consists mainly of:

remote interface: In this interface the business-methods are grouped together, most
of the communication with the clients is done using this interface.
It is recommended to call this interface after its use, e.g. Account.

home interface: In this interface the functionality for the management of the beans
life-cycle is provided. Often the term finder methods and factory
methods is used, to refer to the methods handling the life-cycle man-
agement. These methods are an integral part of the home interface.
It is recommended by the EJB standard to use the postfix Home to
mark the home interface, e.g. AccountHome.

bean implementation: This class implements the home interface and the remote in-
terface. In principle, this is the core of the EJB. It is recommended
to use the postfix EJB (using the postfix Bean is also usual) to name
the implementation, e.g. AccountEJB.

Summarizing, the bean implementation is a refinement of exactly one home interface
and one remote interface.

As every normal Java class, the bean–implementation can implement a lot more
interfaces than the remote-interface and home-interface. The decision, which of these
interfaces are used as remote–interface (or home–interface) is described in the deploy-
ment descriptor and is not fixed during compilation. Instead, this binding is done in
a special step (called deployment) before installing the EJB in its container (runtime
environment).

15

3 A Short Introduction to Distributed Systems Using J2EE/EJB

16

4 Concepts of an EJB–Specification

Based on existing techniques to handle individual OCL formulae, we will observe in the
following sections that the semantic relations between collections of OCL constraints
annotated to parts of an EJB can be described as a data refinement. This observation
leads to the development of a code generation scheme for constraint checking code of
an individual EJB. In the next section, we will introduce the concept of an “extended
Bean”, as a kind of design pattern, that offers the potential to extend this scheme to
systems with n to m relations between home and remote interfaces on the one hand
and EJB implementations on the other. This kind of systems is required by engineering
practice.

4.1 General Principles

The original version of EJBs does not provide a concept of a “specification” of an EJB.
Thus, adding logical specification concepts to existing EJB technology needs some adap-
tion, both on the syntactical (what are the right signatures of formulae drawn from EJB
interfaces?) and on the semantical side (do the checks mirror the intended semantics?).
For an EJB that consists of exactly one home interface H, one remote interface R and,
one bean–implementation I, we define its abstract view of the signatures as the “union”
of H and R. The abstract view represents an interface describing all methods accessible
by the client. Further we define the concrete view (see figure 4.1) of the EJB by its bean
implementation (together with its signature consisting of its class declaration). The
bean implementation may have further variables and methods with private or protected
visibility, hence the concrete view is much more detailed than the abstract view defined
by (H,R).

4.1.1 The Syntactical Side

With respect to the syntactical side, we propose to join the signature of H and R
and enrich it by some accessor functions derived from I. More precisely, all side–effect
free functions (called query–functions in the UML1) of (H,R) build together with the
canonical accessor functions for the public variables of I the signature of the abstract

1These functions have the UML attribute isQuery set to true.

17

4 Concepts of an EJB–Specification

Figure 4.1 Abstract view and concrete view

context Account::ejbPostCreate()
pre: true

post: getBalance() = 0

context AccountRemote
inv: getBalance() > 0

post: self.getBalance() = self@pre.getBalance() + amount

context AccountRemote::makeDeposit(amount:Real):Boolean
pre: amount >= 0

context AccountEJB
inv: balance > 5

concrete view

abstract view

+ ejbPostCreate()

Account

�HomeInterface�

life-cycle management

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real

+ makeWithdrawal(amount:Real):Boolean

AccountRemote

�RemoteInterface�

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real

+ makeWithdrawal(amount:Real):Boolean

AccountEJB

+ balance:Real

�BeanImplementation�

+ ejbPostCreate()

�realize��realize�

view. As an example for a canonical accessor function, consider getBalance() in figure 4.1,
which is a derived canonical accessor function for the public attribute balance of I; recall
that accessor methods of the public attributes are special query–functions. Our proposal
is motivated by the fact that the H and R are not independent from a specification point
of view: For example, for specifying initial values of attributes such as balance we have
to write a formula as postcondition of the function that creates the EJB. This “create–
function” (e.g. ejbPostCreate(), see section 7.1) clearly belongs to the home interface
(where the life–cycle is described) whereas the accessor method for the public attributes
belongs to the remote interface. This shows, that the partitioning of the interface of
an EJB, as stated by the J2EE standard [18], can not uphold in a specification. But
considering the properties of the underlying middle–ware architecture, we can exploit
the fact, that the J2EE/EJB standard guarantees the disjointness of the signatures H
and R. This justifies our method to construct the signature of the interface.

4.1.2 The Semantical Side

With respect to the semantical side, we already observed that the organization of EJBs
suggests the distinction of an abstract view “implemented by” a more detailed concrete
view. The latter may provide private variables, more methods, stronger invariants, and
weaker precondition and stronger postconditions as the former one. In our example in

18

4.1 General Principles

figure 4.1, the concrete view invariant requires balance to be larger than 5, while the ab-
stract view relaxes this condition to balance > 0. In the community of formal methods,
the relation between abstract and more concrete views on a system and their semantic
underpinning is well–known under the term refinement. Various refinement notions have
been proposed (As for Z, see [21] for example). In our setting, we chose to use only a
very simple data refinement notion which requires that any formula describing a post-
condition of the abstract view is implied by the formulae describing the corresponding
postcondition of the concrete view. Also the preconditions of the concrete view have to
be implied by the preconditions of the abstract view2. Of course, following the approach
taken in this paper, we do not attempt to formally prove such a relationship. Rather, we
will generate code for runtime–checking the formulae (constraints) both on the abstract
and the concrete view. Thus,

1. if only violations against abstract view constraints (but not concrete ones) occur,
we can conclude that the abstract view is not a refinement (as it should be),

2. if only violations against the concrete view constraints occur (but not the abstract
ones) the specification of I is too tight for its purpose.

On this basis, coding constraint checks is straight forward: formulae of the abstract
and concrete view are converted to check code that is executed at the entry and/or
the exit of the method bodies in the implementation; preconditions only at the entries,
postconditions only at the exits, and invariants at both3. An obvious exception is made
when entering or leaving object creation or destruction methods. Note that our coding
scheme results also in constraint checks for internal (e.g. recursive) method invocations;
a naive coding scheme based on wrappers of an interface would behave differently.

Recalling the two widely accepted testing technologies: White–Box–Testing and
Black–Box–Testing, we follow the Black–Box scenario. This provides two posibilities
for generationg testing code, for the abstract view (H, I) or for the concrete view I.

For an implementor, the latter technique is probably the preferable one, while for a
developer of a piece of software build of EJB based components (which could be only
available as binary), the former technique is the preferable. Of course, if the code of the
implementation is available, the code generator can offer mixed strategies by conjoining
the constraints of both views.

2Keep the direction of the implication for preconditions and postconditions in mind!
3In the UML standard, it is required to check invariants “at any time”; we deliberately relaxed this

requirement for both practical and conceptual reasons and treat invariants more like “loop–invariants”
allowing intermediate states inside an implementation violating the invariant.

19

4 Concepts of an EJB–Specification

20

5 Design Patterns for Enterprise Java Beans

While modeling distributed systems using J2EE/EJB, there often arises the need for a
more detailed model of the internal structure of an EJB, as prescribed by the EJB stan-
dard [18]. Driven by this need, we suggest to extend an EJB by additional information
to an extended EJB pattern. In a CASE tool, these extended EJBs form the basis of a
“technological mapping”, i.e. a mapping of a pattern to a specific EJB implementation.

For example, in an extended EJB we will allow more than one bean implementation
or more remote interfaces and show how to handle constraints during the mapping to
standard EJB technology. Because an EJB is represented by a (H,R, I) triple, this boils
down to the question of constructing (H,R, I) triples from extended EJBs.

In the following sections, we will discuss three different design patterns substantiating
the idea of extended EJBs.

5.1 The CompactBean Design Pattern

The CompactBean design pattern (see figure 5.1) is directly motivated by the highest
possible level of abstraction of an EJB: the abstract view. This pattern allows an easy
way to develop EJB applications, by abstracting away all technical details.

Using the abstract view (i.e. the pair (H,R)) we can directly refer to the discussion
of the last section. In this pattern, there is no possibility for the designer to annotate
the interface of I with OCL formulae. Therefore we can only check the abstract view at
runtime by generating constraint checking code directly into the implementation.

5.2 The ExpandedBeanHome Design Pattern

Motivated by the need to provide technologically optimized (different) bean implemen-
tations (and thus home interfaces) of the same remote interface, we suggest the Expand-
edBeanHome pattern (see figure 5.2 for details). Its necessity occurs, for example, when
an extended bean should provide an optimized implementation for different runtime en-
vironments. Thus the CompactBean pattern allows the specification of an extended EJB
composed of several pairs (Hj , Ij) and a unique remote interface R that is implemented
by every bean implementation of this extended bean.

21

5 Design Patterns for Enterprise Java Beans

Figure 5.1 The CompactBean Design Pattern

context AccountEJB
inv: getBalance() > 0

post: balance = balance@pre + amount

context AccountEJB::makeDeposit(amount:Real):Boolean
pre: amount >= 0

context Account
inv: balance > 0

post: balance = balance@pre + amount

context Account::makeDeposit(amount:Real):Boolean
pre: amount >= 0

abstract view

CASE tool representation

technology mapping

concrete view

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real

+ makeWithdrawal(amount:Real):Boolean

AccountEJB

�BeanImplementation�

+ balance:Real

+ makeDeposit(amount:Real):Boolean
+ makeWithdrawal(amount:Real):Boolean

Account

�CompactBean�

+ balance:Real

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real

+ makeWithdrawal(amount:Real):Boolean

Account

�RemoteInterface�

Account

�HomeInterface�

life-cycle management

�realize��realize�

22

5.3 The ExpandedBeanRemote Design Pattern

Figure 5.2 The ExpandedBeanHome pattern: Several bean implementations realizing
the same remote interface

+ getBalance():Real
+ makeWithdrawal(amount:Real)
+ makeDeposit(amount:Real)

BankAccountCustomer
�RemoteInterface��HomeInterface�

BankAccount01Home

and

Finder-

Factory – methods

BankAccount01EJB
�BeanImplementation�

- balance: Real

+ getBalance():Real
+ makeWithdrawal(amount:Real)
+ makeDeposit(amount:Real)

+ setBalance(amount:Real)

�HomeInterface�

BankAccount01Home

and

Finder-

Factory – methods

BankAccount02EJB
�BeanImplementation�

- balance: Real

+ getBalance():Real
+ makeWithdrawal(amount:Real)
+ makeDeposit(amount:Real)

+ setBalance(amount:Real)

Note:

context: makeWithdrawal(amount:Real)

pre: (amount > 0) and (amount <= 200.0)
post: sel.getBalance()=self@pre.getBalance()-amount

�realize��realize� �realize�

In this scenario the partitioning of the extended EJB into (H,R, I) triples is straight-
forward: We extend every pair (Hj , Ij) by the same remote interface R. For every such
triple an EJB is generated, thus the number of EJBs is equal to the number of home
interfaces (and thus bean implementations).

In the ExpandedBeanHome setting, the designer is able to specify OCL formulae
on several implementations, thus we have to check for every triple (H,Rj , Ij) that Ij is
a refinement of (Hj , R). We implement this by embedding runtime checking code into
every bean implementation.

5.3 The ExpandedBeanRemote Design Pattern

The ExpandedBeanRemote pattern is based on the idea of providing different ways of
access to the same implementation (see figure 5.3. This can be useful for modeling
security related controls. For example an EJB can implement a (unique) remote interface
for every role it is interacting with. In this scenario the designer specifies a unique pair
(H, I) and several remote interfaces Rj . We build the (H,Rj , I) triple by combining every
remote interface Rj with the pair (H, I). For every such triple an EJB is generated, thus
the number of EJBs equals the number of remote interfaces.

In the ExpandedBeanRemote setting, the designer is able to specify OCL formulae

23

5 Design Patterns for Enterprise Java Beans

Figure 5.3 Several remote interfaces implemented by the same bean implementation

BankAccountEJB
�BeanImplementation�

- balance: Real

+ setBalance(amount:Real)
+ getBalance():Real
+ makeWithdrawal(amount:Real)
+ makeDeposit(amount:Real)

�HomeInterface�

BankAccountHome

and

Finder-

Factory – methods

post: self.getBalance()=self@pre.getBalance()-amount
pre: (amount > 0) and (amount <= 200.0)
context: makeWithdrawal(amount:Real)

Note:

+ getBalance():Real
+ makeWithdrawal(amount:Real)
+ makeDeposit(amount:Real)

+ setBalance(amount:Real)

BankAccountClerk
�RemoteInterface�

Note:

context: makeWithdrawal(amount:Real)
pre: amount > 0
post: balance=balance@pre-amount

+ getBalance():Real
+ makeWithdrawal(amount:Real)
+ makeDeposit(amount:Real)

�RemoteInterface�

BankAccountCustomer

�realize� �realize�

�realize�

on the bean implementations, thus we have to check for every triple (H,Rj , I) that I is
a refinement of (H,Rj). We implement this by embedding runtime checking code into
every bean implementation.

24

6 Tool Integration

For standard Java programs, there is already an OCL type checker [6] and constraint
checking code generator [20] available, developed at the University of Dresden. Based
on these tools, we prototypically integrated OCL support for the CompactBean ap-
proach into the commercial CASE tool ArcStyler [9]. Beside the OCL specific details
we discussed in the last section, we present in this section some general strategies for
integrating our design patterns for EJBs smoothly into a CASE tool environment.

6.1 The General Structure of a CASE Tool

It is convenient to broaden the scope of our discussion from the issue of code generation
to its integration into the basic framework of a conventional CASE tool, see figure 6.1
for an overview. We have a repository R, that is able to store any kind of UML objects
and diagrams. Whereas in the following discussion we only use class diagrams. For
data exchange reasons, we also haven an export/import mechanism for files in the XML
Metadata Interchange (XMI) [13] format, an XML based format for representing UML
diagrams which is also defined in the UML specification [15]. We have an partial bijective
function import : XMI → R which imports the content of the XMI file in our repository,
whereas the inverse function import−1 exports our repository R in the XMI format.
Moreover, we need to display the content of our repository, for example during editing, on
some presentation data D. This is done by a partial function view : R → D. Further, we
need some function update : D → R for updating the repository with the changes made
in the displayed diagram. The code generation, which also maps our design patterns to
a concrete technology, is implemented by some partial function code : R → C that maps
the content of the repository to Java code based on J2EE.

6.2 Support for our Design Patterns

6.2.1 Supporting the CompactBean Pattern

For supporting the CompactBean design pattern within an generic CASE tool, we have
to consider the following issues:

• For representing a whole EJB, we introduce the stereotype �CompactBean�.

25

6 Tool Integration

Figure 6.1 The general structure of a CASE tool.

inv:
balance >= credit

inv:
balance >= 0

+ getCredit():Real

− credit:Real

+ setCredit(amount:Real):Boolean

- balance:Real

+ makeDeposit(amount:Real):Boolean

Account

+ getBalance():Real

+ makeWithdrawal(amount:Real):Boolean

CreditAccount

view : R → D update : R → D

D

”UML repository´´

R

import : X → R

XMI export

X

code : R → C

Java-code
for

J2EE/EJB

C

• The classifier with stereotype �CompactBean� contains all attributes and member-
functions that are necessary to implement the business model.

• There is no need to model the life cycle management explicitly, but it is possible to
do so, by introducing finder– and factory methods, following the naming standards
prescribed by the Enterprise Java Bean specification [18].

Using the CompactBean pattern, the details of the EJB, namely its remote interface,
home interface and the bean implementation are abstracted away. This mapping from
our abstract representation to a specific technology (illustrated in figure 5.1) is done
automatically during code generation. In the general CASE tool diagram (see figure 6.1)
only the function code is affected: For every CompactBean a corresponding remote
interface containing the declarations of the business methods and accessors-methods for
every public attribute of the CompactBean is generated. Moreover the home interface
and a skeleton of the bean implementation, which contains implementations for the
finder methods and factory methods, is generated.

In the �CompactBean� pattern, the generation of constraint checking code is straight-
forward: constraints attached to the �CompactBean� classifier are mapped to checking
code in the bean implementation. This reflects intention of the designer, because in this
scenario he will “identify” a Enterprise Java Bean by their bean implementation.

26

6.2 Support for our Design Patterns

6.2.2 Supporting the ExpandedBeanHome Pattern

The ExpandedBeanHome pattern allows the use of several pairs of home interfaces and
bean implementations (see figure 5.2). Using this design pattern have to consider the
following issues:

• For representing the extended EJB we introduce the stereotype �ExpandedBean-
Home�. Additionally stereotypes for representing the internals of the EJB (�Re-
moteInterface�, �HomeInterface�, �BeanImplementation�) are provided.

• We distinguish the levels of abstraction described in the last section, namely the
abstract view and the concrete view.

• The different abstraction views should be supported by additional view and update
functions.

• We provide function expand to support the conversion of a CompactBean into an
ExpandedBeanHome; this enables better tool support.

• Of course a new code generation scheme is required.

• As in the CompactBean pattern, the ExpandedBeanHome pattern is neutral with
respect to the XMI export and import.

For a valuable support of OCL constraints within a CASE tool using the Expanded-
BeanHome design pattern, we have to consider the places where OCL constraints should
be written. In particular we have to think about the “operational semantics” of con-
straints attached to the remote interface or at any of the several bean implementations,
respectively the remote interfaces. In the following, when we speak about attaching an
constraint to an implementation of interface, we describe the place, where the constraint
is specified. For example, if the constraint is a postcondition of a method the term
“attaching to a interface” should be understood as specifying the constraint as postcon-
dition of method m in the context of the specific interface. We propose the following
strategy for using constraints using the ExpandedBeanHome scenario:

remote interface: In this approach, the remote interface is unique for an EJB, therefore
all the OCL constraints attached to this classifier should hold for all instantiations
of that EJB. The constraint attached to the remote interface should describe the
business model in greater detail, but only OCL constraints are allowed, that have
a concrete semantics in the context of the remote interface, e.g. all classifiers used
have to be declared in that interface (except query-functions, as described in ear-
lier).

27

6 Tool Integration

home interface: The home interface is unique for every bean implementation and can
therefore contain implementation specific constraints together with “global” con-
straints (e.g. for the finder methods) that should hold true for all instantiations of
that EJB. As in the case of the remote interface, all classifiers used in the OCL
constraint have to be declared in that interface.

bean implementation: Constraints added to an bean implementation should hold only
for that specific implementation, therefore constraints, that should hold for all
instantiations and all implementations of that EJB have to be attached on all
bean implementation of that Enterprise Java Bean

6.2.3 Supporting the ExpandedBeanRemote Pattern

The ExpandedBeanRemote design pattern allows the use of several pairs of home inter-
faces and bean implementations (see figure 5.3). Using this pattern have to consider the
following issues:

• For representing the whole EJB we introduce the stereotype �ExpandedBeanRe-
mote�. Additionally stereotypes for representing the internals of the EJB (�Re-
moteInterface�, �HomeInterface�, �BeanImplementation�) are provided.

• We distinguish the different levels of abstraction described in the last section: the
abstract view and the concrete view.

• The different abstraction views should be supported by additional view and update
functions.

• We provide function expand ′ to support the conversion of a CompactBean into an
ExpandedBeanRemote, this enables better tool support.

• A new code generation scheme is required.

• As in the CompactBean pattern, the ExpandedBeanRemote pattern is neutral with
respect to the XMI export and import.

As in the ExpandedBeanHome pattern, the ExpandedBeanRemote pattern requires a
short discussion about the “operational semantic” of constraints attached to one of the
interfaces or the implementation. In detail we propose for the ExpandedBeanRemote
design pattern:

remote interface: In this approach, the remote interface describes a special “way to ac-
cess” the EJB. Therefore constraint attached to this interface should only describe
the business model of this special access in detail.

28

6.2 Support for our Design Patterns

home interface: The home interface is unique for every bean implementation and can
therefore contain implementation specific constraints together with “global” con-
straints (e.g. for the finder methods) that should hold for all instantiations of that
EJB.

bean implementation: Constraints added to an bean implementation should hold for
all EJBs generated on the basis of the specification of the extended Bean used.
Therefore, OCL formulae describing parts of the business model that should hold
for all “ways to access”, must be attached on the bean implementation.

29

6 Tool Integration

30

7 Technological Details

7.1 Checking OCL Constraints using EJBs

When generating constraint checking code for J2EE/EJB, we have to take care of some
specialties of this middleware architecture. First we have to consider that an EJB has no
constructor, instead we have create–, finder– and remove–methods, controlling the life
cycle (e.g. activation, passivation or destruction) of the EJB. Technically, we can handle
these methods like any “ordinary” method, with one exception: The J2EE architecture
restricts the type of exceptions, that can be thrown in such a method, see [18] for details.
We have to respect these restrictions, when we decide to throw an exception whenever
a OCL constraint is violated. We suggest checking invariants of Enterprise Java Beans,
concerning these methods controlling the life cycle of the EJB, in the following manner:

ejbCreate() is called whenever an EJB is created. Here we suggest not to check any
invariants, because after an successful creation of the EJB it is guaranteed, that
ejbPostCreate() is called and if the creation fails, then checking invariants is mean-
ingless.

ejbPostCreate() is called whenever an EJB is successfully created (it is called directly
after the call of ejbCreate()). To guarantee that the invariants holds after its
creation we must check the invariants in the postcondition of this method.

ejbRemove() is called whenever an EJB is deleted from memory, so we can handle it
like an “normal” destructor, e.g. the invariants are checked in the precondition of
ejbRemove().

ejbActivate() is called whenever a EJB is activated, therefore we handle it like a kind
of constructor. This means the invariant is checked in the postcondition of ejbAc-
tivate(). This guarantees that the invariants holds, when a client accesses the EJB
for the first time after activation.

ejbPassivate() is called whenever a EJB is passivated, therefore we handle it like a
kind of destructor. That means the invariant is checked in the precondition of
ejbPassivate(). This guarantees that only an EJB is passivated, whose invariants
holds.

31

7 Technological Details

ejbLoad() is used for resets the bean state to a specific state stored in the underlying
database. Here we also suggest checking the invariant in the postcondition of the
method call, like ejbActivate().

ejbStore() is used for writing the beans state into the underlying database. Here we
suggest checking the invariant in the precondition and postcondition of the method
call, guaranteeing that only states where the invariant holds are stored into the
database and also that the EJB is in an state conforming the invariant after calling
ejbStore().

The tasks of these methods and their use is discussed in [18]. The finder methods can be
treated as usual methods obviously, since a finder method does not change the system
state (is side–effect free), there is no need to check any invariants in the precondition or
postcondition of a finder method.

7.2 Using Different Distributed Component Technologies

Considering other distributed component technologies, there seems to be a common
understanding for describing the interface of a distributed component. Whereas every
technologies defines its own syntax and concepts, the idea is the same: Every component
is described by an “interface” which contains methods and attributes accessible from the
client.

Looking at the widely used Common Object Request Broker Architecture (CORBA)
[12], also defined by the OMG, a special language for describing the client accessible in-
terface is defined: the Interface Definition Language (IDL). In contrast to EJB, CORBA
does not regulate the internal structure of the component interface, thus the problems
that are based on the partitioning of the abstract view in a home interface and a remote
interface do not exist. Nevertheless a CORBA component has abstract view defined
with the help of the IDL (which is seen by the clients) and a concrete view defined by
its implementation. As in the case of Enterprise Java Beans, the concrete view is a real
refinement of the abstract view. In contrast to EJB, however an interface of a CORBA
component can allow the access to attributes directly. Hence, the compliance to the
requirement of accessing attributes only via accessor–methods has to be checked in an
additional step.

Plain CORBA does not guarantee serializability of transaction, therefore one has the
whole problematic (concurrency, call–backs) of distribution while specifying and con-
straint checking. For the case of non–reentrant EJBs combined with container managed
persistence, the EJB container guarantees the serializability of transactions. When a
call–back occurs the transaction is rolled back.

32

8 Conclusion and Future Work

We presented a pragmatic approach to use diagrammatic specifications for dynamic
testing of software components based on state–of the art component technology. Of
course, post–hoc checking of violations of precondition and postconditions and class
invariants of software components is rather an a posteriori debugging method than a
systematic a priori approach of analyzing a piece of software. However, we intend to
complement our approach by a test–case generation technique similar to [8, 2, 4]. Thus
a specification is also used to generate systematically test–cases along predefined testing
hypotheses from the specification. Such a technique requires real theorem proving and a
declarative (instead of an operational) semantics of OCL; a suitable embedding of OCL
into Isabelle/HOL is in preparation. Such an embedding would also allow for a formal
proof of refinement of an abstract view by the concrete one (allowing to omit the checks
of the abstract level) or the verification of an implementation against the concrete level
(allowing to omit the checks of the concrete level).

Further, our experience shows, that using such a powerful middleware architecture
like J2EE/EJB allows us to specify complex client – server applications in a relatively
easy manner. Under the assumption of an correct implementation of the middleware
architecture and limiting ourself to specifying the business model we can also simplify
our specification by using a middleware; this simplified version can neglect the aspects
of distribution and concurrency.

On the other side, we have also new fields of activity for the specification. One of these
are based on transactions. Within enterprise information systems several operations on
Enterprise Java Bean are grouped together. Such a group of operations is often called
transaction. It is an important property of a transaction, that it can be canceled, in a
well defined manner (doing a rollback), when something went wrong during its execution.
Therefore we see constraints on transactions as a useful extension to our actual model.
Specifying precondition and postconditions and also invariants for transaction would
allow us to specify “legal” states of the underlying database.

33

8 Conclusion and Future Work

34

Bibliography

[1] Formals Specification – Z Notation – Syntax, Type and Semantics. June 2000.
http://www.cs.york.ac.uk/~ian/zstan/. Consensus Working Draft 2.6.

[2] David Carrington, Ian MacColl, Jason McDonald, Leesa Murray, and Paul Strooper.
From Object-Z specifications to ClassBench test suites. Technical Report 98-22,
Software Verification Research Centre, School of Information Technology, The Uni-
versity of Queensland, Brisbane 4072, Australia, October 1998. http://svrc.it.
uq.edu.au/Bibliography/svrc-tr.html?98-22.

[3] Steve Cook, Anneke Kleppe, Richard Mitchell, Bernhard Rumpe, Jos Warmer,
and Alan Wills. The Amsterdam Manifesto on OCL. Technical Report TUM-
I9925, Technische Univerität München, 1999. http://wwwbroy.informatik.
tu-muenchen.de/reports/CKR+99.html.

[4] Jeremy Dick and Alain Faivre. Automating the generation and sequencing of test
cases from model-based specications. In J.C.P. Woodcock and P.G. Larsen, editors,
Formal Methods Europe 93: Industrial-Strength Formal Methods, volume 670 of
LNCS, pages 268–284. Springer, April 1993.

[5] OCL Compiler Suite. http://dresden-ocl.sourceforge.net/. Implementation
of an OCL compiler and code generator for Java. For details see [6] and [20].

[6] Frank Finger. Design and Implementation of a Modular OCL Compiler . Diploma
thesis, Technische Universität Dresden, March 2000. http://www-st.inf.
tu-dresden.de/ocl/ff3/diplom.pdf.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional Com-
puting Series. Addison-Wesley, Reading, MA, USA, 1994. ISBN 0-201-63361-2., 416
pages.

[8] Steffen Helke, Thomas Neustupny, and Thomas Santen. Automating test case gen-
eration from Z specifications with Isabelle. Lecture Notes in Computer Science,
1212:52–71, 1997. http://swt.cs.tu-berlin.de/~santen/.

35

http://www.cs.york.ac.uk/~ian/zstan/
http://svrc.it.uq.edu.au/Bibliography/svrc-tr.html?98-22
http://svrc.it.uq.edu.au/Bibliography/svrc-tr.html?98-22
http://wwwbroy.informatik.tu-muenchen.de/reports/CKR+99.html
http://wwwbroy.informatik.tu-muenchen.de/reports/CKR+99.html
http://dresden-ocl.sourceforge.net/
http://www-st.inf.tu-dresden.de/ocl/ff3/diplom.pdf
http://www-st.inf.tu-dresden.de/ocl/ff3/diplom.pdf
http://swt.cs.tu-berlin.de/~santen/

Bibliography

[9] ArcStyler: The IT–Architecural IDE for J2EE/EJB, July 2001. http://www.
arcstyler.com.

[10] Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall Inter-
national, Englewood Cliffs, New Jersey, second edition, 1990. 0-13-880733-7.

[11] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The JavaLanguage Spec-
ification. Addison-Wesley Europe, Amsterdam, The Netherlands, second edition,
2000. ISBN 0-201-31008-2. http://java.sun.com/docs/books/jls/index.html.

[12] CORBA/IIOP 2.2 Specification. February 1998. ftp://ftp.omg.org/pub/docs/
formal/98-02-01.pdf.

[13] OMG XML Metadata Interchange (XMI) Specification. November 2000. ftp:
//ftp.omg.org/pub/docs/formal/00-11-02.pdf.

[14] Object Constraint Language Specification, chapter 6. In Object Management Group
[15], February 2001. ftp://ftp.omg.org/pub/docs/ad/01-02-13.pdfl. Version
1.4.

[15] OMG Unified Modeling Language Specification (draft). February 2001. ftp://
ftp.omg.org/pub/docs/ad/01-02-13.pdfl. Version 1.4.

[16] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley Longman, Inc., Reading, MA, USA, 1998.
ISBN 0-201-30998-X.

[17] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, second edition, 1992. ISBN 013-978529-9. http://
spivey.oriel.ox.ac.uk/~mike/zrm/.

[18] Sun EJB 2 specification. 2000. http://www.javasoft.com/products/ejb/docs.
html.

[19] Jos Warmer and Anneke Kleppe. The Object Contraint Language: Precise Modelling
with UML. Addison-Wesley Longman, Inc., Reading, MA, USA, 1999. ISBN 0-201-
37940-6. http://www.klasse.nl/ocl-boek/intro.htm. This book covers only
OCL 1.1.

[20] Ralf Wiebicke. Utility Support for Checking OCL Business Rules in Java Programs.
dilploma thesis, Technische Universität Dresden, December 2000. http://rw7.de/
ralf/diplom00/ocl-java.ps.

[21] Jim Woodock and Jim Davies. Using Z . Prentice Hall, 1996. ISBN 0-13-948472-8.
http://softeng.comlab.ox.ac.uk/usingz/.

36

http://www.arcstyler.com
http://www.arcstyler.com
http://java.sun.com/docs/books/jls/index.html
ftp://ftp.omg.org/pub/docs/formal/98-02-01.pdf
ftp://ftp.omg.org/pub/docs/formal/98-02-01.pdf
ftp://ftp.omg.org/pub/docs/formal/00-11-02.pdf
ftp://ftp.omg.org/pub/docs/formal/00-11-02.pdf
ftp://ftp.omg.org/pub/docs/ad/01-02-13.pdfl
ftp://ftp.omg.org/pub/docs/ad/01-02-13.pdfl
ftp://ftp.omg.org/pub/docs/ad/01-02-13.pdfl
http://spivey.oriel.ox.ac.uk/~mike/zrm/
http://spivey.oriel.ox.ac.uk/~mike/zrm/
http://www.javasoft.com/products/ejb/docs.html
http://www.javasoft.com/products/ejb/docs.html
http://www.klasse.nl/ocl-boek/intro.htm
http://rw7.de/ralf/diplom00/ocl-java.ps
http://rw7.de/ralf/diplom00/ocl-java.ps
http://softeng.comlab.ox.ac.uk/usingz/

Glossary

A

accessor method A method for setting or getting an class attribute, usually the ac-
cessor method for getting an attribute a:type is called getA():type and the
method for setting this attribute is called setA(a:type).

activation The process of transferring an enterprise bean from secondary storage into
memory.

association The semantic relationship between two or more classifiers that specifies
connections among their instances. A association can be described in more
detail by using multiplicities.

B

bean implementation The class, that implements the methods of an Enterprise Java
Bean. Together with the home interface and the remote interface the bean
implementation forms the EJB.

business logic The code that implements the functionality of an application. In the
Enterprise Java Bean model, this logic is implemented are described in the
remote interface and are implemented by the methods of an enterprise bean.

business method A method that implements one aspect of the business model. A
business-method is part of the business logic.

business model A model that describes the functional behavior of the system or a part
of the system. The business model is implemented by the business logic.

C

class A description of a set of objects that share the same attributes, operations,
methods, relationships, and semantics. A class may use a set of interfaces
to specify collections of operations it provides to its environment.

37

class invariant– container managed persistence

class diagram A diagram that shows a collection of declarative (static) model elements,
such as classes, types, and their contents and relationships.

class invariant A class-invariant is an constraint that should hold true before and after
any invocation of an method or any access to an class attribute. This defi-
nitions is different from the intention of the OCL standard [14, page 6-52],
where it is postulated that a invariant should hold for any instance at any
time.

classifier A mechanism that describes behavioral and structural features. Classifiers
include interfaces, classes, datatypes, and components.

collaboration diagram A diagram that shows interactions organized around the struc-
ture of a model, using either classifiers and associations or instances and
links. Unlike a sequence diagram, a collaboration diagram shows the rela-
tionships among the instances. Sequence diagrams and collaboration dia-
grams express similar information, but show it in different ways.

Common Object Request Broker Architecture (CORBA) A middleware architecture,
standardized by the OMG.

component A software (sub)system that can be factored out and has a standardiz-
able or reusable interface. Components are usually language and machine
independent and can be connected via a network.

Computer Aided Software Engineering tool (CASE tool) The generic term CASE can
be used to mean any computer–based tool for software planning, develop-
ment, and evolution. We use this term for describing complex engineering
tools, that support the development chain from specification to code gener-
ation.

concurrency The occurrence of two or more activities during the same time interval.
Concurrency can be achieved by interleaving or simultaneously executing two
or more threads. Offering flexible migration to legacy systems and enabling
reuse of code, component technologies are viewed in industry as a way of
speeding up development and organizing systems with increasing size.

constraint A semantic condition or restriction. Certain constraints are predefined in
the UML, others may be user defined. Constraints are one of three extensi-
bility mechanisms in UML.

container managed persistence (CMP) The data transfer (storing the state informa-
tion) between an entity bean’s variables and resource manager managed by
the entities bean’s container.

38

data refinement– finder method

D

data refinement In set based specification, data refinement is the process of showing
that one set of operations is implementd by another set on a different state
space.

E

EJB container A container implements the EJB component contract of the J2EE archi-
tecture. This contract specifies a runtime environment for enterprise beans
that includes security, concurrency, life cycle management, transaction, de-
ployment, naming, and other services. An EJB container is provided by an
EJB or J2EE server.

EJB server A software that provides services to an EJB container. For example, an
EJB container typically relies on a transaction manager that is part of the
EJB server to perform the two-phase commit across all the participating
resource managers. The J2EE architecture assumes that an EJB container
is hosted by an EJB server from the same vendor, so does not specify the
contract between these two entities. An EJB server may host one or more
EJB containers.

enterprise information system The applications that comprise an enterprise’s existing
system for handling company-wide information. These applications provide
an information infrastructure for an enterprise. An enterprise information
system offers a well defined set of services to its clients. These services are
exposed to clients as local or remote interfaces.

Enterprise Java Bean (EJB) A component architecture for the development and de-
ployment of object-oriented, distributed, enterprise-level applications. Ap-
plications written using the Enterprise JavaBeans architecture are scalable,
transactional, and secure.

entity bean An Enterprise Java Bean that represents persistent data maintained in a
database. An entity bean can manage its own persistence or it can delegate
this function to its container. An entity bean is identified by a primary key.
If the container in which an entity bean is hosted crashes, the entity bean,
its primary key, and any remote references survive the crash.

F

factory method A method implementing the factory method pattern, which defines an
interface for creating objects.

39

formal method– Java Transaction Service

finder method A method defined in the home interface and invoked by a client to
locate an entity bean.

formal method Formal methods are techniques and tools based on mathematics and
mathematical logic that support the description, construction and analysis
of hardware and software systems.

H

home interface One of two interfaces for an enterprise bean. The home interface de-
fines zero or more methods for managing an enterprise bean. The home
interface of a session bean defines create and remove methods, while the
home interface of an entity bean defines create, finder, and remove methods.

I

inheritance The mechanism by which more specific elements incorporate structure and
behavior of more general elements related by behavior.

interface Description of the externally visible behavior of a class, object, or other
entity. In the case of a class or object, the interface includes the signatures
of the operations.

Interface Definition Language (IDL) Implementation language–independent language
for specification of distributed CORBA components.

invariant A invariant is an constraint that should hold true before and after any state
transition. This definitions is different from the intention of the OCL stan-
dard [14, page 6-52], where it is postulated that a invariant should hold for
any instance at any time. Special kinds of invariants are the class invariants
and method invariants.

J

Java 2 Platform, Enterprise Edition (J2EE) An environment for developing and de-
ploying enterprise applications. The J2EE platform consists of a set of ser-
vices, application programming interfaces (APIs), and protocols that provide
the functionality for developing multi–tiered, web-based applications.

Java 2 Platform, Standard Edition (J2SE) The core Java technology platform.

Java Naming and Directory Interface (JNDI) An API that provides naming and di-
rectory functionality, e.g. JNDI is used by clients to locate EJB objects.

40

method invariant– Object Management Group

Java Transaction Service (JTS) An API that allows applications and J2EE servers
to access transactions.

M

method invariant A constraint must hold true before and after invocation of that
method.

middleware A general term for any programming technique that serves to ”glue to-
gether”or mediate between two separate and usually already existing pro-
grams. A common application of middleware is to allow programs written
for access to a particular database to access other databases.

multiplicity A specification of the range of allowable cardinalities that a set may as-
sume. Multiplicity specifications may be given for roles within associations,
parts within composites, repetitions, and other purposes. Essentially a mul-
tiplicity is a subset of the non-negative integers.

N

non–reentrant A possible property of an EJB. For non–reentrant EJBs, the EJB con-
tainer throws exception if several threads/clients are using the same inter-
face. This Guarantees that only non concurrent accesses to the EJB can
take place.

O

Object Constraint Language (OCL) A (semi-) formal constraint language for making
UML specifications more formal. It is part of the UML standard [15]. The
purpose of OCL is specifying all kind of constraints like invariants, precon-
ditions, postconditions or constraints related with finite-state-machines.

Object Management Group (OMG) The OMG was founded in April 1989 by eleven
companies. In October 1989, the OMG began independent operations as a
not-for-profit corporation. Through the OMG’s commitment to developing
technically excellent, commercially viable and vendor independent specifi-
cations for the software industry, the consortium now includes about 800
members. The OMG is moving forward in establishing CORBA as the
”Middleware that’s Everywhere”through its worldwide standard specifica-
tions: CORBA/IIOP, Object Services, Internet Facilities and Domain Inter-
face specifications, UML and other specifications supporting Analysis and
Design.

41

passivation– three–tier

P

passivation The process of transferring an enterprise bean from memory to secondary
storage. See also activation.

postcondition A constraint that must be true at the completion of an operation.

precondition A constraint that must be true when an operation is invoked.

private This model element is only visible (can only be accessed) within the classifiers
it is defined in.

protected This model element is only visible (can only be accessed) within the classi-
fiers it is defined in and all derived classifiers (subtypes).

public This model element within the classifier it is defined and also outside this
classifier.

R

remote interface One of two interfaces for an enterprise bean. The remote interface
defines the business methods callable by a client.

S

state-chart diagram A diagram that shows a state machine.

state machine A behavior that specifies the sequences of states that an object or an
interaction goes through during its life in response to events, together with
its responses and actions.

stereotype A new type of modeling element that extends the semantics of the meta-
model. Stereotypes must be based on certain existing types or classes in the
metamodel. Stereotypes may extend the semantics, but not the structure
of pre–existing types and classes. Certain stereotypes are predefined in the
UML, others may be user defined. Stereotypes are one of three extendibility
mechanisms in the UML.

T

three–tier A special type of client/server architecture consisting of three well-defined
and separate processes, each running on a different platform: The first im-
plements the user interface, which runs on the user’s computer (the client).
The second tier is the functional modules that actually processes the data.
This middle tier, or middleware runs on a server which is often called the

42

transaction– XML Metadata Interchange

application server. The third tier is the database management system, often
called enterprise information system that stores the data required by the
middle tier. This tier runs on a second server.

transaction An atomic unit of work that modifies data. A transaction encloses one or
more program statements, all of which either complete or roll back. Trans-
actions enable multiple users to access the same data concurrently.

U

Unified Modeling Language (UML) A general-purpose notational language for spec-
ifying and visualizing complex software, especially large, object-oriented
projects. UML builds on previous notational methods such as Booch, OMT,
and OOSE. It is being developed under the auspices of the Object Manage-
ment Group (OMG).

V

validation The process of proving empirically the correctness of an implementation
against a specification. Normally done by testing.

verification The process of proving mathematically the correctness of an implementa-
tion against a specification. Often done by using formal methods.

visibility An enumeration whose value (public, protected, or private) denotes how the
model element to which it refers may be seen outside its enclosing namespace.

X

Extensible Markup Language (XML) A markup language that allows you to define
the tags (markup) needed to identify the content, data, and text, in XML
documents. An XML document must undergo a transformation into a lan-
guage with style tags under the control of a stylesheet before it can be
presented by a browser or other presentation mechanism. Two types of style
sheets used with XML are CSS and XSL . Typically, XML is transformed
into HTML for presentation. Although tags may be defined as needed in
the generation of an XML document, a Document Type Definition (DTD)
may be used to define the elements allowed in a particular type of document.
A document may be compared with the rules in the DTD to determine its
validity and to locate particular elements in the document.

XML Metadata Interchange (XMI) An open information interchange model intended
to give developers working with object technology the ability to exchange

43

XML Metadata Interchange

programming data over the Internet in a standardized way, bringing con-
sistency and compatibility to applications created in collaborative environ-
ments. XMI is intended to be either stored in a traditional file system or
streamed across the Internet from a database or repository.

44

Index

A
accessor method . 37
activation . 37
association . 37

B
bean implementation 37
business logic. .37
business method. .37
business model . 37

C
CASE tool . 7, 38
class . 37
class diagram. .38
class invariant . 38
classifier .38
CMP. 38
collaboration diagram 38
Common Object Request Broker Archi-

tecture . 38
component . 38
Computer Aided Software Engineering

tool . 38
concurrency . 38
constraint. .9, 38
container managed persistence38
CORBA. .38

D
data refinement . 39

E
EJB container . 39
EJB server . 39

EJB. 39
enterprise information system 39
Enterprise Java Bean 39
entity bean . 39
Extensible Markup Language 43

F
factory method . 39
finder method . 40
formal method . 40

H
home interface . 40

I
IDL . 40
inheritance . 40
interface. .40
Interface Definition Language.40
invariant. .11, 40

J
J2EE. .40
J2SE . 40
Java 2 Platform, Enterprise Edition . 40
Java 2 Platform, Standard Edition . . 40
Java Naming and Directory Interface 40
Java Transaction Service 41
JNDI. .40
JTS . 41

M
method invariant . 41
middleware . 41
multiplicity. .41

45

Index

N
non–reentrant . 41

O
Object Constraint Language 41
Object Management Group.41
OCL . 41
OMG . 41

P
passivation . 42
postcondition. .42
precondition. .42
private . 42
protected. .42
public . 42

R
remote interface . 42

S
specification . 7, 8
state machine . 42
state-chart diagram 42
stereotype . 42

T
three–tier . 42
transaction . 43

U
UML. 43
Unified Modeling Language.43

V
validation . 7, 8, 43
verification . 43
visibility . 43

X
XMI . 43
XML. 43
XML Metadata Interchange 43

46

	Contents
	1 Introduction
	2 A Short Introduction to UML and OCL
	2.1 The Unified Modeling Language
	2.2 The Object Constraint Language

	3 A Short Introduction to Distributed Systems Using J2EE/EJB
	3.1 The Java Enterprise Edition
	3.2 Enterprise Java Beans

	4 Concepts of an EJB--Specification
	4.1 General Principles
	4.1.1 The Syntactical Side
	4.1.2 The Semantical Side

	5 Design Patterns for Enterprise Java Beans
	5.1 The CompactBean Design Pattern
	5.2 The ExpandedBeanHome Design Pattern
	5.3 The ExpandedBeanRemote Design Pattern

	6 Tool Integration
	6.1 The General Structure of a CASE Tool
	6.2 Support for our Design Patterns
	6.2.1 Supporting the CompactBean Pattern
	6.2.2 Supporting the ExpandedBeanHome Pattern
	6.2.3 Supporting the ExpandedBeanRemote Pattern

	7 Technological Details
	7.1 Checking OCL Constraints using EJBs
	7.2 Using Different Distributed Component Technologies

	8 Conclusion and Future Work
	Bibliography
	Glossary

