
A Package for
Extensible Object-Oriented Data Models

with an Application to IMP++

Achim D. Brucker and Burkhart Wolff
{brucker, bwolff}@inf.ethz.ch

July 5, 2006
Information Security, ETH Zurich, CH-8092 Zurich, Switzerland

We present a datatype package that enables the use of shallow embedding technique
to object-oriented specification and programming languages. The package incremen-
tally compiles an object-oriented data model to a theory containing object-universes,
constructors, and accessor functions, coercions between dynamic and static types,
characteristic sets, their relations reflecting inheritance, and the necessary class in-
variants. The package is conservative, i.e., all properties are derived entirely from
axiomatic definitions. As an application, we use the package for an object-oriented
core-language called IMP++, for which correctness of a Hoare logic with respect to an
operational semantics is proven.

1 Introduction

While object-oriented (OO) programming is a widely accepted programming paradigm, theorem
proving over OO programs or OO specifications is far from being a mature technology. Classes,
inheritance, subtyping, objects and references are deeply intertwined and complex concepts that
are quite remote from the platonic world of first-order logic or higher-order logic (HOL). For this
reason, there is a tangible conceptual gap between the verification of functional and imperative
programs on the one hand and imperative and OO programs on the other. This is mirrored in
the increasing limitations of proof environments.

The existing proof environments dealing with subtyping and references can be categorized
as: 1) pre-compilation into standard logic, and 2) deep embeddings into a meta-logic. As pre-
compilation tools, for example, we consider Boogie for Spec# [2, 11] and several based on the Java
Modeling Language (JML) such as Krakatoa [12]. The underlying idea is to compile OO programs
into standard imperative ones and to apply a verification condition generator on the latter.
While technically sometimes very advanced, the foundation of these tools is quite problematic:
The compilation in itself is not verified, and it is not clear if the generated conditions are sound
with respect to the (usually complex) operational semantics. In particular, it is not possible to
prove the soundness of a Hoare calculus with respect to the operational semantics, and, moreover,
the soundness of the verification generator with respect to this calculus.

1

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff/
mailto:brucker@inf.ethz.ch
mailto:bwolff@inf.ethz.ch

1 Introduction

Among the tools based on deep embeddings, there is a sizable body of literature on formal
models of Java-like languages (e.g., [7, 8, 19, 23]). In a deep embedding of a language semantics,
syntax and types are represented by free datatypes. As a consequence, derived calculi inherit a
heavy syntactic bias in form of side-conditions over binding and typing issues. This is unavoidable
if one is interested in meta-theoretic properties such as type-safety; however, when reasoning
over applications and not over language tweaks, this advantage turns into a major obstacle for
efficient deduction. Thus, while various proofs for type-safety, soundness of Hoare calculi and even
soundness of verification condition generators are done, none of the mentioned deep embeddings
has been used for substantial proof work in applications.

In contrast, the shallow embedding technique has been used for semantic representations such
as HOL itself (in Isabelle/Pure), for HOLCF (in Isabelle/HOL) allowing reasoning over Haskell-like
programs [15] or, for HOL-Z [5]. These embeddings have been used for substantial applications [3].
The essence of a shallow embedding is to represent object-language binding and typing directly in
the binding and typing machinery of the meta-language. Thus, many side-conditions are simply
unnecessary; type-safety, for example, has been proven implicitly when deriving computational
rules from semantic definitions. Since implicit side-conditions are “implemented” by built-in
mechanisms, they are handled orders of magnitude faster compared to an explicit treatment.

At first sight, it seems impossible to apply the shallow embedding technique to OO languages in
HOL . In this technique, an expression E of type T in some OO language must be translated into
some HOL-expression E′ of HOL-type T ′. The translation should preserve well-typedness in both
ways, in particular the subtype relation. However, by “translation” we do not mean a simple
one-to-one conversion; rather, the translation might use the OO type system for a pre-processing
making, for example, implicit coercions between subtypes and supertypes explicit. Still, this
requires a representation where subtyping is embedded into parametric polymorphism.

The type representation problem becomes apparent when defining the most fundamental con-
cept of an OO language, namely its underlying state called object structure. Objects are abstract
representations of pieces of memory that are linked via references (object identifiers, oid) to each
other. Objects are tuples of “class attributes,” i.e., elementary values like Integers or Strings
or references to other objects. The type of these tuples is viewed as the type of the class they
are belonging to. Obviously, object structures are maps of type oid ⇒ U relating references to
objects living in a universe U of all objects.

Instead of constructing such a universe globally for all data-models (which is either untyped
or “too large” for (simply) typed HOL, where all type sums must be finite), one could think
of generating an object universe only for each given system of classes. Ignoring subtyping and
inheritance for a moment, this would result in a universe U 0 = A+B for some class system with
the classes A and B. Unfortunately, such a construction is not extensible: If we add a new class
to an existing class system, say D, then the “obvious” construction U 1 = A + B + D results
in a type different from U 0, making their object structures logically incomparable. Properties,
that have been proven over U 0 will not hold over U 1. Thus, such a naive approach rules out an
incremental construction of class systems, which makes it clearly unfeasible.

As contributions of this paper, we present a novel universe construction which represents
subtyping within parametric polymorphism in a preserving manner and which is extensible.
This construction is used in a novel kind of datatype-package (implemented for Isabelle/HOL),
i.e., a kind of logic compiler that generates for each class system and its extensions conservative
definitions representing an OO data theory. This includes the definition of constructors and
accessors, coercions between types, tests, characteristic sets of objects. On this basis, properties
reflecting subtyping and proof principles like class invariants are automatically derived. Further,
we apply this datatype-package for a small imperative language with OO features and show the

2

2 Formal and Technical Background

soundness of a Hoare calculus.

2 Formal and Technical Background

Isabelle [18] is a generic, LCF-style theorem prover implemented in SML. For our object-oriented
datatype package, we use the possibility to build SML programs performing symbolic computa-
tions over formulae in a logically safe way. Isabelle/HOL offers support for checks for conservatism
of definitions, datatypes, primitive and well-founded recursion, and powerful generic proof engines
based on rewriting and tableau provers.

Higher-order logic (HOL) [1] is a classical logic with equality enriched by total polymorphic
higher-order functions. It is more expressive than first-order logic, e.g., induction schemes can
be expressed inside the logic. HOL is based on the typed λ-calculus, i.e., the terms of HOL are
λ-expressions. The application is written by juxtaposition E E′, and the abstraction is written
λ x.E. Types may be built from type variables (like α, β, optionally annotated by type classes,
e.g., α :: order) or type constructors (e.g., bool). Type constructors may have arguments (e.g.,
α list). The type constructor for the function space is written infix: α ⇒ β; multiple applications
like τ1 ⇒ (. . . ⇒ (τn ⇒ τn+1) . . .) are also written as [τ1, . . . , τn] ⇒ τn+1. HOL is centered around
the extensional logical equality = with type [α, α] ⇒ bool, where bool is the fundamental
logical type. The logical connectives ∧ , ∨ , → of HOL have type [bool,bool] ⇒ bool, ¬
has type bool ⇒ bool. The quantifiers ∀ . and ∃ . have type (α ⇒ bool) ⇒ bool. Quantifiers
may range over higher order types, i.e., functions.

The type discipline rules out paradoxes such as Russel’s paradox in untyped set theory. Sets of
type α set can be defined isomorphic to functions of type α ⇒ bool; the element-of-relation ∈
has the type [α, α set] ⇒ bool and corresponds basically to the application; in contrast, the set
comprehension { | } has type [α set, α ⇒ bool] ⇒ α set and corresponds to the λ-abstraction.

We assume a type class α :: bot for all types α that provide an exceptional element ⊥; for each
type in this class a test for defindness is available via def x ≡ (x 6= ⊥). The HOL type constructor
τ⊥ assigns to each type τ a type lifted by ⊥. Thus, each type α⊥ is member of the class bot. The
function x y : α → α⊥ denotes the injection, the function p q : α⊥ → α its inverse for defined
values.

3 Typed Object Universes in an Object Store

In this section, we introduce our families U i of object universes. Each U i comprises all value
types and an extensible class type representation induced by a class hierarchy. To each class, a
class type is associated which represents the set of object instances or objects. The extensibility of
a universe type is reflected by “holes” (polymorphic variables), that can be filled when “adding”
extensions to a class. Our construction ensures that U i+1 is just a type instance of U i (where
U (i+1) is constructed by adding new classes to U i). Thus, properties proven over object systems
“living” in U i remain valid in U i+1.

3.1 A Formal Framework of Object Structure Encodings

We will present the framework of our object encoding together with a small example: assume a
class Node with an attribute i of type integer and two attributes left and right of type Node,
and a derived class Cnode (thus, Cnode is a subtype of Node) with an attribute color of type
Boolean.

3

3 Typed Object Universes in an Object Store

In the following we define several type sets which all are subsets of the types of the HOL type-
system. This set, although denoted in usual set-notation, is a meta-theoretic construct, i.e., it
cannot be formalized in HOL .

Definition 1 (Attribute Types) The set of attribute types A is defined inductively as follows:
1. {Boolean, Integer, Real, String, oid} ⊂ A, and
2. {a Set, a Sequence, a Bag} ⊂ A for all a ∈ A.

Attributes with class types, e.g., the attribute left of class Node, are encoded using the type
oid . These object identifiers (i.e., references) will be resolved by accessor functions like A.left for
a given state; an access failure will be reported by ⊥. Details of the accessor function definition
process are described elsewhere [6].

In principle, a class is a Cartesian products of its attribute types extended by an abstract type
ensuring uniqueness.

Definition 2 (Tag Types) For each class C a tag type t ∈ T is associated. The set T is called
the set of tag types.

Tag types are one of the reasons why we can built a strongly typed universe (with regard to the
OO type system), e.g., for class Node we assign an abstract datatype Nodet with the only element
Nodekey. Further, for each class we introduce a base class type:

Definition 3 (Base Class Types) The set of base class types B is defined as follows:
1. classes without attributes are represented by (t × unit) ∈ B, where t ∈ T and unit is a

special HOL type denoting the empty product.
2. if t ∈ T is a tag type and ai ∈ A for i ∈ {0, . . . , n} then (t× a0 × · · · × an) ∈ B.

Thus, the base object type of class Node is Nodet × Integer × oid × oid and of class Cnode is
Cnodet × Boolean.

Without loss of generality, we assume in our object model a common supertype of all objects.
In the case of OCL (Object Constraint Language), this is OclAny, in the case of Java this is
Object. This assumption is no restriction because such a common supertype can always be
added to a given class structure.

Definition 4 (Object) Let Objectt ∈ T be the tag of the common supertype Object and oid
the type of the object identifiers,

1. in the non-referential setting, we define α Object := (Objectt × α⊥).
2. in the referential setting, we define α Object :=

(
(Objectt × oid)× α⊥

)
.

In the referential setting, object generator functions can be defined such that freshly generated
object-identifiers to an object are also stored in the object itself; thus, the construction of reference
types and of referential equality is fairly easy. However, for other OO semantics the non-referential
setting is appropriate, where objects are viewed more like values. We discuss the consequences
of this choice elsewhere in more detail [6]. Now we have all the foundations for defining the type
of our family of universes formally:

Definition 5 (Universe Types) The set of all universe types Uref resp. Unref (abbreviated Ux)
is inductively defined by:

1. U 0
α ∈ Ux is the initial universe type with one type variable (hole) α.

4

3 Typed Object Universes in an Object Store

2. if U(α0,...,αn,β1,...,βm) ∈ Ux, n, m ∈ N, i ∈ {0, . . . , n} and c ∈ B then

U(α0,...,αn,β1,...,βm)

[
αi :=

(
(c× (αn+1)⊥) + βm+1

)]
∈ Ux

This definition covers the introduction of “direct object extensions” by instantiating α-
variables.

3. if U(α0,...,αn,β1,...,βm) ∈ Ux, n, m ∈ N, i ∈ {0, . . . ,m}, and c ∈ B then

U(α0,...,αn,β1,...,βm)

[
βi :=

(
(c× (αn+1)⊥) + βm+1

)]
∈ Ux

This definition covers the introduction of “alternative object extensions” by instantiating
β-variables.

The initial universe U 0
α represents mainly the common supertype (i.e., Object) of all classes,

i.e., a simple definition would be U 0
α = α Object. However, we will need the ability to store

Values = Real+ Integer+ Boolean+ String. Therefore, we define the initial universe type by
U 0

α = α Object + Values. Extending the initial universe U 0
(α), in parallel, with the classes Node

and Cnode leads to the following universe type:

U 1
(αC,βC,βN) =

(
(Nodet × Integer× oid × oid)

×
(
(Cnodet × Boolean)× (αC)⊥ + βC

)
⊥ + βN

)
Object + Values .

We pick up the idea of a universe representation without values for a class with all its extensions
(subtypes). We construct for each class a type that describes a class and all its subtypes. They
can be seen as “paths” in the tree-like structure of universe types, collecting all attributes in
Cartesian products and pruning the type sums and β-alternatives.

Definition 6 (Class Type) The set of class types C is defined as follows: Let U be the universe
covering, among others, class Cn, and let C0, . . . , Cn−1 be the supertypes of C, i.e, Ci is inherited
from Ci−1. The class type of C is defined as:

1. Ci ∈ B, i ∈ {0, . . . , n} then

C 0
α =

(
C0 ×

(
C1 ×

(
C2 × . . .× (Cn × α⊥)⊥

)
⊥

)
⊥

)
⊥
∈ C,

2. UC ⊃ C, where UC is the set of universe types with U 0
α = C 0

α .

Thus in our example we construct for the class type of class Node the type

(αC , βC) Node =(
(Nodet × Integer× oid × oid)×

(
(Cnodet × Boolean)× (αC)⊥ + βC

)
⊥

)
Object .

Here, αC allows for extension with new classes by inheriting from Cnode while βC allows for direct
inheritance from Node.

Alternatively, one could omit the lifting of the base types of the supertypes in the definition of
class types. We see our definition as the more general one, since it allows for “partial objects”
potentially relevant for other OO semantics for programming languages.

In both cases the outermost ⊥ reflect the fact that class objects may also be undefined, in
particular after projecting them from some term in the universe or failing type casts. This choice
has the consequence that constructor arguments may be undefined.

5

3 Typed Object Universes in an Object Store

3.2 Handling Instances

We provide for each class injections and projects. In the case of Object these definitions are
quite easy, e.g., using the constructors Inl and Inr for type sums we can easily insert an Object
object into the initial universe via

mkObject o = Inl o with type α Object→ U 0
α

and the inverse function for constructing an Object object out of an universe can be defined as
follows:

getObject u =

{
k if u = Inl k
ε k. true if u = Inr k

with type U 0
α → α Object.

In the general case, the definitions of the injections and projections is a little bit more complex,
but follows the same schema: for the injections we have to find the “right” position in the type
sum and insert the given object into that position. Further, we define in a similar way projectors
for all class attributes.

In a next step, we define type test functions; for universe types we need to test if an element of
the universe belongs to a specific type, i.e., we need to test which corresponding extensions are
defined. For Object we define:

isUnivObject u =

{
true if u = Inl k
false if u = Inr k

with type U 0
α → bool.

For class types we define two type tests, an exact one that tests if an object is exactly of the
given dynamic type and a more liberal one that tests if an object is of the given type or a subtype
thereof. Testing the latter one, which is called kind in the OCL standard, is quite easy. We only
have to test that the base type of the object is defined, e.g., not equal to ⊥:

isKindObject o = def o with type α Object→ bool.

An object is exactly of a specific dynamic type, if it is of the given kind and the extension is
undefined, e.g.:

isTypeObject o = isKindObject ∧¬
(
(def ◦base) o

)
with type α Object→ bool.

The type tests for user defined classes are defined in a similar way by testing the corresponding
extensions for definedness.

Finally, we define coercions, i.e., ways to type-cast classes along their subtype hierarchy. Thus
we define for each class a cast to its direct subtype and to its direct supertype. We need no
conversion on the universe types where the subtype relations are handled by polymorphism.
Therefore we can define the type casts as simple compositions of projections and injections, e.g.:

Node[Object] = getObject ◦mkNode with type (α1, β) Node → (α1, β1) Object,

Object[Node] = getNode ◦mkObject with type (α1, β1) Object→ (α1, β1) Node.

These type-casts are changing the static type of an object, while the dynamic type remains
unchanged.

Note, for a universe construction without values, e.g., U 0
α = α Object, the universe type and

the class type for the common supertype are the same. In that case there is a particularly strong

6

4 The Package

relation between class types and universe types on the one hand and on the other there is a
strong relation between the conversion functions and the injections and projections function. In
more detail, one can understand the projections as a cast from the universe type to the given
class type and the injections are inverse.

Now, if we build a theorem over class invariants (based finally on these projections, injections,
casts, characteristic sets, etc.), it will remain valid even if we extend the universe via α and
β instantiations. Therefore, we have solved the problem of structured extensibility for object-
oriented languages.

This constructions establishes a subtype relation via inheritance. Therefore, a set of Nodes
(with type

(
(α1, β) Node

)
Set) can also contain Cnodes. For resolving operation overloading, i.e.,

late-binding, the packages generates operation tables user-defined operations. This construction
is described in [6].

4 The Package

Beside defining the presented definitions, the package proves that our encoding of object-structures
is a faithful representation of OO (e.g., in the sense of language like Java or Smalltalk or the UML

standard [20]). These theorems are proven for each class, e.g., during loading a specific UML

model. This is similar to other datatype packages in interactive theorem provers. Further, these
theorems are also a prerequisite for successful reasoning over object structures. This includes
properties of the object structure, e.g., that our conversion between universe representations and
object representation is lossless, i.e., by proving:

isKindC o =⇒ getC(mkC o) = o and isUnivC u =⇒ mkC(getC u) = u .

In the rest of this section, we show how our package encodes recursive data structures with
invariants and explain the underlying method.

4.1 Encoding Recursive Object Structures

A main contribution of our work is the encoding of recursive object structures, including the
support for class invariants. First we introduce some basic notion: for arbitrary binary HOL

operations op, we write τ � P op Q for pP τq op pQ τq. Moreover, we write τ � ∂ x (“x
is defined in state τ”) for def(x τ), and τ � 6∂ x for the contrary. We use generated accessor
functions self .left and self .right that select a component in an object and de-reference the oid
in the state τ .

Recall our previous example, where the class Node describes a potentially infinite recursive
object structure. Assume that we want to constrain the attribute i of class Node to values
greater than 5. This is expressed by the following function approximating the set of possible
instances of the class Node and its subclasses:

NodeKindF :: U 1
(αC,βC,βN) St ⇒ U 1

(αC,βC,βN) St ⇒ (αC , βC) Node set

⇒ U 1
(αC,βC,βN) St ⇒ (αC , βC) Node set

NodeKindF ≡ λ τ. λ X.
{
self

∣∣ τ � ∂ self .i ∧ τ � self .i > 5
∧ τ � ∂ self .left ∧ τ � (self .left) ∈ X

∧ τ � ∂ self .right ∧ τ � (self .right) ∈ X
}

7

4 The Package

In a setting with subtyping, we need two characteristic type sets, a sloppy one, the char-
acteristic kind set, and a fussy one, the characteristic type set. By adding the conjunct τ �
self ->IsType(Node) (essentially a notation for the previously defined type tests), we can con-
struct another approximation function (which has obviously the same type as NodeKindF):

NodeTypeF ≡ λ τ. λ X.
{
self

∣∣ (self ∈ (NodeKindF τ X))
∧ τ � self ->IsType(Node)

}
Thus, the characteristic kind set for the class Node can be defined as the greatest fixedpoint over
the function NodeKindF:

NodeKindSet :: U 1
(αC,βC,βN) St ⇒ U 1

(αC,βC,βN) St ⇒ (αC , βC) Node set

NodeKindSet ≡ λ τ. (gfp(NodeKindF τ)) .

For the characteristic type set we proceed analogously. We infer a class invariant theorem:

τ � self ∈ NodeKindSet = τ � ∂ self .i ∧ τ � self .i > 5
∧ τ � ∂ self .left ∧ τ � (self .left) ∈ NodeKindSet
∧ τ � ∂ self .right ∧ τ � (self .right) ∈ NodeKindSet

and prove automatically by monotonicity of the approximation functions and their point-wise
inclusion:

NodeTypeSet ⊆ NodeKindSet

This kind of theorems remains valid if we add further classes in a class system.
Now we relate class invariants of subtypes to class invariants of supertypes. Here, we use

coercion functions described in the previous section; we write o[Node] for the object o converted
to the type Node of its superclass. The trick is done by defining a new approximation for an
inherited class Cnode on the basis of the approximation function of the superclass:

CnodeF ≡ λ τ. λ X.
{
self

∣∣ self [Node] ∈ (NodeKindF τ (λ o. o[Node])
8 X)) ∧ · · ·

}
where the . . . stand for the constraints specific to the subclass and 8 denotes the pointwise appli-
cation.

Similar to [4] we can handle mutual-recursive datatype definitions by encoding them into a
type sum. However, we already have a suitable type sum together with the needed injections
and projections, namely our universe type with the make and get methods for each class. The
only requirement is, that a set of mutual recursive classes must be introduced “in parallel,” i.e,
as one extension of an existing universe.

These type sets have the usual properties that one associates with OO type-systems. Let CN

(KN) be the characteristic type set (characteristic kind set) of a class N and let CN and KN be
the corresponding type sets of a direct subclass of N, then our encoding process proves formally
that the characteristic type set is a subset of the kind set, i.e:

τ � self ∈ CN −→ τ � self ∈ KN .

And also, that the kind set of the subclass is (after type coercion) a subset of the type set (and
thus also of the kind set) of the superclass:

τ � self ∈ KC −→ τ � self [Node] ∈ CN .

8

5 Application: A Shallow Embedding of IMP++

These proofs are based on co-inductions and involve a kind of bi-simulation of (potentially)
infinite object structures. Further, these proofs depend on theorems that are already proven over
the pre-defined types, e.g., Object. These proofs where done in the context of the initial universe
U 0 and can be instantiated directly in the new universe without replaying the proof scripts; this
is our main motivation for an extensible construction.

4.2 The Underlying Method

Our OO datatype package also supports a special analysis and verification method based on the
idea of providing several versions of invariants that restrict the type and kind sets with different
grades. For example, the discussed type sets and kind sets are of major importance when resolving
overloading and late-binding: If we can infer from a class invariant that some object must be
of a particular type, then late-binding method invocation can be reduced to a straight-forward
procedure call with simplified semantics.

As a default we generate for each class three different type sets and kind sets:
1. a set based on the user-defined invariant,
2. a set allowing undefined references, i.e., all accessor to attributes of type oid are combined

with a corresponding 6∂-statement by disjunction, and
3. one allowing undefined references and undefined value types, i.e., all attribute accesses are

combined with an corresponding 6∂-statement by disjunction.
This enumeration is ordered ascending with respect to the number of instances that fulfill the

conditions, i.e., every object that is in the first set, is also in the other two. Such an hierarchy of
invariants allows for formally specifying the circumstances under which invariants should hold.

In practice we assume the need for an even more fine-grained graduation of invariants. Whereas
at the moment one has to reproduce the encoding process of our package to introduce new
invariant types, we intend to provide an automatic mechanism for defining new invariant types,
i.e., an interface to our package that defines new type sets and also automatically proves the basic
properties, including the inclusion relation with respect to the already defined type sets. Overall,
we believe that the support of different invariants is a corner stone of successful verification of
OO systems, see also [11] where the authors arguing for weakened invariants, e.g., for inner calls
for specifications written in JML.

5 Application: A Shallow Embedding of IMP++

In the following, we will interface the generated datatype theories of the package to a small, non-
trivial OO language and show that compact calculi for denotational, operational and axiomatic
semantics can be derived in a standard exercise. In particular, we show that proof-work as well
as usability is fairly similar to previous work on IMP [24, 17], but notably easier than traditional
work based on deep embeddings for OO languages since binding and typing are internalized. The
small language follows deliberately the standard presentation of IMP in the Isabelle/HOL library
inspired by a standard textbook on program semantics [24], but extends it with typedness,
treatment of undefinedness, object-creation and object-update. In a small example, we sketch
how to apply it for reasoning on weak and strong data invariants on tree-like structures.

There are essentially two ways to represent Boolean and value expressions in a shallow repre-
sentation for IMP: either we try to represent them as functions from the HOL library directly. Or
we use an own language of operations that take undefinedness into account and hides the λ-wiring
of state passing away such as the HOL-OCL library [6]. The former has the advantage of direct
reuse of Isabelle’s powerful arithmetic decision procedures, while the latter has the advantage

9

5 Application: A Shallow Embedding of IMP++

of representing “realistic” operational behavior: “1 div 0 = 1 div 0” is simply true in the former
variant, but an exception in the latter. Since it is our main purpose to show applicability, i.e.,
proximity to specification languages such as JML, OCL, VDM or Spec#, we opt for the latter.

We re-interpret the logical judgments τ � X op Y of the previous section to τ � X (Sop) Y =
xtruey and define Sop as the lifted strictified versions of op:

S op X Y = λ τ.

{
xpX τq op pY τqy if X τ 6= ⊥ ∧X τ 6= ⊥,

⊥ otherwise .

Thus, we generate context-lifted strictified versions for the basic operators .= , ∧̇ , ∨̇ , + ,
∗ , ∪ , ∩ , etc. Recall that the operations τ � ∂ x and τ � 6∂ x are lifted versions of def x and
¬def x; note, however, that they are non-strict and can be used to test if the access to program
variables or references in the store has been successful.

5.1 Program Variables and Their Typed Semantic Interface.

Traditionally, program variables are just an object identifier (oid) representing the reference into
the state, which is just a partial map oid ⇀ α. In a typed setting, we need also an embedding
and projection pair and a sets denoting domain and co-domain of the functions between universe
and class types. Thus, we represent a program variable by a tuple (α :: bot, β :: bot)Var with
the components:

(ref :: oid ,proj :: α :: bot ⇒ β, emb :: β :: bot ⇒ α, dom :: α set, cod :: α set)

satisfying the properties:

∀x ∈ cod v.
(
(proj v

)
◦

(
emb v)

)
x = x ∧ ∀x ∈ dom v. ((emb v) ◦ (proj v))x = x

∧(emb v⊥) = ⊥ ∧ ∀x. def(emb v x) = (def x)
∧(proj v⊥) = ⊥ ∧ ∀x. def(proj v x) = (def x)

Variables are encapsulated in the type-constructor (α :: bot, β :: bot)Var; they are instantiated
by the package with the derived injection-projection pairs for class types.

The variable look-up operation #V has type α state ⇒ β. It is defined to yield ⊥ for undefined
references and a suitably converted value of type β otherwise. Due to the lifting, we can use
updates directly inside expressions: τ � #X + 1 .= #Y is a legally typed expression provided
that X and Y are program variables with appropriate type interface. For example, mkNode

and getNode are the instances for emb and proj, and dom and cod can be set to appropriate
characteristic sets.

Note, however, that it is far too restrictive to chose a strict user-defined class invariant like
NodeKindSet for this purpose. This would constrain the programming language, i.e., only object
systems where all references in all objects must be defined at any time could be constructed.
Therefore, it is sensible to chose a more liberal version of it allowing undefined references, i.e.,
version 2) described in section 4.2 is an appropriate candidate.

5.2 Syntax

The syntax of IMP++ is introduced via a datatype definition:

α com = SKIP | α com ; α com
| CMDα cmd | IF α bexp THEN α com ELSE α com
| Assign oid (α aexp) | WHILE α bexp DO α com

10

5 Application: A Shallow Embedding of IMP++

Here, α bexp is a synonym for α state ⇒ bool⊥ and cmd for α state ⇒ α state⊥. In this definition,
the assignment is untyped, i.e., the type of the variable is unrelated to the “intended type” of
the oid . The following notation overcomes this problem:

X :== E , Assign(Oid X)
(
(Emb Y) ◦ E

)
where Oid and Emb are the suitable projections and embeddings. Throughout this paper, we
will assume that IMP++ assignments have this format.

5.3 Denotational Semantics

The denotational semantics is a relation on states; since uncaught exceptions may occur on
the command level, we have also error states denoted by ⊥. Thus, the type of the relation is
(α :: bot state⊥×α state⊥)set. As a consequence, we need to provide the “strict extension” ◦⊥
of type (β⊥ × γ⊥) set ⇒ (α⊥ × β⊥) set ⇒ (α⊥ × γ⊥) set on relations:

r ◦⊥ s ≡{(⊥,⊥)} ∪ {(x, z). def x ∧ (∃y. def y ∧ (x, y) ∈ s ∧ (y, z) ∈ r)}
∪ {(x, z). def x ∧ (∃y. def y ∧ (x, y) ∈ s ∧ z = ⊥)}

The definition of the semantic function C is a primitive recursion over the syntax:

C(SKIP) = Id
C(CMD f) = {(s, t). s = ⊥ ∧ t = ⊥} ∪ {(s, t). def s ∧ t = fpsq}

C(Assign oid a) = {(s, t). s = ⊥ ∧ t = ⊥}
∪ {(s, t). def s ∧ ¬def(apsq) ∧ t = ⊥}
∪ {(s, t). def s ∧ def(apsq) ∧ t = xpsq(oid 7→ apsq)y}

C(c0; c1) = C(c1) ◦⊥ C(c0)
C(IF b THEN c1 ELSE c2) = {(s, t). (s = ⊥ ∨ bpsq = ⊥) ∧ t = ⊥}

∪ {(s, t). def s ∧ def(bpsq) ∧ bpsq = xtruey ∧ (s, t) ∈ Cc1}
∪ {(s, t). def s ∧ def(bpsq) ∧ bpsq = xfalsey ∧ (s, t) ∈ Cc2}

C(WHILE b DO c) = lfp(Γ b (C c))

where Γ is the usual approximation functional for the least fix-point operator lfp, enriched by
the cases for undefined states. Based on C, the derivation of a natural semantics rules like:

σ � 6∂ a =⇒ 〈x:==a, xσy〉 −→c σ′ = (σ′ = ⊥)

is now a routine task. Thus, symbolic computations of programs is similarly done (and similarly
efficiently) to IMP with the Isabelle simplifier.

5.4 Hoare Semantics

In our setting, assertions are functions α :: bot state⊥ ⇒ bool. The validity of a Hoare triple is
stated as traditional:

|= {P}c{Q} ≡ ∀st. (s, t) ∈ C(c) −→ Ps −→ Qt

Based on the definition for C, we can derive a Hoare calculus for IMP++. Since we focus on
correctness proof and not completeness, we present the rules for validity |= directly, avoiding a

11

5 Application: A Shallow Embedding of IMP++

∀s. P ′s −→ Ps � {P}c{Q} ∀s.Qs −→ Q′s

� {P ′}c{Q′} � {�P} SKIP{�P}

� {�P}c{�Q} � {�Q}d{�R}

� {�P}c; d {�R}

� {�λ σ. Pσ ∧ (pσq � b)}c{�P}

� {�P}{WHILE}b{DO}c{�λ σ. Pσ ∧ (pσq � ¬ b)}

� {λ σ. σ � err} c {λ σ. σ � err} � {�λ σ. pσq � ∂ f ∧Q(fpσq)} CMD f{�Q}

� {�λ σ. (pσq � ∂ a) ∧Q(xpσq(oid 7→ apσq)y)}(Assign oid a){�Q}

� {�λ σ. (Pσ) ∧ (pσq � b) ∧ (pσq � ∂ b)}c{�Q}
� {�λ σ. (Pσ) ∧ (pσq � ¬ b) ∧ (pσq � ∂ b)}c{�Q}

� {�P}{IF}b{THEN}c{ELSE}d{�Q}

Table 1: The Hoare Calculus for IMP++

detour via a derivability notion `. We define a test for error states (err ≡ (λ x. xx = ⊥y) and
write σ � err in predicates. Moreover, we use the abbreviation �P for λ σ.¬(σ � err)∧Pσ. Thus,
assertions like � {�P ′}c{�Q′} relate “legal” states. The derived calculus is then surprisingly
standard (see Tab. 1).

5.5 An Example in IMP++.

The following IMP++program creates a cyclic data-structure over the class Node consisting of
two nodes satisfying the invariant:

|={λ σ. σ � ∂ #H1 ∧ σ � ∂ #H2}
CMD New(#H1)(7); CMD New(#H2)(9);
CMD Updateleft(#H1)(#H2); CMD Updateleft(#H2)(#H1);
CMD Updateright(#H1)(#H1); CMD Updateright(#H2)(#H2)

{λ σ. σ � #H1. content ∈Node ∧ σ � #H2. content ∈Node}

To model local program variables of “reference type,” we assume an extension of the original
class system by a new class Nodeaux with a fixed attribute content of type Node. Further, we
define the generator Newcontent(Obj)(val) which generates a new Node object, initializes the data
attribute with val (checking the liberal invariant), and stores the reference into the content
field of Obj . Similarly, the operations Updateleft(Obj)(X) (and Updateright(Obj)(X)) updates
the left attribute of the object given by the content attribute of Obj . All erroneous situations
are reported by an error state. These operations can be generated automatically, including the
necessary facts on the equalities of the projections into left and right attributes.1

The example shows how liberal invariants (a freshly generated object only satisfies such an
invariant since the .left and .right attribute are uninitialized) can be used to establish stronger
ones. Recently, [11] suggested local flags in objects to switch on and off parts of static class
invariants. Our approach does not need such flags (while it can mimic them), rather, we would
generate versions of invariants and relate them via co-induction automatically.

1At present, this is not supported by the package.

12

6 Conclusion

6 Conclusion

We presented an extensible universe construction supporting OO features such as subtyping and
(single) inheritance. The construction is deeply intertwined with the concept of state. Class
types are semantically explained via characteristic sets defined by greatest fixedpoints; these
sets also give a semantics for class invariants. Various versions of invariants may be introduced
and generated as well as their semantic relation be proven via co-induction. Thus, sufficient
information may be generated in advance needed for proofs over programs building up object
systems in an incremental way (locally neglecting global invariants that are used to described
“consistent states” after a big step).

The universe-construction is supported by a package (developed as part of the HOL-OCL

project [6]). Generated theories on object systems can be applied for OO programming language
embeddings using the shallow technique. For such a programming language representation, a
notable simplification is achieved both with respect to meta-theoretic reasoning (i.e., deriving
calculi) as well as for efficient deduction.

One might object that the universe construction described in Sec. 3 and 4 is entirely meta-
theoretic, thus not verifiable; and principles like conservative definitions are not applicable. How-
ever, while concepts like “the set of all HOL-types” are indeed not formalized in HOL, for each
concrete type resulting from the construction a consistent theory is generated. If our construction
or our implementation has an error, Isabelle will refuse to accept these definitions or the proofs.
In [6], an example suite of class diagrams is shown. The computation time for each of these
models is below 2 minutes on recent hardware.

6.1 Related Work

Work on OO semantics based on deep embeddings has been discussed earlier. For shallow embed-
dings, to the best of our knowledge, there is only [22]. In this approach, however, emphasis is put
on a universal type for the method table of a class. This results in local “universes” for input and
output types of methods and the need for reasoning on class isomorphisms. subtyping on objects
must be expressed implicitly via refinement. With respect to extensibility of data-structures,
the idea of using parametric polymorphism is partly folklore in HOL research communities; for
example, extensible records and their application for some form of subtyping has been described
in HOOL [16]. Since only α-extensions are used, this results in a restricted form of class types
with no coercion mechanism to α Object.

Datatype packages have been considered mostly in the context of HOL or functional program-
ming languages. Going back to ideas of Milner in the 70ies, systems like [13, 4] build over a
S-expression like term universe (co)-inductive sets which are abstracted to (freely generated)
datatypes. Paulsons inductive package [21] also uses subsets of the ZF set universe i.

Recently, Huffman et al [9] suggest a universe construction based on Scott’s reflexive domains.
Not really a package, merely a library construction, it helps to reflect the type constructor classes
in Haskell-like languages.

The underlying encoding used by the loop tool [10] and Jive [14] shares same basic ideas
with respect to the object model. However, the overall construction based on a closed world
assumption and thus, not extensible. The support for class invariants is either fully by hand or
axiomatic.

13

References

6.2 Future Work

We see the following lines of future research:
• Towards a Generic Package. The supported type language as well as the syntax for the

co-induction schemes is fixed in our package so far. More generic support for the semantic
infrastructure of languages like IMP++ is also desirable.

• Support for Inductive Constraints. By introducing measure-functions over object-structures,
inductive datatypes can be characterized for defined measures of an object. This paves the
way for the usual structural induction and well-founded recursion schemes,

• Support of built-in Co-recursion. Co-recursion can be used to define e.g., deep object
equalities.

• Deriving VCG. Similar to the IMP-theory, verification condition generators for IMP++ pro-
grams can be proven sound and complete. This leads to effective program verification
techniques based entirely on derived rules.

References

[1] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through
Proof. Academic Press, Orlando, 1986.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.
In CASSIS 2004, LNCS, vol. 3362, pp. 49–69. Springer, 2004.

[3] D. Basin, H. Kuruma, K. Takaragi, and B. Wolff. Verification of a signature architecture
with HOL-Z. In Formal Methods, LNCS, vol. 3582, pp. 269–285. Springer, 2005.

[4] S. Berghofer and M. Wenzel. Inductive datatypes in HOL—lessons learned in formal-logic
engineering. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, eds., TPHOLs,
LNCS, vol. 1690, pp. 19–36. Springer, 1999.

[5] A. D. Brucker, F. Rittinger, and B. Wolff. HOL-Z 2.0: A proof environment for Z-
specifications. Journal of Universal Computer Science, 9(2):152–172, 2003.

[6] A. D. Brucker and B. Wolff. The HOL-OCL book. Tech. Rep. 525, ETH Zürich, 2006.

[7] S. Drossopoulou and S. Eisenbach. Describing the semantics of Java and proving type
soundness. In J. Alves-Foss, ed., Formal Syntax and Semantics of Java, LNCS, vol. 1523, pp.
41–82. Springer, 1999.

[8] M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer’s reduction semantics for
classes and mixins. In J. Alves-Foss, ed., Formal Syntax and Semantics of Java, LNCS, vol.
1523, pp. 241–269. Springer, 1999.

[9] B. Huffman, J. Matthews, and P. White. Axiomatic constructor classes in isabelle/HOLCF.
In J. Hurd and T. F. Melham, eds., TPHOLs, LNCS, vol. 3603, pp. 147–162. Springer, 2005.

[10] B. Jacobs and E. Poll. Java program verification at Nijmegen: Developments and perspec-
tive. In Software Security - Theories and Systems, LNCS, vol. 3233, pp. 134–153. Springer,
2004.

14

References

[11] K. R. M. Leino and P. Müller. Modular verification of static class invariants. In J. Fitzgerald,
I. J. Hayes, and A. Tarlecki, eds., Formal Methods, LNCS, vol. 3582, pp. 26–42. Springer,
2005.

[12] C. Marché and C. Paulin-Mohring. Reasoning about Java programs with aliasing and frame
conditions. In J. Hurd and T. Melham, eds., TPHOLs, LNCS, vol. 3603. 2005.

[13] T. F. Melham. A package for inductive relation definitions in HOL. In M. Archer, J. J. Joyce,
K. N. Levitt, and P. J. Windley, eds., Int. Workshop on the HOL Theorem Proving System
and its Applications, pp. 350–357. IEEE Computer Society Press, 1992.

[14] J. Meyer and A. Poetzsch-Heffter. An architecture for interactive program provers. In
S. Graf and M. Schwartzbach, eds., Tools and Algorithms for the Construction and Analysis
of Systems, LNCS, vol. 1785, pp. 63–77. Springer, 2000.

[15] O. Müller, T. Nipkow, D. von Oheimb, and O. Slotosch. HOLCF = HOL + LCF. Journal of
Functional Programming, 9:191–223, 1999.

[16] W. Naraschewski and M. Wenzel. Object-oriented verification based on record subtyping in
higher-order logic. In J. Grundy and M. Newey, eds., TPHOLs, LNCS, vol. 1479, pp. 349–366.
Springer, 1998.

[17] T. Nipkow. Winskel is (almost) right: Towards a mechanized semantics textbook. Formal
Aspects of Computing, 10:171–186, 1998.

[18] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, LNCS, vol. 2283. Springer, 2002.

[19] T. Nipkow and D. von Oheimb. Java`ight is type-safe—definitely. In ACM Symp. Principles
of Programming Languages, pp. 161–170. ACM Press, 1998.

[20] OMG Unified Modeling Language Specification. 2003.

[21] L. C. Paulson. A fixedpoint approach to (co)inductive and (co)datatype definitions. In
G. Plotkin, C. Stirling, and M. Tofte, eds., Proof, Language, and Interaction: Essays in
Honour of Robin Milner, pp. 187–211. MIT Press, 2000.

[22] G. Smith, F. Kammüller, and T. Santen. Encoding Object-Z in Isabelle/HOL. In D. Bert,
J. P. Bowen, M. C. Henson, and K. Robinson, eds., ZB, LNCS, vol. 2272, pp. 82–99. Springer,
2002.

[23] D. von Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables, side effects
and virtual methods revisited. In L.-H. Eriksson and P. A. Lindsay, eds., Formal Methods,
LNCS, vol. 2391, pp. 89–105. Springer, 2002.

[24] G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

15

	Introduction
	Formal and Technical Background
	Typed Object Universes in an Object Store
	A Formal Framework of Object Structure Encodings
	Handling Instances

	The Package
	Encoding Recursive Object Structures
	The Underlying Method

	Application: A Shallow Embedding of IMP++
	Program Variables and Their Typed Semantic Interface.
	Syntax
	Denotational Semantics
	Hoare Semantics
	An Example in IMP++.

	Conclusion
	Related Work
	Future Work

